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While developing a method for reasoning about programs, Pitts defined the >>-closed

relations as an alternative to the standard admissible relations. This paper reformulates and

studies Pitts’s operational concept of >>-closure in a semantic framework. It investigates

the non-trivial connection between >>-closure and admissibility, showing that >>-closure is

strictly stronger than admissibility and that every >>-closed relation corresponds to an

admissible preorder.

1. Introduction

Reynolds’s analysis of parametric polymorphism is based on relations and constructions

on relations (Reynolds 1983). Wadler and others have shown how this analysis yields

proof principles for polymorphic programs (Wadler 1989; Mairson 1991; Abadi et al.

1993; Plotkin and Abadi 1993; Plotkin 1993). Although Reynolds allowed a large class of

relations in his work, restrictions are essential for soundness in languages with recursion. A

common restriction is to consider only the admissible relations. (The next section reviews

the definition of admissibility.) For example, Wadler suggested that the use of admissible

relations would allow the extension of his results to a language with polymorphism and

recursion (Wadler 1989), and Plotkin relied on admissible relations in developing a logic

for such a language (Plotkin 1993).

Other well-behaved classes of relations can be adopted too. In particular, Pitts has

recently proposed the >>-closed relations (Pitts 2000). Relying on these relations, Pitts

obtained a useful proof method where questions of admissibility have to be treated only

implicitly or not at all. Many of the same theorems can be derived with admissible

relations and with >>-closed relations. A partial explanation for this overlap is that

many useful relations can be constructed from functions, and that these relations are both

admissible and >>-closed (see Section 3).

In this paper we study the >>-closure condition, comparing it to admissibility. It is not

hard to show that every >>-closed relation is admissible. On the other hand, not every

admissible relation is >>-closed (see Section 5). Nevertheless, we characterize >>-closed
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relations in terms of admissibility. As we prove in Section 4, the >>-closed relations are

induced by certain admissible preorders.

Pitts’s work is syntactic, and emphasizes operational methods over denotational or

logical methods; >>-closure and similar concepts seem to appear rather easily in syntactic

approaches (Birkedal and Harper 1997; Pitts and Stark 1998). In contrast, admissibility

is sometimes hard to define and use in syntactic settings.

The setting for this paper is semantic. We give a semantic analogue for Pitts’s definitions;

for example, we replace sequences of evaluation contexts (called frame stacks) with strict

and continuous functions. The translation into a semantic framework simplifies the

comparison with admissibility. It also enables us to eschew subtle questions of syntactic

definability. Thus, it permits a more direct approach. Still, the semantic notions remain

close to their syntactic counterparts.

The next section introduces some notation and definitions. Section 3 considers relations

induced by functions. Section 4 characterizes >>-closed relations and Section 5 then

compares >>-closure with admissibility. Section 6 concludes. This paper does not assume

familiarity with Pitts’s work and is essentially self-contained; however, it does not review

applications developed in previous papers.

2. Notation and definitions

A partial order is a set A with a binary, reflexive, transitive, antisymmetric relation v; we

often identify the partial order with A or with v. A partial order is complete if it has a

least element ⊥ and a least upper bound txi for each infinite chain x0 v x1 v x2 . . . . A

relation R between two sets A and B is a subset of A × B. As usual, we write a R b for

(a, b) ∈ R. Next we define admissibility for relations on complete partial orders:

— Suppose that A and B are partial orders with least elements ⊥A and ⊥B . A relation R

between A and B is strict when ⊥A R ⊥B .

— Suppose that A and B are complete partial orders. A relation R between A and B is

inductive (or chain-closed) when, for every chain a0 v a1 v a2 . . . in A and every chain

b0 v b1 v b2 . . . in B, if ai R bi for all i, then tai R tbi
— A relation is admissible when it is both strict and inductive.

Given two sets, A and B, we often work with families of four relations TA,A, TA,B , TB,A,

and TB,B , respectively between A and A, between A and B, between B and A, and between

B and B. In those situations, we may equivalently define a single relation T on the disjoint

union A ⊕ B of A and B. We say that T is strict (or inductive, or admissible) if all four

relations TA,A, TA,B , TB,A, and TB,B are strict (or inductive, or admissible, respectively).

We write O for the partial order with elements > and ⊥, and with the order ⊥ v >. If

A is a partial order with a least element ⊥, and f a function from A to O, then f is strict

when f(⊥) = ⊥. If A is a complete partial order, then f is continuous when, for every

chain a0 v a1 v a2 . . . in A, f(tai) = tf(ai).

Suppose that A and B are complete partial orders. We write A →⊥ O for the set of

strict, continuous functions from A to O. Given a relation R between A and B, we define

https://doi.org/10.1017/S0960129500003054 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500003054


>>-closed relations and admissibility 315

a relation R> between A→⊥ O and B →⊥ O, as follows:

f R> g ∆
= ∀(a, b) ∈ R. f(a) = g(b)

and a relation R>> between A and B, as follows:

a R>> b ∆
= ∀(f, g) ∈ R>. f(a) = g(b)

A relation R between A and B is >>-closed when R = R>>. This definition of >>-closure

is a semantic version of Pitts’s operational definition of >>-closure.

3. Relations from functions

In reasoning about programs, it is common to use relations that arise as the graphs of

functions (see, for example, Wadler (1989), Bainbridge et al. (1990), Abadi et al. (1993),

and Plotkin and Abadi (1993)). When h is a function from A to B, we write 〈h〉 for the

graph of h, that is, for the relation between A and B such that a R b if and only if

h(a) = b.

For reasoning in languages with recursion, the use of the graph of an arbitrary function

h need not be sound. If h is a strict and continuous function, however, 〈h〉 is obviously an

admissible relation. Here we prove that if h is a strict and continuous function, then 〈h〉 is

also a >>-closed relation. This result is the analogue of one of Pitts’s syntactic lemmas,

which is phrased in terms of frame stacks rather than functions. However, the proof below

appears to be substantially different from Pitts’s proof. We give it mainly because of the

importance of function graphs and because it serves as a small introduction to the harder

proofs of the next section.

Proposition 1. Suppose that A and B are complete partial orders and that h is a function

in A→⊥ B. Then 〈h〉 is a >>-closed relation between A and B.

Proof. We show that if a 〈h〉>> b, then a 〈h〉 b, by contradiction. We assume that a 〈h〉 b
is false, so h(a) 6= b, and we construct two functions f and g such that f 〈h〉> g but

f(a) 6= g(b), so a 〈h〉>> b is false too.

Since h(a) 6= b, either h(a) 6v b or b 6v h(a). We argue by cases.

— Suppose that h(a) 6v b. We let g map any b′ ∈ B to ⊥ if b′ v b and to > otherwise.

Clearly g is strict and continuous. We let f be the composition of h and g (applied in

this order), so f maps any a′ ∈ A to ⊥ if h(a′) v b and to > otherwise. Since h and g

are strict and continuous, so is f. Moreover, whenever h(a′) = b′, we have f(a′) = g(b′),
so f 〈h〉> g. On the other hand, f(a) = > while g(b) = ⊥, so f(a) 6= g(b).

— The case where b 6v h(a) is analogous. We let g map any b′ ∈ B to ⊥ if b′ v h(a) and

to > otherwise. We let f be the composition of h and g (applied in this order), so f

maps any a′ ∈ A to ⊥ if h(a′) v h(a) and to > otherwise. Again, g and f are strict and

continuous, and f 〈h〉> g, but f(a) = ⊥ while g(b) = >, so f(a) 6= g(b).
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4. A characterization of >>-closed relations

When A and B are two complete partial orders and R is a relation between A and B, we

let �R be the least relation on the disjoint union A⊕ B of A and B such that:

1 R ⊆�R and R−1 ⊆�R ,

2 v⊆�R ,

3 �R is transitive,

4 �R is admissible.

Condition 2 says that �R extends the underlying partial order on A and B; it implies that

�R is reflexive. Because of Conditions 2 and 3, the admissibility condition (Condition 4)

is equivalent to the following:

4a ⊥A �R ⊥B and ⊥B �R ⊥A.

4b For all chains x0 v x1 v x2 . . ., if xi �R y for all i, then txi �R y.

There is always a least relation with the required properties, because the conditions are

monotone. We may view these conditions as an inductive definition of �R .

It is always trivially the case that if a R b, then a �R b ∧ b �R a, but a �R b ∧ b �R a
does not necessarily imply a R b.

Theorem 2. Suppose that R is a relation between two complete partial orders A and B.

Then R is >>-closed if and only if

R = {(a, b) ∈ A× B | a �R b ∧ b �R a}
Proof. In order to establish one direction of this equivalence, we assume that R is

>>-closed, a ∈ A, and b ∈ B, and show that if a �R b and b �R a, then a R b. First, given

f and g such that f R> g, we construct a relation Tw:

T = {(a, a′) ∈ A× A | f(a) v f(a′)}
∪ {(a, b) ∈ A× B | f(a) v g(b)}
∪ {(b, a) ∈ B × A | g(b) v f(a)}
∪ {(b, b′) ∈ B × B | g(b) v g(b′)}

This relation satisfies Conditions 1–4 of the definition of �R . That is, T includes R, R−1,

and v, and is transitive and admissible. (In checking the conditions, it is convenient to

replace 4 with 4a and 4b.) Since �R is the least relation that satisfies those conditions, we

obtain �R ⊆ T . It immediately follows that if f R> g, then:

— If a �R b, then f(a) v g(b).

— If b �R a, then g(b) v f(a).

It further follows that if f R> g, a �R b, and b �R a, then f(a) = g(b). In other words,

if a �R b and b �R a, then f R> g implies f(a) = g(b). Therefore, if a �R b and b �R a,
then a R>> b, and hence a R b by the >>-closure of R.

In order to establish the other direction of the equivalence of the theorem, we assume

that a ∈ A, b ∈ B, a �R b, and b �R a imply a R b, and prove that R is >>-closed. In

order to do this, we must show that, for all a ∈ A and b ∈ B, either a R b or there exist

f and g with f R> g and f(a) 6= g(b). So let us suppose that a R b does not hold, and
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construct f and g with f R> g and f(a) 6= g(b). Since a R b does not hold, one of a �R b
and b �R a must be false. Let us assume that a �R b is false; the other case is symmetric.

We let f be the function that maps a′ ∈ A to > if a′ 6�R b, and to ⊥ otherwise. Similarly,

we let g be the function that maps b′ ∈ B to > if b′ 6�R b, and to ⊥ otherwise. The

functions f and g have the required properties, as we prove next.

— Since a 6�R b but b �R b, we have f(a) 6= g(b).

— The functions f and g are strict because ⊥A �R b and ⊥B �R b by Conditions 2–4.

— In order to show that the functions f and g are continuous, it suffices to show that,

whenever x0 v x1 v . . . is a chain, txi 6�R b if and only if, for some i, xi 6�R b. By

Conditions 2 and 3, xi 6�R b implies that txi 6�R b. Moreover, Condition 4b says that

if txi 6�R b, then xi 6�R b for some i.

— For all a′ ∈ A and b′ ∈ B, if a′ R b′, then a′ �R b if and only if b′ �R b, because

a′ R b′ implies a′ �R b′ and b′ �R a′ (by Condition 1), and by the transitivity of �R
(Condition 3). Therefore, for all a′ ∈ A and b′ ∈ B, if a′ R b′, then f(a′) = g(b′), so

f R> g.

Corollary 3. Suppose that A and B are complete partial orders and that a relation � on

A⊕ B has the following properties:

1 v⊆�,

2 � is transitive,

3 � is admissible.

Let R be the relation between A and B defined by

a R b
∆
= a � b ∧ b � a

Then R is >>-closed. Moreover, every >>-closed relation arises in this manner; that is,

for every >>-closed relation R there is a relation � with properties 1, 2, and 3 and such

that a R b ≡ a � b ∧ b � a.
Proof. The definition

a R b
∆
= a � b ∧ b � a

implies that R ⊆� and R−1 ⊆�. Therefore, �R⊆�, since �R is the least relation with

properties shared by �. It follows that

a R b ≡ a �R b ∧ b �R a
and, by Theorem 2, that R is >>-closed.

The claim that every >>-closed relation arises in this manner is a straightforward

consequence of Theorem 2: it suffices to let � be �R .

There is a striking similarity between the conditions on � given in this corollary and

the definitions of good partial preorders in Abadi and Plotkin (1990) and of admissible

preorders in Simpson (1995). One apparent difference is that the corollary concerns a

relation on the disjoint union of two complete partial orders, rather than a relation on

a single partial order. Moreover, good partial preorders have an additional uniformity

property and Simpson’s admissible preorders are such that x � ⊥ only if x = ⊥ (though

this is not an essential requirement).
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5. Comparison with admissible relations

The following two propositions concern some of the finitary properties of >>-closed

relations.

Proposition 4. Suppose that R is a >>-closed relation. If a R b and a′ R b′, then a R b′ if

and only if a′ R b.

Proof. If a R b and a′ R b′ and a R b′, then a′ �R b and b �R a′, so a′ R b by Theorem 2.

Symmetrically, if a R b and a′ R b′ and a′ R b, then a R b′.

Proposition 5. Suppose that R is a>>-closed relation. If a R b and a′′ R b′′ and a v a′ v a′′
and b′′ v b′ v b, then a′ R b′.

Proof. If a R b and a′′ R b′′ and a v a′ v a′′ and b′′ v b′ v b, then a′ �R b′ and b′ �R a′,
so a′ R b′ by Theorem 2.

The next two propositions compare admissible relations and >>-closed relations.

Proposition 6. Every >>-closed relation is admissible.

Proof. Suppose that R is >>-closed. Then ⊥A �R ⊥B and ⊥B �R ⊥A imply that

⊥A R ⊥B , by Theorem 2, so R is strict. Moreover, suppose that a0 v a1 v a2 . . . in A and

b0 v b1 v b2 . . . in B, and ai R bi for all i. Since R ⊆�R and �R is inductive, tai �R tbi.
Similarly, tbi �R tai. Hence tai R tbi, by Theorem 2, so R is inductive.

Proposition 7. Not all admissible relations are >>-closed.

Proof. We give three examples of admissible relations that are not >>-closed. Any one

of the three examples would suffice as proof, but they illustrate different points.

1 The first example shows that >>-closure can fail for simple finitary reasons. It is a

variant of an example that Winskel suggested to Pitts.

We let A = B = O and R = {(⊥,⊥), (⊥,>), (>,>)}. All elements of A and B are

related to one another by �R in A ⊕ B. Since (>,⊥) /∈ R, Theorem 2 implies that R

is not >>-closed. In fact, R does not even have the property of >>-closed relations

established in Proposition 4.

2 The second example is more complex, and illustrates some subtleties connected with

infinite chains.

We let

A = {⊥A, a0, a1, a2, . . . , a}
where ⊥A v a0 v a1 v a2 . . . is a strictly increasing chain with least upper bound a;

B = {⊥B, 0, 1, 2, . . . , b, b′}
where ⊥B v i v b v b′ for every natural number i; and

R = {(⊥A,⊥B), (a0, 0), (a1, 1), (a2, 2), . . . , (a, b′)}
We have ai �R i �R b for all i, so ai �R b for all i, so a �R b. Conversely, we have
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b �R b′ �R a, and hence b �R a. By Theorem 2, >>-closure would require that we

have a R b, but we do not.

3 In semantics, arbitrary relations are often a stepping stone for constructing symmetric

and transitive relations, that is, pers. Pers are of particular importance because they

commonly serve as the interpretations of types. The third example shows a per that is

admissible but not >>-closed.

We let A = {⊥, a, a′} with ⊥ v a v a′, and

R = {(⊥,⊥), (⊥, a′), (a′,⊥), (a′, a′), (a, a)}
The relation R is a per on A, and it is admissible. On the other hand, R does not have

the property of >>-closed relations established in Proposition 5, because ⊥ R a does

not hold. Therefore, R is not >>-closed.

6. Conclusion

The results of this paper are evidence of an intimate but non-trivial connection between

>>-closure and admissibility:

— Every >>-closed relation is admissible, but not every admissible relation is >>-closed.

— Every >>-closed relation corresponds to an admissible preorder.

This connection helps keep some conceptual order. On the other hand, by itself, this

connection does not shed much light on whether >>-closure or standard admissibility

should be preferred as a basis for semantics and logics of programs. At this stage, it seems

likely that the concept of >>-closure still requires generalization and elaboration. For

example, admissibility makes sense for relations of any arity, while >>-closure has been

defined only for binary relations. Indeed, it is not yet clear what should be the definition

of a >>-closed unary relation. Further study of >>-closure may be worthwhile.
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