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In the current study, we explore the factors underlying the well-known difficulty in acoustic
classification of front nonsibilant fricatives (Maniwa, Jongman & Wade 2009, McMurray
& Jongman 2011) by applying a novel classification method to the production of Greek
speakers. The Greek fricative inventory [f v T D s z C J x ƒ] includes voiced and voice-
less segments from five distinct places of articulation. Our corpus contains all of the Greek
fricatives produced by 29 monolingual speakers, but our focus is on the distinction between
the front nonsibilant fricatives [f v T D]. For comparison, we also discuss the other places
of articulation where relevant. We apply a relatively novel classification method based on
CEPSTRAL COEFFICIENTS, previously successful in categorizing English obstruent bursts
(Bunnell, Polikoff & McNicholas 2004), English vowels (Ferragne & Pellegrino 2010),
Romanian fricatives (Spinu & Lilley 2016), and Russian fricatives (Spinu, Kochetov &
Lilley 2018). For this study, fricative boundaries were automatically aligned using HIDDEN

MARKOV MODELS (HMMs) and then manually checked. Six Bark-frequency cepstral
coefficients (c0–c5) were extracted from 20-millisecond Hann windows. HMMs were used
to divide the fricatives and adjacent vowels into three regions of internally minimized vari-
ance. A multinomial logistic regression analysis then used the mean cepstral coefficients
from each region as predictors for classification by consonant identity. Our method yields
highly successful classification rates, exceeding the performance of previous methods. We
discuss these results in light of the differences of the phonemic distributions of fricatives
between English and Greek.
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1 Introduction
To date, studies of classification techniques for fricatives based mainly on acoustic measures
traditionally employed in phonetic research (e.g. spectral moments, peak location, amplitude,
and duration) have yielded much lower success rates with front nonsibilant fricatives [f v T
D] than with sibilant fricatives [s z S n]. Jongman, Wayland & Wong (2000), for example,
classified English nonsibilants with only a 66% success rate, compared to 88% for sibilants.
Perceptual studies show that human listeners also have difficulty distinguishing these sounds
(McMurray & Jongman 2011), and an acoustic investigation employing both traditional and
more innovative measures did not find any cues ‘even modestly invariant for place of artic-
ulation in nonsibilants’ (ibid.: 231). Indeed, acoustic classification studies (reviewed below)
have repeatedly yielded poor performance with front nonsibilant fricatives, regardless of the
methods employed. This may be partially explained by their inherent articulatory variability;
an articulatory study using magnetic resonance imaging showed that labiodental fricatives
exhibited the most variability across speakers:

The vocal tract and tongue shapes for the labiodentals exhibited wide variabilities.
Hence, it is not possible to posit generalized aerodynamic characteristics for the
labiodentals with the currently available data. (Narayanan, Alwan & Haker 1995:
1345)

Such findings, which are for the most part based on English data, raise the question whether
FRONT FRICATIVES

1
display similar acoustic properties in other languages. Greek is an

interesting case, since it has four front fricatives like English, but it also has six non-front
fricatives. Thus, the Greek fricative inventory is richer and more complex than the English
one. While on the surface four different front segments are present in both inventories [f v
T D], they do not function in exactly the same way in both languages. The phonologization
of American English interdental fricatives /T/–/D/ is posited to be incomplete (Smith 2010,
2013) and their distribution not contrastive, but rather complementary. This statement is sup-
ported by the fact that there are few minimal pairs involving these sounds in English, and the
sounds appear in a mostly predictable distribution (e.g. /D/ occurs word-initially in function
words and otherwise mostly word-medially, whereas /T/ occurs mostly word-initially or word-
finally in lexical words), thus demonstrating low functional load (Jekiel 2012). According to
Lass (1994: 71–72) the current phonological status of interdental fricatives is similar to the
one found in Old English, when /T/ was the only voiceless dental fricative phoneme while
[D] was a voiced allophone appearing between voiced sounds. Smith (2013) found that the
degree of voicing of a dental fricative is better predicted by its environment (whether it occurs
between voiced sounds) than by its phonemic voicing status. According to Barber, Beal &
Shaw (2009: 45), the stable situation of dental fricatives stems from their being ‘well inte-
grated’ in the consonant system of English and belonging to a set of fricative pairs (i.e. a
familiar pattern that resists change). However, Jekiel (2012) argues that numerous cases of
loss of dental fricatives across modern varieties of English suggest that the status of /T/ and
/D/ sounds is not stable after all and a possible explanation for these sound changes could be
their low functional load.

Greek front fricatives are contrastive, as attested by the presence of numerous minimal
pairs; for example, δóλoς [�Dolos] ‘deceit’ – θóλoς [�Tolos] ‘dome’; βάρoς [�varos] ‘weight’

1 As pointed out by a reviewer, the term ‘front’ is commonly used to denote a broader set of sounds,
including coronals such as [s z S n]. However, for the sake of brevity, throughout this paper we will refer
to the collection of labiodental and interdental fricatives [f v T D], i.e. the front nonsibilant fricatives,
as simply ‘front fricatives’ for short, distinguishing them from the sibilants as well as the Greek back
nonsibilants [C ³ x ƒ]. Note, though, that in the discussions of previous work, we use the terminology
originally employed in that work.
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– ϕά @ρoς [�faros] ‘lighthouse’; ϕυτεία [fi�tia] ‘plantation’ – θητεία [Ti�tia] ‘tenure’; βυ @νη
[�vini] ‘malt’ – δίνη [�Dini] ‘whirlpool’; θήκη [�Tici] ‘sheath’ – ϕυ @κι [�fici] ‘seaweed’ – δίκη
[�Dici] ‘trial’ – Bίκυ [�vici] ‘Vicki’. In a Greek corpus with 210,000 unique word tokens
(149,500 minimal pairs), there were 3,885 minimal pairs with [f], 2,943 with [v], 5,263 with
[T], and 3,756 with [D]; this included between 138 and 180 minimal pairs for each pair of
front fricatives (Kalimeris & Bakamidis 2007). Even though there are many minimal pairs
with the front fricatives, making their functional load large, there are different degrees of
phonological similarity between them: [f]–[v] and [T]–[D] are the most similar pairs between
the front fricatives (.42 in the similarity metric based on shared and non-shared natural classes
as calculated in Granqvist 2002; for reference 1.0 is the score of identical sounds), [f]–[T] and
[v]–[D] are less similar (.38), and [f]–[D] and [T]–[v] are the least similar pairs (.19; ibid.).
An important question here is what this high functional load and different degrees of phono-
logical similarity means for the phonetic system of Greek fricatives. Given the properties
of Greek fricatives discussed here, we cannot predict whether Greek front fricatives will be
well or poorly distinguished; according to phonological theories of adaptive dispersion and
contrast enhancement (e.g. Kingston & Diehl 1994, Hayes & Steriade 2004), both hypothe-
ses are equally possible. Since front fricative distinctions are hard to perceive (McMurray
& Jongman 2011), and if in addition they are phonologically similar, we might expect neu-
tralization of some of the contrasts. Since, however, their functional load is high, we might
expect the opposite of neutralization, the enhancement of the contrasts.

Furthermore, it is also worth investigating the performance of alternative methods which
have generally proven more successful than traditional ones in recent work on fricative classi-
fication (Spinu & Lilley 2016, Spinu et al. 2018). The question we ask in this study is whether
CEPSTRAL COEFFICIENT means computed from temporal regions of minimal variance as
determined by HIDDEN MARKOV MODELS (HMMs), and extracted from each fricative seg-
ment and its neighboring vowels, are able to capture information reflecting their acoustic
differences consistently, and thus distinguish the fricatives in the Greek inventory from one
another. These findings could be relevant from a phonological perspective. While only of a
speculative nature, the conclusion might be drawn in the case of highly successful classifica-
tion that the contrast between the front non-sibilant fricatives is a robust one, maintained or
potentially enhanced in the course of time (Steriade 1999, Kochetov 2002, Hayes & Steriade
2004). Specifically formulated with respect to vowel inventories, one version of adaptive dis-
persion theory (Liljencrants & Lindblom 1972) predicts that distances between the members
of a contrast should be maximal, i.e. based exclusively on maximization of perceptual dis-
tances, regardless of the number of vowels. Thus, it is conceivable that the members of the
front fricative contrast (i.e. [f] versus [T]) are articulated as far from each other as possible
(and further than in English), for instance with the addition of lip rounding for [f] and a more
retracted tongue for [T]. Additional cues could support the voicing distinctions, making the
voiceless and voiced members of each pair maximally distinct from each other. Since our
study is only concerned with the acoustic properties of these consonants, we leave it to future
articulatory studies to determine whether this might indeed be the case.

2 Background
Much of the previous work on fricatives focused on describing these segments by identifying
parameters that differ significantly between categories (most commonly, place of articulation
or voicing), but few of these studies were designed specifically for classification, that is, in
order to reliably identify the category of individual tokens using these parameters in a statisti-
cal classification test. While significant differences between the means of two groups indicate
a degree of separation, it is more difficult to determine to which of a set of categories a new
token belongs using a training set of data containing observations whose category member-
ship is known. Since perception is essentially a pattern recognition or classification task, an
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accurate phonetic description of a segment would be one that has not only descriptive but also
discriminatory power, and to date front (nonsibilant) fricatives such as [f v T D] have not been
discriminated among reliably. In the following literature overview (summarized in Table A1
in Appendix A), we focus on studies that report classification results, particularly those exam-
ining languages with a front fricative contrast, although some other relevant papers have been
included.

In an early study, Forrest et al. (1988) employed two sets of spectral moments, linear
and Bark-scaled, to classify fricatives produced by 10 English speakers (five males and five
females). The moments were extracted from fricative onsets using overlapping 20-ms (mil-
lisecond) analysis windows at 10-ms intervals. The number of neighboring intervals used in
the classification was varied from one to three (i.e. regions of 20–40 ms). The most important
contributor to the classification was spectral skewness, and slightly better overall classifica-
tion accuracy was achieved with Bark moments (77.7%) than with linear moments (74.5%).
Most of the errors involved the distinction between labial [f] and interdental [T]. The Bark
moments from the first 20-ms window yielded slightly better classification than the linear
moments, but still provided a rather poor estimate of the fricative categories (58.3% classi-
fication accuracy for [T], 75.4% for [f]). The addition of two analysis intervals (i.e. the first
40 ms) did not improve overall performance for either the linear or Bark moments, which
led the authors to speculate that the critical spectral cues for this particular contrast might be
realized later in the segment, or may have to be captured with different analysis parameters.

Linear and Bark-scaled spectral moments were also employed in Tomiak (1990). The
values were extracted from consecutive overlapping 15-ms analysis windows. The corpus
included recordings from six English speakers (three male and three female). In contrast to
Forrest et al. (1988), linear moments yielded a slightly higher accuracy than Bark moments
(78% versus 74%), but this difference was not significant. As in Forrest et al. (1988), the
classification was much better for sibilants (96% accuracy for both [s] and [S]) than nonsibi-
lants (44% for [T], 67% for [f]). In a series of follow-up experiments, the location and length
of the analysis windows were varied, and it was found that the classification of nonsibilants
improves slightly when the analysis window includes portions of the fricative offset, suggest-
ing that salient perceptual information related to fricative place of articulation may be located
in the portion of frication containing a transition to the following vowel.

Examining a wider variety of acoustic properties than previous studies, Jongman et al.
(2000) and McMurray & Jongman (2011) identified several acoustic measures that together
were able to reliably distinguish all four places of articulation. Both studies employed the
same corpus of recordings from 20 English speakers (10 male and 10 female). The compara-
tive analysis of Jongman et al. (2000) included both static parameters (spectral peak location,
spectral moments, noise amplitude, noise duration, and F2 onset) and dynamic parameters
(locus equations and relative amplitude). The spectral moments were obtained from 40-ms
Hamming windows at four different locations (onset, mid-point, and end of frication, as well
as centered over the fricative–vowel transition). Both linear and Bark-transformed spectra
were used, but no significant differences were found between them. For all spectral moments,
at least three of the four places of articulation were distinguished at all analysis windows,
with an advantage to the first (onset) and fourth (transition) windows. Discriminant anal-
yses were performed using these acoustic parameters (except locus equations) to evaluate
their ability to categorize the fricatives in terms of place of articulation, ignoring the voicing
contrast. A stepwise linear discriminant analysis with 21 predictor variables yielded a classifi-
cation rate of 77% overall (68% for labiodentals, 64% for interdentals, 85% for alveolars, and
91% for post-alveolars). As was the case in the earlier studies, most errors involved confu-
sions between labiodentals and interdentals. The most useful variables towards classification
were spectral peak location, normalized and relative amplitude, and the first spectral moment
(mean) at the onset and midpoint of frication. These variables alone yielded a classification
accuracy of 69%. To conclude, despite some improvement over much simpler classification
models, the front fricatives continued to be classified relatively poorly.
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In their follow-up study, McMurray & Jongman (2011) performed several new types of
classification of fricatives by place, this time using multinomial logistic regression and a
modified set of acoustic measures. Their predictor set was made up of 24 measures including
root mean square amplitude (for the frication and vowel portions), Narrow Band amplitude
(for frication and vowel portions in the frequency bands near F3 and F5), duration (frication
and vowel), f0 at vowel onset, formants F1–F5 at vowel onset, low frequency energy (root
mean square amplitude below 500 Hz), spectral peak (frequency at the highest amplitude),
and spectral moments 1–4 (extracted from the fricative and the frication–vowel transition).
Only a few reliable cues to place in nonsibilants were found, specifically F4 and F5 at the
vowel onset, and the third and fourth transition moments.

These showed only moderate to low effect sizes (none greater than .1) and were context
dependent. Thus, categorizing nonsibilants may require at least cue integration, and
potentially, compensation. (McMurray & Jongman 2011: 226)

When using raw data, the overall classification accuracies ranged from 74.8% to 83.3%, and
was ‘not a good fit to listener performance. It was much poorer on nonsibilants than listeners’
(ibid.: 233). Their ‘C-CuRE’ model (short for ‘computing cues relative to expectations’, ibid.:
223), in which the cues are adjusted for speaker and vowel effects, yielded 92.9% overall
accuracy. Exact accuracies are not reported for each place of articulation, but appear to be
around 98% for sibilants and 80% for nonsibilants (ibid.: 236 Figure 6A).

Nissen & Fox (2005) examined the acoustic structure of English voiceless fricatives
[f T s S] produced by adults and typically developing 3- to 5-year-old children in terms
of spectral moments, duration, normalized amplitude, and spectral slope. They used a set
of three 40-ms Hamming windows located at the beginning, middle, and end of each seg-
ment. A cross-validated linear discriminant analysis yielded 69.2% classification accuracy
for place of articulation overall. The classification rate for the adult speakers’ productions
was 65.0%, while the rates for the 3-, 4-, and 5-year-old speakers were 70.0%, 70.0%, and
77.5% respectively. Classification models developed on adult-only productions produced an
overall classification rate of 76.7% for data in the training set. As in previous studies, sibi-
lant fricatives were classified with much higher accuracy (95%) than nonsibilants (70%).
Errors in classification were usually the result of confusions among sibilants or among
nonsibilants, rather than between sibilants and nonsibilants. Unlike Jongman et al. (2000),
the authors found that spectral variance was the only parameter that differed significantly
between nonsibilant fricatives, although spectral slope was also important for classification.

In Kong, Mullangi & Kokkinakis (2014), a support vector machine algorithm was used
to classify eight English fricatives extracted from a subset of 168 speakers from the TIMIT
database (Garofolo et al. 1993). Due to the 16 kHz sampling rate, spectral analyses used a
128-point fast Fourier transform (FFT) in the frequency range of 1–8 kHz. Information was
extracted from multiple randomly chosen 8-ms regions of the segment using a Hamming
window. Various combinations of spectral features, including four spectral moments, peak,
slope, magnitudes of FFT spectra, Mel-frequency cepstral coefficients and Gammatone filter
outputs, were used for the classification. In a task in which the fricatives were classified as
either alveolar, post-alveolar, or nonsibilant, classification accuracy was 88% using 13 Mel-
frequency cepstral coefficients, and 87% using 14 Gammatone filter outputs. It is important
to note that the decision to collapse the labial and interdental fricatives into a single category
suggests that separation of the nonsibilant place categories would have been considerably less
successful.

A study using noise duration and spectral moments to analyze Greek fricatives
(Nirgianaki, Chaida & Fourakis 2010) found that the labiodental–interdental distinction was
the hardest to discriminate, and in fact the measurements employed failed to distinguish
one from the other. A more recent study of Greek fricatives (Nirgianaki 2014) correctly
classified 55.1% of front fricatives (61.5% for labiodentals, 48.7% for interdentals) based
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on vocalic formant information, spectral moments, locus equations, and amplitude parame-
ters. The standardized canonical discriminant function coefficients suggested that normalized
amplitude, spectral variance at fricative midpoint, F2 onset, and spectral mean at fricative
onset were the main parameters used for classification. A subsequent discriminant analy-
sis with those predictors yielded an overall classification rate of 60.7%. Classification rates
were 91.2% for alveolars and 67.9% for palatals, but only 51.9% for labiodentals, 44.8% for
interdentals, and 38.7% for velars.

Even though they were not successful with the classification of Greek fricatives, some
of the same measures yielded higher correct classification rates with Arabic fricatives (Al-
Khairy 2005). The predictors included spectral peak location measured in the center of the
fricative and at the right edge, spectral moments, noise amplitude, noise and vowel duration,
F2 onset, locus equations, and relative amplitude (linear spectra). The fricatives included in
this study were [f T D D≥ s s≥ z S K X Â Ã h]. A linear discriminant analysis with leave-one-out
cross-validation yielded an overall correct classification rate of 79.3%. The rates for front
fricatives were 79% for [f], 72% for [T, D] and 77% for [D≥], but increased when they were
split by voicing.

Spinu & Lilley (2016) compared a novel method, based on cepstral coefficients, with a
method based on spectral moments to classify five pairs of plain and palatalized Romanian
fricatives (i.e. [f–fj, v–vj, z–zj, S–Sj, x–Cj]) produced by 31 native speakers, and obtained a
classification accuracy of 95.3% using the cepstral method (88.5% using spectral moments).
Hidden Markov models were used to divide each fricative into three regions based on their
internal variance. The cues were extracted from regions inside the frication portion, with-
out any additional information from adjacent vowels. However, since their corpus did not
include interdental fricatives, the classification rate obtained is not directly comparable to
previous studies, except for Kong et al. (2014), to some extent. Even so, the high classifica-
tion rate obtained suggests that the HMM-region cepstral coefficient method may be helpful
in identifying the properties of a fricative that optimally distinguish it from other fricatives.

Related to this, one final note is in order: Due to the stochastic nature of frication noise,
spectra based on single Fourier-transformed windows have large amounts of amplitude noise,
and thus static spectral measures can be quite sensitive to the placement of the analysis win-
dow; hence, fricative analysis must take this into account. Jesus & Shadle (2002), in their
analysis of a corpus of Portuguese fricatives from four speakers, handled this variance by
averaging the signal over nine analysis windows spread over the duration of the fricative
before taking the dynamic Fourier transform. Examining the distribution of three measures
derived from the averaged spectrum – dynamic amplitude, low-frequency spectral slope, and
high-frequency spectral slope – they found combinations of the three measures that were
fairly reliable in distinguishing place, particularly nonsibilants [f v] from sibilants [s z S n],
and less so among the sibilants. However, since their interest was not in individual token
classification, no classification rates are given. Moreover, the calculation of their spectral
slope measurements was different for each place of articulation, and so cannot be used for
identification as is.

Another method of handling the problem of noise-induced variance is to use the multi-
taper spectrum (Thomson 1982) rather than the conventional dynamic Fourier transform.
This has been used by, for example, Blacklock (2004) and Shadle (2006). However, Reidy
(2015) found that while the dynamic Fourier transform and the multi-taper spectrum pro-
duced different measures of spectral properties, the differences did not lead to differences in
the statistical significance of linguistic contrasts in a set of English sibilants. He concludes
that the spectral estimation choice is unlikely to have an effect on sibilant analysis, though it
remains an empirical question in specific cases.

To summarize, most of the previous studies have failed to find any single cue that can
reliably distinguish among front nonsibilants [f v T D], though Nissen & Fox (2005) sug-
gest that spectral variance might be appropriate. The discriminant analysis of Jongman et al.
(2000) required 21 cues to achieve a nonsibilant classification rate of 66%. Compensated
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cues in McMurray & Jongman (2011) yielded some improvement, but the error rates for
front fricatives were still around 20%. Generally, nonsibilants show higher standard devia-
tions, lower overall amplitudes, and shorter durations than sibilants (Maniwa et al. 2009). A
newer classification method used in Spinu & Lilley (2016) performed significantly better than
the traditional methods used in other studies, but was not tested with front fricative contrasts.
The studies classifying Greek front fricatives yielded even lower classification rates than
those previously obtained with English fricatives (Nirgianaki et al. 2010, Nirgianaki 2014).
Given the high functional load of the Greek fricatives and the low performance of the tradi-
tional methods used in these studies, we raise the question whether the methods employed
were unable to capture the most relevant aspects of these fricatives’ acoustic identities.

3 Current study
In this study, we extend the method from Spinu & Lilley (2016) to a new language, Greek,
focusing on the specific subset of voiced and voiceless front fricatives, but we also include
and briefly discuss the other places of articulation for comparison. As discussed in the
Introduction, phonological theories predict that the cues to place might be (or have become)
robustly encoded in this language due to their high functional load. Recent work with Greek
fricatives (Nirgianaki et al. 2010, Nirgianaki 2014), however, found poor classification rates
for the front Greek fricatives. As speculated above, this may be due to the method and mea-
sures employed and not necessarily reflect the strength of the contrast. Thus, we test the
hypothesis that the HMM-region cepstral-based classification method (Spinu & Lilley 2016)
better captures the acoustic properties of front fricatives than more traditional methods used
in previous studies of Greek fricatives. We predict that the Spinu & Lilley (2016) method will
result in better classification rates for Greek front fricatives than those of previous studies.

3.1 Method

3.1.1 Participants
Our corpus was originally collected in Greece by the third author. The participants were
29 monolingual native speakers of Standard Modern Greek between 18 and 33 years of
age (mean 24 years). They participated in the study voluntarily and were recruited at the
University of Ioannina, Greece.

3.1.2 Materials
The materials consisted of 10 fricatives from five places of articulation (dental, interden-
tal, labiodental, palatal, velar) and two voicing values (voiced and voiceless). Spectrograms
of all 10 fricatives are provided in Figures B1 and B2 (Appendix B). Sets of nonce words
were constructed pairing each fricative [f v T D s z C J x ƒ] with each of the three vowels
[a o u], and constructing two nonce words per fricative–vowel pair, yielding a total of 60
target items. The vowels [i e] were not used because they trigger a palatalization rule that
applies to velar sounds (Joseph & Philippaki-Warburton 1987). Each nonce word had the
structure CVCV(C), where the two initial phonemes were the target fricative and vowel, and
all words were stressed on the first syllable. Some examples (in Greek spelling and IPA tran-
scription) are shown in Table 1. During elicitation (see Section 3.1.3 below), the nonce words
were embedded at the end of the carrier phrase Όταν αποφασίσω θα πω… [�otan apofa�siso
Ta �po . . .] ‘When I decide I will say . . .’. While phrase-final position may not be ideal, due
to processes such as final lengthening, devoicing, and lowering of f0, the positioning of the
fricative at the beginning of a two-syllable word, where the first syllable is stressed and the
word as a whole is given focus, should diminish the effects of these processes.
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Table 1. Examples of nonce words with [a].

Labiodental Interdental Alveolar Palatal Velar

Voiceless ϕάλo [�falo] θάκoς [�Takos] σάπo [�sapo] χιάνo [�çano] χάλo [�xalo]
Voiced βάλα [�vala] δάζo [�Dazo] ζάνι [�zani] γιάτoς [�Jatos] γάνoς [�Ganos]

Note: The target fricative is bolded. All nonce words were stressed on the first syllable.

3.1.3 Procedure
Participants were fitted with a Logitech H555 USB head-mounted microphone for recording.
The materials to record were presented on a computer screen in the Greek alphabet. The
participants first went through a trial run by recording nine training sentences, which were
meant to familiarize them with the task and the recording tool (Yarrington et al. 2008). These
sentences were not used in the analysis. Next, the participants were presented with a list of all
the novel words they were going to see in the experiment and were asked to read through the
list. This ensured that they would be familiar with the words and would be able to produce
them with no problems. Finally, they were presented with the target sentences in random
order. Two random orders were created in advance and each subject was assigned to one
of the lists in alternate order. The participants were instructed to produce the sentence in a
natural way, as they would have done if they were talking to a friend.

Each of the 29 participants recorded all 60 target utterances (10 fricatives × 3 vowels ×
2 nonce words per fricative–vowel pair), except for one who only recorded 25. After exclud-
ing tokens for mispronunciations or other technical issues, the total number of fricatives for
analysis was 1522.

3.1.4 Data segmentation
The recording software (Yarrington et al. 2008) used for the experiment automatically pro-
duces an alignment of labels to recorded speech if provided with a phonetic transcription.
The alignment tool uses a set of hidden Markov models trained on English; for details see
DiCanio et al. (2013; the alignment tool is referred to as ‘HMALIGN’). DiCanio et al. show
that models that are well-trained on a corpus of one language can be used to align recordings
of a different but similar language. To produce an initial alignment, the aligner was given
transcriptions of the recordings in which the Greek phonemes that are not native to English
were replaced by approximate English equivalents. Specifically, [C] was replaced with [S], [J]
with [n], [x] with [h], and [ƒ] with [g].

Because the aligner had not been trained on Greek specifically, all initial alignments were
subsequently inspected manually, and the boundaries of the target fricatives and their neigh-
boring vowels were hand-adjusted as necessary. Following Jongman et al. (2000), fricative
onset was defined as the point at which high-frequency energy first appeared on the spectro-
gram, or the point at which the number of zero crossings rapidly increased, while the end of
a fricative was aligned with the point where high-frequency energy disappeared, which also
marked the beginning of the following vowel. The end of each vowel segment was determined
depending on the nature of the following segment. For example, if the vowel was followed
by a stop consonant, the boundary was aligned with the intensity minimum immediately
preceding the silence during the closure of the stop.

3.1.5 Cepstral measures and division into regions
Each segment of interest (fricative and adjacent vowels) was converted into a series of over-
lapping Hann windows, 20 ms wide and spaced 10 ms apart, across its entire duration. A
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feature vector of the first six Bark-frequency cepstral coefficients (c0–c5) was extracted from
each window. In addition, two more vectors of coefficients were extracted from analysis win-
dows centered on the offset transition from the fricative to the following vowel, as well as the
onset transition from the preceding vowel to the fricative. The details of the computation of
the coefficients are given in Appendix C.

To divide the target fricatives and vowels into three regions, each segment was used to
train a three-state HMM from scratch. The segment’s cepstral-coefficient feature vectors
(excluding the onset and offset vectors) were first divided into three sets of approximately
equal number, forming three initial regions. The initial six means and variances of those
regions were used as the initial parameters of the model states. However, the means of a fea-
ture vector on the edge of a region may lie closer to the means of the adjacent state than to
its own. Hence, in the next step, the boundaries between the regions are recalculated so that
the total likelihood of the data is maximized with reference to the current model parameters
(Viterbi 1967). Then the means and variances of the new regions are recalculated to determine
the new model states. These two steps are repeated until no feature vectors are reassigned.
Thus, the differences between adjacent regions are maximized while the differences among
feature vectors within the same region are minimized. This procedure was performed using
the HMM ToolKit version 3.4.1 (Young et al. 2009) on a server running Ubuntu 14.04 LTS;
see Appendix D for details.

Next, for each region of each target segment, the means of the cepstral coefficients
assigned to that region were calculated, totaling 54 coefficients (3 segments × 3 regions
× 6 cepstra). Not all of these measures were included in the statistical analyses. Specifically,
while we included the measures obtained from all three regions of the fricative and the pre-
ceding vowel, which was the same ([o]) in all cases, we only included measures obtained
from the first region of the vowel immediately following the fricative, because the following
consonant varied (the reader is reminded these were nonce words and the second syllable in
each varied in ways that ensured the naturalness of the tokens, which led to an uneven dis-
tribution). To avoid a confound based on the presence of these consonants, we excluded the
two vocalic regions preceding them. We thus used 18 measures obtained from the preceding
vowel, 18 measures from the fricative, and only six measures from the vowel following the
fricative. To these were added the onset and offset transition feature vectors (totaling 12 mea-
sures), producing a total of 54 measures per target fricative. Note that the addition of vocalic
data constitutes a departure from the previous analysis in Spinu & Lilley (2016), which only
used measures extracted from the frication portion for classification.

For brevity, we denote each measure with a label such as ‘c2.v2.1’ indicating, in order,
its cepstral coefficient (e.g. ‘c2’ for the second cepstral coefficient), the segment (either ‘fr’
for fricative, ‘v1’ for the preceding vowel, or ‘v2’ for the following vowel), and the region
of the segment it was extracted from (e.g. region 1). Coefficients from onsets and offsets are
labeled, for example, ‘c1.on’ and ‘c1.off’, respectively.

3.1.6 Statistical analyses
The 54 measures described in the previous section were used as independent variables to
train a multinomial logistic regression classification model, following McMurray & Jongman
(2011). The statistical environment was Matlab R2017b, and the built-in functions we
employed were mnrfit.m (fitting the logistic regression) and scatter3.m (for three-dimensional
plots). The goal was to identify the acoustic measures and regions that would contribute most
towards successful classifications. Analyses were conducted twice in each case: once using
the entire predictor set, and once using the top five predictors only. The top predictors were
determined based on the coefficients of the regression models. Each parameter is associated
in the model with a number of beta coefficients (equal to the number of categories minus
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one), and each beta coefficient is associated with a t-statistic, a measure that the beta’s true
value does not equal zero. The top five predictors are chosen in the order of their t-statistic.

2

We first classified the entire data, including all 10 fricative phonemes. To explore the
front fricative contrast, we then conducted analyses on the subset made up of [f v T D]
alone. Several other subsets were constructed by splitting the front fricative corpus by vowel,
resulting in three subcorpora of fricatives followed by [a], [o], and [u] separately. A further
series of analyses examined each of the four front fricatives versus all other front fricatives
collapsed together to determine if there is a distinction of that fricative alone.

In a final set of analyses, we sought to account for within-subject variation, following
McMurray & Jongman (2011). We normalized each cue so as to have zero mean and unit stan-
dard deviation when restricted to each subject. This is equivalent to McMurray & Jongman’s
C-CuRE procedure with regression on dummy variables attached to subjects. Note that the
C-CuRE procedure also normalized (or ‘compensated’, to use the authors’ terminology)
for vowel effects, whereas we did not, instead including parameters extracted from vowels
directly in the analysis.

3.2 Results

3.2.1 Entire corpus
Figure 1 provides the breakdown of classification results by consonant identity based on raw
data for the entire corpus. The overall classification accuracy was 88.9% for the raw dataset of
10 fricatives (the correct rate for front fricatives alone was 79.8%). Fewer confusion errors are
noted in the classification of the back fricatives compared to the front fricatives. In particular,
[z] stands out with a 100% classification accuracy, although this may be due to a general bias
in the analysis towards classifying segments as [z]; as seen in Figure 1, from 3% to 9% of
segments of each of the other phoneme categories were also classified as [z].

Figure 1 (Colour online) Overall classification of all ten fricatives in the corpus.

2 As pointed out by a reviewer, our analysis ignores the possibility of collinearity among our predictors,
which would make some of the predictors redundant, and removing redundant predictors would alter
the t-statistics of the remaining measures, thus possibly affecting their order. A principal components
analysis of the 54 measures determined that the first 27 components explained 95% of the variance, sug-
gesting significant collinearity. However, as will be reported below, we found little correlation among the
top five predictors in our analyses, so we adhered to the reported analysis for simplicity of interpretation.

https://doi.org/10.1017/S002510031900029X Published online by Cambridge University Press

https://doi.org/10.1017/S002510031900029X


Front fricative contrast in Greek: Cepstral coefficients and acoustic variability 403

Note that Figure 1 is based on the entire predictor set. When only the top five predic-
tors were used, classification decreased to 56.6% overall. The top five predictors were: c3
extracted from the second region of the fricative (c3.fr.2), the c1 offset (c1.off), c5 extracted
from the second region of the fricative (c5.fr.2), c1 extracted from the second region of the
fricative (c1.fr.2), and the c2 offset (c2.off). The cues essential to categorization thus appear to
be distributed between the second region of frication noise and the transition on the fricative
into the following vowel. The largest absolute correlation between any two of these predictors
was –.47 between c3.fr.2 and c1.fr.2, and the absolute values of the other correlations were
between .03 and .29, indicating that the top five predictors each made largely independent
contributions to the analysis.

We next redid these analyses using speaker-normalized cues, which had the effect of
slightly improving the overall classification rates for fricative identity: from 88.9% to 90.7%
(all predictors) and from 56.6% to 58.3% (top 5 predictors). The top five predictors for nor-
malized cues were the c1 offset (c1.off), c0 extracted from the second region of the fricative
(c0.fr.2), c2 extracted from the first region of the fricative (c2.fr.1), c0 extracted from the
first region of the fricative (c0.fr.1), and c3 extracted from the second region of the fricative
(c3.fr.2). Two of these predictors are the same as in the case of the classifications obtained
with raw data but, unlike with raw data, the cues from the first region of the fricatives are
more informative in this case. Aside from a correlation of .86 between c0.fr.2 and c0.fr.1, the
absolute correlations among the five predictors ranged from .00 to .28, indicating that most
of these five predictors were making unique contributions to the analysis.

Finally, we also examined the vowel subsets, and found that the overall classification
accuracies were 94.4% for the vowel [a] based on the entire predictor set (55.3% with the
top five predictors), 95.2% for the vowel [o] (61.1% with top five only), and 93.3% for the
vowel [u] (55.5% with top five only). None of the raw classification rates were improved (or
decreased) by speaker normalization. The classification based on the top five predictors were
slightly improved by speaker normalization (by approximately 1% for [a], 3% for [o], and
6% for [u]).

3.2.2 Front fricatives
The analyses reported in the remaining subsections are based on classifications performed on
a corpus made up of nonsibilant front fricatives only, unless otherwise specified.

3.2.2.1 Classification by fricative identity and place
We classified fricative identity [f–v–T–D] and also fricative place (labiodental versus inter-
dental), where the voiced and voiceless counterparts were collapsed for each place of
articulation. When the entire predictor set was used, the overall classification accuracies were
82.9% for fricative identity (Figure 2; highest for [v] i.e. 87.8%, lowest for [T] i.e. 76.6%)
and 85.4% for place of articulation (Figure 3). The top five predictors towards the classifica-
tion of front fricative identity were c5.fr.1, c0.v1.3, c3.v1.2, c1.off, and c3.v2.1. The vocalic
regions thus played a bigger part in the classification of front fricatives compared to when all
10 fricatives were considered together. Both the preceding and the following vowel played
a part, as did the fricative offset, suggesting that the cues restricted to the frication portion
only are insufficient towards distinguishing these four fricatives from each other, as predicted
by Tomiak (1990). For the place classification, the most important contributors were c5.fr.1,
c3.v1.2, c4.fr.2, c0.v1.3, and c3.v1.1. With the top five predictors only, the classification
accuracies decreased substantially, to 43.2% for fricative identity and 67.8% for place.

Speaker normalization yielded slightly higher classification accuracies across the board.
Thus, the classification of fricative identity increased from 82.9% to 87.8% (all predictors)
and 43.2% to 58% (top five predictors). The classification of place increased from 85.3% to
89% (all predictors) and from 67.7% to 80% (top five predictors).
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Figure 2 (Colour online) Classification of fricative identity (front fricatives only) based on the entire set of 54 predictors (top) or
only the top five predictors (bottom).

3.2.2.2 Classification of voicing
We used both the entire predictor set as well as the top five predictors to classify voicing in
the front fricatives, that is, to identify each token as either voiceless or voiced (regardless of
place of articulation). The overall classification accuracy with the raw dataset was very high
(93.2% based on all the predictors and 86.8% based on only the top 5 predictors), indicating
that voicing is robustly encoded in each fricative. The top five predictors were as follows:
c1.off, c5.fr.1, c0.fr.2, c2.fr.3, and c4.fr.3. As might be expected, the top contributors were
extracted mostly from the frication portion. The normalized dataset yielded a higher correct
classification rate using all the predictors (i.e. 95.2%), but a slightly lower rate with the top
five predictors only, specifically 83.9%.

The fact that our method was able to classify voicing accurately suggests that the slightly
reduced classification accuracies for fricative identity (as opposed to place of articulation)
are not due to potential devoicing in these segments (which would contribute to making them
indistinguishable from each other within each place).

3.2.2.3 Voicing and vowel subsets
We classified fricative identity using only subsets of the original corpus, having split it by
vowel (yielding three subsets, one for each of the three vowels used, [a], [o], and [u]) and
by voicing (only voiced fricatives, and only voiceless fricatives). We also classified place of
articulation and voicing in all three vowel subsets.
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Figure 3 (Colour online) Classification of fricative place of articulation (front fricatives only) based on the entire set of 54 predictors
(top) or only the top five predictors (bottom).

When restricted in this manner and using the entire predictor set, all subsets of raw data
yielded very high classification rates for fricative identity, as follows: 92% for the voiced front
fricatives only, 87% for the voiceless front fricatives only, 95% for all front fricatives followed
by [a] and [o], and 93% for all front fricatives followed by [u]. For place of articulation, the
classification accuracies were 95.7% for front fricatives followed by [a] only, 96.8% for [o],
and 96.4% for [u]. The classification accuracies for voicing were 96.8% for the [a] subset,
90.5% for [o], and 97% for [u]. These results are not unexpected; higher classification rates
are expected in general when working with a smaller, more homogenous set of data, because
there is less variation in tokens that the model needs to account for.

3.2.2.4 Single fricative versus all others collapsed
As discussed in Section 3.1.6, we also examined each of the four front fricatives (referred to
as the target) versus all other front fricatives collapsed to determine if there is a distinction of
that fricative alone. The classification results for each fricative are shown in Figure 4. When
all predictors were included, the correct classification rates based on raw data fell between
91.1% for target [f] and 84.7% for target [T]. In all cases, the accuracy was higher when
classifying the non-targets as compared to the targets.

With the top five predictors only, the decrease in accuracy was between 7% (for target
[f]) and 12% (for target [v]). The speaker-normalized dataset yielded higher classification
accuracies, ranging from a 2% increase for [D], [v], and [f] to a 4% increase for [T].

3.2.2.5 Three-dimensional visualizations
We plotted the distribution of each token by the top three predictors resulting from each
of the analyses reported in previous subsections. In general, these three predictors do not

https://doi.org/10.1017/S002510031900029X Published online by Cambridge University Press

https://doi.org/10.1017/S002510031900029X


406 Jason Lilley, Laura Spinu & Angeliki Athanasopoulou

Figure 4 (Colour online) Single fricatives against the full front fricative set. Each pair of columns presents the classification results
for each fricative versus all other front fricatives combined. The dark bars represent the target fricatives, whereas the light
colored bars represent the non-targets (all other front fricatives combined).

yield separation into distinct categories that is apparent to the naked eye, except for the clas-
sifications by voicing and place of articulation. As we have seen, in many cases even the
combination of the top five predictors was not sufficient to yield high classification accura-
cies. This suggests that a large number of cues may need to be integrated to achieve acoustic
separation, and possibly perceptual separation (McMurray & Jongman 2011).

Figure 5 shows the separation by fricative identity based on raw data. Note that using the
top five predictors only, the correct classification rate was 43.2% for the raw cues and 58%
for the normalized cues. In Figure 6, the separation of the two front places of articulation is
perhaps more apparent (the top five correct classification rate for place was 67.7% for raw
and 80.1% for normalized cues).

Figure 5 (Colour online) Three-dimensional plot of the four front fricatives based on the top three predictors for the raw dataset.
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Figure 6 (Colour online) Three-dimensional plot of the two front places of articulation based on the top three predictors for the raw
dataset.

In Figure 7, the top three predictors yield a more noticeable degree of separation between
the two places (labiodental and interdental) when voiced and voiceless productions are con-
sidered separately. Finally, the separation of voiced and voiceless fricatives (regardless of
place of articulation) is shown in Figure 8.

Figure 7 (Colour online) Three-dimensional plot of the front fricatives based on the top three predictors for subsets of items that
are voiced only (left) and voiceless only (right).

Three-dimensional plots of the separation between target consonants and the rest of the
front fricatives in the set are provided in Figures E1 and E2 (Appendix E), for the entire
corpus as well as for the [o] subset.
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Figure 8 (Colour online) Three-dimensional plot of voiced and voiceless front fricatives based on the top three predictors for the
raw dataset.

4 Discussion and conclusions
We set out to test a new classification method on the challenging front fricative contrast and,
in doing so, to provide descriptive data on the four-way front fricative contrast in Greek.
The method we have employed here, whereby we use multinomial logistic regression to clas-
sify fricative identity – and other parameters, such as place and voicing – based on cepstral
coefficients extracted from HMM-defined regions inside fricatives and neighboring vowels,
has yielded the highest classification accuracies reported to date for Greek front fricatives
and, it would appear, for front fricatives in general when only raw cues are employed. Our
results support the hypothesis that the Spinu & Lilley (2016) method captures the acoustic
properties of front fricatives better than more traditional methods used in previous studies
of Greek fricatives. The specific classification rate varies depending on the subset and type
of cues used. Thus, when using raw cues, we obtained 82.9% overall classification accuracy
of front fricatives. This increased to 92% when only the voiced consonants were considered.
Most notably, when split by vowel subsets, the classification accuracies were as high as 95%
for [a] and [o], and 93% for [u]. Furthermore, when classifying all 10 fricatives included
in our corpus of Greek, we obtained a classification rate of 88.9% based on raw cues. Our
study has thus demonstrated that, at least for Greek, front fricatives can be classified based
on their acoustic properties quite accurately without resorting to additional normalization. In
fact, normalizing the values to account for speaker variability had very little effect on the
classification accuracies, increasing them by 1–2% at most.

Cepstral coefficients appear to outperform all other known measures for fricatives in
this respect. The advantages of the cepstral coefficient method have been discussed in the
literature recently. Cepstral coefficients fared better than spectral moments in the classifica-
tion of English stop release bursts (Bunnell et al. 2004). In a study on the classification of
voicing in fricatives in British English and European Portuguese (Jesus & Jackson 2008),
Mel-frequency cepstral coefficients were also used successfully. Furthermore, Ferragne &
Pellegrino (2010) recommended Mel-frequency cepstral coefficients as a means to compute
distances between vowels. This method yielded a good estimate of the acoustic distance
between 13 different accents of the British Isles. Spinu & Lilley (2016) compared cepstral
coefficients to spectral moments directly in a study classifying a corpus of 3674 Romanian
fricatives by place (four places of articulation), voicing, secondary palatalization, and gender,
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and found that cepstral coefficients yielded higher classification rates across the board,
regardless of whether these measures came from HMM-defined regions or equal regions
inside a segment. While the advantage of using HMM-defined regions was small, it was con-
sistently noted with most classifications attempted. The use of any type of regions, as opposed
to averaging over an entire segment, was shown to contribute substantially to the classification
of palatalization. Thus, Spinu, Vogel & Bunnell (2012) obtained an overall classification rate
of 78% based on the fricative corpus also used in Spinu & Lilley (2016). In the latter study,
classification accuracy for palatalization was 88.2% with HMM regions and 87.3% with
equal regions. Finally, Spinu et al. (2018) extended the method from Spinu & Lilley (2016)
to a new language, Russian, focusing on a specific subset of sibilant fricatives: palatalized
dental/alveolar /sj/, palatalized post-alveolar (prepalatal) /Sj/, non-palatalized dental/alveolar
/s/ and retroflex (apical post-alveolar) /ß/. This four-way contrast is extremely rare cross-
linguistically. The study compared the performance of the classification method based on
cepstral measures to that of a classification method based on spectral measures traditionally
used in phonetic research (i.e. vowel formants, center of gravity, and duration and intensity of
frication). The cepstral method outperformed the traditional method by approximately 10%,
yielding classification accuracies above 80% and up to 91.9% when classifying only female
voices. The current study adds to the successes of the cepstral coefficients, showing that they
better capture the acoustic differences of the difficult front fricative distinctions.

The classification rates obtained in the current study are very close to human performance
tested for English fricatives, which was around 85% for nonsibilant fricatives in McMurray &
Jongman (2011) when these were presented to native English listeners as complete syllables.
Accuracy was reported to drop substantially in a frication-only condition. The frication-only
results led the authors to suggest that listeners may make use of both raw and compensated
cues. Averaging across conditions, both labiodentals and interdentals were accurately iden-
tified about 80% of the time when voiced (McMurray & Jongman 2011: 228 Figure 2E)
but performance decreased to almost 50% for voiceless interdental [T], while it remained the
same for voiceless labiodental [f]. We similarly noted decreased classification accuracies with
[T] when each fricative was categorized against the entire front fricative set. Generally speak-
ing, the voiced subset provided higher classification accuracies, as did the vocalic subsets.
The voiceless subset yielded lower classification accuracies.

In pursuing dimension reduction, we noted that the combination of the strongest three
predictors was generally insufficient for providing a degree of separation between the dif-
ferent fricative categories, as illustrated by the lack of separation of the tokens into distinct
categories in the three-dimensional plots provided. These findings are not surprising in light
of the articulatory study of Narayanan et al. (1995), reporting that in the production of labio-
dentals the tongue, which is the principal articulator for the other fricatives, is relatively
unrestricted. Such coarticulatory effects are expected to play a significant role in the overall
tongue shapes assumed in a labiodental articulation. As a result, the acoustical characteristics
of labiodentals are greatly influenced by the vocalic environment (Harris 1954), which also
became apparent in our study, as many classifications improved substantially in the vocalic
subsets. The variability in tongue position during the articulation of these sounds may explain
the absence of strong top predictors, suggesting that classification of labiodentals (be it by
humans or machines) requires massive cue integration, as discussed at length in McMurray
& Jongman (2011).

We have found few differences between raw and normalized data, which departs from
McMurray & Jongman’s results with uncompensated cues. The authors discuss, however,
a number of potential reasons for the failure of raw cues compared to their C-CuRE model,
which included compensation by speaker and vowel. Among these they mention the potential
scarcity or inappropriateness of the cues selected, the possibility that the scaling was not done
properly, the potential uniqueness of fricatives, the lack of lexical or statistical information
that contribute to perception, and the mechanics of the categorization model employed. With
respect to the latter, they note that the mechanisms of categorization proposed by exemplar
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theory differ substantially from logistic regression and could be more powerful. Our findings
help to eliminate at least some of these concerns: Uncompensated cues did result in success-
ful classifications, as did logistic regression. We must not forget, however, that we classified
Greek fricatives, which may be characterized by stronger cues compared to English due to
their phonological status in this language, as predicted by theories of adaptive dispersion or
contrast enhancement (Hayes & Steriade 2004). Despite the method’s success with raw data,
it was still the case that speaker normalization slightly improved the classification accura-
cies, as did the separation by vowels. While our study was not aimed at uncovering aspects
of perception, it should be noted that these findings are in line with McMurray & Jongman’s
observation that speech categorization fundamentally requires cue integration, but catego-
rization must be performed at the same time as compensatory mechanisms that cope with
contextual influences:

Massively redundant information is the norm in speech categorization, but at the
same time, cue sharing happens everywhere, and compensation using information
from other types of categories is needed to cope with it. That is, categorization and
compensation mechanisms may be deeply intertwined, challenging the conception
that compensation occurs autonomously and precategorically. (McMurray & Jongman
2011: 240)

Lastly, our findings help us gain more insight into phonological contrast behavior. Based
on (i) multiple unsuccessful attempts to classify front fricatives in both English and Greek
employing a variety of acoustic measures and statistical methods, (ii) human listeners’
reduced performance in perception studies involving these (English) fricatives (compared
to non-front fricatives), (iii) the reports of high inter- and intra-speaker variability in the pro-
duction of some of these sounds (Narayanan et al. 1995), (iv) the general rarity of interdental
fricatives in linguistic inventories (Jekiel 2012), and (v) the loss of dental fricatives in mod-
ern varieties of English (ibid.), we might conclude that the contrast between front fricatives,
specifically labiodentals and interdentals, is cross-linguistically disfavored because, in one
or perhaps multiple ways, it is weak compared to other contrasts. According to licensing
by cue (Kochetov 1999, 2002; Steriade 1999), the distribution of a phonological contrast is
sensitive to the amount of acoustic information available in a given environment, such that
(a) if environment A provides more acoustic information to a contrast between any two seg-
ments /x/ and /y/, the identification of the contrast by listeners is likely to be high and, as
a result, the contrast will be preserved, whereas (b) if environment B provides less acoustic
information to the contrast, the identification rate of /x/ versus /y/ will tend to be lower, and
the contrast is more likely to be neutralized. As a result, perceptually fragile contrasts tend to
undergo one of the following two changes cross-linguistically: They are either enhanced or
neutralized (Hayes & Steriade 2004). Related to this, Enhancement Theory (Stevens, Keyser
& Kawasaki 1986; Stevens & Keyser 1989, 2010) is useful in explaining certain patterns of
regular cross-linguistic variation. Starting from the observation that languages tend to pre-
serve useful contrasts, this theory proposes that supplementary features and gestures may be
employed to reinforce existing contrasts between two sounds or sound sequences along an
acoustic dimension that distinguishes them.

These predictions have implications on our understanding of the status of front frica-
tives in different languages. In English, interdental fricatives have disappeared from many
modern dialects, and are considered non-contrastive even in the dialects that preserve them
(Jekiel 2012), which could be interpreted as contrast neutralization. The preservation of these
sounds is not unexpected if we consider that they are most often found in high-frequency
function words such as articles and pronouns, thus carrying high functional load (Kochetov
2002, Spinu et al. 2018). Kochetov suggests that deviations from general cross-linguistic pat-
terns may be due to properties of the lexicon and grammar of the languages in question.
For instance, specific non-phonetic characteristics of languages may in some cases override
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the general markedness patterns based on phonotactic, articulatory, and perceptual proper-
ties. Thus, a particular contrast might be maintained in a less favorable environment if the
pressure from additional factors is sufficiently strong, which appears to describe the case of
English interdentals. It is less clear, however, how this contrast is handled in Modern Greek.
On the one hand, front fricatives are contrastive and found in minimal pairs in the language,
but previous classification work (Nirgianaki 2014) has found that they are not easily distin-
guishable from each other acoustically. On the other hand, the findings of the present study
were that Greek front fricatives can be classified accurately approximately 83% of the time
when considered on their own, and approximately 80% of the time when considered within
the full set of Greek fricatives. While these figures are similar to the results of McMurray &
Jongman (2011) with English front fricatives, it must be stressed that our results are based
solely on raw cues, whereas McMurray & Jongman employed normalized cues (by speaker
and by vowel) which can greatly improve classification accuracy. It is therefore possible that
the front fricative contrast is more robustly encoded in Greek compared to English, and the
previous classification results with Greek were based on acoustic measures that were not as
relevant as the ones we have used in the present study. To determine whether this specula-
tive claim is supported, future studies should directly compare classifications of English and
Greek front fricatives employing the same methods with both. Potential enhancement strate-
gies might involve strengthening to a stop (which, based on visual inspection of the segments
during hand-alignment, does not appear to be the case for Greek) or duration differences,
though additional articulatory gestures might play a part, especially in the case of labioden-
tals, which may be less variable and accompanied by tongue positions resulting in increased
acoustic and perceptual distance from their interdental counterparts. These speculations are
best left for future articulatory studies, which would be a welcome addition to a topic that has
otherwise been relatively understudied.

In sum, our method successfully classified Greek front fricatives approximately 83% of
the time based on raw cues only. This is a marked increase compared to recently obtained
previous results, which were below 50% (Nirgianaki 2014), suggesting that the acoustic mea-
sures we employed were better suited to uncover aspects of fricative identity. Comparing our
results with previous findings for English front fricatives, most notably those of McMurray
& Jongman (2011), we note that, while our classification rates are similar to the ones they
obtained, they were based solely on un-normalized data and thus may reflect improved per-
formance, which we ascribe to the intrinsic differences between the languages examined. In
other words, we speculate that the front fricative contrast is more robustly encoded in Greek
than it is in English. The present study, however, does not provide any direct evidence in
favor of contrast enhancement. We can only tentatively conclude that the contrastive status
of Greek front fricatives may have led to enhancement over time. The ways in which this
is implemented are not well understood at present, however, and will greatly benefit from
articulatory investigation in the future.
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Table A1. Summary of relevant literature.

Study Language Fricatives investigated Measures Overall classification Front classification

Forrest et al. (1988) English [f T s S] Linear and Bark-scaled spectral moments 74.5% (linear)
77.7% (Bark)

75.4% for [f]
58.3% for [T] (Bark)

Tomiak (1990) English [f T s S h] Linear and Bark-scaled spectral moments 78% (linear)
74% (Bark)

67% for [f]
44% for [T]

Jongman et al. (2000) English [f v T D s z S n] Spectral peak location, spectral moments,
noise amplitude, noise duration, F2
onset, locus equations, and relative
amplitude (linear and Bark transformed
spectra)

77% 68% for [f v]
64% for [T D]

McMurray & Jongman (2011) English [f v T D s z S n] Root mean square amplitudes, Narrow Band
amplitudes near F3 and F5, duration of
frication and vowel, f0 at vowel onset,
F1–F5 at vowel onset, low frequency
energy, spectral peak, spectral
moments 1–4 (C-CuRE model)

Naive invariance model, complete
syllables: 74.8%–83.3%

C-CuRE model with normalized data:
92.9%

~65% for [f v T D] based on
raw data;

~80% with compensationa

Nissen & Fox (2005) English [f T s S] Spectral moments, duration, normalized
amplitude, spectral slope

76.7% 70% for [f T]

Kong et al. (2014) English [f v T D s z S n] Four spectral moments, peak, slope,
magnitudes of FFT spectra,
Mel-frequency cepstral coefficients and
Gammatone filter outputs (support
vector machine algorithm)

88% for Mel-frequency cepstral
coefficients, 87% for
Gammatone filter outputs

Labial and interdental fricatives were
collapsed into a single category
(nonsibilant)
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Table A1. Continued.

Study Language Fricatives investigated Measures Overall classification Front classification

Jesus & Shadle (2002) Portuguese [f v s z S n] Dynamic amplitude, spectral slopes No classification, but significant
differences found for place

Only labiodentals, no contrast with
interdentals

Al-Khairy (2005) Arabic [f T D D≥ s s≥ z S K X Â Ã h] Spectral peak location in center of fricative
and on the right edge, spectral
moments, noise amplitude, noise and
vowel duration, F2 onset, locus
equations, and relative amplitude
(linear spectra)

79.3% (linear) 79% for [f]
72% for [T D]
77% for [D≥]

Nirgianaki et al. (2010) Greek [f v T D s z C ³ x ƒ] Duration and spectral moments No classification No statistically significant differences
between [T D] and [f v]

Nirgianaki (2014) Greek [f v T D s z C ³ x ƒ] Vocalic formant information, spectral
moments, locus equations, and
amplitude parameters

67.7% 61.5% for [f v]
48.7% for [T D]

Spinu & Lilley (2016) Romanian [f v z S x] Cepstral coefficients vs. spectral moments
(Hidden Markov Models)

95.3% cepstral coefficients;
88.5% spectral moments

Only labiodentals, no contrast with
interdentals

Present study Greek [f v T D s z C ³ x ƒ] Cepstral coefficients (Hidden Markov
Models)

88.9% Raw cues: 79.8% overall
82.5% for [f v]
77% for [T D]

Speaker-normalized cues: 85% overall
85.1% for [f v]
84.9% for [T D]

aResults for nonsibilants are estimated from published graphs, as they are not reported in the paper.
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Appendix B. Example spectra

Figure B1 Example spectra (from 0 to 4000 Hz) of Greek voiceless fricatives extracted from the experimental data. Each spec-
trogram begins with the carrier word πω [�po] ‘say’ followed by a fricative-initial nonce word, from top to bottom:
φάμπα [faba], θάκος [Takos], σάτα [sata], χιάτα [Cata], χάτι [xati].
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Figure B2 Example spectra (from 0 to 4000 Hz) of Greek voiced fricatives extracted from the experimental data. Each spectrogram
begins with the carrier word πω [�po] ‘say’ followed by a fricative-initial nonce word, from top to bottom: βάκος
[vakos], δάκα [Daka], ζάτα [zata], γιάκι [³aci], γάπα [ƒapa].
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Appendix C. Calculation of cepstral coefficients
The following procedure is used to convert a segment waveform into a series of vectors
of Bark-frequency cepstral coefficients. Bark-frequency cepstral coefficients are calculated
in the same manner as Mel-frequency cepstral coefficients (Mermelstein 1976), except that
spectrum filter bands are placed evenly along the Bark frequency axis rather than the Mel
frequency axis (see equations (C3)–(C6) below). Bark-frequency cepstral coefficients can
be computed by freely available software packages such as openSMILE (Eyben, Wöllmer
& Schuller 2010) and Essentia (Bogdanov et al. 2013). A copy of the software used by the
authors to compute Bark-frequency cepstral coefficients can be obtained by contacting the
first author.

First, the waveform is converted into a series of windows of 20 ms in length, spaced 10
ms apart. That is, the first window consists of the first 20 ms of the segment waveform, the
second window is placed 10 ms from the start of the segment, the third window is placed
20 ms from the start, and so on, until the end of the last window is less than 10 ms from
the end of the segment. This is repeated for each fricative and neighboring vowel of interest.
In addition, two more 20-ms segments of the waveform, centered on the fricative onset and
offset, are taken to measure the onset and offset transitions.

Each window is passed through the Hann windowing function (Blackman & Tukey 1958)
to emphasize the window’s center and de-emphasize its edges. The Hann function H(s) for
sample s, 1 ≤ s ≤ S, where S is the total number of samples in the window, is given by (C1).

(C1) H(s) = 1

2
− 1

2
cos

(
2π

S − 1

(
s − 1

2

))

The data are then transformed from the time domain to the frequency domain using a short-
time Fourier transform (Cooley & Tukey 1965). The resulting complex spectrum is converted
to the magnitude spectrum as follows. For each point p in the complex spectrum, 1 ≤ p ≤ P,
where P is the total number of points in the complex spectrum, the corresponding magnitude
spectrum point is given by (C2), where R(p) and I(p) are the real and imaginary components
of point p, respectively.

(C2) M(p) = 2

P

√
R(p)2 + I(p)2

The magnitude spectrum is then passed through a set of 16 overlapping triangular fil-
ters to derive 16 magnitude channel amplitudes. The filters are spaced evenly over the
Bark-frequency axis, as shown in Figure C1, so that there are more filters at lower (linear)
frequencies than at higher frequencies. Linear frequency f is converted to Bark frequency
b(f ) as in (C3) (Bladon & Lindblom 1981).

(C3) b(f ) = 7ln
(

g +
√

g2 + 1
)

, where g = f

650

Thus the Bark frequency of the center cj of filter j, 1 ≤ j ≤ J , where J is the total num-
ber of filters (here J = 16), is calculated as in (C4), where FN is the Nyquist frequency
(8000 Hz).

(C4) cj = j − 0.5

J
b(FN )
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Figure C1 The configuration of the triangular filters used to calculate the 16 channel amplitudes. The filter centers are spaced
evenly on the Bark scale (every 1.402195 Bark units) along the frequency axis. Each channel amplitude is computed as
the weighted sum of the points within its filter, where the triangle sides define the weights.

The filter weights decrease linearly, from 1 to 0, from the center of the filter to the center
of the adjacent filter on each side. Thus the weight w of a filter j applied to a magnitude
spectrum value at Bark-frequency b is calculated as in (C5a–c).

(C5) a. w( j, b) =
{

b − cj−1

cj − cj−1

}
, if cj−1 ≤ b ≤ cj

b. w( j, b) =
{

cj+1 − b

cj+1 − cj

}
, if cj ≤ b ≤ cj+1

c. w( j, b) = {0} for all other b

Each channel amplitude a( j) is computed as the natural logarithm of the weighted sum
of the magnitude spectrum points p with value M( p) and Bark-frequency b( p) within the
corresponding channel filter as per (C6).

(C6) a( j) = ln
(∑P

p=1
M( p) w( j, b ( p))

)

Finally, the channel amplitudes are used to calculate six cepstral coefficients (numbered
0 to 5) using the Discrete Cosine Transform (C7), where K is the number of desired cepstral
coefficients (here K = 6).

(C7) cck =
√

2

J

∑J

j=1
a( j) cos

(
kπ

J

(
j − 1

2

))
, for 0 ≤ k ≤ K − 1

For the division of target segments into three regions (see Appendix D), the six static
cepstral coefficients calculated above were augmented by their first and second time deriva-
tives, for a total of 18 coefficients per window. These derivatives were dropped for subsequent
analyses. Following the formula used by the Hidden Markov Model ToolKit (HTK; Young
et al. 2009: 68 eqn. 5.16), the first derivative �cct

k of a coefficient of a window at time t was
calculated from the coefficients of neighboring windows as in (C8), and the second derivative
(��cct

k) was calculated from the first derivatives using the same equation.

(C8) �cck
t = 1

5

(
cck

t+2 − cck
t−2

) + 1

10

(
cck

t+1 − cck
t−1

)
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Appendix D. Division of segments into regions via HMMs
This appendix provides scripts that reproduce the procedure used to divide target segments
into three regions. This procedure requires the installation of HTK (version 3.4.1; Young et al.
2009) within a Linux or MacOS X operating system in a Bash shell, and assumes that the
user has first extracted the Bark-frequency cepstral coefficients (or similar feature vectors)
of each target segment into its own HTK-formatted parameter file, with 18 coefficients per
window (the six cepstral coefficients, plus their first and second derivatives).

The first step is to create four files named mmf.txt, XX.mlf , proto.txt, and HTKscript.sh,
with the following contents:

mmf.txt:

~o

<STREAMINFO> 1 18

<VECSIZE> 18

<NULLD><USER><DIAGC>

XX.mlf:

#!MLF!#

"∗.lab"

XX

.

proto.txt:

~o <VecSize> 18 <USER>

~h "proto"

<BeginHMM>

<NumStates> 5

<State> 2

<Mean> 18

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

https://doi.org/10.1017/S002510031900029X Published online by Cambridge University Press

https://doi.org/10.1017/S002510031900029X


Front fricative contrast in Greek: Cepstral coefficients and acoustic variability 419

<Variance> 18

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

<State> 3

<Mean> 18

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

<Variance> 18

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

<State> 4

<Mean> 18

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

<Variance> 18

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

<TransP> 5

0.0 1.0 0.0 0.0 0.0

0.0 0.5 0.5 0.0 0.0

0.0 0.0 0.5 0.5 0.0

0.0 0.0 0.0 0.5 0.5

0.0 0.0 0.0 0.0 0.0

<EndHMM>

HTKscript.sh:

#!/bin/bash

echo "XX" > models.tmp

echo "XX XX" > dict.tmp

echo "TARGETKIND=USER" > conf.tmp

HCompV -C conf.tmp -f 0.01 -o hcv.tmp proto.txt $1
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cat mmf.txt vFloors > vf2.tmp

HInit -C conf.tmp -H vf2.tmp -m 1 -u mv -i 100 -o XX proto.txt $1

HRest -C conf.tmp -H vf2.tmp -m 1 -u mv -i 100 XX $1

HVite -C conf.tmp -I XX.mlf -H XX -a -f -o SW dict.tmp models.tmp $1

rm ∗.tmp vFloors XX

exit

Once the files are created, run the following command once:

chmod +x HTKscript.sh

The user can then run the script on the parameter file of each segment with the command:

./HTKscript.sh filename

where filename is the name of the input parameter file. The script will produce an output file
with the same name plus the extension .rec, for example filename.rec. The output file will
have three lines, indicating the start and end times of each region. For example, if the target
segment is 90 ms long, producing an input parameter file of nine windows, then the output
file may look like the following:

0 500000 XX[2]

500000 600000 XX[3]

600000 900000 XX[4]

In this example, the first region has a duration of 50 ms, the second region 10 ms, and the
third region 30 ms. (Note that in HTK terminology, the first state is numbered ‘2’.)
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Appendix E. Three-dimensional plots of predictors

Figure E1 (Colour online) Three-dimensional plots based on the top three predictors for single segments against the rest of the
corpus.
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Figure E2 (Colour online) Three-dimensional plots based on the top three predictors for single segments against the rest of the
corpus (vowel [o] subset).
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