TWISTED GEOMETRIC SATAKE EQUIVALENCE ### MICHAEL FINKELBERG¹ AND SERGEY LYSENKO² ¹Independent Moscow University, Institute for Information Transmission Problems and State University Higher School of Economy, Department of Mathematics, 20 Myasnitskaya Street, Moscow 101000, Russia (fnklberg@gmail.com) ²Institut Élie Cartan Nancy (Mathématiques), Université Henri Poincaré Nancy 1, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France (sergey.lysenko@iecn.u-nancy.fr) (Received 25 September 2008; accepted 14 October 2008) Abstract Let k be an algebraically closed field and $\mathbf{O} = \mathsf{k}[[t]] \subset \mathbf{F} = \mathsf{k}((t))$. For an almost simple algebraic group G we classify central extensions $1 \to \mathbb{G}_m \to E \to G(\mathbf{F}) \to 1$; any such extension splits canonically over $G(\mathbf{O})$. Fix a positive integer N and a primitive character $\zeta : \mu_N(\mathsf{k}) \to \mathbb{Q}^*_\ell$ (under some assumption on the characteristic of k). Consider the category of $G(\mathbf{O})$ -bi-invariant perverse sheaves on E with \mathbb{G}_m -monodromy ζ . We show that this is a tensor category, which is tensor equivalent to the category of representations of a reductive group $\check{G}_{E,N}$. We compute the root datum of $\check{G}_{E,N}$. Keywords: geometric Langlands program; Satake isomorphism; monodromic perverse sheaves AMS 2010 Mathematics subject classification: Primary 14D24 Secondary 22E57; 11R39 #### Contents | 1. | Introduction | 720 | |------------|--------------------------------------|-----| | 2. | Main result | 720 | | | 2.1. Notation | 720 | | | 2.2. Convolution | 724 | | | 2.3. Fusion | 724 | | | 2.4. Main result | 727 | | 3. | Classification of central extensions | 728 | | | 3.1. Simply connected case | 728 | | | 3.2. Proof of Proposition 2.2 | 730 | | 4. | Proof of Theorem 2.9 | 731 | | | 4.1. Functors F'_P | 731 | | | 4.2. Fibre functor | 735 | | | 4.3. Structure of \check{G}_N | 737 | | | 4.4. Rank 1 | 738 | | References | | 739 | ### 1. Introduction Let k be an algebraically closed field and $O = \mathsf{k}[[t]] \subset F = \mathsf{k}((t))$. For an almost simple algebraic group G we classify central extensions $1 \to \mathbb{G}_m \to E \to G(F) \to 1$; any such extension splits canonically over G(O). Fix a positive integer N and a primitive character $\zeta : \mu_N(\mathsf{k}) \to \bar{\mathbb{Q}}_\ell^*$ (under some assumption on the characteristic of k). Consider the category of G(O)-bi-invariant perverse sheaves on E with \mathbb{G}_m -monodromy ζ . We show that this is a tensor category, which is tensor equivalent to the category of representations of a reductive group $\check{G}_{E,N}$. We compute the root datum of $\check{G}_{E,N}$ in Theorem 2.9. A list of examples is given after Theorem 2.9. Our result has a natural place in the framework of 'Langlands duality for quantum groups' [6]. Namely, if we take $k = \mathbb{C}$, and $q = \zeta(\exp(\pi i/N))$ in Conjecture 0.4 of [6], then our category of ζ -monodromic perverse sheaves naturally lies inside the twisted Whittaker sheaves Whit^c(Gr_G), and corresponds under the equivalence of [6] to the category of representations of the quantum Frobenius quotient of $U_q(\check{G})$. From the physical point of view, our result is a manifestation of electric-magnetic duality for a rational parameter Ψ (see [7, §11.3]). Theorem 2.9 is a generalization of [9, Theorem 3] and the classical geometric Satake equivalence [10]. It was probably known to experts for a few years, say it was suggested by an anonymous referee of [9] (compare also to [11]). Also, for G simply connected the root data of $\check{G}_{E,N}$ appeared in § 7 of [8]. Our result should follow essentially by comparing Lusztig's results on quantum Frobenius homomorphism on the one hand, and Kazhdan–Lusztig–Kashiwara–Tanisaki–Arkhipov–Bezrukavnikov–Ginzburg description of representations of quantum groups at roots of unity in terms of perverse sheaves on affine Grassmanians, on the other. Our goal is to provide a short self-contained proof, following the strategy of [10]. ### 2. Main result The general reference for this section is [1, 4.5, 5.3] and, for more details, [10]. ### 2.1. Notation Let k be an algebraically closed field of characteristic $p \ge 0$. Let G be an almost simple algebraic group over k with the simply connected cover G^{sc} . We fix a Borel subgroup $B \subset G$ and a maximal torus $T \subset B$. We denote the preimage of T in G^{sc} by T^{sc} . The Weyl group of G, T is denoted by W. The weight and coweight lattices of T (respectively, T^{sc}) are denoted by $X^*(T)$ and $X_*(T)$ (respectively, $X^*(T^{\operatorname{sc}})$ and $X_*(T^{\operatorname{sc}})$). The root system of $T \subset B \subset G$ is denoted by $R^* \subset X^*(T) \subset X^*(T^{\operatorname{sc}})$; the set of simple roots is $\Pi^* = \{\check{\alpha}_1, \ldots, \check{\alpha}_T\} \subset R^*$. The sum of all positive roots is denoted $2\check{\rho}$. The coroot system of $T \subset B \subset G$ is denoted by $R_* \subset X_*(T^{\operatorname{sc}}) \subset X_*(T)$; the set of simple coroots is $\Pi_* = \{\alpha_1, \ldots, \alpha_T\} \subset R_*$. Denote by \mathfrak{g} the adjoint representation of G. There is a unique W-invariant bilinear pairing $(\cdot,\cdot): X_*(T^{\operatorname{sc}}) \times X_*(T^{\operatorname{sc}}) \to \mathbb{Z}$ such that $(\alpha,\alpha)=2$ for a *short* coroot α . It defines a linear map $\iota: X_*(T^{\operatorname{sc}}) \to X^*(T^{\operatorname{sc}})$ such that $(x,y)=\langle x,\iota(y)\rangle$ for any $x,y\in X_*(T^{\operatorname{sc}})$. The map ι extends uniquely by linearity to the same named map $\iota: X_*(T) \to X^*(T) \otimes_{\mathbb{Z}} \mathbb{Q}$. The bilinear form (\cdot, \cdot) extends uniquely by linearity to the same named bilinear form $(\cdot, \cdot): X_*(T) \times X_*(T) \to \mathbb{Q}$. **Lemma 2.1.** For $\lambda \in X_*(T)$ we have $2\check{h}\iota(\lambda) = \sum_{\check{\alpha} \in R^*} \langle \lambda, \check{\alpha} \rangle \check{\alpha}$, where \check{h} is the dual Coxeter number of G. **Proof.** Write $\Phi_R(\cdot,\cdot)$ for the canonical bilinear W-invariant linear form on $X^*(T)$ in the sense of [2, §§ 1 and 12]. Formula (17) from [2] reads $$2\Phi_R(\check{\beta},\check{\beta})^{-1} = \sum_{\check{\alpha}\in R^+} \langle \check{\alpha},\beta\rangle^2,$$ where $\check{\beta}$ is the root corresponding to a short coroot β . We must check that $\Phi_R(\check{\beta},\check{\beta}) = \check{h}^{-1}$. This is done case by case for all irreducible reduced root systems using the calculation of Φ_R performed in § 4 of [2]. Set $O = \mathsf{k}[[t]]$, $F = \mathsf{k}((t))$. The affine Grassmannian Gr_G is an ind-scheme, the fpqc quotient G(F)/G(O) (cf. [1]). Our conventions about $\mathbb{Z}/2\mathbb{Z}$ -gradings are those of [9]. Recall that for free O-modules of finite type V_1, V_2 with an isomorphism $V_1(F) \xrightarrow{\sim} V_2(F)$ one has the relative determinant $\det(V_1 : V_2)$ [9, §8.1], this is a $\mathbb{Z}/2\mathbb{Z}$ -graded line given by $$\det(V_1:V_2) = \det(V_1/V) \otimes \det(V_2/V)^{-1}$$ for any O-lattice $V \subset V_1 \cap V_2$. Let \mathfrak{L} be the $(\mathbb{Z}/2\mathbb{Z}$ -graded purely of parity zero) line bundle on Gr_G whose fibre at $gG(\mathbf{O})$ is $\det(\mathfrak{g}(\mathbf{O}):\mathfrak{g}(\mathbf{O})^g)$. Write Gra_G for the punctured total space (that is, the total space with zero section removed) of the line bundle \mathfrak{L} . By abuse of notation, the restriction of \mathfrak{L} under the map $G(\mathbf{F}) \to Gr_G$, $g \mapsto gG(\mathbf{O})$ is again denoted by \mathfrak{L} . Write E^a for the punctured total space of the line bundle \mathfrak{L} on $G(\mathbf{F})$. Since \mathfrak{L} is naturally a multiplicative \mathbb{G}_m -torsor on $G(\mathbf{F})$ in the sense of [3, § 1.2], E^a gives a central extension $$1 \to \mathbb{G}_m \to E^a \to G(\mathbf{F}) \to 1, \tag{2.1}$$ it splits canonically over $G(\mathbf{O})$. Our first result extends the well-known classification of central extensions of $G^{\text{sc}}(\mathbf{F})$ by \mathbb{G}_m to the almost simple case. **Proposition 2.2.** The isomorphism classes of central extensions of $G(\mathbf{F})$ by \mathbb{G}_m are naturally in bijection with integers $m \in \mathbb{Z}$ such that $m\iota(X_*(T)) \subset X^*(T)$. The corresponding central extension splits canonically over $G(\mathbf{O})$, and its group of automorphisms is $\operatorname{Hom}(\pi_0(G(\mathbf{F})), \mathbb{G}_m) \xrightarrow{\sim} \operatorname{Hom}(\pi_1(G), \mu_\infty(\mathsf{k}))$. Let d > 0 be the smallest integer such that $d\iota(X_*(T)) \subset X^*(T)$, this is a divisor of $2\check{h}$. We pick and denote by E^c the corresponding central extension of $G(\mathbf{F})$ by \mathbb{G}_m . Any central extension of $G(\mathbf{F})$ by \mathbb{G}_m is isomorphic to a multiple of E^c . We also pick an isomorphism of central extensions of $G(\mathbf{F})$ by \mathbb{G}_m identifying E^a with the $(2\check{h}/d)$ th power of E^c . (If G is simply connected then d=1, and the latter isomorphism is uniquely defined.) Fix a prime ℓ different from p, write P(S) (respectively, D(S)) for the category of étale $\bar{\mathbb{Q}}_{\ell}$ -perverse sheaves (respectively, the derived category of étale $\bar{\mathbb{Q}}_{\ell}$ -sheaves) on a k-scheme (or stack) S. Since we are working over an algebraically closed field, we systematically ignore the Tate twists. Fix a positive integer N and a primitive character $\zeta: \mu_N(\mathsf{k}) \to \bar{\mathbb{Q}}_\ell^*$, we assume that p does not divide $2\check{h}N/d$. For the map $s_N: \mathbb{G}_m \to \mathbb{G}_m$, $x \mapsto x^N$ let \mathcal{L}^ζ denote the direct
summand of $s_{N!}\bar{\mathbb{Q}}_\ell$ on which $\mu_N(\mathsf{k})$ acts by ζ . If S is a scheme with a \mathbb{G}_m -action, we say that a perverse sheaf K on S has \mathbb{G}_m -monodromy ζ if it is equipped with a $(\mathbb{G}_m, \mathcal{L}^\zeta)$ -equivariant structure. Let $\operatorname{Perv}_{G,N}$ denote the category of $G(\mathbf{O})$ -equivariant $\bar{\mathbb{Q}}_{\ell}$ -perverse sheaves on $E^{c}/G(\mathbf{O})$ with \mathbb{G}_{m} -monodromy ζ . Remark 2.3. If S is a scheme and L is a line bundle on S, let \tilde{L} be the total space of the punctured line bundle L. Let $f: \tilde{L} \to \widetilde{L^m}$ be the map over S sending l to $l^{\otimes m}$. Assume that p does not divide N, let $\chi: \mu_N(\mathsf{k}) \to \bar{\mathbb{Q}}_\ell^*$ be a character. Then the functor $K \mapsto f^*K$ is an equivalence between the categories of χ -monodromic perverse sheaves on $\widetilde{L^m}$ and χ^m -monodromic perverse sheaves on \tilde{L} . Pick a primitive character $\zeta_a: \mu_{2\tilde{h}N/d}(\mathsf{k}) \to \bar{\mathbb{Q}}_{\ell}^*$ satisfying $\zeta_a^{2\tilde{h}/d} = \zeta$. By Remark 2.3, Perv_{G,N} identifies with the category of $G(\mathbf{O})$ -equivariant perverse sheaves on Gra_G with \mathbb{G}_m -monodromy ζ_a . Set $$\mathbb{P}erv_{G,N} = \operatorname{Perv}_{G,N}[-1] \subset \mathcal{D}(\operatorname{Gra}_G).$$ For the associativity and commutativity constraints we are going to introduce later to be natural (and avoid some sign problems), one has to work with $\mathbb{P}erv_{G,N}$ rather than $\mathrm{Perv}_{G,N}$. Let $\widetilde{\mathrm{Gr}}_G$ be the stack quotient of Gra_G by \mathbb{G}_m , where $x \in \mathbb{G}_m$ acts as multiplication by $x^{2\check{h}N/d}$. One may think of $\mathbb{P}erv_{G,N}$ as the category of certain perverse sheaves on $\widetilde{\mathrm{Gr}}_G$. We have a natural embedding $X_*(T) \subset \operatorname{Gr}_G$ as the set of T-fixed points. Two coweights $\lambda, \mu \in X_*(T) \subset \operatorname{Gr}_G$ lie in the same $G(\mathbf{O})$ -orbit if and only if $\lambda \in W(\mu)$. Thus the set of $G(\mathbf{O})$ -orbits in Gr_G coincides with the set of Weyl group orbits $X_*(T)/W$, or equivalently, with the set of dominant coweights $X_*^+(T) \subset X_*(T)$. The orbit corresponding to $\lambda \in X_*^+(T)$ will be denoted by $\operatorname{Gr}^\lambda$. The G-orbit of λ is isomorphic to a partial flag variety $\mathcal{B}^\lambda = G/P^\lambda$ where P^λ is a parabolic subgroup whose Levi has the Weyl group $W^\lambda \subset W$ coinciding with the stabilizer of λ in W. Write $\operatorname{Gra}_G^\lambda$ for the preimage of $\operatorname{Gr}_G^\lambda$ under $\operatorname{Gra}_G \to \operatorname{Gr}_G$. Let $\operatorname{Aut}(\mathbf{O})$ denote the group ind-scheme over k such that, for any k-algebra R, $\operatorname{Aut}(\mathbf{O})(R)$ is the automorphism group of the topological R-algebra $R \hat{\otimes} \mathbf{O}$ [1, 2.6.5]. Write $\operatorname{Aut}^0(\mathbf{O})$ for the reduced part of $\operatorname{Aut}(\mathbf{O})$. The group scheme $\operatorname{Aut}^0(\mathbf{O})$ acts naturally on the exact sequence (2.1) acting trivially on \mathbb{G}_m and preserving $G(\mathbf{O})$. The action of the loop rotation group $\mathbb{G}_m \subset \operatorname{Aut}^0(\mathcal{O})$ contracts $\operatorname{Gr}^{\lambda}$ to $\mathcal{B}^{\lambda} \subset \operatorname{Gr}_{\lambda}$, and realizes $\operatorname{Gr}^{\lambda}$ as a composition of affine fibrations over \mathcal{B}^{λ} . We denote the projection $\operatorname{Gr}^{\lambda} \to \mathcal{B}^{\lambda}$ by ϖ_{λ} . If $\check{\nu} \in X^*(T^{\mathrm{sc}})$ is orthogonal to all coroots α satisfying $\langle \lambda, \check{\alpha} \rangle = 0$ then write $\mathcal{O}(\check{\nu})$ for the corresponding G^{sc} -equivariant line bundle on \mathcal{B}^{λ} . It is canonically trivialized at $1 \in \mathcal{B}^{\lambda}$. If $\lambda \in X_*(T)$ then $\iota(\lambda) \in X^*(T^{\mathrm{sc}})$ gives rise to the line bundle $\mathcal{O}(\iota(\lambda))$ on \mathcal{B}^{λ} . For a free O-module \mathcal{E} write $\mathcal{E}_{\bar{c}}$ for its geometric fibre. Write Ω for the completed module of relative differentials of O over k. For a root $\check{\alpha}$ write $\mathfrak{g}^{\check{\alpha}} \subset \mathfrak{g}$ for the corresponding root subspace. If $\check{\alpha} = \sum_{i=1}^r a_i \check{\alpha}_i$ we have $\mathfrak{g}^{\check{\alpha}} \xrightarrow{\sim} \bigotimes_{i=1}^r (\mathfrak{g}^{\check{\alpha}_i})^{a_i}$ canonically. In particular, $\mathfrak{g}^{-\check{\alpha}}$ is identified with the dual of $\mathfrak{g}^{\check{\alpha}}$ via the Killing form. Pick a trivialization $\phi_i: \mathfrak{g}^{\check{\alpha}_i} \xrightarrow{\sim} \mathsf{k}$ for each simple root $\check{\alpha}_i \in \Pi^*$. Set $\Phi = \{\phi_i\}_{i=1}^r$. **Lemma 2.4.** Let $\lambda \in X_*(T)$. The family Φ yields a uniquely defined $\mathbb{Z}/2\mathbb{Z}$ -graded isomorphism $$\mathfrak{L}|_{\mathrm{Gr}_G^{\lambda}} \simeq \Omega_{\bar{c}}^{\check{h}\langle\lambda,\iota(\lambda)\rangle} \otimes \varpi_{\lambda}^* \mathcal{O}(2\check{h}\iota(\lambda)).$$ Set $X^{*+}(\check{T}_N) = \{\lambda \in X_*^+(T) \mid d\iota(\lambda) \in NX^*(T)\}$ Proofed to author 03/02. By Lemma 2.4, for $\lambda \in X_*^+(T)$ the scheme $\operatorname{Gra}_G^{\lambda}$ admits a $G(\mathbf{O})$ -equivariant local system with \mathbb{G}_m -monodromy ζ_a if and only if $\lambda \in X^{*+}(\check{T}_N)$. **Remark 2.5.** In [1, § 4.4.9, p. 166, Formula (217)] an extension of $G(\mathbf{F})$ by \mathbb{G}_m has been constructed whose square identifies with (2.1). So, d is a divisor of \check{h} . Another way to see this is to note that, by Lemma 2.1, for $\lambda \in X_*(T)$ we have $$\check{h}\iota(\lambda) = \sum_{\check{\alpha} \in R^{*+}} \langle \lambda, \check{\alpha} \rangle \check{\alpha} \in X^*(T).$$ Here R^{*+} denotes the set of positive roots. Write $\Omega^{1/2}(\mathbf{O})$ for the groupoid of square roots of Ω . For $\mathcal{E} \in \Omega^{1/2}(\mathbf{O})$ and $\lambda \in X^{*+}(\check{T}_N)$ define the line bundle $\mathcal{L}_{\lambda,\mathcal{E}}$ on Gr_G^{λ} as $$\mathcal{L}_{\lambda,\mathcal{E}} = \mathcal{E}_{\bar{c}}^{(d/N)(\lambda,\lambda)} \otimes \varpi_{\lambda}^* \mathcal{O}\bigg(\frac{d}{N}\iota(\lambda)\bigg).$$ It is equipped with an isomorphism $\mathcal{L}_{\lambda,\mathcal{E}}^{2\check{h}N/d} \xrightarrow{\sim} \mathfrak{L}|_{\mathrm{Gr}_{G}^{\lambda}}$. Write $\mathring{\mathcal{L}}_{\lambda,\mathcal{E}}$ for the punctured total space of $\mathcal{L}_{\lambda,\mathcal{E}}$. Denote by $$p_{\lambda}: \mathring{\mathcal{L}}_{\lambda,\mathcal{E}} \to \operatorname{Gra}_{G}^{\lambda}$$ (2.2) the map over Gr_G^{λ} sending x to $x^{2\check{h}N/d}$. For $\lambda \in X^{*+}(\check{T}_N)$ we define $\mathcal{A}^{\lambda}_{\mathcal{E}} \in \mathbb{P}erv_{G,N}$ as the intermediate extension of $E^{\lambda}_{\mathcal{E}}[-1 + \dim \operatorname{Gra}^{\lambda}_{G}]$. Here $E^{\lambda}_{\mathcal{E}}$ is the local system on $\operatorname{Gra}^{\lambda}_{G}$ with \mathbb{G}_{m} -monodromy ζ_{a} equipped with an isomorphism $p^{*}_{\lambda}E^{\lambda}_{\mathcal{E}} \xrightarrow{\sim} \bar{\mathbb{Q}}_{\ell}$. Both $E^{\lambda}_{\mathcal{E}}$ and $\mathcal{A}^{\lambda}_{\mathcal{E}}$ are defined up to a unique isomorphism. The irreducible objects of $\mathbb{P}erv_{G,N}$ are exactly $\mathcal{A}^{\lambda}_{\mathcal{E}}$, $\lambda \in X^{*+}(\check{T}_{N})$. As in [9, Proposition 11] one shows that each $\mathcal{A}_{\mathcal{E}}^{\lambda}$ has non-trivial usual cohomology sheaves only in degrees of the same parity, and derives from this that $\mathbb{P}erv_{G,N}$ is semi-simple. ### 2.2. Convolution Consider the automorphism τ of $E^a \times E^a$ sending (g,h) to (g,gh). Let $G(\mathbf{O}) \times G(\mathbf{O}) \times \mathbb{G}_m$ act on $E^a \times E^a$ in such a way that $(\alpha,\beta,b) \in G(\mathbf{O}) \times G(\mathbf{O}) \times \mathbb{G}_m$ send (g,h) to $(g\beta^{-1}b^{-1},\beta bh\alpha)$. Write $E^a \times_{G(\mathbf{O}) \times \mathbb{G}_m}$ Gra $_G$ for the quotient of $E^a \times E^a$ under this free action. Then τ induces an isomorphism $$\bar{\tau}: E^a \times_{G(\mathbf{O}) \times \mathbb{G}_m} \operatorname{Gra}_G \xrightarrow{\sim} \operatorname{Gr}_G \times \operatorname{Gra}_G$$ sending $(g, hG(\mathbf{O}))$ to $(\bar{g}G(\mathbf{O}), ghG(\mathbf{O}))$, where \bar{g} is the image of $g \in E^a$ in G(F). Set m be the composition of $\bar{\tau}$ with the projection to Gra_G . Let $p_G : E^a \to \operatorname{Gra}_G$ be the map $h \mapsto hG(\mathbf{O})$. Similarly to $[\mathbf{9}, \mathbf{10}]$, we get a diagram $$\operatorname{Gra}_G \times \operatorname{Gra}_G \xleftarrow{p_G \times \operatorname{id}} E^a \times \operatorname{Gra}_G \xrightarrow{q_G} E^a \times_{G(\mathbf{O}) \times \mathbb{G}_m} \operatorname{Gra}_G \xrightarrow{m} \operatorname{Gra}_G,$$ where q_G is the quotient map under the action of $G(\mathbf{O}) \times \mathbb{G}_m$. For $K_1, K_2 \in \mathbb{P}erv_{G,N}$ define the convolution product $K_1 * K_2 \in D(Gra_G)$ by $K_1 * K_2 = m_!K$, where K[1] is a perverse sheaf on $E^a \times_{G(\mathbf{O}) \times \mathbb{G}_m} Gra_G$ equipped with an isomorphism $q_G^*K \xrightarrow{\sim} p_G^*K_1 \boxtimes K_2$. Since q_G is a $G(\mathbf{O}) \times \mathbb{G}_m$ -torsor and $p_G^*K_1 \boxtimes K_2$ is naturally equivariant under $G(\mathbf{O}) \times \mathbb{G}_m$, K is defined up to a unique isomorphism. **Lemma 2.6.** If $K_1, K_2 \in \mathbb{P}erv_{G,N}$ then $K_1 * K_2 \in \mathbb{P}erv_{G,N}$. **Proof.** Following [10], stratify $E^a \times_{G(O) \times \mathbb{G}_m}
\operatorname{Gra}_G$ by locally closed subschemes $$p_G^{-1}(\operatorname{Gra}_G^{\lambda}) \times_{G(O) \times \mathbb{G}_m} \operatorname{Gra}_G^{\mu}$$ for $\lambda, \mu \in X_*^+(T)$. Stratify Gra_G by $\operatorname{Gra}_G^{\lambda}$, $\lambda \in X_*^+(T)$. By [10, Lemma 4.4], m is a stratified semi-small map, our assertion follows. In a similar way one defines a convolution product $K_1 * K_2 * K_3$ of $K_i \in \mathbb{P}erv_{G,N}$. Moreover, $(K_1 * K_2) * K_3 \xrightarrow{\sim} K_1 * K_2 * K_3 \xrightarrow{\sim} K_1 * (K_2 * K_3)$ canonically, and $\mathcal{A}_{\mathcal{E}}^0$ is a unit object in $\mathbb{P}erv_{G,N}$. ### 2.3. Fusion As in [10], we will show that the convolution product on $\mathbb{P}erv_{G,N}$ can be interpreted as a fusion product, thus leading to a commutativity constraint on $\mathbb{P}erv_{G,N}$. Fix $\mathcal{E} \in \Omega^{1/2}(\mathbf{O})$ and consider the group scheme $\operatorname{Aut}_2(\mathbf{O}) := \operatorname{Aut}(\mathbf{O}, \mathcal{E})$ as in $[\mathbf{1}, 3.5.2]$. It fits into an exact sequence $1 \to \mu_2 \to \operatorname{Aut}_2(\mathbf{O}) \to \operatorname{Aut}(\mathbf{O}) \to 1$, and $\operatorname{Aut}_2(\mathbf{O})$ is connected. Write $\operatorname{Aut}_2^0(\mathbf{O})$ for the preimage of $\operatorname{Aut}_2^0(\mathbf{O})$ in $\operatorname{Aut}_2(\mathbf{O})$. The map (2.2) is $\operatorname{Aut}_2^0(\mathcal{O})$ -equivariant, so the action of $\operatorname{Aut}^0(\mathcal{O})$ on Gra_G lifts to a $\operatorname{Aut}_2^0(\mathcal{O})$ -equivariant structure on each $\mathcal{A}_{\mathcal{E}}^{\lambda} \in \mathbb{P}\operatorname{erv}_{G,N}$. The corresponding $\operatorname{Aut}_2^0(\mathcal{O})$ -equivariant structure on each $\mathcal{A}_{\mathcal{E}}^{\lambda}$ is unique, as the action of $\operatorname{Aut}_2^0(\mathcal{O})$ on $\operatorname{\overline{Gra}}_G^{\lambda}$ factors through a smooth connected quotient group of finite type. Here $\operatorname{\overline{Gra}}_G^{\lambda}$ is the preimage of $\operatorname{\overline{Gr}}_G^{\lambda}$ under the projection $\operatorname{Gra}_G \to \operatorname{Gr}_G$. Let X be a smooth connected projective curve over k. For a closed $x \in X$ let O_x be the completed local ring of X at x, and F_x its fraction field. Write \mathcal{F}_G^0 for the trivial G-torsor on a scheme (or stack). Write $\operatorname{Gr}_{G,x}=G(\mathbf{F}_x)/G(\mathbf{O}_x)$ for the corresponding affine grassmanian. Then $\operatorname{Gr}_{G,x}$ identifies canonically with the ind-scheme classifying a G-torsor \mathcal{F}_G on X together with a trivialization $\nu:\mathcal{F}_G\xrightarrow{\sim} \mathcal{F}_G^0|_{X-x}$. For $m \geqslant 1$ write $\operatorname{Gr}_{G,X^m}$ for the ind-scheme classifying $(x_1,\ldots,x_m) \in X^m$, a G-torsor \mathcal{F}_G on X, and a trivialization $\mathcal{F}_G \xrightarrow{\sim} \mathcal{F}_G^0|_{X-\cup x_i}$. Let G_{X^m} be the group scheme over X^m classifying $\{(x_1,\ldots,x_m)\in X^m,\mu\}$, where μ is an automorphism of \mathcal{F}_G^0 restricted to the formal neighbourhood of $D=x_1\cup\cdots\cup x_m$ in X. The fibre of G_{X^m} over $(x_1,\ldots,x_m)\in X^m$ is $\prod_i G(O_{y_i})$ with $\{y_1,\ldots,y_s\}=\{x_1,\ldots,x_m\}$ and y_i pairwise distinct. Let \mathfrak{L}_{X^m} be the $(\mathbb{Z}/2\mathbb{Z}$ -graded purely of parity zero) line bundle on $\operatorname{Gr}_{G,X^m}$ whose fibre is $\operatorname{det} R\Gamma(X,\mathfrak{g}_{\mathcal{F}_G^0}) \otimes \operatorname{det} R\Gamma(X,\mathfrak{g}_{\mathcal{F}_G})^{-1}$. Here for a G-module V and a G-torsor \mathcal{F}_G on a base S we write $V_{\mathcal{F}_G}$ for the induced vector bundle on S. **Lemma 2.7.** For a k-point $(x_1, \ldots, x_m, \mathcal{F}_G)$ of Gr_{G,X^m} let $\{y_1, \ldots, y_s\} = \{x_1, \ldots, x_m\}$ with y_i pairwise distinct. The fibre of \mathfrak{L}_{X^m} at this k-point is canonically isomorphic as $\mathbb{Z}/2\mathbb{Z}$ -graded to $$igotimes_{i=1}^s \det(\mathfrak{g}(oldsymbol{O}_{y_i}): \mathfrak{g}_{\mathcal{F}_G}(oldsymbol{O}_{y_i})).$$ Write $\operatorname{Gra}_{G,X^m}$ for the punctured total space of \mathfrak{L}_{X^m} . The group scheme G_{X^m} acts naturally on $\operatorname{Gra}_{G,X^m}$ and $\operatorname{Gr}_{G,X^m}$, and the projection $\operatorname{Gra}_{G,X^m} \to \operatorname{Gr}_{G,X^m}$ is G_{X^m} -equivariant. Let $\operatorname{Perv}_{G,N,X^m}$ be the category of G_{X^m} -equivariant perverse sheaves on $\operatorname{Gra}_{G,X^m}$ with \mathbb{G}_m -monodromy ζ_a . Set $$\mathbb{P}\mathrm{erv}_{G,N,X^m} = \mathrm{Perv}_{G,N,X^m}[-m-1] \subset \mathrm{D}(\mathrm{Gra}_{G,X^m}).$$ For $x \in X$ write $D_x = \operatorname{Spec} \mathbf{O}_x$, $D_x^* = \operatorname{Spec} \mathbf{F}_x$. Consider the diagram, where the left and right square is Cartesian: $$\operatorname{Gra}_{G,X} \times \operatorname{Gra}_{G,X} \overset{\tilde{p}_{G,X}}{\rightleftharpoons} \tilde{C}_{G,X} \overset{\tilde{q}_{G,X}}{\rightleftharpoons} \widetilde{\operatorname{Conv}}_{G,X} \overset{\tilde{m}_{X}}{\Longrightarrow} \operatorname{Gra}_{G,X^{2}}$$ $$\downarrow \qquad \qquad \downarrow \qquad$$ Here the low row is the convolution diagram from [10]. Namely, $C_{G,X}$ is the ind-scheme classifying collections: $$x_1, x_2 \in X$$, G-torsors $\mathcal{F}_G^1, \mathcal{F}_G^2$ on X with $\nu_i : \mathcal{F}_G^i \xrightarrow{\sim} \mathcal{F}_G^0|_{X - x_i}$, $\mu_1 : \mathcal{F}_G^1 \xrightarrow{\sim} \mathcal{F}_G^0|_{D_{x_2}}$. (2.3) The map $p_{G,X}$ forgets μ_1 . The ind-scheme $Conv_{G,X}$ classifies collections: $$x_1, x_2 \in X$$, G -torsors $\mathcal{F}_G^1, \mathcal{F}_G$ on X , isomorphisms $\nu_1 : \mathcal{F}_G^1 \xrightarrow{\sim} \mathcal{F}_G^0|_{X - x_1}$ and $\eta : \mathcal{F}_G^1 \xrightarrow{\sim} \mathcal{F}_G|_{X - x_2}$. (2.4) The map m_X sends this collection to $(x_1, x_2, \mathcal{F}_G)$ together with the trivialization $\eta \circ \nu_1^{-1} : \mathcal{F}_G^0 \xrightarrow{\sim} \mathcal{F}_G|_{X-x_1-x_2}$. The map $q_{G,X}$ sends (2.3) to (2.4), where \mathcal{F}_G is obtained by gluing \mathcal{F}_G^1 on $X - x_2$ and \mathcal{F}_G^2 on D_{x_2} using their identification over $D_{x_2}^*$ via $\nu_2^{-1} \circ \mu_1$. The canonical $\mathbb{Z}/2\mathbb{Z}$ -graded isomorphism $$q_{G,X}^* m_X^* \mathfrak{L}_{X^2} \xrightarrow{\sim} p_{G,X}^* (\mathfrak{L}_X \boxtimes \mathfrak{L}_X)$$ allows to define $\tilde{q}_{G,X}$, it sends (2.3) together with $v_i \in \det(\mathfrak{g}(\mathcal{O}_{x_i}) : \mathfrak{g}_{\mathcal{F}_G^i}(\mathcal{O}_{x_i}))$ for i = 1, 2 to the image of (2.3) under $q_{G,X}$ together with $v_1 \otimes v_2$. Here we used the isomorphism $$\det(\mathfrak{g}(\boldsymbol{O}_{x_1}):\mathfrak{g}_{\mathcal{F}_G^1}(\boldsymbol{O}_{x_1})) \otimes \det(\mathfrak{g}(\boldsymbol{O}_{x_2}):\mathfrak{g}_{\mathcal{F}_G^2}(\boldsymbol{O}_{x_2}))$$ $$\xrightarrow{\sim} \det(\mathfrak{g}(\boldsymbol{O}_{x_1}):\mathfrak{g}_{\mathcal{F}_G^1}(\boldsymbol{O}_{x_1}) \otimes \det(\mathfrak{g}_{\mathcal{F}_G^1}(\boldsymbol{O}_{x_2}):\mathfrak{g}_{\mathcal{F}_G}(\boldsymbol{O}_{x_2})) \quad (2.5)$$ given by μ_1 and $\mathfrak{g}_{\mathcal{F}_G}(\mathbf{O}_{x_2}) \xrightarrow{\sim} \mathfrak{g}_{\mathcal{F}_G^2}(\mathbf{O}_{x_2})$, so (2.5) is the fibre of \mathfrak{L}_{X^2} over \mathcal{F}_G . For $K_1, K_2 \in \mathbb{P}erv_{G,N,X}$ there is a (defined up to a unique isomorphism) perverse sheaf $K_{12}[3]$ on $\widetilde{Conv}_{G,X}$ with $\tilde{q}_{G,X}^*K_{12} \xrightarrow{\sim} \tilde{p}_{G,X}^*(K_1 \boxtimes K_2)$. Moreover, K_{12} has \mathbb{G}_m -monodromy ζ_a . We then let $$K_1 *_X K_2 = \tilde{m}_{X!} K_{12}.$$ Let $U \subset X^2$ be the complement to the diagonal. Let $j: \operatorname{Gra}_{G,X^2}(U) \hookrightarrow \operatorname{Gra}_{G,X^2}$ be the preimage of U. Recall that m_X is stratified small, an isomorphism over the preimage of U [10], so the same holds for \tilde{m}_X . Thus, $(K_1 *_X K_2)[3]$ is a perverse sheaf, the intermediate extension from $\operatorname{Gra}_{G,X^2}(U)$. Clearly, $K_1 *_X K_2$ is G_{X^2} -equivariant over $\operatorname{Gra}_{G,X^2}(U)$, and this property is preserved under the intermediate extension. So, $K_1 *_X K_2 \in \operatorname{Perv}_{G,N,X^2}$. Let Ω_X be the canonical line bundle on X. Write $\Omega_X^{1/2}(X)$ for the groupoid of square roots of Ω_X . For $\mathcal{E}_X \in \Omega_X^{1/2}(X)$ let $\hat{X}_2 \to X$ be the $\operatorname{Aut}_2^0(\mathbf{O})$ -torsor whose fibre over x is the scheme of isomorphisms between $(\mathcal{E}_x, \mathbf{O}_x)$ and $(\mathcal{E}, \mathbf{O})$. Then $\operatorname{Gr}_{G,X} \xrightarrow{\sim} \hat{X}_2 \times_{\operatorname{Aut}_2^0(\mathbf{O})} \operatorname{Gr}_G$ (cf. [1, 5.3.11]), and similarly $\operatorname{Gra}_{G,X} \xrightarrow{\sim} \hat{X}_2 \times_{\operatorname{Aut}_2^0(\mathbf{O})} \operatorname{Gra}_G$. Since any $K \in \operatorname{Perv}_{G,N}$ is $\operatorname{Aut}_2^0(\mathbf{O})$ -equivariant (in a unique way), we get a fully faithful functor $$\tau^0 : \mathbb{P}erv_{G,N} \to \mathbb{P}erv_{G,N,X}$$ (2.6) sending K to the descent of $\bar{\mathbb{Q}}_{\ell} \boxtimes K$ under $\hat{X}_2 \times \operatorname{Gra}_G \to \operatorname{Gra}_{G,X}$. Let $i: \operatorname{Gra}_{G,X} \to \operatorname{Gra}_{G,X^2}$ be the preimage of the diagonal in X^2 . For $F_i \in \mathbb{P}\operatorname{erv}_{G,N}$ letting $K_i = \tau^0 F_i$ define $$K_{12}|_U := K_{12}|_{\operatorname{Gra}_{G,X^2}(U)}$$ as above (it is placed in perverse degree 3). We get $K_1 *_X K_2 \xrightarrow{\sim} j_{!*}(K_{12}|_U)$ and $\tau^0(F_1 *_{F_2}) \xrightarrow{\sim} i^*(K_1 *_X K_2)$. So, the involution σ of Gra_{G,X^2} interchanging x_i yields $$\tau^{0}(F_{1}*F_{2}) \xrightarrow{\sim} i^{*}j_{!*}(K_{12}|_{U}) \xrightarrow{\sim} i^{*}j_{!*}(K_{21}|_{U}) \xrightarrow{\sim} \tau^{0}(F_{2}*F_{1}),$$
because $\sigma^*(K_{12}|_U) \xrightarrow{\sim} K_{21}|_U$ canonically. As in [1, 5.3.13–5.3.17] one shows that the associativity and commutativity constraints are compatible. Thus, $\mathbb{P}erv_{G,N}$ is a symmetric monoidal category. The idea to use τ^0 instead of $\tau^0[1]$ in the above definition of the commutativity constraint goes back to [1, 5.3.17], this is a way to avoid sign problems. Remark 2.8. Write $P_{G(O)}(Gra_G)$ for the category of G(O)-equivariant perverse sheaves on Gra_G . Let \star be the covariant self-functor on $P_{G(O)}(Gra_G)$ induced by the map $E^a \to E^a$, $e \mapsto e^{-1}$. Then $K \mapsto K^{\vee} := \mathbb{D}(\star K)[-2]$ is a contravariant functor $\mathbb{P}erv_{G,N} \to \mathbb{P}erv_{G,N}$. As in [9, Remark 6], one checks that for $K_i \in \mathbb{P}erv_{G,N}$ we have canonically $\operatorname{RHom}(K_1 * K_2, K_3) \xrightarrow{\sim} \operatorname{RHom}(K_1, K_3 * K_2^{\vee})$. So, $K_3 * K_2^{\vee}$ represents the internal $\mathcal{H}om(K_2, K_3)$ in the sense of the tensor structure on $\mathbb{P}erv_{G,N}$. Besides, $\star (K_1 * K_2) \xrightarrow{\sim} (\star K_2) * (\star K_1)$ canonically. ### 2.4. Main result In § 4.2 below we introduce a tensor category $\mathbb{P}erv_{G,N}^{\sharp}$ obtained from $\mathbb{P}erv_{G,N}$ by some modification of the commutativity constraint. Set $$X^*(\check{T}_N) = \{ \nu \in X_*(T) \mid d\iota(\nu) \in NX^*(T) \}.$$ Let $\check{T}_N = \operatorname{Spec} k[X^*(\check{T}_N)]$ be the torus whose weight lattice is $X^*(\check{T}_N)$. The natural inclusion $X^*(T) \subset X_*(\check{T}_N)$ allows to see each root $\check{\alpha} \in R^*$ as a coweight of \check{T}_N . For $a \in \mathbb{Q}, \ a > 0$ written as $a = a_1/a_2$ with $a_i \in \mathbb{N}$ prime to each other say that a_2 is the denominator of a. Recall that p does not divide $2\check{h}N/d$. **Theorem 2.9.** There is a connected semi-simple group \check{G}_N and a canonical equivalence of tensor categories $$\mathbb{P}\mathrm{erv}_{G,N}^{\natural} \xrightarrow{\sim} \mathrm{Rep}(\check{G}_N).$$ There is a canonical inclusion $\check{T}_N \subset \check{G}_N$ whose image is a maximal torus in \check{G}_N . The Weyl groups of G and \check{G}_N viewed as subgroups of $\operatorname{Aut}(X^*(\check{T}_N))$ are the same. Our choice of a Borel subgroup $T \subset B \subset G$ yields a Borel subgroup $\check{T}_N \subset \check{B}_N \subset \check{G}_N$. The corresponding simple roots (respectively, coroots) of $(\check{G}_N, \check{T}_N)$ are $\delta_i \alpha_i$ (respectively, $\check{\alpha}_i/\delta_i$), where δ_i is the denominator of $d(\alpha_i, \alpha_i)/2N$. **Examples.** (If G is simply connected then d = 1.) - $G = \operatorname{SL}_2$ then $\check{G}_N \xrightarrow{\sim} \operatorname{SL}_2$ for N even, and $\check{G}_N \xrightarrow{\sim} \operatorname{PSL}_2$ for N odd. - $G = \mathrm{PSL}_2$ then d = 2, and $\check{G}_N \xrightarrow{\sim} \mathrm{SL}_2$ for N odd, $\check{G}_N \xrightarrow{\sim} \mathrm{PSL}_2$ for N even. - $G = \mathbb{S}p_{2n}$ then $\check{G}_N \xrightarrow{\sim} \mathbb{S}\mathbb{O}_{2n+1}$ for N odd, and $\check{G}_N \xrightarrow{\sim} \mathbb{S}p_{2n}$ for N even. For N = 2 this has been also proved in [9]. - $G = \mathbb{S}pin_{2n+1}$ with $n \geqslant 2$ then $$\check{G}_N \xrightarrow{\sim} \begin{cases} \mathbb{S}\mathrm{p}_{2n}/\{\pm 1\}, & N \text{ odd,} \\ \mathbb{S}\mathrm{pin}_{2n+1}, & N \text{ even and } nN/2 \text{ even,} \\ \mathbb{S}\mathbb{O}_{2n+1}, & N \text{ even and } nN/2 \text{ odd.} \end{cases}$$ - $G = G_2$ has trivial centre, and $\check{G}_N \xrightarrow{\sim} G_2$ for any N. - $G = F_4$ has trivial centre, and $\check{G}_N \xrightarrow{\sim} F_4$ for any N. - $G = E_8$ has trivial centre, and $\check{G}_N \xrightarrow{\sim} E_8$ for any N. - G simply connected of type E_6 , its centre identifies with $\mathbb{Z}/3\mathbb{Z}$ and $$\check{G}_N \xrightarrow{\sim} \begin{cases} \text{adjoint of type } E_6, & 3 \nmid N, \\ \text{simply connected of type } E_6, & 3 \mid N. \end{cases}$$ • G is simply connected of type E_7 , its centre identifies with $\mathbb{Z}/2\mathbb{Z}$ and $$\check{G}_N \xrightarrow{\sim} \begin{cases} \text{simply connected of type } E_7, & N \text{ even,} \\ \text{adjoint of type } E_7, & N \text{ odd.} \end{cases}$$ **Remark 2.10.** The case when p divides $2\check{h}/d$, but p does not divide N can also be treated. In this case one can pick a character $\zeta_a:\mu_{2\check{h}N/d}(\mathsf{k})\to\bar{\mathbb{Q}}^*_\ell$ satisfying $\zeta_a^{2\check{h}/d}=\zeta$ and define $\mathbb{P}\mathrm{erv}_{G,N}^{\natural}$ in the same way. But the category $\mathbb{P}\mathrm{erv}_{T,G,N}$ will have more objects, we excluded this case to simplify the proof. ### 3. Classification of central extensions # 3.1. Simply connected case In this subsection we remind the classification of central extensions of $G^{\text{sc}}(\mathbf{F})$ by \mathbb{G}_m in relation with [3]. By [3], the central extensions of G^{sc} by (the sheaf version of) K_2 are classified by integer-valued W-invariant quadratic forms on $X_*(T^{\text{sc}})$ (and have no automorphisms). Let Q be the unique \mathbb{Z} -valued quadratic form on $X_*(T^{\text{sc}})$ satisfying $Q(\alpha) = 1$ for a short coroot α . So, $(\lambda_1, \lambda_2) = Q(\lambda_1 + \lambda_2) - Q(\lambda_1) - Q(\lambda_2)$ for $\lambda_i \in X_*(T^{\text{sc}})$. Let $$1 \to K_2 \to E_Q \to G^{\rm sc} \to 1 \tag{3.1}$$ denote the central extension corresponding to Q. Write v(f) for the valuation of $f \in \mathbf{F}^*$. Write $(\cdot, \cdot)_{st}$ for the tame symbol given by $$(f,g)_{st} = (-1)^{v(f)v(g)} (g^{v(f)} f^{-v(g)})(0)$$ for $f, g \in F^*$. We may view it as a map $K_2(\mathbf{F}) \to \mathsf{k}^*$. Taking the \mathbf{F} -valued points of (3.1) and further the pushforward by the tame symbol, one gets a central extension $$1 \to \mathsf{k}^* \to \bar{G} \to G^{\mathrm{sc}}(\boldsymbol{F}) \to 1. \tag{3.2}$$ For $\theta \in \pi_1(G)$ write $\operatorname{Gr}_G^{\theta}$ for the connected component of Gr_G that contains $t^{\lambda}G(\mathbf{O})$ for $\lambda \in X_*(T)$ whose image in $\pi_1(G)$ equals θ . The natural map $\operatorname{Gr}_{G^{\operatorname{sc}}} \to \operatorname{Gr}_G^0$ is an isomorphism. From [5] one knows that there is a line bundle \mathcal{L} on Gr_G generating the Picard group $\operatorname{Pic}(\operatorname{Gr}_G^{\theta}) \xrightarrow{\sim} \mathbb{Z}$ of each connected component $\operatorname{Gr}_G^{\theta}$ of Gr_G , and an isomorphism $\mathcal{L}^{2\check{h}} \xrightarrow{\sim} \mathfrak{L}$. Write \bar{G}_Q for the punctured total space of the inverse image of \mathcal{L} under $G^{\mathrm{sc}}(F) \to \mathrm{Gr}_G$, $x \mapsto xG(\mathbf{O})$. It can be seen as the Mumford extension $$1 \to \mathbb{G}_m \to \bar{G}_Q \to G^{\mathrm{sc}}(\mathbf{F}) \to 1, \tag{3.3}$$ that is, the ind-scheme classifying pairs $(g \in G^{\text{sc}}(\mathbf{F}), \sigma)$, where $\sigma : g^*\mathcal{L} \xrightarrow{\sim} \mathcal{L}$ is an isomorphism over Gr_G^0 . The central extension (3.3) splits canonically over $G^{\text{sc}}(\mathbf{O})$. Any central extension of $G^{\text{sc}}(\mathbf{F})$ by \mathbb{G}_m is a multiple of (3.3) and has no automorphisms. In the rest of this section we prove the following. **Lemma 3.1.** Passing to k-points in (3.3) one gets a central extension isomorphic to (3.2). For a central extension $1 \to A \to E \to H \to 1$ we write $(\cdot, \cdot)_c : H \times H \to A$ for the corresponding commutator given by $$(h_1, h_2)_c = \tilde{h}_1 \tilde{h}_2 \tilde{h}_1^{-1} \tilde{h}_2^{-1},$$ where \tilde{h}_i is any lifting of h_i to E. If H is abelian then the commutator $(h_1, h_2)_c$ depends only on the isomorphism class of the central extension. Note that $T(\mathbf{F}) = X_*(T) \otimes_{\mathbb{Z}} \mathbf{F}^*$. For $f_i \in \mathbf{F}^*$ and $\lambda_i \in X_*(T)$ the commutator for the central extension (2.1) is given by $$(\lambda_1 \otimes f_1, \lambda_2 \otimes f_2)_c = (f_1, f_2)_{st}^{2\check{h}(\lambda_1, \lambda_2)}.$$ Indeed, for $\lambda \in X_*(T)$, $f \in \mathbf{F}^*$ the fibre of \mathfrak{L} at $\lambda \otimes f$ identifies as $\mathbb{Z}/2\mathbb{Z}$ -graded line with $$\bigotimes_{\check{\alpha} \in R^*} \det(\mathfrak{g}^{\check{\alpha}}(\boldsymbol{O}) : f^{\langle \lambda, \check{\alpha} \rangle} \mathfrak{g}^{\check{\alpha}}(\boldsymbol{O}))$$ and, using Lemma 2.1, it suffices to calculate the commutator of the canonical central extension of $\mathbb{G}_m(\mathbf{F})$ by \mathbb{G}_m given by the relative determinant. But the latter commutator is given by the tame symbol (cf. [3, 12.13, p. 82]). We learn that the commutator for the central extension (3.3) is given on the torus by $$(\lambda_1 \otimes f_1, \lambda_2 \otimes f_2)_c = (f_1, f_2)_{st}^{(\lambda_1, \lambda_2)}$$ for $\lambda_i \in X_*(T^{\mathrm{sc}}), f_i \in \mathbf{F}^*$. We will check that the commutators corresponding to (3.3) and to (3.2) are the same on $T^{\mathrm{sc}}(F)$. The commutator for (3.2) can by calculated using, for example, [3, Proposition 11.11, p. 77]. Namely, consider first the case of $G^{\mathrm{sc}} = \mathrm{SL}_2$. In this case identify T^{sc} with \mathbb{G}_m via the positive coroot $\alpha : \mathbb{G}_m \xrightarrow{\sim} T^{\mathrm{sc}}$ then the commutator for (3.2) becomes $$(f_1, f_2)_c = (f_1, f_2)_{st}^2$$. Indeed, for $h_i \in T^{\text{sc}}$ consider in the notation of [3, Formula (11.1.4), p. 73] Steinberg's cocycle $c(h_1, h_2) \in K_2$. The image of $c(h_1, h_2)$ under the tame symbol $K_2(\mathbf{F}) \to \mathsf{k}^*$ equals $(h_1, h_2)_{st}$. So, the commutator $(f_1, f_2)_c$ is the image of $$\frac{c(f_1, f_2)}{c(f_2, f_1)} \in K_2(\mathbf{F})$$ under the tame symbol $K_2(\mathbf{F}) \to \mathsf{k}^*$. For
$G^{\mathrm{sc}} = \mathrm{SL}_2$ our assertion follows. The general case can be reduced to the case $G^{\text{sc}} = \text{SL}_2$ by restricting to the SL_2 -subgroups $S_{\tilde{\alpha}} \subset G$ corresponding to the roots $\tilde{\alpha}$ as in [3, §11.2, p. 74]. We are done. **Remark 3.2.** For $\lambda \in X_*(T^{\mathrm{sc}})$ we have $(\lambda, \lambda) \in 2\mathbb{Z}$. Indeed, $(\lambda, \lambda) = Q(2\lambda) - 2Q(\lambda) = 2Q(\lambda)$. ### 3.2. Proof of Proposition 2.2 The idea of the argument below was communicated to us by Drinfeld. For $m \in \mathbb{Z}$ write G_{mQ} for the mth multiple of the central extension G_Q . There is a canonical action δ_0 of $G(\mathbf{F})$ on the exact sequence $$1 \to \mathbb{G}_m \to \bar{G}_{mQ} \to G^{\mathrm{sc}}(\mathbf{F}) \to 1 \tag{3.4}$$ such that $G(\mathbf{F})$ acts trivially on \mathbb{G}_m and by conjugation on $G^{\mathrm{sc}}(\mathbf{F})$. Indeed, we know that the extension (3.3) comes from the canonical extension (3.1), so that the automorphisms of G^{sc} act on it. Write $\delta_0: G(\mathbf{F}) \times \bar{G}_{mQ} \to \bar{G}_{mQ}$ for the action map. If $\lambda \in X_*(T^{\mathrm{sc}})$, $\mu \in X_*(T)$, $f, g \in \mathbf{F}^*$ then $\mu \otimes g \in T(\mathbf{F}) \subset G(\mathbf{F})$ acts on the fibre of \bar{G}_{mQ} over $\lambda \otimes f \in T^{\mathrm{sc}}(\mathbf{F})$ via δ_0 as a multiplication by $$(g,f)_{st}^{m(\mu,\lambda)}$$. This is a kind of 'explanation' of the fact that the form (\cdot,\cdot) initially defined on $X_*(T^{\mathrm{sc}})$ extends by linearity to a form $(\cdot,\cdot):X_*(T)\times X_*(T^{\mathrm{sc}})\to\mathbb{Z}$ taking values in \mathbb{Z} and not just in \mathbb{Q} . 3.2.1. The isomorphism classes of central extensions $$1 \to \mathbb{G}_m \to \mathcal{E}_h \to T(\mathbf{F}) \to 1$$ (3.5) are classified by symmetric bilinear forms $(\cdot,\cdot)_b:X_*(T)\times X_*(T)\to\mathbb{Z}$, namely for the corresponding extension (3.5) we have $$(\lambda_1 \otimes f_1, \lambda_2 \otimes f_2)_c = (f_1, f_2)_{st}^{(\lambda_1, \lambda_2)_b}$$ for $f_i \in \mathbf{F}^*$, $\lambda_i \in X_*(T)$. The group of automorphisms of the central extension (3.5) is $\operatorname{Hom}(T(\mathbf{F}), \mathbb{G}_m)$. Since $T(\mathbf{F})$ is abelian, the commutator $(\lambda_1 \otimes f_1, \lambda_2 \otimes f_2)_c$ is invariant under these automorphisms. The extension (3.5) admits a (non-unique) splitting over $T(\mathbf{O})$. 3.2.2. The group T acts on G^{sc} by conjugation, let $\tilde{G} = G^{\text{sc}} \ltimes T$ denote the corresponding semi-direct product. The map $G^{\text{sc}} \ltimes T \to G$, $(g,t) \mapsto \bar{g}t$, where \bar{g} is the image of $g \in G^{\text{sc}}$ in G, yields an exact sequence $1 \to T^{\text{sc}} \to \tilde{G} \to G \to 1$. Hence, an exact sequence $$1 \to T^{\rm sc}(\mathbf{F}) \to \tilde{G}(\mathbf{F}) \to G(\mathbf{F}) \to 1. \tag{3.6}$$ The category of central extensions of $G(\mathbf{F})$ by \mathbb{G}_m is equivalent to the category of pairs: a central extension $$1 \to \mathbb{G}_m \to ? \to \tilde{G}(\mathbf{F}) \to 1$$ (3.7) together with a splitting of its pullback under $T^{\mathrm{sc}}(\mathbf{F}) \to \tilde{G}(\mathbf{F})$. By a slight (we have to drop off the assumption of being of finite type) generalization of [3, Construction 1.7], the category of central extensions (3.7) is equivalent to the category of triples: central extensions (3.4) and (3.5) together with an action δ of $T(\mathbf{F})$ on \bar{G}_{mQ} extending the action of $T(\mathbf{F})$ on $G^{\text{sc}}(F)$ by conjugation. Write $\delta: T(\mathbf{F}) \times \bar{G}_{mQ} \to \bar{G}_{mQ}$ for the action map. Since (3.4) has no automorphisms, δ coincides with the restriction of δ_0 to $T(\mathbf{F}) \times \bar{G}_{mQ}$. Write $$1 \to \mathbb{G}_m \to \bar{G}_{mQ}^T \to T^{\mathrm{sc}}(\mathbf{F}) \to 1$$ (3.8) for the restriction of (3.4) to $T^{\text{sc}}(\mathbf{F})$. We conclude that the category of central extensions of $G(\mathbf{F})$ by \mathbb{G}_m is equivalent to the category of pairs: a central extension (3.5) together with an isomorphism of its restriction to $T^{\text{sc}}(\mathbf{F})$ with (3.8). Clearly, the corresponding form $(\cdot,\cdot)_b:X_*(T)\times X_*(T)\to\mathbb{Z}$ is given by $(\lambda_1,\lambda_2)_b=m(\lambda_1,\lambda_2)$. Proposition 2.2 follows. ## 4. Proof of Theorem 2.9 # 4.1. Functors F_P' Let P be a parabolic subgroup of G containing B. Let $M \subset P$ be a Levi subgroup containing T. Write $$1 \to \mathbb{G}_m \to E_M^a \to M(\mathbf{F}) \to 1$$ for the restriction of (2.1) to $M(\mathbf{F})$, it is equipped with an action of $\operatorname{Aut}^0(\mathbf{O})$ and a section over $M(\mathbf{O})$ coming from the corresponding objects for (2.1). Let $\operatorname{Perv}_{M,G,N}$ denote the category of $M(\mathbf{O})$ -equivariant $\bar{\mathbb{Q}}_{\ell}$ -perverse sheaves on $E_M^a/M(\mathbf{O})$ with \mathbb{G}_m -monodromy ζ_a . Set $$\mathbb{P}erv_{M,G,N} = \operatorname{Perv}_{M,G,N}[-1] \subset D(E_M^a/M(\boldsymbol{O})).$$ Write $\mathfrak{L}_{M,G}$ for the restriction of \mathfrak{L} under $\operatorname{Gr}_M \to \operatorname{Gr}_G$, we equip it with the action of $\operatorname{Aut}^0(O)$ coming from that on \mathfrak{L} . Write Gr_M for the affine grassmanian for M. The connected components of Gr_M are indexed by $\pi_1(M)$. For $\theta \in \pi_1(M)$ write Gr_M^{θ} for the connected component of Gr_M containing $t^{\lambda}M(\mathbf{O})$ for any coweight λ whose image in $\pi_1(M)$ is θ . The diagram $M \leftarrow P \hookrightarrow G$ yields the following diagram of affine grassmanians $$\operatorname{Gr}_M \stackrel{\mathfrak{t}_P}{\longleftarrow} \operatorname{Gr}_P \xrightarrow{\mathfrak{s}_P} \operatorname{Gr}_G.$$ The map \mathfrak{t}_P yields a bijection between the connected components of Gr_P and those of Gr_M . Let $\operatorname{Gr}_P^{\theta}$ be the connected component of Gr_P such that \mathfrak{t}_P restricts to a map $\mathfrak{t}_P^{\theta}:\operatorname{Gr}_P^{\theta}\to\operatorname{Gr}_M^{\theta}$. Write $\mathfrak{s}_P^{\theta}:\operatorname{Gr}_P^{\theta}\to\operatorname{Gr}_G$ for the restriction of \mathfrak{s}_P . The restriction of \mathfrak{s}_P^{θ} to $(\operatorname{Gr}_P^{\theta})_{\mathrm{red}}$ is a closed immersion. The section $M \hookrightarrow P$ yields a section $\mathfrak{r}_P : \operatorname{Gr}_M \to \operatorname{Gr}_P$ of \mathfrak{t}_P . By abuse of notation, we write $$\operatorname{Gra}_M \xrightarrow{\mathfrak{r}_P} \operatorname{Gra}_P \xrightarrow{\mathfrak{s}_P} \operatorname{Gra}_G$$ for the diagram obtained from $\operatorname{Gr}_M \xrightarrow{\mathfrak{r}_P} \operatorname{Gr}_P \xrightarrow{\mathfrak{s}_P} \operatorname{Gr}_G$ by the base change $\operatorname{Gra}_G \to \operatorname{Gr}_G$. Clearly, \mathfrak{t}_P lifts naturally to a map $\mathfrak{t}_P : \operatorname{Gra}_P \to \operatorname{Gra}_M$. Define the functor $$F'_P: \mathbb{P}erv_{G,N} \to D(Gra_M)$$ by $F'_P(K) = \mathfrak{t}_{P!}\mathfrak{s}_P^*K$. Write $\operatorname{Gra}_M^{\theta}$ (respectively, $\operatorname{Gra}_P^{\theta}$) for the connected component of Gra_M (respectively, Gra_P) over $\operatorname{Gr}_M^{\theta}$ (respectively, $\operatorname{Gr}_P^{\theta}$). Write $$\mathbb{P}\mathrm{erv}_{M,G,N}^{\theta} \subset \mathbb{P}\mathrm{erv}_{M,G,N}$$ for the full subcategory of objects that vanish off $\operatorname{Gra}_M^{\theta}$. Set $$\mathbb{P}\mathrm{erv}'_{M,G,N} = \bigoplus_{\theta \in \pi_1(M)} \mathbb{P}\mathrm{erv}^{\theta}_{M,G,N}[\langle \theta, 2\check{\rho}_M - 2\check{\rho} \rangle].$$ As in [1, 5.3.29] one shows that F'_P sends $\mathbb{P}erv_{G,N}$ to $\mathbb{P}erv'_{M,G,N}$ (cf. also [9, Appendix A.4]). The above construction applied to the Borel subgroup yields a functor $F'_B: \mathbb{P}erv_{G,N} \to \mathbb{P}erv_{T,G,N}'$. Let $B(M) \subset M$ be a Borel subgroup containing T such that the preimage of B(M) under $P \to M$ equals B. The functor $F'_{B(M)} : \mathbb{P}erv'_{M,G,N} \to D(Gra_T)$ is defined as follows. As above, the inclusions $T \subset B(M) \subset M$ yield a diagram $$\operatorname{Gr}_T \xrightarrow{\mathfrak{r}_{B(M)}} \operatorname{Gr}_{B(M)} \xrightarrow{\mathfrak{s}_{B(M)}} \operatorname{Gr}_M.$$ (4.1) Write $$\operatorname{Gra}_{T} \xrightarrow{\mathfrak{r}_{B(M)}} \operatorname{Gra}_{B(M)} \xrightarrow{\mathfrak{s}_{B(M)}} \operatorname{Gra}_{M}$$ for the diagram obtained from (4.1) by the base change $\operatorname{Gra}_M \to \operatorname{Gr}_M$. The projection $B(M) \to T$ yields $\mathfrak{t}_{B(M)} : \operatorname{Gr}_{B(M)} \to \operatorname{Gr}_T$, which lifts naturally to $\mathfrak{t}_{B(M)} : \operatorname{Gra}_{B(M)} \to \operatorname{Gra}_T$. For $K \in \mathbb{P}\operatorname{erv}'_{M,G,N}$ set $$F'_{B(M)}(K) = (\mathfrak{t}_{B(M)})_! \mathfrak{s}^*_{B(M)} K.$$ As in [1, 5.3.29], one shows that $F'_{B(M)}$ is a functor $$F'_{B(M)}: \mathbb{P}erv'_{M,G,N} \to \mathbb{P}erv'_{T,G,N}$$. By base change, we have canonically $$F'_{B(M)} \circ F'_P \xrightarrow{\sim} F'_B.$$ (4.2) 4.1.1. Write $X_*^{+M}(T) \subset X_*(T)$ for the coweights of T dominant for M. For $\lambda \in X_*^{+M}(T)$ denote by $\operatorname{Gr}_M^{\lambda}$ the $M(\mathbf{O})$ -orbit through $t^{\lambda}M(\mathbf{O})$. Let $\operatorname{Gra}_M^{\lambda}$ be the preimage of $\operatorname{Gr}_M^{\lambda}$ under $\operatorname{Gra}_M \to \operatorname{Gr}_M$. The M-orbit on Gr_M through $t^{\lambda}M(\mathbf{O})$ is isomorphic to a partial flag variety $\mathcal{B}_M^{\lambda} = M/P_M^{\lambda}$, where the Levi subgroup of P_M^{λ} has the Weyl group coinciding with the stabilizer of λ in W_M . Write
$\tilde{\omega}_{M,\lambda}: \operatorname{Gr}_M^{\lambda} \to \mathcal{B}_M^{\lambda}$ for the projection. As in Lemma 2.4, one gets a $\mathbb{Z}/2\mathbb{Z}$ -graded isomorphism $$\mathfrak{L}_{M,G}|_{\mathrm{Gr}_{M}^{\lambda}} \xrightarrow{\sim} \Omega_{\bar{c}}^{\check{h}(\lambda,\lambda)} \otimes \tilde{\omega}_{M,\lambda}^{*} \mathcal{O}(2\check{h}\iota(\lambda)),$$ where the line bundles $\mathcal{O}(\check{\nu})$ on $\mathcal{B}_{M}^{\lambda}$ are defined as in § 2.1. Set $$X_M^{*+}(\check{T}_N) = \{ \lambda \in X_*^{+M}(T) \mid d\iota(\lambda) \in NX^*(T) \}.$$ As for G itself, for $\lambda \in X^{+M}_*(T)$ the scheme $\operatorname{Gra}_M^{\lambda}$ admits a $M(\mathbf{O})$ -equivariant local system with \mathbb{G}_m -monodromy ζ_a if and only if $\lambda \in X^{*+}_M(\check{T}_N)$. For $\lambda \in X^{*+}_M(\check{T}_N)$ denote by $\mathcal{A}_{M,\mathcal{E}}^{\lambda}$ the irreducible object of $\mathbb{P}erv_{M,G,N}$ defined as in §2.1. ### 4.1.2. More tensor structures One equips $\mathbb{P}erv_{M,G,N}$ and $\mathbb{P}erv'_{M,G,N}$ with a convolution product as in § 2.2. Let us define the commutativity constraint on these categories via fusion. Recall the line bundles \mathfrak{L}_{X^m} on Gr_{G,X^m} from § 2.3. For the convenience of the reader we remind the *factorization structure* on these line bundles, which allowed to do fusion for $\mathbb{P}erv_{G,N}$. For a surjective map of finite sets $\alpha: J \to I$ one has a Cartesian square $$Gr_{G,X^I} \xrightarrow{\tilde{\triangle}^{\alpha}} Gr_{G,X^J}$$ $$\downarrow \qquad \qquad \downarrow$$ $$X^I \xrightarrow{\Delta^{\alpha}} X^J$$ where \triangle^{α} is the corresponding diagonal. We have canonically $(\tilde{\triangle}^{\alpha})^* \mathfrak{L}_{X^J} \xrightarrow{\sim} \mathfrak{L}_{X^I}$. Write $\nu^{\alpha}: U^{\alpha} \hookrightarrow X^{J}$ for the open subscheme given by the condition that the divisors D_{i} do not intersect pairwise, where $D_{i} = \sum_{j \in J, \alpha(j)=i} x_{j}$ for $(x_{j}) \in X^{J}$. We have a Cartesian square $$\left(\prod_{i \in I} \operatorname{Gr}_{G, X^{\alpha^{-1}(i)}} \right) \Big|_{U^{\alpha}} \xrightarrow{\iota^{\rho^{\alpha}}} \operatorname{Gr}_{G, X^{J}}$$ $$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$ $$U^{\alpha} \xrightarrow{\iota^{\rho^{\alpha}}} X^{J}$$ We have canonically $$(\tilde{\nu}^{\alpha})^* \mathfrak{L}_{X^J} \xrightarrow{\sim} \left(\left. \bigotimes_{i \in I} \mathfrak{L}_{X^{\alpha^{-1}(i)}} \right) \right|_{U^{\alpha}}.$$ Let \mathfrak{L}_{M,G,X^m} be the restriction of \mathfrak{L}_{X^m} under the map $\operatorname{Gr}_{M,X^m} \to \operatorname{Gr}_{G,X^m}$ induced by $M \hookrightarrow G$. The collection $\{\mathcal{L}_{M,G,X^m}\}$ is endowed with the induced factorization structure. Write $\operatorname{Gra}_{M,G,X^m}$ for the punctured line bundle of \mathfrak{L}_{M,G,X^m} . Let M_{X^m} be the group scheme over X^m classifying $\{(x_1, \ldots, x_m) \in X^m, \mu\}$, where μ is an automorphism of \mathcal{F}_M^0 restricted to the formal neighbourhood of $x_1 \cup \cdots \cup x_m$ in X. The group scheme M_{X^m} acts naturally on $\operatorname{Gra}_{M,G,X^m}$. Write $\operatorname{Perv}_{M,G,N,X^m}$ for the category of M_{X^m} -equivariant perverse sheaves on $\operatorname{Gra}_{M,G,X^m}$ with \mathbb{G}_m -monodromy ζ_a . Set $$\mathbb{P}\operatorname{erv}_{M,G,N,X^m} = \operatorname{Perv}_{M,G,N,X^m}[-m-1].$$ Let $\operatorname{Aut}_2^0(\mathbf{O})$ act on Gra_M via its quotient $\operatorname{Aut}^0(\mathbf{O})$. Then every object of $\operatorname{Perv}_{M,G,N}$ admits a unique $\operatorname{Aut}_2^0(\mathbf{O})$ -equivariant structure. Note that $$\operatorname{Gra}_{M,X} \xrightarrow{\sim} \hat{X}_2 \times_{\operatorname{Aut}_2^0(\mathcal{O})} \operatorname{Gra}_M.$$ As in $\S 2.3$, we get a fully faithful functor $$\tau^0: \mathbb{P}erv_{M,G,N} \to \mathbb{P}erv_{M,G,N,X}$$. Now we define the commutativity constraint on $\mathbb{P}erv_{M,G,N}$ and $\mathbb{P}erv'_{M,G,N}$ using the above factorization structure as in § 2.3. As in [1, 5.3.16] one checks that $\mathbb{P}erv_{M,G,N}$ and $\mathbb{P}erv'_{M,G,N}$ are symmetric monoidal categories. **Lemma 4.1.** The functors F'_P , $F'_{B(M)}$, F'_B are tensor functors, and (4.2) is an isomorphism of tensor functors. **Proof.** We will only check that F'_P is a tensor functor, the rest is similar. (1) Let us show that F'_P is compatible with the convolution. Let $\operatorname{Gr}_{P,X^m}$ be the ind-scheme classifying $(x_1,\ldots,x_m)\in X^m$, a P-torsor \mathcal{F}_P on X, and a trivialization $\mathcal{F}_P\stackrel{\sim}{\to} \mathcal{F}_P^0|_{X-\cup x_i}$. Write $\operatorname{Gra}_{P,X^m}$ for the ind-scheme obtained from $\operatorname{Gra}_{G,X^m}$ by the base change $\operatorname{Gr}_{P,X^m}\to\operatorname{Gr}_{G,X^m}$. As in § 4.1, we get a diagram $$\operatorname{Gra}_{M} X^m \stackrel{\mathfrak{t}_{P,X^m}}{\longleftarrow} \operatorname{Gra}_{P} X^m \xrightarrow{\mathfrak{s}_{P,X^m}} \operatorname{Gra}_{G} X^m$$ and a functor $$F'_{P,X^m}: \mathrm{D}(\operatorname{Gra}_{G,X^m}) \to \mathrm{D}(\operatorname{Gra}_{M,G,X^m})$$ given by $F'_{P,X^m}(K) = (\mathfrak{t}_{P,X^m})_!\mathfrak{s}_{P,X^m}^*$. For i = 1, 2 let $F_i \in \mathbb{P}erv_{G,N}$ and $K_i = \tau^0 F_i$. Recall that $U \subset X^2$ is the complement to the diagonal. We have a natural diagram, where both squares are Cartesian $$(\operatorname{Gra}_{G,X} \times \operatorname{Gra}_{G,X})|_{U} \xrightarrow{\nu_{G,U}} \operatorname{Gra}_{G,X^{2}} \\ \uparrow \qquad \qquad \uparrow^{\mathfrak{s}_{P,X^{2}}} \\ (\operatorname{Gra}_{P,X} \times \operatorname{Gra}_{P,X})|_{U} \longrightarrow \operatorname{Gra}_{P,X^{2}} \\ \downarrow \qquad \qquad \downarrow^{\mathfrak{t}_{P,X^{2}}} \\ (\operatorname{Gra}_{M,X} \times \operatorname{Gra}_{M,X})|_{U} \xrightarrow{\nu_{M,U}} \operatorname{Gra}_{M,X^{2}}$$ and the maps $\nu_{G,U}$ and $\nu_{M,U}$ come from the above factorization structures. As in [9, Proposition 14], one shows that $F'_{P,X^2}(K_1 *_X K_2)$ is the Goresky–MacPherson extension from $\operatorname{Gra}_{M,X^2}|_U$. Now the isomorphism $$\nu_{M,U}^*F_{P,X^2}'(K_1*_XK_2)\xrightarrow{\sim} \tau^0(F_P'(F_1))\boxtimes \tau^0(F_P'(F_2))$$ yields an isomorphism $$\epsilon_{12}: F'_{P,X^2}(K_1 *_X K_2) \xrightarrow{\sim} \tau^0(F'_P(F_1)) *_X \tau^0(F'_P(F_2)).$$ Restricting it to the diagonal in X one gets $$\tau^0(F_P'(F_1 * F_2)) \xrightarrow{\sim} \tau^0(F_P'(F_1) * F_P'(F_2)).$$ (2) Let us check that F_P' is compatible with the commutativity constraints. Recall that σ is the involution of X^2 permuting the two coordinates. One has a commutative diagram, where the vertical arrows are canonical isomorphisms $$\sigma^* F'_{P,X^2}(K_1 *_X K_2) \xrightarrow{\sigma^* \epsilon_{12}} \sigma^* (\tau^0(F'_P(F_1)) *_X \tau^0(F'_P(F_2)))$$ $$\downarrow \qquad \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad$$ Restricting it to the diagonal, one gets the desired compatibility isomorphism. ## 4.2. Fibre functor In §4.1 we introduced the $(\mathbb{Z}/2\mathbb{Z}$ -graded purely of parity zero) line bundle $\mathfrak{L}_{T,G}$ on Gr_T . The action of $T(\mathbf{O})$ on this line bundle comes from the action of $T(\mathbf{O})$ on E_T^a by left multiplication. The fibre of $\mathfrak{L}_{T,G}$ at $\nu \in X_*(T)$ is $T(\mathbf{O})$ -equivariantly isomorphic to $\Omega_{\bar{c}}^{\check{h}\langle\nu,\iota(\nu)\rangle}$, where $T(\boldsymbol{O})$ acts on the latter space via $$T(\mathbf{O}) \to T \xrightarrow{2\check{h}\iota(\nu)} \mathbb{G}_m.$$ Recall the torus \check{T}_N introduced in § 2.4. For $\nu \in X_*(T)$ the orbit $\operatorname{Gra}_T^{\nu}$ supports a non-zero object of $\mathbb{P}erv_{T,G,N}$ if and only if $\nu \in X^*(\check{T}_N)$. For $\nu \in X^*(\check{T}_N)$ consider the map $a_{\nu} : \mathcal{E}_{\bar{c}}^{d(\nu,\nu)/N} - \{0\} \to \Omega_{\bar{c}}^{\check{h}(\nu,\nu)} - \{0\}$ sending x to $x^{2\check{h}N/d}$. For $K \in \mathbb{P}erv_{T,G,N}$ the complex a_{ν}^*K is a constant sheaf placed in degree zero, so we view it as a vector space denoted $F_T^{\nu}(K)$. Then $$F_T = \bigoplus_{\nu \in X^*(\check{T}_N)} F_T^{\nu}$$ is a fibre functor $\mathbb{P}erv_{T,G,N} \to \text{Vect.}$ Let $\check{T}_N = \operatorname{Spec} k[X^*(\check{T}_N)]$ be the torus whose weight lattice is $X^*(\check{T}_N)$. By [4, Theorem 2.11], we get $$\mathbb{P}\mathrm{erv}_{T,G,N} \xrightarrow{\sim} \mathrm{Rep}(\check{T}_N).$$ For $\nu \in X^*(\check{T}_N)$ write $F_{B(M)}^{'\nu}$ for the functor $F_{B(M)}^{\prime}$ followed by restriction to $\operatorname{Gra}_T^{\nu}$. Write $F_M^{\nu} : \mathbb{P}\mathrm{erv}_{M,G,N} \to \operatorname{Vect}$ for the functor $$F_T^{\nu} F_{B(M)}^{'\nu} [\langle \nu, 2 \check{\rho}_M \rangle].$$ For $\nu \in X^*(\check{T}_N)$ any $x \in \mathcal{E}^{d(\nu,\nu)/N}_{\bar{c}}$ yields a section $a_{B(M),\nu}: \mathrm{Gr}^{\nu}_{B(M)} \to \mathrm{Gra}^{\nu}_{B(M)}$ of the projection $\mathrm{Gra}^{\nu}_{B(M)} \to \mathrm{Gr}^{\nu}_{B(M)}$ sending x to $x^{2\check{h}N/d}$. **Lemma 4.2.** If $\nu \in X^*(\check{T}_N)$, $\lambda \in X_M^{*+}(\check{T}_N)$ then $F_M^{\nu}(\mathcal{A}_{M,\mathcal{E}}^{\lambda})$ has a canonical base consisting of those connected components of $$\operatorname{Gr}_{B(M)}^{\nu} \cap \operatorname{Gr}_{M}^{\lambda}$$ over which the (shifted) local system $a_{B(M),\nu}^* \mathcal{A}_{M,\mathcal{E}}^{\lambda}$ is constant. In particular, $$F_M^{\lambda}(\mathcal{A}_{\mathcal{E}}^{\lambda}) \xrightarrow{\sim} \bar{\mathbb{Q}}_{\ell}$$ canonically, and $F^{w(\lambda)}(\mathcal{A}_{\mathcal{E}}^{\lambda}) \xrightarrow{\sim} \bar{\mathbb{Q}}_{\ell}$ for $w \in W_M$. **Proof.** The first claim is proved as in [10, Proposition 3.10]. If $\lambda \in X_M^{*+}(\check{T}_N)$ then $\operatorname{Gr}_{B(M)}^{w(\lambda)} \cap \operatorname{Gr}_M^{\lambda}$ is an affine space
[10, Proof of Theorem 3.2], and the local system $a_{B(M),\lambda}^* \mathcal{A}_{M,\mathcal{E}}^{\lambda}$ is constant. Consider the following $\mathbb{Z}/2\mathbb{Z}$ -grading on $\mathbb{P}erv'_{M,G,N}$. For $\theta \in \pi_1(M)$ call an object of $\mathbb{P}erv^{\theta}_{M,G,N}[\langle \theta, 2\check{\rho}_M - 2\check{\rho} \rangle]$ of parity $\langle \theta, 2\check{\rho} \rangle$ mod 2. Write $E^{a,\theta}_M$ for the connected component of E^a_M such that $$E_M^{a,\theta}/M(\mathbf{O}) = \operatorname{Gra}_M^{\theta}.$$ The product in E_M^a is compatible with this $\mathbb{Z}/2\mathbb{Z}$ -grading of $\pi_1(M)$, so the $\mathbb{Z}/2\mathbb{Z}$ -grading we get on $\mathbb{P}\text{erv}'_{M,G,N}$ is compatible with the tensor structure. In particular, for M=G we get a $\mathbb{Z}/2\mathbb{Z}$ -grading on $\mathbb{P}\text{erv}_{G,N}$. If $(\operatorname{Gra}_P^\theta)_{\text{red}}$ is contained in the connected component $\operatorname{Gra}_G^{\bar{\theta}}$ of Gra_G then $\bar{\theta}$ is the image of θ in $\pi_1(G)$. So, the functors F'_P and $F'_{B(M)}$ are compatible with these gradings. Write $\operatorname{Vect}^{\epsilon}$ for the tensor category of $\mathbb{Z}/2\mathbb{Z}$ -graded vector spaces. Let $\operatorname{\mathbb{P}erv}_{M,G,N}^{\natural}$ be the category of even objects in $\operatorname{\mathbb{P}erv}_{M,G,N}' \otimes \operatorname{Vect}^{\epsilon}$. Let $\operatorname{\mathbb{P}erv}_{G,N}^{\natural}$ be the category of even objects in $\operatorname{\mathbb{P}erv}_{G,N} \otimes \operatorname{Vect}^{\epsilon}$. We get a canonical equivalence of tensor categories $sh: \operatorname{\mathbb{P}erv}_{T,G,N} \xrightarrow{\sim} \operatorname{\mathbb{P}erv}_{T,G,N}$ The functors $F'_{B(M)}, F'_P, F'_B$ yield tensor functors $$\mathbb{P}\mathrm{erv}_{G,N}^{\natural} \xrightarrow{F_P^{\natural}} \mathbb{P}\mathrm{erv}_{M,G,N}^{\natural} \xrightarrow{F_{B(M)}^{\natural}} \mathbb{P}\mathrm{erv}_{T,G,N}^{\natural} \tag{4.3}$$ whose composition is F_B^{\natural} . Write F^{\natural} : $\mathbb{P}\mathrm{erv}_{G,N}^{\natural} \to \mathrm{Vect}$ for $F_T \circ sh \circ F_B^{\natural}$. By Lemma 4.2, F^{\natural} does not annihilate a non-zero object, so it is faithful. By Remark 2.8, $\mathbb{P}\mathrm{erv}_{G,N}^{\natural}$ is a rigid abelian tensor category, so F^{\natural} is a fibre functor. By [4, Theorem 2.11], $\mathrm{Aut}^{\otimes}(F^{\natural})$ is represented by an affine group scheme \check{G}_N , and we have an equivalence of tensor categories $$\mathbb{P}\mathrm{erv}_{G,N}^{\sharp} \xrightarrow{\sim} \mathrm{Rep}(\check{G}_N). \tag{4.4}$$ An analogue of Remark 2.8 holds also for M, so $F_T \circ sh \circ F_{B(M)}^{\natural}$: $\mathbb{P}erv_{M,G,N}^{\natural} \to \text{Vect}$ is a fibre functor that yields an affine group scheme \check{M}_N and an equivalence of tensor categories $\mathbb{P}erv_{M,G,N}^{\natural} \overset{\sim}{\to} \text{Rep}(\check{M}_N)$. The diagram (4.3) yields homomorphisms $\check{T}_N \to \check{M}_N \to \check{G}_N$. Since $X^{*+}(\check{T}_N)$ does not contain a non-trivial subgroup, \check{G}_N is semisimple of rank equal to the rank of G. # 4.3. Structure of \check{G}_N **Lemma 4.3.** If $\lambda, \mu \in X^{*+}(\check{T}_N)$ then $\mathcal{A}_{\mathcal{E}}^{\lambda+\mu}$ appears in $\mathcal{A}_{\mathcal{E}}^{\lambda} * \mathcal{A}_{\mathcal{E}}^{\mu}$ with multiplicity one. **Proof.** Write $\bar{E}^{a,\lambda}$ (respectively, $E^{a,\lambda}$) for the preimage of $\overline{\operatorname{Gra}}_G^{\lambda}$ (respectively, $\operatorname{Gra}_G^{\lambda}$) under $E^a \to \operatorname{Gra}_G$, $x \mapsto xG(\mathbf{O})$. Write $m^{\lambda,\mu}: \bar{E}^{a,\lambda} \times_{G(\mathbf{O}) \times \mathbb{G}_m} \overline{\operatorname{Gra}}_G^{\mu} \to \overline{\operatorname{Gra}}_G^{\lambda+\mu}$ for the convolution diagram as in §2.2. If W is the preimage of $\operatorname{Gra}_G^{\lambda+\mu}$ under $m^{\lambda,\mu}$ then $m^{\lambda,\mu}: W \to \operatorname{Gra}_G^{\lambda+\mu}$ is an isomorphism, and W is open in $E^{a,\lambda} \times_{G(\mathbf{O}) \times \mathbb{G}_m} \operatorname{Gra}_G^{\mu}$. \square Clearly, if $X^{*+}(\check{T}_N)$ is a \mathbb{Z}_+ -span of $\lambda_1,\ldots,\lambda_r$ then $\bigoplus_i \mathcal{A}^{\lambda_i}_{\mathcal{E}}$ is a tensor generator for $\mathbb{P}\mathrm{erv}_{G,N}$. So, \check{G}_N is algebraic by [4, Proposition 2.20]. By Lemma 4.2, for $\mu \in X^{*+}(\check{T}_N)$ and $w \in W$ the weight $w(\mu)$ of \check{T}_N appears in $F^{\natural}(\mathcal{A}^{\mu}_{\mathcal{E}})$. So, \check{T}_N is closed in \check{G}_N by [4, Proposition 2.21]. By Lemma 4.3, there is no tensor subcategory of $\mathbb{P}\mathrm{erv}_{G,N}$ whose objects are direct sums of finitely many fixed irreducible objects, so \check{G}_N is connected by [4, Corollary 2.22]. Since $\mathbb{P}\mathrm{erv}_{G,N}$ is semisimple, \check{G}_N is reductive by [4, Proposition 2.23]. We will use the following. **Lemma 4.4.** Let \mathbb{G} be a connected reductive group with a maximal torus $\mathbb{T} \subset \mathbb{G}$. Let $\check{\Lambda}^+$ be a subsemigroup in the group $\check{\Lambda}$ of weights of \mathbb{T} . Assume that we are given a bijection $\nu \mapsto V^{\nu}$ between $\check{\Lambda}^+$ and the set of irreducible representations of \mathbb{G} such that the following hold: - if $\nu \in \check{\Lambda}^+$ then the ν -weight space L^{ν} of \mathbb{T} in V^{ν} is of dimension one; - if $\nu_1, \nu_2 \in \check{\Lambda}^+$ then $V^{\nu_1+\nu_2}$ appears with multiplicity one in $V^{\nu_1} \otimes V^{\nu_2}$, and the subspace $L^{\nu_1} \otimes L^{\nu_2} \subset V^{\nu_1} \otimes V^{\nu_2}$ coincides with the image of $L^{\nu_1+\nu_2} \hookrightarrow V^{\nu_1+\nu_2} \hookrightarrow V^{\nu_1} \otimes V^{\nu_2}$. Then there is a unique Borel subgroup $\mathbb{T} \subset \mathbb{B} \subset \mathbb{G}$ such that $\check{\Lambda}^+$ is the set of dominant weights for \mathbb{B} . Write V^{ν} for the irreducible representation of \check{G}_N corresponding to $\mathcal{A}^{\nu}_{\mathcal{E}}$ via (4.4). **Lemma 4.5.** The torus \check{T}_N is maximal in \check{G}_N . There is a unique Borel subgroup $\check{T}_N \subset \check{B}_N \subset \check{G}_N$ whose set of dominant weights coincides with $X^{*+}(\check{T}_N)$. **Proof.** Let $T' \subset \check{G}_N$ be a maximal torus containing \check{T}_N . By Lemma 4.2, for each $\nu \in X^{*+}(\check{T}_N)$ there is a unique character ν' of T' such that the composition $\check{T}_N \to T' \xrightarrow{\nu'} \mathbb{G}_m$ is ν , and the T'-weight ν' appears in V^{ν} . Clearly, $\nu \mapsto \nu'$ is a homomorphism of semigroups, and we can apply Lemma 4.4. Since $\nu \mapsto \nu'$ is a bijection between $X^{*+}(\check{T}_N)$ and the dominant weights of \check{B}_N , \check{T}_N is maximal. Applying similar arguments for M, one checks that \check{M}_N is reductive, and $\check{T}_N \to \check{M}_N \to \check{G}_N$ are closed immersions, so \check{M}_N is a Levi subgroup of \check{G}_N . ### 4.4. Rank 1 Let M be the subminimal Levi subgroup of G corresponding to the simple root $\check{\alpha}_i$. As in Lemma 4.5, there is a unique Borel subgroup $\check{T}_N \subset \check{B}(M)_N \subset \check{M}_N$ whose set of dominant weights is $X_M^{*+}(\check{T}_N)$. View $\check{\alpha}_i$ as a coweight of \check{T}_N . Then $$\{\check{\nu} \in X_*(\check{T}_N) \mid \langle \lambda, \check{\nu} \rangle \geqslant 0 \text{ for all } \lambda \in X_M^{*+}(\check{T}_N)\}$$ is a \mathbb{Z}_+ -span of a multiple of $\check{\alpha}_i$. So, \check{M}_N is of semisimple rank 1, and its unique simple coroot is of the form $\check{\alpha}_i/\kappa_i$ for some $\kappa_i \in \mathbb{Q}$, $\kappa_i > 0$. Take any $\lambda \in X_M^{*+}(\check{T}_N)$ with $\langle \lambda, \check{\alpha}_i \rangle > 0$. Write $s_i \in W$ for the simple reflection corresponding to $\check{\alpha}_i$. By Lemma 4.2, $F_M^{\lambda}(\mathcal{A}_{M,\mathcal{E}}^{\lambda})$ and $F_M^{s_i(\lambda)}(\mathcal{A}_{M,\mathcal{E}}^{\lambda})$ do not vanish, so $\lambda - s_i(\lambda)$ is a multiple of the positive root of \check{M}_N . So, this positive root is $\kappa_i \alpha_i$. We learn that the simple reflection for $(\check{M}_N, \check{T}_N)$ acts on $X^*(\check{T}_N)$ as s_i . So, the Weyl groups of G and of \check{G}_N , viewed as subgroups of $\mathrm{Aut}(X^*(\check{T}_N))$ are the same. We must show that $\kappa_i = \delta_i$. Recall that the scheme $\operatorname{Gr}_{B(M)}^{\nu} \cap \operatorname{Gr}_{M}^{\lambda}$ is non empty if and only if $$\nu = \lambda, \ \lambda - \alpha_i, \ \lambda - 2\alpha_i, \ \dots, \ \lambda - \langle \lambda, \check{\alpha}_i \rangle \alpha_i.$$ For $0 < k < \langle \lambda, \check{\alpha}_i \rangle$ and $\nu = \lambda - k\alpha_i$ one has $$\operatorname{Gr}_{B(M)}^{\nu} \cap \operatorname{Gr}_{M}^{\lambda} \xrightarrow{\sim} \mathbb{G}_{m} \times \mathbb{A}^{\langle \lambda, \check{\alpha}_{i} \rangle - k - 1}.$$ Write M_0 for the derived group of M, let $T_0 \subset M_0$ be the maximal torus such that $T_0 \subset T$. Consider the central extension $$1 \to \mathbb{G}_m \to E^a_{M_0} \to M_0(\mathbf{F}) \to 1$$ obtained by pulling back of $1 \to \mathbb{G}_m \to E_M^a \to M(\mathbf{F}) \to 1$ via $M_0(\mathbf{F}) \to M(\mathbf{F})$. It corresponds to the restriction of the bilinear form $2\check{h}\iota$ under $$X_*(T_0) \times X_*(T_0) \subset X_*(T) \times X_*(T).$$ So, $E_{M_0}^a/M_0(\mathbf{O}) \to \operatorname{Gr}_{M_0}$ is isomorphic to the punctured total space of $\mathcal{L}_{M_0}^{\check{h}(\alpha_i,\alpha_i)}$, where \mathcal{L}_{M_0} is an ample generator of the Picard group of (each connected component of) Gr_{M_0} . Assume that $\lambda = a\alpha_i$ with a > 0, $a \in \mathbb{Z}$ such that $\lambda \in
X^*(\check{T}_N)$. Let $\nu = b\alpha_i$ with $b \in \mathbb{Z}$ satisfy $-\lambda < \nu < \lambda$. Write $U \subset M(\mathbf{F})$ for the one-parameter unipotent subgroup corresponding to the affine root space $t^{-a+b}\mathfrak{g}_{\check{\alpha}_i}$. Let Y be the closure of the U-orbit through $t^{\nu}M(\mathbf{O})$ in Gr_M . It is a T-stable subscheme $Y \xrightarrow{\sim} \mathbb{P}^1$, the T-fixed points in Y are $t^{\nu}M(\mathbf{O})$ and $t^{-\lambda}M(\mathbf{O})$. The restriction of \mathcal{L}_{M_0} to Y identifies with $\mathcal{O}_{\mathbb{P}^1}(a+b)$. The section $$a_{B(M),\nu}: \operatorname{Gr}_{B(M)}^{\nu} \to \operatorname{Gra}_{B(M)}^{\nu}$$ viewed as a section of the line bundle $\mathcal{L}_{M_0}^{\check{h}(\alpha_i,\alpha_i)}$ over Y will vanish only at $t^{-\lambda}M(\mathbf{O})$ with multiplicity $(a+b)\check{h}(\alpha_i,\alpha_i)$. So, the local system $a_{B(M),\nu}^*\mathcal{A}_{M,\mathcal{E}}^{\lambda}$ will have the \mathbb{G}_m -monodromy $\zeta_a^{(a+b)\check{h}(\alpha_i,\alpha_i)}$. This local system is trivial if and only if $$(a+b)\check{h}(\alpha_i,\alpha_i) \in \frac{2\check{h}N}{d}\mathbb{Z}.$$ We may assume that $(da/2N)(\alpha_i, \alpha_i) \in \mathbb{Z}$. Then the above condition is equivalent to $b \in (2N/d(\alpha_i, \alpha_i))\mathbb{Z}$. The smallest positive integer b satisfying this condition is δ_i . So, $\kappa_i = \delta_i$. Theorem 2.9 is proved. **Acknowledgements.** We are obliged to V. Drinfeld who explained to us the classification of central extensions of the loop groups for almost simple groups (not necessarily simply connected): see Proposition 2.2. We are also indebted to R. Bezrukavnikov and D. Gaitsgory for useful discussions. M.F. is grateful to Université Paris 6 for hospitality and support; he was partially supported by the RFBR grant 09-01-00242 and the Science Foundation of the SU-HSE awards 09-08-0008 and 09-09-0009. ### References - 1. A. Beilinson and V. Drinfeld, Quantization of Hitchin's Hamiltonians and Hecke eigen-sheaves, preprint (available at www.math.uchicago.edu/~mitya/langlands.html). - 2. N. Bourbaki, Groupes et algèbres de Lie, Chapter 6 (Hermann, Paris, 1968). - J.-L. BRYLINSKI AND P. DELIGNE, Central extensions of reductive groups by K₂, Publ. Math. IHES 94 (2001), 5–85. - 4. P. Deligne and J. Milne, Tannakian categories, in *Hodge cycles, motives and Shimura varieties*, Lecture Notes in Mathematics, Volume 900, pp. 101–228 (Springer, 1982). - G. FALTINGS, Algebraic loop groups and moduli spaces of bundles, J. Eur. Math. Soc. 5 (2003), 41–68. - D. GAITSGORY, Twisted Whittaker model and factorizable sheaves, Selecta Math. 13 (2008), 617–659. - A. KAPUSTIN AND E. WITTEN, Electric-magnetic duality and the geometric Langlands program, Commun. Num. Theory Phys. 1 (2007), 1–236. - G. Lusztig, Monodromic systems on affine flag manifolds, Proc. R. Soc. Lond. A 445 (1994), 231–246 (erratum: Proc. R. Soc. Lond. A 450 (1995), 731). - S. LYSENKO, Moduli of metaplectic bundles on curves and theta-sheaves, Annales Scient. Éc. Norm. Sup. 39 (2006), 415–466. - I. MIRKOVIĆ AND K. VILONEN, Geometric Langlands duality and representations of algebraic groups over commutative rings, Annals Math. (2) 166 (2007), 95–143. - 11. G. SAVIN, Local Shimura correspondence, Math. Annalen 280 (1988), 185–190.