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We investigate fast simulation techniques for estimating the unreliability in large
Markovian models of highly reliable systems for which analytical0numerical tech-
niques are difficult to apply+ We first show mathematically that for “small” time
horizons, the relative simulation error, when using the importance sampling tech-
niques of failure biasing and forcing, remains bounded as component failure rates
tend to zero+ This is in contrast to naive simulation where the relative error tends to
infinity+ For “large” time horizons where these techniques are not efficient, we use
the approach of first bounding the unreliability in terms of regenerative-cycle-based
measures and then estimating the regenerative-cycle-based measures using impor-
tance sampling; the latter can be done very efficiently+We first use bounds devel-
oped in the literature for the asymptotic distribution of the time to hitting a rare set
in regenerative systems+However, these bounds are “close” to the unreliability only
for a certain range of time horizons+We develop new bounds that make use of the
special structure of the systems that we consider and are “close” to the unreliability
for a much wider range of time horizons+These techniques extend to non-Markovian,
highly reliable systems as long as the regenerative structure is preserved+
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1. INTRODUCTION

This article deals with the estimation of the unreliability~i+e+, probability of system
failure within a given time horizon! in large regenerative models of highly reliable
systems+ For example, we might be interested in the probability that the computer
system aboard a space shuttle fails before the mission end time+ Similarly, we might
be interested in the probability that the web server used for real-time monitoring and
displaying scores in the Olympic Games crashes during the period of the games+

The class of systems we study in this article includes a large class of systems
that can be modeled by the System Availability Estimator~SAVE! modeling tool
~Blum, Goyal, Heidelberger, Lavenberg, Nakayama, and Shahabuddin@2,3#; also
see Goyal, Carter, de Souza e Silva, Lavenberg, and Trivedi@13# and Goyal and
Lavenberg@14# for earlier versions!+ This tool is mainly used for the availability0
reliability modeling of computer and communication systems+ It models systems
consisting of components, each of which fails and gets repaired+ The system is con-
sidered to be up or down depending on the states of the individual components+All
components are highly reliable~i+e+, their expected failure times are much larger
than their expected repair times!+ There are a limited number of repairmen in the
system+ In addition, there are component dependencies and interactions like failure
propagation~the failure of a component could cause some other components to fail
instantaneously!, operational dependencies~the operation of an up component re-
quires some other components to be up!, and repair dependencies~the repair of a
failed component requires some other components to be up!+ SAVE considers mod-
els for which component failure- and repair-time distributions are exponentially
distributed; we will call these highly reliable Markovian systems+ The techniques in
this article can easily be extended to systems for which the repair times of compo-
nents have general distributions+

Highly reliable Markovian systems can be modeled as continuous-time Markov
chains~CTMCs!+ However, due to the size of the state space~the state space grows
exponentially with the number of components in the system!, analytical and numer-
ical ~nonsimulation! methods are very difficult+ These methods include Gaussian
elimination ~see, e+g+, Young @42# ! for computing steady-state measures and uni-
formization~see, e+g+, Gross and Miller@16# and Jensen@19# ! for computing tran-
sient measures+ Hence, approximations have to be used+ Although some useful
approximations based on lumping and state aggregation have been developed for the
steady-state case~see, e+g+,Muntz, de Souza e Silva, and Goyal@26# !, very few exist
for the transient setting+ Further complications arise because the embedded Markov
chain isstiff due to the wide difference between the failure rates and the repair rates
of components+ In any case, when no exact solutions are easily computable, simu-
lation presents a viable alternative+

In the case of simulation, because system failures are rare, it takes long CPU
times for naive simulation to produce good estimates+ Importance sampling~see,
e+g+, Glynn and Iglehart@12# for the basic technique! has been used successfully
to increase the speed of simulation in highly reliable Markovian systems~see
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Alexopoulos and Shultes@1# , Carrasco@5, 6# , Conway and Goyal@7# , Geist and
Smotherman@9# ,Goyal,Shahabuddin,Heidelberger,Nicola, and Glynn@15# , Juneja
and Shahabuddin@20–22# , Lewis and Böhm@25# ,Obal and Sanders@33# ,Shahabud-
din @36# , Shultes@39# , and references therein!+ Surveys can be found in Heidel-
berger @17# , Nakayama@28# , Nicola, Shahabuddin, and Nakayama@32# , and
Shahabuddin@37# + The most widely researched importance-sampling technique for
Markovian models is failure biasing+ In failure biasing~Lewis and Böhm@25# !, we
artificially accelerate the occurrence of component-failure events with respect to
component-repair events so that the system fails more often+ The resulting estimates
are then adjusted to make them unbiased+ Mathematical analyses of failure-biasing
techniques for estimating steady-state measures in highly reliable Markovian sys-
tems has been done in Nakayama@27,29# ,Shahabuddin@36# , and Strickland@41# + In
@36# , it was shown that a failure-biasing heuristic called balanced failure biasing
~Goyal et al+ @15# and Shahabuddin@36# !, produces a bounded relative error~BRE!
in the estimation of steady-state measures like the unavailability~the relative error
of the estimate remains bounded as the failure rates tend to zero!+ This is in contrast
to naive simulation, for which the relative error tends to infinity+ Balanced failure
biasing was then implemented in SAVE~Blum et al+ @2,3# !+

In the case of transient measures, an additional technique that is used is forcing
~Lewis and Böhm@25# !+ In this case, the first component-failure transition is accel-
erated to make it happen within the time horizon+As has been shown experimentally
~Goyal et al+ @15# and Shahabuddin@35# !, for most transient measures, forcing and
failure biasing work well for the case where the time horizon is “small+”

When the time horizon is “large,” simulation using importance sampling is not
efficient+Some work in the large-time-horizon case has been done in Carrasco@5# by
numerically inverting a discretized Laplace transform+Another approach suggested
in Shahabuddin and Nakayama@38# and Shahabuddin@35# is to bound the transient
measure in terms of regenerative-cycle-based measures and then directly estimate
~using simulation! the regenerative-cycle-based measures+ In highly reliable sys-
tems, regenerative cycle-based measures can be estimated with bounded relative
error using importance sampling~Shahabuddin@36# !+ In Shahabuddin@35# , such
bounds were developed for the expected interval unavailability~the expected frac-
tion of time in ~0, t # that the system is down!+ It was also shown that these bounds
converge to the expected interval unavailability as component failure rates tend to
zero+

This article has two main contributions+First,we prove that for the case of small
time horizons, failure biasing and forcing give bounded relative error in the estima-
tion of the unreliability+ A crucial proposition~Proposition 1! proved in this article
also allows the bounded-relative-error result to be extended to the small-time-
horizon estimation of the expected interval unavailability using the infrastructure
already developed by Shahabuddin@35# + Second, we investigate the “bounding ap-
proach” mentioned in the previous paragraph, for large-time-horizon estimation of
the unreliability+ Since a highly reliable Markovian system is regenerative, the time
to failure is roughly the “geometric sum” of independent and identically distributed
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~i+i+d+! random variables, where a “success” in the geometric distribution is defined
as failure occurring in a regenerative cycle+ It is well known that if the probability of
success is small, then this geometric sum is approximately exponentially distributed
~see, e+g+,Keilson@24# and Solovyev@40# !+There is some literature regarding bounds
for the cumulative distribution function~which, in our case, is the unreliability! of
such random variables~e+g+, Brown @4# , Kalashnikov@23# , and Solovyev@40# !+We
consider bounds proposed in@4# and@23#+Mathematical analysis reveals that these
bounds converge to the unreliability~as the component failure rates tend to zero!
only for a certain range of time horizons+ We develop new improved bounds that
take into consideration the special structure of the type of highly reliable systems we
consider; the bounds in@4# , @23# and@40# do not make use of this special structure+
We show that these new bounds converge to the unreliability for a much wider range
of time horizons+We implement these bounds and do some experimental compari-
sons between our bounds and the bounds in@4# + Preliminary versions of some of the
results mentioned earlier appeared~without proofs! in Shahabuddin and Nakayama
@38# +

In Section 2,we briefly review the Markovian framework considered in Shaha-
buddin@36# and results for regenerative-cycle-based measures+ Section 3 contains
asymptotic expressions for the unreliability and the variance of unreliability esti-
mates without and with importance sampling+ The bounded-relative-error property
of the estimate of the unreliability for the small-time-horizon case is proven here+ In
Section 3+2,we explain why the efficiency deteriorates for large-time-horizon cases+
Then, we consider bounds developed in Brown@4# and determine the range of the
time horizons for which these bounds converge+ Finally, we develop bounds on the
unreliability and investigate their convergence+ Section 4 contains experimental
results+ Difficult proofs of intermediate results are relegated to the Appendix+

2. REVIEW OF HIGHLY RELIABLE SYSTEMS AND FAST SIMULATION

2.1. CTMC Models of Highly Reliable Systems

We further elaborate on the description of the highly reliable Markovian systems
presented in Section 1+ Let there beR types of components in the system withni

components of typei + Some of theni components can act as spares for that type+ Let
N be the total number of components of all types in the system~i+e+, N 5 (i51

R ni !+
There are many repairman classes in the system, with a finite number of repairmen
in each repairman class+ Each component type is assigned a repairman class+ The
component types assigned to a repairman class are divided into priority classes and
repaired in a preemptive or nonpreemptive manner+ Any service discipline can be
used for members of the same priority class+

Let $X ~t ! : t $ 0% be a CTMC model~assume left-continuous with right limits!
of a highly reliable Markovian system+ For the simplest such system, X ~t ! 5
~X1~t !,X2~t !, + + + ,XR~t !!, whereXi ~t ! is the number of components of typei that are
failed+ For the general, highly reliable Markovian systems we consider, we have to
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add some more process descriptors in the state of the system+ For example,we might
have to add an ordered list of components waiting to be repaired in each repairman
class+ The following analysis is independent of which definition ofX ~t ! we use+

Transitions in the CTMC correspond either to a component failing~which may
cause the instantaneous failure of other components through failure propagation! or
a component completing repair+We will refer to the first as a “failure transition” and
to the second as a “repair transition+” We label the state with all components up as1+
We will also use1 to denote the set of states that contains only the single state1+
Assume thatX ~0! 5 1 unless stated otherwise+ Let Sbe the set of states that are ac-
cessible from1+ For the purpose of simulation analysis,we will restrict$X ~t ! : t $ 0%
to the setS+We partitionSinto two subsets:S5U ø F,whereU is the set of up states
and F Þ B is the set of down states+ Of course, 1 [ U and the state where all
components are failed is inF+We will need the following assumptions:

~A+1! The CTMC is irreducible over the setS+
~A+2! From all states inSexcept1, there is at least one repair transition~with

positive probability!+
~A+3! From all states inU, there is at least one failure transition~with positive

probability!+
~A+4! From 1, there is at least one failure transition to a state inU 2 1 ~with

positive probability!+

Let Q 5 $q~x,y!, x,y [ S% be the rate matrix~also called the infinitesimal
generator matrix! of the CTMC+ In this matrix, we arrange the states in the order of
increasing number of components failed+ Thus, the first state is one in which no
components are failed~i+e+, 1!+ This is followed by states in which exactly one
component is failed and so on+ Let q~x! 5 2q~x,x! denote the total rate out of state
x andh~x! 5 10q~x! be the mean holding time in that state+ From ~A+2! and~A+3!,
q~x! . 0 for all x [ S+ Let F denote the probability measure on the sample paths of
this CTMC+ For anyE , S, let TE 5 inf $t . 0 :X ~t2! Ó E,X ~t ! [ E% +Of particular
interest areT1 andTF +

Let $Yn : n $ 0% denote the embedded discrete-time Markov chain~DTMC! of
$X ~t ! : t $ 0% ; that is, $Yn : n $ 0% has transition matrixP 5 $P~x,y! : x,y [ S% ,
whereP~x,x! 5 0 andP~x,y! 5 q~x,y!0q~x! for x Þ y+ One can simulate a CTMC
by progressively generating the next state of the embedded DTMC and generating
the random holding time in that state+ For anyE [ S, let tE 5 inf $n $ 1 :Yn [ E% +
Of particular interest aret1 andtF +

As is well known, positive-recurrent CTMCs are regenerative~see, e+g+, Crane
and Iglehart@8# for the definition! in nature+ In the following study, we will be
considering system regenerations that occur when the system enters state1+ In any
regenerative cycle, let Z be the random variable denoting the holding time in state1
and letW be the remaining time until either state1 is reached~again! or the system
fails+ In mathematical terms, W5 min~T1,TF ! 2 Z, whereT1 andTF are measured
from the start of the cycle+We will let RW ~resp+, uW! be the random variable having
the distribution ofWgiven that a system failure~resp+, no system failure! occurs in
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a regenerative cycle+ Another quantity that will be used in the following analysis
will be g[P$TF , T1%5P~tF , t1! ~i+e+, the probability of system failure occurring
in a cycle!+ Assumption~A+3! ensures thatg is not trivially equal to zero+ Assump-
tions ~A+2! and~A+4! ensure that 12 g is not equal to zero+ For any regenerative-
cycle-based random variable, sayW, we will useWi to denote its value in thei th
regenerative cycle+

2.2. Modeling Highly Reliable Components

In mathematical models of highly reliable Markovian systems, the failure rate of any
component, say componenti , is assumed to be of the forml i e

ri , wheree is a small
positive parameter called the rarity parameter; ri andl i are positive constants~Sha-
habuddin@36#; see also Gertsbakh@10# !+ Let r0 5 min$r1, + + + , rN % . 0+ Because the
repair rates are large compared to failure rates, the repair rate of componenti is
represented by a constantµi . 0+ The failure-propagation probabilities are either
assumed to be constants or of the same form as the failure rates~i+e+, constants
multiplied bye raised to positive powers!+Once we introduce thise-parameterization,
then the performance measures become functions ofe+ However, for simplicity, we
do not specify this dependence in the notation+ For example,we continue to useg for
what should ideally be denoted byg~e!+ In highly reliable Markovian systems, the
aim is to study the performance measures and the variance of their estimators for
smalle+

This particulare-parameterization guarantees that ifQ~x,y ! . 0 ~resp+,
P~x,y! . 0! for somee 5 e0 . 0, thenQ~x,y! . 0 ~resp+, P~x,y! . 0! for all
0 , e , e0+ Given the arrangement of states inQ that we mentioned earlier, it can
easily be seen that all the elements above the diagonal areO~e! and all elements
below the diagonal areO~1!+ ~A function f ~e! is defined to beO~ed! ~resp+, uO~ed!!,
d $ 0, if there exists a constantK such that6 f ~e!6 # Ked ~resp+, $ Ked! for all
sufficiently smalle+ A function is said to beV~ed!, d $ 0, if it is both O~ed! and
uO~ed!; that is, a function isV~ed! if it is exactly of ordered+ A function f ~e! is

defined to beo~ed!, d $ 0, if 6 f ~e!60ed r 0 ase r 0+! This structure played an
important role in the steady-state-simulation analysis of highly reliable Markovian
systems in Shahabuddin@36# +

One key property of highly reliable Markovian systems that will be used later is
the special structure of the regenerative cycle+ Because state1 has no repair transi-
tions, q~1! is V~e r0 ! since it is the sum of only component failure rates+ An impor-
tant consequence of this is thatE~Z! is V~e2r0 !+ By Assumption~A+2! and the fact
thatµi ’s are positive constants, we have thatq~x! 5 V~1! for all x [ S2 1+ Finally,
as mentioned earlier, repair rates are very large compared to failure rates+ Using
these three facts, we see that most of the regenerative cycles consist of a long time
interval in which the system is in state1, after which there is a single failure
transition~which might correspond to more than one component failing because
of failure propagation!, followed by a short time interval in which the failed
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components are repaired~and thus the cycle completes!+ This is the intuition behind
the fact shown in Shahabuddin@36# thatE~min~TF ,T1!! 5 E~Z1 W! is of the same
order asE~Z! ~i+e+,V~e2r0 !!+Using similar methods,we can show that the expected
regenerative-cycle time, E~T1!, is alsoV~e2r0 ! and thatE~ RW!, E~ uW!, andE~ uW2!
areO~1!+ For completeness, the formal proofs are given in the Appendix+ It was also
shown in@36# thatg5V~e r !,wherer is some nonnegative number depending on the
structure of the system+ Using the fact that the mean time to system failure~MTTF!
for regenerative systems can be expressed asE~min~TF ,T1!!0g ~see, e+g+, Goyal
et al+ @15# !, we see that the MTTF isV~e2~r01r ! !+

2.3. Importance Sampling for Highly Reliable Systems

Consider the problem of estimating the probability, a, of a rare event$X[ A% ,where
X is a random sample path with probability measureF and A is a rare set+ The
“naive” way of estimation is to generate samples ofX, sayX1,X2, + + + ,Xn, fromF and
then form the sample mean(i51

n I ~Xi [ A!0n whereI ~{! is the indicator function
of the event inside the bracket+ The variance of this estimator is~a 2 a2!0n' a0n,
as a is small+ The expected half-width of the 100~1 2 d!% confidence interval,
HW, is proportional toMa0n+ Thus, the relative error~RE!, which is defined by
RE 5 HW0a, is proportional toM10an+ For fixed n, asa r 0, RE r `+ This is
the problem with naive estimation of the probability of rare events+

In importance sampling, we use a change of measureFnew, such that for each
sample pathx [ A, Fnew~x! . 0 if F~x! . 0+ Then, we can expressa as

a 5 E~I ~X [ A!!

5E
x[A

dF~x!

5E
x[A

L~x! dFnew~x!

5 EFnew
~I ~X [ A!L~X !!, (1)

whereL~x! 5 dF~x!0dFnew~x! whendFnew~x! . 0 and 0 otherwise+ The functionL
is the Radon–Nikodym derivative; it is also called the likelihood ratio+The subscript
in the second expectation operator denotes the new probability measure under which
the expectation is taken+Equation~1! forms the basis of the technique of importance
sampling+ The last expectation term suggests that we use the probability measure
Fnew~{! and generate the samples~Xi , L~Xi !!+ Then, a new unbiased estimator is
given by

1

n (
i51

n

~I ~Xi [ A!L~Xi !!
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and its variance is

1

n
~EFnew

~I ~X [ A!L2~X !! 2 a2! 5
1

n
~E~I ~X [ A!L~X !! 2 a2!+

The main problem in importance sampling is to find an easily implementableFnew

so thatE~I ~X [ A!L~X !! ,, a, and so the variance of the new estimator is signifi-
cantly less than that of the naive one+

The most common importance-sampling technique used for highly reliable sys-
tems is failure biasing, proposed by Lewis and Böhm@25# + The basic idea behind
failure biasing is to make component-failure transitions in the embedded DTMC
happen with a probability that is much higher than in the original system+ In state1,
there are no repair transitions+ Therefore, we do not need to failure bias in this state+
However, in states that have both failure and repair transitions, the total probability
of repair transitions' 1 and the total probability of failure transitions' 0+ In such
states, the total probability of failure transitions is increased tou, whereu is some
constant~i+e+, it is independent ofe! between 0 and 1 that is significantly larger
than the failure transition probabilities~in practice, u is typically taken to be 0+5!+
Therefore, the total probability of repair transitions is decreased to 12 u+ In a
version of failure biasing called balanced failure biasing~Goyal et al+ @15# and Shaha-
buddin@36# !, the probability of each failure transition~that had positive probabili-
ties in the original system!, conditioned on the event that the transition that occurs
is a failure transition, is made the same~this is also done in state1!+ The probability
of each repair transition, conditioned on the event that the transition that occurs is a
repair transition, is left unchanged+ Let P' be the new transition-probability matrix
corresponding to balanced failure biasing+ Note thatP'~x,y! . 0 if and only if
P~x,y! . 0+

We will now review the order of magnitude results for the variance associated
with importance sampling in the estimation ofg+ To obtain a sample ofI ~TF , T1!,
we need only simulate one regenerative cycle of the CTMC+ Thus, g is called a
“regenerative-cycle-based measure+” Other examples of regenerative-cycle-based
measures areE~W!, E~WI~TF , T1!!, E~WI~TF . T1!!, E~T1!, andE~min$TF ,T1%!+
Let F'' be a change of measure on the sample paths of the CTMC where we useP'

until time min~TF ,T1! and thenPafter that+ For any stopping timet of the embedded
DTMC, define

Lt 5 )
i50

t21 P~Yi ,Yi11!

P'~Yi ,Yi11!
+

Let tmin 5 min~tF ,t1!+ Then, in the same spirit as Eq+ ~1!, we can write

E~I ~TF , T1!! 5 EF'' ~I ~TF , T1!Ltmin
!+

346 M. K. Nakayama and P. Shahabuddin

https://doi.org/10.1017/S0269964804183058 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964804183058


The variance of the importance sampling estimator, sg
2~F'' ! [ VarF'' ~I ~TF ,

T1!Ltmin
!, is given bysg

2~F'' ! 5 EF'' ~I ~TF , T1!Ltmin

2 ! 2 g2+ Let sg
2~F! be the vari-

ance of the naive estimator+
The following theorem was proved in Shahabuddin@36# under the following

strengthened version of Assumption~A+4!:

~A+4'! For all x [ F, P~1,x! is o~1! ~this implies that there existsx [ U 2 1
such thatP~1,x! is V~1!!+

Theorem 1: Bothg andsg
2~F! areV~e r !, where r is a positive constant depending

on the structure of the system, the ri ’s, and the failure propagation probabilities.
Also, EF'' ~I ~TF , T1!Ltmin

2 ! is V~e2r ! and, so,sg
2~F'' ! is O~e2r !.

This theorem implies that we get a bounded RE in the estimation ofg+ One can
prove similar bounded RE results for other “rare” regenerative-cycle-based mea-
sures likeE~WI~TF , T1!!+ Moreover, observe that Assumption~A+4'! is not at all
restrictive+ If it does not hold, theng is V~1! and we do not have to use importance
sampling to estimate it+ Unless otherwise stated, in the following sections we will
assume that Assumptions~A+1!, ~A+2!, ~A+3!, and~A+4'! hold+

For transient measures like the unreliability and expected interval unavailabil-
ity, in addition to failure biasing, we have to use another technique called forcing
~Lewis and Böhm@25# !+ If the time horizon is orders of magnitude less thanE~Z!,
then the system will fail very rarely in@0, t #, even though we failure bias+ To avoid
this, the time of the first event is sampled from the distribution ofZ conditioned on
the fact that it is less thant+BecauseZ is exponentially distributed with rateq~1!, the
time of the first event that we use in the simulation is sampled from the distribution
function given by

F~s! 5
12 e2q~1!s

12 e2q~1!t ,

where 0# s# t+

3. ESTIMATION OF THE UNRELIABILITY

Given a finite time horizont, the unreliability, U~t !, is defined to be the probability
that the system fails before timet given that it starts in state1; that is,

U~t ! 5 P~TF , t !+ (2)

We wish to estimate the unreliability of the system for different orders of magnitude
of the time horizon+ A modeling technique that is used in Shahabuddin@35# and
Shahabuddin and Nakayama@38# is to representt as beingV~e2rt !,wherert $ 0, and
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then model different orders of magnitude of the time horizon by varyingrt + Hence,
for rt 5 0, t is of the same order as the expected repair times, and forrt 5 r0, t is of
the same order as the expected first component-failure time in the system~which is
of the same order as the expected regenerative cycle time!+ For rt 5 r01 r, t is of the
same order as the MTTF+

In the following subsection, we will prove that a combination of forcing and
importance sampling gives bounded RE in the estimation of the unreliability for the
case wherert 5 0; that is, the time horizon is “small+” Before that, we will need
to significantly extend the importance-sampling theory developed for “rare”
regenerative-cycle-based measures~which was partially reviewed in Section 2+3! to
a “nonrare” measure+ In particular, the following proposition is crucial to the main
result of the next subsection+The proof is technical, so it is deferred to the Appendix+

Proposition 1: EF'' ~I ~TF . T1!Ltmin

2 ! 2 1 5 V~1!+

3.1. The Small-Time-Horizon Case

We can express the unreliability asU~t ! 5 E~I ~A!!, whereA is the event$TF , t % +
Let F' be the new measure on the sample paths of$X ~t ! : t $ 0% , in which in each
replication we useP' until the system fails andP from then on+ For the unreliability,
for each sample, we only need to simulate the CTMC until either the system fails or
the time horizon is exceeded+ Let FForcing

' be the measure corresponding to both
balanced failure biasing and forcing+ The variances, without and with balanced fail-
ure biasing, are denoted bysU~t !

2 ~F! andsU~t !
2 ~F' !, respectively+ The variance with

balanced failure biasing and forcing is denoted bysU~t !
2 ~FForcing

' !+ The following
theorem provides the orders of magnitude of the unreliability and the variances of
its estimators when the time horizon is small+

Theorem 2: Consider the case where t5 V~e rt ! with rt 5 0. Then, both U~t !
and sU~t !

2 ~F! are V~e r1r0 !. Also, sU~t !
2 ~F' ! 5 O~e2r1r0 ! and sU~t !

2 ~FForcing
' ! 5

O~e2~r1r0! ! ~r is the same as in the order of magnitude expression forg in
Theorem 1).

From Theorem 2, we get the following corollary:

Corollary 1: The RE usingFForcing
' (corresponding to a fixed100~12 d!% level

of confidence), for a fixed number n of replications, remains bounded ase r 0.

Lemmas 1 and 2 give bounds onU~t ! that are used to prove the order of mag-
nitude result forU~t ! in Theorem 2+ The result forsU~t !

2 ~F! is a consequence of
the fact thatsU~t !

2 ~F! 5 U~t ! 2 U 2~t !+ To simplify notation, let q [ q~1!+ Let K be
the random variable denoting the number of times the Markov chain is in state1
~including the first time! before hitting a state inF+ Clearly, K has a geometric
distribution with parameter~i+e+, success probability! g+
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Lemma 1: Let PU~t ! 5 1 2 e2qtg. Then, for alle and t,

U~t ! # PU~t !+

Proof: Let Wtot be the total amount of time the CTMC spends in states other than1
before hittingF+ Let fWtot6k~{! be the density ofWtot given thatK 5 k and let
Erlang~q, k! denote an Erlang random variable with rateq and shape parameterk+
For a real-valueda, let ~a!1 5 max~a,0!+ Then,

U~t ! 5 (
k51

` E
s50

`

P~TF , t 6K 5 k,Wtot 5 s! fWtot6k~s! ds~12 g!k21g

5 (
k51

` E
s50

`

P~Erlang~q, k! # ~t 2 s!1! fWtot6k~s! ds~12 g!k21g

# (
k51

` E
s50

`

P~Erlang~q, k! # t ! fWtot6k~s! ds~12 g!k21g

5 (
k51

`

P~Erlang~q, k! # t !~12 g!k21g

5E
s50

t

qe2qsg (
k51

` @qs~12 g!# k21

~k 2 1!!
ds

5E
s50

t

qge2qgsg ds

5 12 e2qgt+ n

Lemma 2: Let qmin 5 min~q~x! : x [ U 2 1!. Then, for alle and t,

U~t ! $ V~e r !~12 e2qt0k!~12 e2qmint0k!k21,

where k is some constant.

Proof: From Shahabuddin@36# , it can be shown that there exists a sequence of
transitions that start from state1and reach a state inF without reentering state1such
that the product of their probabilities isV~e r !+ All other paths have probability of
orderO~e r !+ In highly reliable systems terminology~see, e+g+,Gertsbakh@10# !, this
is one of the “most likely paths” to system failure+ Let ~x0,x1,x2, + + +xk! be the se-
quence of states visited in one such path, wherex0 5 1 andxk [ F andx i [ U 2 1
for 1 # i , k+ Then,
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U~t ! 5 (
i51

`

P$TF # t,tF 5 i % $ P$TF # t,tF 5 k%

5 (
y1[U, + + + ,yk21[U,yk[F

P$Y0 5 1,Y1 5 y1, + + + ,Yk 5 yk, TF # t %

$ P$Y0 5 1,Y1 5 x1, + + + ,Yk 5 xk,TF # t %

5E
t050

t E
t150

t2t0

{{{E
tk2150

t2~t01t11{{{1tk22!

P~1,x1!P~x1,x2!{{{P~xk21,xk!

3 q~x0!e2q~x0!t0q~x1!e2q~x1!t1{{{q~xk21!e2q~xk21!tk21 dt0 dt1{{{dtk21

$ E
t050

t0k E
t150

t0k

{{{E
tk2150

t0k

P~1,x1!P~x1,x2!{{{P~xk21,xk!

3 q~x0!e2q~x0!t0q~x1!e2q~x1!t1{{{q~xk21!e2q~xk21!tk21 dt0 dt1{{{dtk21

$ P~1,x1!P~x1,x2!{{{P~xk21,xk!

3 ~12 e2qt0k!~12 e2q~x1!t0k!{{{~12 e2q~xk21!t0k!

$ V~e r !~12 e2qt0k!~12 e2qmin t0k!k,

where the inequality in the fifth line above follows from the fact that the region of
integration in the fifth line is contained in that of the previous line+ n

In the same spirit as Eq+ ~1!, we can writeU~t ! 5 E~I ~TF , t !! 5 EF' ~I ~TF ,
t !LtF

! because we terminate a replication once the failed state is reached+
Hence, now we can useF' and obtain samples of~I ~TF , t !, LtF

!+ Consequently,
if we use balanced failure biasing, the new variance is given bysU~t !

2 ~F' ! [
VarF' ~I ~TF , t !LtF

! 5 EF' ~I ~TF , t !LtF

2 ! 2 U 2~t !+
Lemma 3, which follows, gives an upper bound onEF' ~I ~TF , t !LtF

2 ! which
will enable us to evaluate the order of magnitude ofsU~t !

2 ~F' !+ Let D [
EF'' ~I ~TF , T1!Ltmin

2 ! 5 E~I ~TF , T1!Ltmin
! and B [ EF '' ~I ~TF . T1!Ltmin

2 ! 5
E~I ~TF . T1!Ltmin

!, whereF'' has been defined in Section 2+3+ The order of mag-
nitude ofD ~resp+, B 2 1! is given in Theorem 1~resp+, Proposition 1!+

The key to this result lies in the fact that we can decompose the likelihood ratio
LtF

into a product of likelihood ratios over individual cycles+ For any sample path
with K 5 k, we can write

LtF
5 L~1!L~2!{{{L~k!,

whereL~i ! represents the likelihood ratio over thei th regenerative cycle in the sam-
ple path+ Given K 5 k, the L~i ! are mutually~conditionally! independent, with
L~1!, + + + , L~k21! having the distribution ofLtmin

given that$t1 , tF % andL~k! has the
distribution ofLtmin

given that$t1 . tF % +
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Lemma 3: For all e and t,

EF' ~I ~TF , t !LtF

2 ! #
D

B 2 1
~e~B21!qt 2 1!+ (3)

Proof: In the same spirit as Eq+ ~1!,

EF' ~I ~TF , t !LtF

2 ! 5 E~I ~TF , t !LtF
!

5 (
k51

`

E~I ~TF , t !LtF
6K 5 k!g~12 g!k21

5 (
k51

`

E~I ~Z1 1 W1 1 {{{ 1 Zk 1 Wk , t !LtF
6K 5 k!g~12 g!k21

# (
k51

`

E~I ~Z1 1 Z2 1 {{{ 1 Zk , t !LtF
6K 5 k!g~12 g!k21+ (4)

GivenK 5 k, ~Z1 1 Z2 1 {{{ 1 Zk! is ~conditionally! independent ofLtF
+ Therefore,

we can write

E~I ~Z1 1 Z2 1 {{{ 1 Zk , t !LtF
6K 5 k!

5 E~I ~Z1 1 Z2 1 {{{ 1 Zk , t !6K 5 k!E~LtF
6K 5 k!

and

E~LtF
6K 5 k! 5 E~L~1!L~2!{{{L~k! 6K 5 k!

5 ~E~Ltmin
6t1 , tF !!k21E~Ltmin

6t1 . tF !

5 S B

~12 g!
Dk21 D

g
+

Substituting this in Eq+ ~4!, we obtrain

EF' ~I ~TF , t !LtF

2 ! # (
k51

`

P~Erlang~q, k! , t !Bk21D+

Carrying out the necessary algebra, we get the result of the lemma+ n

We will now describe the contribution of forcing to the reduction in variance+
Recall thatFForcing

' denotes the new measure on the sample paths of$X ~t ! : t $ 0%
when with balanced failure biasing~i+e+, F'! we also use forcing+ Then, we have
the following lemma+

Lemma 4: sU~t !
2 ~FForcing

' ! 5 ~12 e2qt!EF' ~I ~TF # t !LtF

2 ! 2 U 2~t !+
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Proof: Let LForcing be the likelihood ratio incurred due to forcing+ Note that
LForcing5 1 2 e2qt+ Then,

sU~t !
2 ~FForcing

' ! 5 EFForcing
' ~I ~TF # t !LtF

2 LForcing
2 ! 2 U 2~t !

5 EF' ~I ~TF # t !LtF

2 LForcing! 2 U 2~t !

5 ~12 e2qt!EF' ~I ~TF # t !LtF

2 ! 2 U 2~t !+ n

Proof of Theorem 2: From Lemma 1, we get thatU~t ! is O~e r1r0 !+ Becauseq is
V~e r0 !, we have that~12 e2qt0k! is V~e r0 !+ Moreover, sinceqmin is V~1!, we have
that~12 e2qmin t0k! is alsoV~1!+ It then follows thatU~t ! is uO~e r1r0 ! and we get the
first part of the theorem+

From Theorem 1, we see thatD 5 V~e2r !+ Using Proposition 1 and the fact that
ex 511 x1 o~x!,we get thate~B21!qt 21 isV~e r0 !+ Therefore, by Lemma 3,we get
thatEF' ~I ~TF , t !LtF

2 ! is O~e2r1r0 !+ Hence, sU~t !
2 ~F' ! 5 EF' ~I ~TF , t !L2! 2 U 2~t !

is O~e2r1r0 !+ Then, using Lemma 4, we get that

sU~t !
2 ~FForcing

' ! 5 ~12 e2qt!EF' ~I ~TF , t !LtF

2 ! 2 U 2~t !

# qtEF' ~I ~TF , t !LtF

2 ! 2 U 2~t !

5 V~e r0 !EF' ~I ~TF , t !LtF

2 ! 2 U 2~t !

5 V~e r0 !O~e2r1r0 ! 2 V~e2~r1r0! !

5 O~e2r12r0 !+ n

3.2. The Large-Time-Horizon Case

Consider the following generalization of Theorem 2,which gives the orders of mag-
nitude of the variances of our estimators for large time horizons+

Theorem 3: Consider the case of large time horizons where t5 V~e2rt ! with
0 # rt # r0. Then, both U~t ! and sU~t !

2 ~F! are V~e r1r02rt ! and sU~t !
2 ~FForcing

' ! 5
O~e2~r1r02rt ! !.

The proof of this theorem follows from Lemmas 1–4 and Proposition 1 by
substitutingt 5 V~e rt ! in all of the expressions involvingt and using the same
method as in the proof of Theorem 2+

We saw in the previous section that for smallt, for the bounded RE property
to hold, the variance reduction using importance sampling had to be of the same
order as the unreliability+ From Theorem 3, we see that for the case of large time
horizons, we also get a variance reduction that is of the same order as the unrelia-
bility as long asrt # r0+
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Let

PV~t ! 5
D

B 2 1
~e~B21!qt 2 1!+

We can easily show that for 0, rt # r0, EF' ~I ~TF , t !LtF

2 !0 PV~t ! r 1 ase r 0+We
conjecture that this holds even forr0 , rt , r01 rt + If this conjecture is true, then we
have an approximate expression for the variance for the case whene is small+ Then,
it is easy to see why simulation using importance sampling becomes very inefficient
for the case wherert . r0+ This is also explained by the results in Glynn@11#; the
variance of the likelihood ratio increases~roughly! exponentially fast in the number
of transitions of the Markov chain+ In experiments in Nicola, Nakayama, Heidel-
berger, and Goyal@30# , it is shown that even for the case wherert 5 r0, one has
to tune the value of the failure-biasing parameteru by trial and error, which can
be computationally expensive+ Hence, for the case wherert $ r0, it is best to use the
“bounding approach,” as mentioned in Section 1+

Motivated by this, we now investigate bounds on the unreliability+ As men-
tioned in Section 1, because the system is regenerative, the time to failure is roughly
a geometric sum of i+i+d+ random variables+There is some literature on bounds on the
distribution function of such random variables, which, in our case, corresponds to
the unreliability+We investigate the bounds given in@4# + For completeness, we first
present the bound in its original form+ We then adapt it to the reliability model
described in this article+ Let Vi ~generically denoted byV ! be i+i+d+ nonnegative
random variables and letV ' be another nonnegative random variable independent of
theVi ’s+ Let T5 (i51

N021 Vi 1 V ' , whereN0 is a geometric random variable, indepen-
dent of theVi ’s andV ' ,with probability of “success”p ~i+e+, P~N05 i ! 5 ~12 p! i21p
for i $ 1!+ It is well known in the literature~e+g+, Keilson @24# and Solovyev@40# !
that asp r 0, T converges in distribution to an exponentially distributed random
variable with meanE~T !+ Here, E~T ! 5 ~12 p!E~V !0p 1 E~V '!+ Theorem 2+2 of
Brown @4# gives the following bound:

6P~T # t ! 2 ~12 e2t0E~T ! !6# S E~V 2!

E2~V !
1

E~V ' !

E~V !

1

~12 p!
Dp+ (5)

In our setting, a “success” in the geometric random variable definition corre-
sponds to system failure happening in a regenerative cycle+More specifically, if we
defineN0 [ K, Vi [ Zi 1 uWi for 0 # i # K 2 1, V '[ ZK 1 RWK ~recall that uWi is the
random variableWi conditioned on no failure event occurring in that cycle and that
RWi is the random variableWi conditioned on a failure event occurring in that cycle!,

andp[ g, thenT[ TF +An important point to note is that in our setting, even though
Wi is not independent ofK, the uWi , 0# i # K21, and RWK are independent ofK+Also,

E~TF ! 5
~12 g!

g
E~Z 1 uW! 1 E~Z 1 RW! 5

~10q! 1 E~W!

g
+
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DefineUb~t ! 5 1 2 e2t0E~TF ! + Let NI [ I ~TF , T1! ~resp+, sI [ I ~TF . T1!! and define

Uerr,b~t ! 5 S E~~Z 1 uW!2!

E2~Z 1 uW!
1

E~Z 1 RW!

E~Z 1 uW!

1

~12 g!
Dg

5 @g~3 2 5g 1 2g2! 1 E~W sI !q~4g 2 2g2 2 1 1 qE~W!!

1 E~W2 sI !q2~g 2 g2! 2 q2E2~W sI ! 1 E~W!q~12 g!#

3 @~12 g!2 1 2q~12 g!E~W sI ! 1 q2E2~W sI !#21+ (6)

Then, using Eq+ ~5!, we see that upper and lower bounds onU~t ! 5 P~TF # t !
are given by PUb~t ! 5 Ub~t ! 1 Uerr,b~t ! and tUb~t ! 5 Ub~t ! 2 Uerr,b~t !, respectively+
The bounds are in terms of regenerative-cycle-based measures+

The quality of any upper bound and lower bound combination depends on how
close they are to each other+ Define therelative error of the bounds~this should not
be confused with the relative error, RE, in the simulation context, that was defined
earlier!, REB, to be the difference between the upper bound and the lower bound
divided by twice the measure of interest+ ~The “twice” is motivated by the fact
that if we use the arithmetic mean of the upper and lower bound as an approximation
for our measure of interest, then the relative error between the approximation and
the actual value is always less than REB+! In this case, the REB is given by
REBb~t ! [ ~ PUb~t ! 2 tUb~t !!02U~t ! 5 Uerr,b~t !0U~t !+

Theorem 4: If r t . r0, then tUerr,b~t !0Ub~t ! r 0 ase r 0; if r t 5 r0, then tUerr,b~t !0
Ub~t ! is V~1!; if r t , r0, then tUerr,b~t !0Ub~t ! r ` ase r 0. Hence, REBb~t ! r 0,
ase r 0 if and only if rt . r0.

Proof: We use the representation given in Eq+ ~6!+ Assumptions~A+2! and~A+4'!
imply that 12 g is V~1!+ Using the orders ofg, 12 g, E~ uW!, E~ RW!, E~ uW2!, and
E~Z! ~see Sect+ 2+2!, we get thatE~Z 1 RW! 5 V~e2r0 !, E~Z 1 uW! 5 V~e2r0 !,
andE~~Z 1 uW!2! 5 V~e22r0 !+ Consequently, Uerr,b~t ! 5 V~e r !+ Moreover, since
E~TF ! 5 V~e2r2r0 !, Ub~t ! 5 V~e r1r02rt ! for rt , r 1 r0 and Ub~t ! 5 V~1! for
rt $ r 1 r0+ The result for all three cases follows from these facts+ The last part of
the theorem follows from the fact that

Uerr,b~t !

Ub~t ! S 1

11 Uerr,b~t !0Ub~t !D # REBb~t ! #
Uerr,b~t !

Ub~t ! S 1

12 Uerr,b~t !0Ub~t !D+
Therefore, REBb~t ! r 0 if and only if Uerr,b~t !0Ub~t ! r 0+ n

We also tried using the bounds in Kalashnikov@23# , but there seems to be
some error in the bounds+ Moreover, as mentioned earlier, the bounds do not make
use of the special structure of the regenerative cycles; that is, they do not make
use of the fact that min$T1,TF % 5 Z 1 W, whereZ is exponentially distributed and
E~Z! .. E~W!+The following theorem provides bounds that make use of this special
structure+
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Theorem 5:

(a) Let PU~t ! 5 1 2 e2qgt. Define l[ l ~t,q! 5 max~M t, tMq! and let tU~t ! [
PU~t ! 2 Uerr~t !, where

Uerr ~t ! [ Se2gq~t2l ! 2 e2gqt 1
E~W!

gl
~12 e2gq~t2l ! !

2
q~t 2 l !E~WI~T1 , TF !!

l
e2gq~t2l !D+ (7)

Then, tU~t ! # U~t ! # PU~t ! for all e and t.
(b) Let REB~t ! denote the REB in this case. For rt . 0, REB~t ! [

~ PU~t ! 2 tU~t !!02U~t ! 5 Uerr~t !02U~t ! r 0 ase r 0.

Remark 1:These bounds are in terms of regenerative-cycle-based measures+

Remark 2:These bounds converge for a much wider range of the time horizon as
compared to the range in Theorem 4+

4. EXPERIMENTAL RESULTS WITH A LARGE MARKOVIAN MODEL

We took an example of a large computing system originally considered in Goyal
et al+ @15# and subsequently in many other articles+ The system is depicted in Fig-
ure 1+ It consists of two sets of processors with two processors per set, two sets of
disk controllers with two controllers per set, and six clusters of disks with four disks
per cluster+ In a disk cluster, data are replicated so that we can have one disk fail
without affecting the system+ The failure rates of processors, controllers, and disks
are assumed to be1

2000
_, 1

2000
_, and 1

6000
_per hour, respectively+ If a processor of a given

Figure 1. Block diagram of the computing system modeled+
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set fails, it has a 0+01 probability of causing the operating processor of the other set
to fail+ Each unit in the system can fail in one of two failure modes which occur with
equal probability+ The repair rates for all mode 1 and all mode 2 failures are 1 per
hour and1

2
_ per hour, respectively+ The system is defined to be operational if all data

are accessible to both processor types, which means that at least one processor in
each set, one controller in each set, and three out of four disks in each of the six disk
clusters are operational+ We also assume that operational components continue to
fail at the given rates when the system failed+

To keep the state space within manageable limits~in order to facilitate compar-
ison with approximate numerical results from SAVE!,Goyal et al+ @15# assumed that
after each transition~whether failure or repair!, the repairman picks a component at
random from the set of failed components+ In this way, the state variable does not
have to include the order of components waiting at the repair queue+ For the purpose
of comparison, we first use the same repair discipline+ Later, we also consider the
same example with first-come first-served~FCFS!, where the numerical methods
implemented in SAVE cannot be used+

In order to see the effect of our simulation schemes, we estimate the unreliabil-
ity for different values of the time horizon using different techniques+The results are
presented in Table 1+ The time horizon is given in the first column+ This model has
1,265,625 states and is thus very difficult to solve by exact techniques+ Goyal et al+
@15# used SAVE to numerically compute approximations for values of the time
horizon up to 1024, but give no bounds on the approximation error+We used SAVE
to complete these computations for the other time horizons+All these are reproduced
in column 2+ The third column gives the estimate and the RE corresponding to
99% confidence intervals~CIs! if we use naive simulation+ The fourth column gives
the estimate and the RE using failure biasing and forcing+ Each of the naive and
importance-sampling-simulation cases were simulated for 400,000 events+ In the
fifth and sixth columns, we estimate the bounds of Brown@4# mentioned earlier
~henceforth referred to as M+B+ bounds!+ We do this by running 1 simulation of
400,000 events and estimatingg,E~W!,E~WI~T1 , TF !!, andE~W2I ~T1 , TF !!+We
then used them to compute the bounds forall t+ These regenerative-cycle-based
measures can be estimated using the dynamic importance sampling~DIS! approach
with balanced failure biasing as described in Goyal et al+ @15# + For building confi-
dence intervals,we use the delta method~e+g+, see Serfling@34, p+ 124# ! to establish
a central limit theorem+

Next, we estimate the bounds which we developed+ In this case, one has to first
estimate the regenerative-cycle-based measuresg, E~W!, andE~WI~T1 , TF !!+ The
last two columns of Table 1 give the experimental results using these new bounds+
We again use 1 simulation run of 400,000 events to estimate the bound for allt+
Compared to the M+B+ bounds, it is simpler to build confidence intervals in this case,
as there are fewer measures to be estimated and the expressions are less complicated+

In this example, E~T1! ' 125 andE~TF ! ' 152,240+ For time horizons that are
significantly larger than 125, one should not expect balanced failure biasing and
forcing to work well+ One can observe in Table 1 that for time horizon 1024 and
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Table 1. Estimates of the Unreliability, Brown’s @4# Bounds, and the New Bounds

t

Approx+
~SAVE!

~3 1023!

Naive Sim+
Est+ and RE
~3 1023!

Imp+ Samp+
Est+ and RE
~3 1023!

M+B+ LB
Est+ and RE
~3 1023!

M+B+ UB
Est+ and RE
~3 1023!

New LB
Est+ and RE
~3 1023!

New UB
Est+ and RE
~3 1023!

4 0+0153 0+01846 97%* 0+01546 4% 22+3 6 3+7% 2+346 3+7% 0+0026 29% 0+0256 3+7%
16 0+0873 0+08716 49%* 0+09026 3+8% 22+2 6 3+7% 2+426 3+7% 0+046 4+8% 0+106 3+7%
64 0+380 0+4176 28%* 0+3816 4+3% 21+9 6 3+7% 2+716 3+7% 0+2586 3+9% 0+3996 3+7%

256 1+55 1+716 22% 1+586 5+6% 20+7 6 3+6% 3+896 3+7% 1+256 3+7% 1+596 3+7%
1,024 6+23 6+286 21% 6+226 21%* 3+966 3+7% 8+606 3+7% 5+326 3+7% 6+366 3+7%
2,048 12+4 15+16 19% 10+6 6 37%* 10+2 6 3+7% 14+9 6 3+7% 10+7 6 3+7% 12+7 6 3+7%
4,096 24+9 24+2 6 21% 9+296 38%* 22+6 6 3+7% 27+2 6 3+7% 21+4 6 3+7% 25+2 6 3+7%
8,192 47+8 52+5 6 20% 14+7 6 118%* 46+9 6 3+6% 51+5 6 3+6% 42+5 6 3+6% 49+8 6 3+6%

16,384 95+3 96+16 20% 10+6 6 46%* 93+6 6 3+5% 98+3 6 3+5% 83+2 6 3+6% 97+16 3+5%

Note:The asterisk indicates that the estimate of the quantity and0or its variance was highly unstable+

3
5

7
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beyond, the estimates of the unreliability and0or their REs, using balanced failure
biasing and forcing, become highly unstable+ In fact, we suspect infinite variance,
either in the estimation of the quantity or its RE, in this range of the time horizon;
that is, no matter how long we run the simulation, we will never get stability+ The
estimates of the M+B+ bounds are “satisfactory”~we define this to be less than 10%
REB! only for time horizon 4096 and beyond+However, for all time horizons where
failure biasing and forcing do not work well~i+e+, time horizon 1024 and beyond!,
the estimates of the new bounds are satisfactory+ For very large values oft, estimates
using M+B+ bounds do better than those using the new ones+ Hence, these could be
used for better accuracy for the higher time ranges+

To verify the robustness of our methods for simulating rare events, we consider
a more “rare” case where all the failure rates and the failure propagation probabili-
ties are reduced by a factor of 100+We also use the FCFS service discipline+ In this
case, E~T1! ' 12,500 andE~TF ! '16+443108+As earlier, a total of 400,000 events
were simulated for each case+ The results are presented in Table 2+ In this case,
importance sampling starts to become unstable from time horizons 105 and beyond,
and we note the same relative trends in the bounds as we did earlier+ In addition, the
RE using naive simulation goes up about 10 times from the previous less rare case;
however, the relative errors in the simulation of the bounds are almost unchanged+
All of the ~estimated! REs in the estimates of the bounds, except fort 510, ranged
from 3+7% to 3+8%+

In these experiments, we used balanced failure biasing to estimate the
regenerative-cycle-based measures+As mentioned earlier, this is guaranteed to pro-
duce a bounded RE in the estimation of these measures+ However, other failure-
biasing schemes that are efficient in practice~e+g+, the failure distance scheme of
Carrasco@5# ! can also be used in the estimation of these regenerative-cycle-based
measures+

5. DISCUSSION AND OPEN PROBLEMS

In this article, we discussed the estimation of the unreliability in large Markovian
models of highly reliable systems+We show that for small time horizons, simulation
using the importance-sampling techniques of failure biasing and forcing are prov-
ably effective+ For large time horizons, simulation using the above techniques be-
comes difficult+ In this case, the approach used is to first bound the unreliability in
terms of regenerative-cycle-based measures and then estimate the regenerative-
cycle-based measures using importance sampling+ We explore bounds existing in
the literature and develop some bounds of our own+

For the small-time-horizon case~rt 5 0!, this work complements the work in
Heidelberger,Shahabuddin, and Nicola@18# and Nicola et al+ @30# ,which deals with
the estimation of transient measures and proving corresponding BRE results for
non-Markovian reliability models+ However, the frameworks used for simulation
and thus importance sampling in the non-Markovian setting are very different
from those used for Markovian models+ In particular, a discrete-event-simulation
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Table 2. Estimates of the Unreliability and the Bounds for Another Model

t
Naive Sim+
Est+ and RE

Imp+ Samp+
Est+ and RE M+B+ LB Est+ M+B+ UB Est+ New LB Est+ New UB Est+

10 N0A 5+02E2 9 6 3+9% 22+27E25 2+27E25 1+90E29 6+05E29
102 N0A 6+03E2 8 6 4+1% 22+26E25 2+28E25 4+51E28 6+05E28
103 N0A 5+98E2 7 6 4+2% 22+21E25 2+33E25 5+53E27 6+05E27
104 N0A 5+94E2 6 6 4+7% 21+66E25 2+87E25 5+85E26 6+05E26
105 4+27E2 5 6 257%* 4+88E2 5 6 12%* 3+78E25 8+32E25 5+95E25 6+05E25
106 4+04E2 4 6 257%* 6+86E2 5 6 16%* 5+82E24 6+28E24 5+96E24 6+05E24
107 7+97E2 3 6 181%* 8+65E2 5 6 36%* 6+01E23 6+01E23 5+94E23 6+03E23
108 7+41E2 2 6 175%* 8+52E2 5 6 35%* 5+87E22 5+87E22 5+78E22 5+87E22

Note:All of the ~estimated! REs in the estimates of the bounds, except fort 5 10, ranged from 3+7% to 3+8%+ The asterisk indicates that the estimate of the quantity and0or its variance
was highly unstable+ The N0A indicates that no samples of system failure before timet were obtained+
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approach and0or uniformization is used in@18# and@30# , whereas the CTMC ap-
proach is recommended and used for large Markovian models~e+g+, SAVE!+As was
the case in this article, thedirect importance-sampling approaches described in@18#
and@30# do not work when the time horizon is large+

For the large-time-horizon non-Markovian case,we can easily extend the bound-
ing approach in this article, for the case when failure times are exponentially dis-
tributed but repair times are generally distributed+ This is because the regenerative
property is still preserved and one can use the techniques in Nicola et al+ @30# and
Nicola, Shahabuddin, Heidelberger, and Glynn@31# to estimate the regenerative-
cycle-based measures efficiently+However, results on the convergence of the bounds
to the actual measure, although intuitively apparent, are difficult to prove rigorously+
The development of efficient large-time-horizon simulation techniques in models
for which both the failure times and repair times are nonexponentially distributed is
still an open problem, because, then, the regenerative structure is lost+

It should be mentioned that even though we use balanced failure biasing for
estimating the transient measures~for small time horizons! and the regenerative-
cycle-based measures, one could also have used balanced failure transition distance
biasing~Carrasco@5,6# ! or the balanced likelihood ratio method~Alexopoulos and
Shultes@1# and Shultes@39# !+Balanced failure transition distance biasing uses struc-
tural information about the system to failure bias and, thus, tends to produce more
accurate estimates+ However, there is an implementation overhead that comes with
using more information that is not present in the case of balanced failure biasing+
Bounded relative error results for regenerative-cycle-based measures in the case of
balanced failure transition distance biasing follow as straightforward extensions of
the work in Shahabuddin@36# ~see, e+g+, Nakayama@27,29# and Nicola et al+ @32# !;
we expect the same to be true for transient measures in the case of small time hori-
zons+ The balanced likelihood ratio method has empirically been shown to work
better than balanced failure biasing on systems with larger redundancy~minimum
number of component failures required for the system to fail! than those originally
considered in SAVE~Blum et al+ @2,3# !+Bounded relative error results for estimating
regenerative-cycle-based measures using the balanced likelihood ratio method, and
an extension of the technique that uses structural information about the system are
also described in Alexopoulos and Shultes@1# and Shultes@39# +
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APPENDIX

We first briefly review the notation and framework considered in Shahabuddin@36# + LetPRbe
the matrix constructed fromP where the rows and columns corresponding to state1and states
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in F are removed+Since all states represented inPRhave at least one ongoing repair transition,
PR is a matrix in which the positive elements above the diagonal~i+e+, probabilities of failure
transitions! are of the formced 1 o~ed!, c . 0, d . 0, wherec andd are generic representa-
tions of constants+ The positive elements below the diagonal~i+e+, probabilities of repair
transitions! are of the formc 1 o~1!, c . 0+ For x [ U, let pF~x! 5 (y[F P~x,y!, p1~x! 5
P~x,1!, andp0~x! 5 P~1,x!+ Let the vectorspF , p1, andp0 be given bypF 5 $ pF~x! : x [
U 2 1%, p1 5 $ p1~x! : x [ U 2 1% , andp0 5 $ p0~x! : x [ U 2 1% , respectively+All vectors are
assumed to be column vectors+The positive elements ofp1 are of the formc1o~1!, c . 0, the
positive elements ofpF areo~1!, and the positive elements ofp0 areO~1!+ From Assumption
~A+4!, we have that at least one element ofp0 is positive+ Let vg~x! 5 P~TF , T16Y0 5 x! and
vg 5 $vg~x! : x [ U 2 1% + By Assumption~A+3!, all elements ofvg are positive+ By Assump-
tion ~A+1!, starting from any statex [ U 2 1, the Markov chain hits1 ø F with probability 1+
Consequently, for x [ U, P~T1 , TF 6Y05 x! 512 vg~x!+ By Assumption~A+2!,we have that
all elements ofe2 vg are positive, wheree is a vector of 1’s+

By a matrix or a vector beingo~ed! ~resp+, O~ed!, uO~ed!, V~ed!!, d $ 0, we mean that
all elements of that matrix or vector areo~ed! ~resp+, O~ed!, uO~ed!, V~ed!!+ It has been
shown in Shahabuddin@36# ~see the proof of Lemma 3 in that article! that there exists a
nonnegative integer constantN0 such that

(
i5N011

`

PR
i is o~1!+ (A.1)

Therefore,

(
i50

`

PR
i is O~1!+ (A.2)

It was shown in Shahabuddin@36# that vg 5 (i50
` PR

i pF + Similarly, one can show that
e2 vg 5 (i50

` PR
i p1+ From Eq+ ~A+2! and the fact mentioned earlier thatpF is o~1!, we get

thatvg is o~1!+
Let EP be a matrix constructed out ofP by removing the row and column corresponding

to state1+ EP has the same structure asPR in the sense that the positive elements above the
diagonal are of the formced 1 o~ed!, c . 0, d . 0, and the positive elements below the
diagonal are of the formc 1 o~1!, c . 0+ Thus,

(
i50

`

EPi is O~1! (A.3)

for exactly the same reason as Eq+ ~A+2!+

Lemma A.1: E~T1! 5 V~e2r0 !.

Proof: Let Dh 5 $h~x! : x [ S2 1% ~recall thath~x! [ 10q~x!!, Kw~x! 5 E~T16X0 5 x!, and
Kw 5 $ Kw~x! : x [ S2 1% + Then, we have that Kw 5 Dh 1 EP Dh, from which we get Kw 5 (i50

` EPi Dh+
From Assumption~A+2! and the fact that the repair rates areV~1!, we get that Dh is V~1!, and
so from Eq+ ~A+3!, Kw is O~1!+ In addition, p0 is O~1!, so E~T1! [ Kw~1! 5 h~1! 1 p0

T Kw 5
V~e2r0 ! 1 O~1! 5 V~e2r0 !+ n

Lemma A.2: E~ RW! and E~ uW! are O~1!.
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Proof: For x [ U, let Uw~x! 5 E~min~T1,TF ! I ~TF , T1!6Y0 5 x!, and tw~x! 5
E~min~T1,TF ! I ~T1 , TF !6Y0 5 x!+ Let Uw 5 $ Uw~x! : x [ U 2 1% and uw 5 $ tw~x! : x [ U 2 1% +
Let h 5 $h~x! : x [ U 2 1% + Note that uw 5 h + ~e2 vg! 1 PR uw ~the “+” denotes the scalar
product! from which we get uw 5 (i50

` PR
i ~h + ~e2 vg!!+ Then, using the fact from Section 2+1

that 12 g . 0, we get that

E~ uW! 5 E~min~T1,TF ! 2 Z6T1 , TF !

5
E~~min~T1,TF ! 2 Z! I ~T1 , TF !!

~12 g!

5
p0

T uw
p0

T~e2 vg!
+ (A.4)

In a similar fashion, we get that Uw 5 (i50
` PR

i ~h + vg! and using the fact from Section 2+1 that
g . 0, we get that

E~ RW! 5 E~min~T1,TF ! 2 Z6TF , T1!

5
p0

T Uw
g

5
p0

T Uw
pF ~1! 1 p0

Tvg

#
p0

T Uw
p0

Tvg

+ (A.5)

By Assumption~A+4! and the fact that all elements ofvg are positive, p0
Tvg . 0+We will now

show that uw ~resp+, Uw! ande2 vg ~resp+, vg! are of the same order+ From Assumption~A+2!
and the fact that the repair rates areV~1!, we get thath is V~1!+ Consequently, if an element
of e2 vg ~resp+, vg! is V~ed! for somed $ 0, then the corresponding element ofh + ~e2 vg!
~resp+, h + vg! is alsoV~ed! for the samed+ Because(i50

` PR
i 5 O~1!, the corresponding

element of uw ~resp+, Uw! is similarly O~ed! for the samed+ Using this fact in Eq+ ~A+4! ~resp+,
Eq+ ~A+5!!, we see thatE~ uW! ~resp+, E~ RW!! is O~1!+ n

Lemma A.3: E~ uW2! is O~1!.

Proof: We use notation from the proof of Lemma A+2+ Furthermore, let H~x! denote the
holding-time random variable in statex+ Clearly, H~x! is exponentially distributed with rate
q~x!+ Define l ~x! 5 E~H 2~x!! 5 20q2~x!, l 5 $l ~x! : x [ U 2 1%, rq~x! 5 E~~min~T1,TF !!2 3
I ~T1 , TF !6Y0 5 x!, and rq 5 $ rq~x! : x [ U 2 1% + Then, one can easily derive the recur-
sive equation that rq 5 l + ~e 2 vg! 1 2h + ~PR uw! 1 PR rq from which one gets that
rq 5 (i50

` PR~l + ~e2 vg! 1 2h + ~PR uw!!+ In that case,

E~ uW2! 5
E~~min~TF ,T1! 2 Z!2I ~T1 , TF !!

~12 g!

5
p0

T rq

p0
T~e2 vg!

+ (A.6)
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Using the fact thatvg is o~1!, we get that the elements ofe2 vg areV~1!+ In addition, from
what was stated in the proof of Lemma A+2, uw is O~1!+ Thel andh areV~1!,(i50

` PR
i is O~1!,

and, therefore, rq is O~1!+ Then, the proof follows from Eq+ ~A+6!+ n

Proof of Proposition 1: For any matrix~vector!, say PR, with elements of the form
c 1 o~1!, c $ 0, let ZPR be the matrix containing the “c part” of the elements+ Using the fact
mentioned earlier thatvg is o~1!, we get that

(
i50

`

PR
i p1 5 e2 vg 5 e2 o~1!+ (A.7)

Using Eq+ ~A+1! and the fact that the positive elements ofp1 are of the formc1 o~1!, c . 0,
we have that

(
i50

`

PR
i p1 5 S(

i50

N0

PR
i 1 o~1!Dp1 5 (

i50

N0

~ ZPR 1 o~1!! i ~ [p1 1 o~1!! 1 o~1!

5 (
i50

N0

ZPR
i [p1 1 o~1!+ (A.8)

Comparing Eq+ ~A+8! with Eq+ ~A+7!, we see that

(
i50

N0

ZPR
i [p1 5 e+ (A.9)

As in Shahabuddin@36# , we construct the matrixB 5 $B~x,y! : x,y [ S% by setting
B~x,y! 5 P2~x,y!0P'~x,y! for all x, y such thatP'~x,y! Þ 0; B~x,y! 5 0 otherwise+ The
BR, bF , b1, andb0 are constructed fromB the same way asPR, pF , p1, andp0 were con-
structed fromP+ Note thatBR is a matrix in which the positive elements above the diagonal
are of the formced 1 o~ed!, c . 0, d$ 2, and the positive elements below the diagonal are of
the formc1o~1!, c. 0+ It has been shown in Shahabuddin@36# that for the sameN0 as earlier,
(i5N011
` BR 5 o~1!+ Thus, (i50

` BR
i is O~1!+ It has also been shown in Shahabuddin@36#

that D 5 b0
T~(i50

` BR
i bF ! 1 (y[F B~1,y!+ Using a similar method, we can show that

B5b0
T~(i50

` BR
i b1!+The positive elements ofb1 are of the formc1o~1!,wherec. 0+Hence,

(
i50

`

BR
i b1 5 S(

i50

N0

BR
i 1 o~1!Db1 5 (

i50

N0

~ ZBR 1 o~1!! i ~ Zb1 1 o~1!! 1 o~1! 5 (
i50

N0

ZBR
i Zb1 1 o~1!

5 S(
i50

N0 S 1

12 uDi

ZPR
iDS 1

12 u
[p1D1 o~1! (A.10)

$
1

12 u S(
i50

N0

ZPR
i [p1D1 o~1! 5

1

12 u
e1 o~1!+ (A.11)

Equation~A+10! follows from the form of the elements ofP' and the fact that in the Markov
chain corresponding toP, the sum of all the repair transition probabilities from any state other
than1 is 12 o~1!+ The last equality follows from Eq+ ~A+9!+ From Eq+ ~A+11!, we get that
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B 5 b0
TS(

i50

`

BR
i b1D $

1

12 u
b0

Te1 o~1! 5
1

12 u (
x[U21

P2~1,x!

~10r ~1!!
1 o~1!,

wherer ~1! is the number of positive probability failure transitions from1+ The last equality
follows from the fact thatP'~1,x! 5 10r ~1!+

The elements ofP~1,x! can be represented in the formc 1 o~1!, c $ 0+ Let EU # U 2 1
be the set ofx for whichP~1,x! is of the formc1 o~1!, c . 0+ From Assumption~A+4'!, we
see that(x[ EU ZP~1,x! 5 1+ Sincer ~1! $ 6 EU 6, we have that

B $
1

12 u
6 EU 6 (

x[ EU
~ ZP~1,x! 1 o~1!!2 1 o~1!

5
1

12 u
6 EU 6 (

x[ EU
ZP2~1,x! 1 o~1!

$
1

12 u
1 o~1!+

The last inequality follows because the minimum of the functionf ~z1, z2, + + +zk! 5 k(i51
k zk

2

subject to the constraints(i51
k zi 5 1, zi $ 0, zi [ R, ∀ i , is 1+ Therefore,

B 2 1 $
u

12 u
1 o~1!,

so B 2 1 5 uO~1!+ Using the fact that(i50
` BR

i , b0, andb1 areO~1!, we get thatB 2 1 5
b0

T~(i50
` BR

i b1! 2 1 is O~1!+ Hence, B 2 1 5 V~1!+ n

Proof of Theorem 5:

~a! TheU~t ! # PU~t ! bound can be proved by exactly the same method as Lemma 1+We
will now prove the lower bound+

Let f~q, k!~x! be the density of an Erlang random variable with rateq and shape
parameterk ~i+e+, the density ofZ1 1 Z2 1 {{{ 1 ZK given thatK 5 k!+ Then,

U~t ! 5 P~Z1 1 W1 1 Z2 1 W2 1 {{{ 1 ZK 1 WK # t !

5 (
k51

` E
x50

t

PSW1 1 {{{ 1 Wk # t 2 x6K 5 k,(
i51

k

Zi 5 xD
3 f~q, k!~x! dxg~12 g!k21

5 PU~t ! 2 (
k51

` E
x50

t

PSW1 1 {{{ 1 Wk . t 2 x6K 5 k,(
i51

k

Zi 5 xD
3 f~q, k!~x! dxg~12 g!k21+

We now have to prove that the second term above is upper bounded byUerr~t !+
GivenK 5 k, theWi ’s are~conditionally! independent of theZi ’s+Also givenK 5 k,
the W1,W2, + + + ,Wk21 are i+i+d+ and have the distribution ofuW+ Moreover, given
K 5 k,Wk is independent of theW1,W2, + + +Wk21 and has the distribution ofRW+ Thus,
we can rewrite the second term and bound it as follows:

366 M. K. Nakayama and P. Shahabuddin

https://doi.org/10.1017/S0269964804183058 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964804183058


(
k51

` E
x50

t2l

P~ uW1 1 {{{ 1 uWk21 1 RWk . t 2 x! fq, k~x! dxg~12 g!k21

1 (
k51

` E
x5t2l

t

P~ uW1 1 {{{ 1 uWk21 1 RWk . t 2 x! fq, k~x! dxg~12 g!k21

# (
k51

` E
x50

t2l ~k 2 1!E~ uW! 1 E~ RW!

~t 2 x!
fq, k~x! dxg~12 g!k21

~using Chebyshev’s inequality!

1 (
k51

` E
x5t2l

t

fq, k~x! dxg~12 g!k21

#
1

l (
k51

` E
x50

t2l

~~k 2 1!E~ uW! 1 E~ RW!! fq, k~x! dxg~12 g!k21

1 ~e2gq~t2l ! 2 e2gqt!

5
E~ RW!

l
~12 e2gq~t2l ! ! 1

E~ uW!~12 g!

gl

3 ~12 e2gq~t2l ! 2 gq~t 2 l !e2gq~t2l ! ! 1 ~e2gq~t2l ! 2 e2gqt!

5 Uerr~t !+

(A.12)

~b! We will first show thatUerr~t !0 PU~t ! r 0 ase r 0+ The result then follows from the
fact that

REB~t ! 5
Uerr~t !

2U~t !
#

Uerr~t !

2 PU~t ! S 1

12 Uerr~t !0 PU~t !D+
We use the representation ofUerr~t ! given by Eq+ ~A+12!+

First, let us study the properties ofl+ If rt , r0 ~resp+, rt . r0!, then for all
sufficiently smalle, t , 10q ~resp+, t . 10q!, which implies thatM t . tMq ~resp+,
M t , tMq!+ Thus, l is V~e2rt 02! ~resp+, l is V~e2rt1r002!!+ If rt 5 r0, thenl 5M t or
l 5 tMq, but in either case, l 5 V~e2rt 02!+ Sincert . 0 and forrt . r0, rt 2 r002 .
0, we have that 10l is o~1!+ Sincer0 . 0 andrt . 0, we have thatl0t 5 o~1!+ It then
follows thatt 2 l is V~e2rt !+

Consider the case wherert , r 1 r0, so thate r1r02rt r 0 ase r 0+ Using the
well-known fact that 12 e2x 5 x1 o~x!, we get that PU~t ! is V~e r1r02rt !+ Hence, all
we have to show is thatUerr~t !5o~e r1r02rt !+Sincet2 l isV~e2rt !, ~12e2gq~t2l ! !5
gq~t 2 l ! 1 o~e r1r02rt ! is V~e r1r02rt !+ Lemma A+2 shows that bothE~ uW! andE~ RW!
areO~1!+ Since 10l is o~1!, the first term in Eq+ ~A+12! is o~e r1r02rt !+ Using the
well-known fact that 12e2x2xe2x isx2021o~x2! and the fact thatt2 l isV~e2rt !,
one can easily show that~1 2 e2gq~t2l ! 2 gq~t 2 l !e2gq~t2l ! ! is gq~t 2 l ! 3
V~e r1r02rt !+ Considering separately the two cases of 0, rt # r0 andr0 , rt , r 1
r0, one can show thatq~t 2 l !0l is o~1! and, therefore, the second term in Eq+ ~A+12!
is o~e r1r02rt !+ Finally,
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e2gq~t2l ! 2 e2gqt 5 ~12 e2gqt! 2 ~12 egq~t2l ! !

5 gqt
l

t
1 o~e r1r02rt !+

Using the fact mentioned earlier thatl0t is o~1!, we can show that the last part of
Eq+ ~A+12! is o~e r1r02rt !+

Now, consider the case wherert $ r 1 r0+ In this case, PU~t ! is V~1!+ Thus, all
we have to show is thatUerr, t ~t ! is o~1!+ For rt 5 r 1 r0, 1 2 e2gq~t2l ! and
12 e2gq~t2l ! 2 gq~t 2 l !e2gq~t2l ! areV~1!+ For rt . r 1 r0, one can show the same
by using the fact that 12 e210x and 12 e210x 2 ~10x!e210x approach 1 asx r 0+
Using the fact that 10l is o~1!, one can show that the first term of Eq+ ~A+12! is o~1!+
Note that rt $ r 1 r0 implies that rt . r0+ Consequently, l 5 tMq and 10gl
is V~e rt2r2r002! 5 o~1!+ Using this fact, one can show that the second term of
Eq+ ~A+12! is o~1!+ Express the last term of Eq+ ~A+12! ase2gqt~egqtMq 2 1!+ For
rt . r 1 r0, it is easy to see that ase r 0, this term tends to 0 and, hence, it is
o~1!+ For rt 5 r 1 r0, e2gqt is V~1! and~egqtMq 2 1! is o~1!, and so the last term
is alsoo~1!+ n
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