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We investigate fast simulation techniques for estimating the unreliability in large
Markovian models of highly reliable systems for which analyticaimerical tech-
nigues are difficult to applywe first show mathematically that for “small” time
horizons the relative simulation errowhen using the importance sampling tech-
niques of failure biasing and forcingemains bounded as component failure rates
tend to zeroThis is in contrast to naive simulation where the relative error tends to
infinity. For “large” time horizons where these techniques are not efficiemuse

the approach of first bounding the unreliability in terms of regenerative-cycle-based
measures and then estimating the regenerative-cycle-based measures using impor-
tance samplingthe latter can be done very efficiently/e first use bounds devel-
oped in the literature for the asymptotic distribution of the time to hitting a rare set
in regenerative systemidoweverthese bounds are “close” to the unreliability only

for a certain range of time horizond/e develop new bounds that make use of the
special structure of the systems that we consider and are “close” to the unreliability
foramuch wider range of time horizorhese techniques extend to non-Markoyian
highly reliable systems as long as the regenerative structure is preserved
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1. INTRODUCTION

This article deals with the estimation of the unreliabiliite., probability of system
failure within a given time horizonin large regenerative models of highly reliable
systemsFor examplewe might be interested in the probability that the computer
system aboard a space shuttle fails before the mission endSiméarly, we might
be interested in the probability that the web server used for real-time monitoring and
displaying scores in the Olympic Games crashes during the period of the games

The class of systems we study in this article includes a large class of systems
that can be modeled by the System Availability Estimda®&VE) modeling tool
(Blum, Goyal HeidelbergerLavenberg Nakayamaand Shahabuddif2,3]; also
see GoyalCarter de Souza e Silya.avenbergand Trivedi[13] and Goyal and
Lavenberd 14] for earlier versions This tool is mainly used for the availability
reliability modeling of computer and communication systefhsnodels systems
consisting of componentsach of which fails and gets repaitdthe system is con-
sidered to be up or down depending on the states of the individual compofknts
components are highly reliablée., their expected failure times are much larger
than their expected repair timeJhere are a limited number of repairmen in the
systemIn addition there are component dependencies and interactions like failure
propagatior{the failure of a component could cause some other components to fail
instantaneously operational dependenciéhe operation of an up component re-
quires some other components to be,md repair dependenciéthe repair of a
failed component requires some other components to pS&YE considers mod-
els for which component failure- and repair-time distributions are exponentially
distributed we will call these highly reliable Markovian systeni$ie techniques in
this article can easily be extended to systems for which the repair times of compo-
nents have general distributians

Highly reliable Markovian systems can be modeled as continuous-time Markov
chains(CTMCs). However due to the size of the state spdtee state space grows
exponentially with the number of components in the systamalytical and numer-
ical (nonsimulation methods are very difficultThese methods include Gaussian
elimination (see e.g., Young[42]) for computing steady-state measures and uni-
formization(seg e.g., Gross and Millef16] and Jensefil9]) for computing tran-
sient measuredHence approximations have to be usedlthough some useful
approximations based on lumping and state aggregation have been developed for the
steady-state cassee e.g., Muntz, de Souza e Silyand Goya[26]), very few exist
for the transient settindg-urther complications arise because the embedded Markov
chain isstiff due to the wide difference between the failure rates and the repair rates
of componentsin any casewhen no exact solutions are easily computabieu-
lation presents a viable alternative

In the case of simulatigrbecause system failures are rdtd¢akes long CPU
times for naive simulation to produce good estimatagportance samplingsee
e.g., Glynn and Iglehar{12] for the basic technigyehas been used successfully
to increase the speed of simulation in highly reliable Markovian syst@®aes
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Alexopoulos and Shultelsl], Carrascdb, 6], Conway and Goya]7], Geist and
Smothermai9], Goyal ShahabuddirHeidelbergemicola, and Glyn15], Juneja

and Shahabudd[20-22, Lewis and Béhni25], Obal and Sande{83], Shahabud-

din [36], Shultes[39], and references therginSurveys can be found in Heidel-
berger[17], Nakayama[28], Nicola, Shahabuddinand Nakayamd32], and
Shahabuddif37]. The most widely researched importance-sampling technique for
Markovian models is failure biasingn failure biasing(Lewis and B6hnj25]), we
artificially accelerate the occurrence of component-failure events with respect to
component-repair events so that the system fails more.dftenresulting estimates

are then adjusted to make them unbiadddthematical analyses of failure-biasing
techniques for estimating steady-state measures in highly reliable Markovian sys-
tems has been done in Nakaya# 29], Shahabuddifi36], and Strickland41]. In

[36], it was shown that a failure-biasing heuristic called balanced failure biasing
(Goyal et al[15] and Shahabuddir86]), produces a bounded relative er(&RE)

in the estimation of steady-state measures like the unavailatitigyrelative error

of the estimate remains bounded as the failure rates tend th Z&rs is in contrast

to naive simulationfor which the relative error tends to infinit3alanced failure
biasing was then implemented in SAVBlum et al [2,3]).

In the case of transient measuras additional technique that is used is forcing
(Lewis and Bohnj25]). In this casethe first component-failure transition is accel-
erated to make it happen within the time horizAa has been shown experimentally
(Goyal et al[15] and Shahabuddir85]), for most transient measutdsrcing and
failure biasing work well for the case where the time horizon is “srhall

When the time horizon is “largésimulation using importance sampling is not
efficient Some work in the large-time-horizon case has been done in Caf&dno
numerically inverting a discretized Laplace transfoAmother approach suggested
in Shahabuddin and Nakayarf&8] and Shahabuddii85] is to bound the transient
measure in terms of regenerative-cycle-based measures and then directly estimate
(using simulation the regenerative-cycle-based measuhesighly reliable sys-
tems regenerative cycle-based measures can be estimated with bounded relative
error using importance samplin@hahabuddifn36]). In Shahabuddif35], such
bounds were developed for the expected interval unavailalfiliy expected frac-
tion of time in (0, t] that the system is downlt was also shown that these bounds
converge to the expected interval unavailability as component failure rates tend to
zera

This article has two main contributiorfsirst, we prove that for the case of small
time horizonsfailure biasing and forcing give bounded relative error in the estima-
tion of the unreliability A crucial proposition(Proposition ) proved in this article
also allows the bounded-relative-error result to be extended to the small-time-
horizon estimation of the expected interval unavailability using the infrastructure
already developed by Shahabudf#]. Secondwe investigate the “bounding ap-
proach” mentioned in the previous paragrafun large-time-horizon estimation of
the unreliability Since a highly reliable Markovian system is regeneratifre time
to failure is roughly the “geometric sum” of independent and identically distributed
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(i.i.d.) random variablesvhere a “success” in the geometric distribution is defined
as failure occurring in a regenerative cydtes well known that if the probability of
success is smallhen this geometric sum is approximately exponentially distributed
(seee.g., Keilson[24] and SolovyeV40]). There is some literature regarding bounds
for the cumulative distribution functiofwhich, in our caseis the unreliability of

such random variablegg.g., Brown[4], Kalashniko\ 23], and SolovyeV40]). We
consider bounds proposed[#] and[23]. Mathematical analysis reveals that these
bounds converge to the unreliabilitgs the component failure rates tend to zero
only for a certain range of time horizand/e develop new improved bounds that
take into consideration the special structure of the type of highly reliable systems we
considerthe bounds if4], [23] and[40] do not make use of this special structure
We show that these new bounds converge to the unreliability for a much wider range
of time horizonsWe implement these bounds and do some experimental compari-
sons between our bounds and the boundidinPreliminary versions of some of the
results mentioned earlier appeafedthout proofg in Shahabuddin and Nakayama
[38].

In Section 2we briefly review the Markovian framework considered in Shaha-
buddin[36] and results for regenerative-cycle-based meas@®stion 3 contains
asymptotic expressions for the unreliability and the variance of unreliability esti-
mates without and with importance samplifigne bounded-relative-error property
of the estimate of the unreliability for the small-time-horizon case is proven lmere
Section 32, we explain why the efficiency deteriorates for large-time-horizon cases
Then we consider bounds developed in Broj¥j and determine the range of the
time horizons for which these bounds conveifgi@ally, we develop bounds on the
unreliability and investigate their convergenection 4 contains experimental
results Difficult proofs of intermediate results are relegated to the Appendix

2. REVIEW OF HIGHLY RELIABLE SYSTEMS AND FAST SIMULATION
2.1. CTMC Models of Highly Reliable Systems

We further elaborate on the description of the highly reliable Markovian systems
presented in Section. 1et there beR types of components in the system with
components of type Some of then; components can act as spares for that tizpe
N be the total number of components of all types in the systemN = > n;).
There are many repairman classes in the systéth a finite number of repairmen
in each repairman clasEach component type is assigned a repairman cldss
component types assigned to a repairman class are divided into priority classes and
repaired in a preemptive or nonpreemptive manAay service discipline can be
used for members of the same priority class

Let{X(t):t= 0} be a CTMC mode{assume left-continuous with right limjts
of a highly reliable Markovian systentor the simplest such systeX(t) =
(Xq(t), Xs5(1),..., Xg(t)), whereX;(t) is the number of components of typthat are
failed. For the generahighly reliable Markovian systems we consigdee have to
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add some more process descriptors in the state of the syBte@xamplewe might
have to add an ordered list of components waiting to be repaired in each repairman
class The following analysis is independent of which definitionoft) we use
Transitions in the CTMC correspond either to a component failivigich may
cause the instantaneous failure of other components through failure propagation
a component completing repaive will refer to the first as a “failure transition” and
to the second as a “repair transitibWe label the state with all components uplas
We will also usel to denote the set of states that contains only the single &tate
Assume thaX (0) = 1 unless stated otherwisket Sbe the set of states that are ac-
cessible froni. For the purpose of simulation analysige will restrict{X (t) : t = 0}
to the set We partitionSinto two subsetsS= U U F, whereU is the set of up states
andF # J is the set of down state®©f course 1 € U and the state where all
components are failed is . We will need the following assumptions

(A.1) The CTMC is irreducible over the s&t

(A.2) From all states irBexceptl, there is at least one repair transitiomith
positive probability.

(A.3) From all states ifJ, there is at least one failure transitiomith positive
probability).

(A.4) From1, there is at least one failure transition to a stat&in- 1 (with
positive probability.

Let Q = {q(x,y), X,y € S} be the rate matriXalso called the infinitesimal
generator matrixof the CTMGC In this matrix we arrange the states in the order of
increasing number of components fail@thus the first state is one in which no
components are failed.e,, 1). This is followed by states in which exactly one
component is failed and so obet q(x) = —q(x, x) denote the total rate out of state
x andh(x) = 1/q(x) be the mean holding time in that stakgom (A.2) and(A.3),
g(x) > 0for allx € S Let ® denote the probability measure on the sample paths of
this CTMC. For anyE C S letTg = inf{t > 0: X (t—) & E, X(t) € E}. Of particular
interest arel; andTg.

Let{Y,:n= 0} denote the embedded discrete-time Markov ci®MC) of
{X(t):t = 0}; that is {Y,: n = 0} has transition matriP = {P(x,y):x,y € S},
whereP(x,x) = 0 andP(x,y) = q(X,y)/q(x) for x # y. One can simulate a CTMC
by progressively generating the next state of the embedded DTMC and generating
the random holding time in that statéor anyE € S let7z = inf{n=1:Y, € E}.

Of particular interest are; andrr.

As is well known positive-recurrent CTMCs are regenerat{geg e.g., Crane
and Iglehart 8] for the definition in nature In the following study we will be
considering system regenerations that occur when the system enterk steday
regenerative cycléet Z be the random variable denoting the holding time in state
and letW be the remaining time until either stdtés reachedagain or the system
fails. In mathematical termaV = min(T,, Tg) — Z, whereT; andTe are measured
from the start of the cycléVe will let W (resp, W) be the random variable having
the distribution ofW given that a system failur@esp, no system failurgoccurs in
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a regenerative cyclénother quantity that will be used in the following analysis
willbe y =P{T: < T;} = P(7¢ <) (i.e, the probability of system failure occurring
in a cycle. Assumption(A.3) ensures thay is not trivially equal to zeroAssump-
tions (A.2) and(A.4) ensure that X y is not equal to zerd~or any regenerative-
cycle-based random variableay W, we will useW to denote its value in thigh
regenerative cycle

2.2. Modeling Highly Reliable Components

In mathematical models of highly reliable Markovian systeting failure rate of any
componentsay componerit, is assumed to be of the forme", wheree is a small
positive parameter called the rarity paramgteandA; are positive constantSha-
habuddin 36]; see also GertsbaKi0]). Letro = min{r,,...,ry} > 0. Because the
repair rates are large compared to failure rates repair rate of componentis
represented by a constant> 0. The failure-propagation probabilities are either
assumed to be constants or of the same form as the failure (fatesonstants
multiplied bye raised to positive poweysOnce we introduce thisparameterization
then the performance measures become functioastddwever for simplicity, we

do not specify this dependence in the notatfeor examplewe continue to use for
what should ideally be denoted lye). In highly reliable Markovian systemghe
aim is to study the performance measures and the variance of their estimators for
smalle.

This particulare-parameterization guarantees thatQfx,y) > 0 (resp,
P(x,y) > 0) for somee = ¢y > 0, thenQ(x,y) > 0 (resp, P(x,y) > 0) for all
0 < e < €. Given the arrangement of statesQnthat we mentioned earligit can
easily be seen that all the elements above the diagon@@eand all elements
below the diagonal ar®(1). (A functionf (¢) is defined to b&(e) (resp, O(e?)),

d = 0, if there exists a constamt such that/ f(e)| = Ke9 (resp, = Ke?) for all
sufficiently smalle. A function is said to be(e%), d = 0, if it is both O(e®) and
O(e%); that is a function isQ(e9) if it is exactly of ordere?. A function f(e) is
defined to beo(e®), d = 0, if |f(e)|/e® — 0 ase — 0.) This structure played an
important role in the steady-state-simulation analysis of highly reliable Markovian
systems in Shahabuddig6].

One key property of highly reliable Markovian systems that will be used later is
the special structure of the regenerative cyBlecause staté has no repair transi-
tions q(1) is Q(e™) since it is the sum of only component failure ratds impor-
tant consequence of this is tHatZ) is Q (e ). By Assumption(A.2) and the fact
thatp;’s are positive constantae have thag(x) = Q(1) for all x € S— 1. Finally,
as mentioned earligrepair rates are very large compared to failure ratksng
these three factsve see that most of the regenerative cycles consist of a long time
interval in which the system is in statie after which there is a single failure
transition (which might correspond to more than one component failing because
of failure propagatio)) followed by a short time interval in which the failed
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components are repair¢aind thus the cycle completehis is the intuition behind
the fact shown in ShahabuddiB6] thatE(min(Tg, T;)) = E(Z + W) is of the same
orderas€(Z) (i.e, Q (e ")). Using similar methodsve can show that the expected
regenerative-cycle timé&(T,), is alsoQ (e ) and that=(W), E(W), andE(W?)
areO(1). For completenesshe formal proofs are given in the Appendiwas also
shownin[36]thaty = Q(e"), wherer is some nonnegative number depending on the
structure of the systensing the fact that the mean time to system failvi TF)

for regenerative systems can be expresseH (asin(T:,T,))/y (see e.g., Goyal

et al [15]), we see that the MTTF iQ (e~ (o™ "),

2.3. Importance Sampling for Highly Reliable Systems

Consider the problem of estimating the probahijlityof a rare evenfX € A}, where
X is a random sample path with probability meas@@&ndA is a rare setThe
“naive” way of estimation is to generate sampleXggayX, Xo,..., X,, from® and
then form the sample meap_; 1 (X; € A)/n wherel (-) is the indicator function
of the event inside the brack@&the variance of this estimator (& — a?)/n ~ a/n,
asa is small The expected half-width of the 10D— §)% confidence interval
HW, is proportional to\a/n. Thus the relative erroRE), which is defined by
RE = HW/a, is proportional to\'1/an. For fixedn, asa — 0, RE — co. This is
the problem with naive estimation of the probability of rare events

In importance samplingve use a change of measupg,,,, such that for each
sample pathx € A, ®,..(X) > 0 if ®(x) > 0. Then we can expresa as

a=E(I(X€EA)

= f L(X) dq)new(x)

= By, (1 (X € A)L(X)), 1)

whereL(x) = d® (x)/d®,ew(X) whend®,.,.(X) > 0 and 0 otherwiselhe functionL

is the Radon—Nikodym derivatiyé is also called the likelihood ratid@he subscript

in the second expectation operator denotes the new probability measure under which
the expectation is takeEquation(1) forms the basis of the technique of importance
sampling The last expectation term suggests that we use the probability measure
®,..(-) and generate the samplex;, L(X;)). Then a new unbiased estimator is
given by

n

1
200X € ALX))
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and its variance is

1 1
a (B, (1l (X E ALZ(X)) — a?) = a (E(1(X € AIL(X)) — a?).

new

The main problem in importance sampling is to find an easily implemenihlg
so thatE(l (X € A)L(X)) < a, and so the variance of the new estimator is signifi-
cantly less than that of the naive one

The most common importance-sampling technique used for highly reliable sys-
tems is failure biasingproposed by Lewis and Bohfi25]. The basic idea behind
failure biasing is to make component-failure transitions in the embedded DTMC
happen with a probability that is much higher than in the original systestatel,
there are no repair transitionshereforewe do not need to failure bias in this state
However in states that have both failure and repair transititims total probability
of repair transitions= 1 and the total probability of failure transitiorsO0. In such
statesthe total probability of failure transitions is increasedtavhered is some
constant(i.e,, it is independent ot) between 0 and 1 that is significantly larger
than the failure transition probabiliti€g practice 6 is typically taken to be ®).
Therefore the total probability of repair transitions is decreased te #. In a
version of failure biasing called balanced failure biagi@gyal et al[ 15] and Shaha-
buddin[36]), the probability of each failure transitigthat had positive probabili-
ties in the original systejmconditioned on the event that the transition that occurs
is a failure transitionis made the samighis is also done in staty. The probability
of each repair transitigrconditioned on the event that the transition that occurs is a
repair transitionis left unchanged_et P’ be the new transition-probability matrix
corresponding to balanced failure biasimfdpte thatP’(x,y) > 0 if and only if
P(x,y) > 0.

We will now review the order of magnitude results for the variance associated
with importance sampling in the estimationyafTo obtain a sample df(T: < T,),
we need only simulate one regenerative cycle of the CTWI@s v is called a
“regenerative-cycle-based measti®ther examples of regenerative-cycle-based
measures are(W), E(WI(Te < Ty)), E(WI(Tz > Ty)), E(Ty), andE(min{Tg, T }).
Let ®” be a change of measure on the sample paths of the CTMC where W use
until time min(Tg, T;) and therP after that For any stopping time of the embedded
DTMC, define

Let 7nin = Min(7g, 71). Then in the same spirit as E@1), we can write

E(I(Te <Ty)) = Epr(I(Te < TYL, ).
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The variance of the importance sampling estimatgf(®”) = Vary, (I (T <
T)L. ). isgiven byoZ(®") = Ey (I (T < T)LZ ) — y? LetoZ(®) be the vari-
ance of the naive estimator

The following theorem was proved in Shahabudi86] under the following
strengthened version of Assumptioh.4):

(A.4") Forallx € F, P(1,x) is 0o(1) (this implies that there existse U — 1
such thatP(1,x) is Q(1)).

THEOREM 1: Bothy ando?(®) are()(e"), where r is a positive constant depending
on the structure of the system, th&,rand the failure propagation probabilities.
Also, E,»(I(Te < T)L2 ) isQ(e®") and, sooZ(®") is O(e?").

This theorem implies that we get a bounded RE in the estimatign©fie can
prove similar bounded RE results for other “rare” regenerative-cycle-based mea-
sures likeE(WI(T: < T,)). Moreover observe that Assumptiai.4’) is not at all
restrictive If it does not holdtheny is Q(1) and we do not have to use importance
sampling to estimate.inless otherwise stateth the following sections we will
assume that Assumptionis.1), (A.2), (A.3), and(A.4’) hold.

For transient measures like the unreliability and expected interval unavailabil-
ity, in addition to failure biasingwe have to use another technique called forcing
(Lewis and Bohnj25]). If the time horizon is orders of magnitude less tH&iZ),
then the system will fail very rarely if0, t ], even though we failure bia$o avoid
this, the time of the first event is sampled from the distributiorzafonditioned on
the factthatitis less thanBecause is exponentially distributed with ratg 1), the
time of the first event that we use in the simulation is sampled from the distribution
function given by

1— e dDs
F(S) = T emam

where O=s=t.

3. ESTIMATION OF THE UNRELIABILITY

Given a finite time horizon, the unreliability U (t), is defined to be the probability
that the system fails before timeiven that it starts in statg that is

U(t) = P(T: <1). (2)
We wish to estimate the unreliability of the system for different orders of magnitude

of the time horizonA modeling technique that is used in Shahabud@&®s] and
Shahabuddin and Nakayaf&8] is to representas being) (e "), wherer, = 0, and
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then model different orders of magnitude of the time horizon by vargingence
forr, =0, tis of the same order as the expected repair tirapd forr, = ry, t is of
the same order as the expected first component-failure time in the sgstéah is
of the same order as the expected regenerative cycle.tifoer, = ro +r, tis of the
same order as the MTTF

In the following subsectiognwe will prove that a combination of forcing and
importance sampling gives bounded RE in the estimation of the unreliability for the
case where; = 0; that is the time horizon is “small Before that we will need
to significantly extend the importance-sampling theory developed for “rare”
regenerative-cycle-based measurelsich was partially reviewed in Section3 to
a “nonrare” measuren particular the following proposition is crucial to the main
result of the next subsectiohhe proofis technicabko itis deferred to the Appendix

PROPOSITION 1: Egr (I (Te > T))L2 ) —1=Q(1).

3.1. The Small-Time-Horizon Case

We can express the unreliability BEt) = E(I (A)), whereA is the even{T: < t}.

Let ®' be the new measure on the sample pathiXdf) : t = 0}, in which in each
replication we us®’ until the system fails anB from then onFor the unreliability

for each samplewve only need to simulate the CTMC until either the system fails or
the time horizon is exceedetlet ®r,.,q e the measure corresponding to both
balanced failure biasing and forcinthe varianceswithout and with balanced fail-

ure biasingare denoted by5,,(®) ando3 (@), respectivelyThe variance with
balanced failure biasing and forcing is denoteddg;,(®orcing)- The following
theorem provides the orders of magnitude of the unreliability and the variances of
its estimators when the time horizon is small

THEOREM 2: Consider the case where=t Q(e") with r, = 0. Then, both Wt)
and o3, (®) are Q(e""). Also, 05 (®') = O(e**") and o) (Prorcing) =
O(e2*0)) (r is the same as in the order of magnitude expressionfan
Theorem 1).

From Theorem 2we get the following corollary

CoroOLLARY 1: The RE usin@®r.ing (COrresponding to a fixed00(1 — §)% level
of confidence), for a fixed number n of replications, remains bounded-a®.

Lemmas 1 and 2 give bounds bKt) that are used to prove the order of mag-
nitude result forU(t) in Theorem 2 The result foro3,,(®) is a consequence of
the fact thar3,(®) = U(t) — U 2(t). To simplify notation let g = q(1). LetK be
the random variable denoting the number of times the Markov chain is in ktate
(including the first timg before hitting a state ifr. Clearly K has a geometric
distribution with parametefi.e., success probabililyy.
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LemMMaA 1: LetU(t) =1 — e 9%, Then, for alle and t,

U(t) = U0().

Proor: LetW,, be the total amount of time the CTMC spends in states otherlthan
before hittingF. Let fy,_,(-) be the density oM, given thatk = k and let
Erlang(g, k) denote an Erlang random variable with rgtand shape parametkr
For a real-valued, let (a)™ = max(a,0). Then

[ee]

u(t) = kE P(Te < t|K = kW = ) fuy_yi(s) ds(L — )<ty
=1

s=0

kz fOP(ErIang(q, K) < (t— 9)*) fy () dS(1— y)< 1y

IA
M

fooo P(Erlang(q, k) = t) fyy_jk(s) ds(1 — y)* 1y

~
Il
[y

= i P(Erlang(g, k) =t)(1— y)< 1y
k=1

qe %y X, —  — ——ds

f‘ & [gs(1—y)]<t
N ior (k=1)!

t
f gye 9y ds
s=0

=1—eg Mt u

LEMMA 2: Let gyin = min(gq(x):x € U — 1). Then, for alle and t,
U(t) = Q(e")(1— e ) (1— e dmnt/k)kL,
where k is some constant.

Proor: From Shahabuddif36], it can be shown that there exists a sequence of
transitions that start from statend reach a state Fwithout reentering statesuch
that the product of their probabilities {3(e"). All other paths have probability of
orderO(e"). In highly reliable systems terminolodgee e.g., Gertsbakt 10]), this

is one of the “most likely paths” to system failudest (Xg, X1, X5, ... X)) be the se-
quence of states visited in one such patherex, = 1 andx, € Fandx; e U — 1
forl=i <k Then
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U(t) = 2 P{TF St,TF = |}2 P{TF St,TF = k}

i=1

= > PYo=1Y1=Y1,....,Yx =Yk, e =t}

Y1€EU,..., Yk-1EU,yEF

= P{YOZ 17Yl: Xl’“"Yk:XkaTF St}

t = t—(to+ty+ - +tye_p)
= f f f P(l,xl)P(Xl,Xz)...P(Xk_l,xk)
t—1=0

X g(xo) e~ og(x;) @70V .. (X, 1) € IV dig dty -+ - Aty

ft‘/kf fk ) OP(1,x1)P(X1,Xz)”‘P(XH’XK)

X q(xo)e9*oq(x,) e 9V h. .. (X g ) IV dg dty -+ - ity
= P(1,%1)P(X1,X2) - -+ P(Xi-1, Xi)

X (1— e*qt/k)(l — efq(xl)t/k).,,(l — efq(xkfl)t/k)
= 0(e)(1— e WK)(1— et

where the inequality in the fifth line above follows from the fact that the region of
integration in the fifth line is contained in that of the previous line u

In the same spirit as Eq1), we can writeU (1) = E(1(Tr < 1)) = E, (1 (Tg <
t)L,. ) because we terminate a replication once the failed state is reached
Hence now we can us@’ and obtain samples ¢f (T < t),L,_). Consequently
if we use balanced failure biasinghe new variance is given by3.,(®') =
Var, (1(Te < t)L, ) = Eo (I(Te < t)LZ) — UZ(t).

Lemma 3 which follows gives an upper bound d&, (I (Tg < t)LEF) which
will enable us to evaluate the order of magnitude @f. ) (®'). Let D =
Eor(I(Te < TYLZ ) = E((Te < TL, ) andB = Eqr(1(Te > TYLZ ) =
E(I(Te > TYL, ), whered” has been defined in Sectior82The order of mag-
nitude ofD (resp, B — 1) is given in Theorem 1resp, Proposition 1.

The key to this result lies in the fact that we can decompose the likelihood ratio
L., into a product of likelihood ratios over individual cycléor any sample path
with K = k, we can write

L = |_(1)L(2). .. L(k)
TE 9

whereL ") represents the likelihood ratio over tith regenerative cycle in the sam-
ple path Given K = k, the L") are mutually(conditionally) independentwith
L®,..., L% having the distribution of . given that{r; < 7¢} andL™ has the
distribution ofL,_ given that{r; > 7¢}.
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LEmmaA 3: For all e and t,

Eo (1 (Te <t)L2) = (eB-Dat — 1), (3)

B—-1

Proor: In the same spirit as E@l),

Eo (1(Te < OL2) = E(I(Te <)L,

8

E((T- <t)L, [K=Ky@d—-y)k?

x~
Il

[
Ms

E(I(Zl+W1+ s +Zk+Wk<t)LTF|K: k)'y(l_'y)k71

x~
I

1

8

=D EN(Zi+Z,+ - +Z <t |[K=Ky(d—y)* L 4)
k=1

GivenK =k, (Z, + Z, + --- + Z,) is (conditionally independent of ,_. Therefore
we can write

E(I(21+ZZ+ e +Zk<t)LTF|K:k)
= E((Zy+ Zy+ -+ + Z < )|K = KE(L, |[K=k)

and
E(L,.|K=k) = E(LOLP...L®0|K =Kk)

= (E(L |71<7'F))k_lE(|-

Tmin Tmin | T1 > TF)

_< B >k—12
\a-v/) ¥

Substituting this in Eg(4), we obtrain

Eo (1(Te <t)L2) = > P(Erlang(g, k) < t)B*'D.
k=1

Carrying out the necessary algepnae get the result of the lemma u

We will now describe the contribution of forcing to the reduction in variance
Recall that®r,,.ing denotes the new measure on the sample pathX @f : t = 0}
when with balanced failure biasinge., ®') we also use forcingThen we have
the following lemma

LEMMA 4: O'S(t)(q’l/:orcing) =(1-e MEy(I(Te = t)l—g,:) Y z(t)~
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PrOOF: Let Leqgcing b€ the likelihood ratio incurred due to forcinlote that
Lrorcing= 1 — e 9. Then

aﬁ(t)(q’l/:orcing) = E«b,’:orcmg(l (Te = t)LEF L|2=orcing) -u Z(t)
= E(b’(' (TF = t)L72-F LForcing) -u Z(t)
= (1-e MEy(I(Te =)L) — U2(0). u

PROOF OF THEOREM 2: From Lemma 1we get thatJ(t) is O(e"*'). Becausey is
Q(e™), we have thatl — e 9K) is Q(e"0). Moreover sinceqm, is (1), we have
that(1— e~ 9mn'/%) js alsoQ (1). It then follows thatU (t) is O(e"*") and we get the
first part of the theorem

From Theorem Jlwe see thab = Q(e2"). Using Proposition 1 and the fact that
e*=1+ x+ o(x), we get thae®B"a — 1 jsQ(e"). Thereforeby Lemma 3we get
thatE, (I (Te <t)L2) isO(e* *'). Hence 0§ (®') = Eqo (I (Te < t)L?) — UZ(t)
is O(€2"""0), Then using Lemma 4we get that

U&(t)(q);:orcing) = (1_ eiq[)Etb’(I (TF < t)LEF) -u Z(t)
= Ot (1 (T, < OL2) — U2(1)
= Q(e)Ey (I(Te < t)LZ) — U3(1)

— Q(ErO)O(EerO) _ Q(ez(rﬂo))

— O(€2r+2r0)- ]

3.2. The Large-Time-Horizon Case

Consider the following generalization of Theorenwhich gives the orders of mag-
nitude of the variances of our estimators for large time horizons

THEOREM 3: Consider the case of large time horizons where f2(e™") with
0 = ry = ro. Then, both Wt) and o5, (®) are Q(e"* o) and o) (Prorcing) =
0(62(r+r0—rt)).

The proof of this theorem follows from Lemmas 1-4 and Proposition 1 by
substitutingt = Q(e") in all of the expressions involvingand using the same
method as in the proof of Theorem 2

We saw in the previous section that for smalor the bounded RE property
to hold the variance reduction using importance sampling had to be of the same
order as the unreliabilityFrom Theorem 3we see that for the case of large time
horizons we also get a variance reduction that is of the same order as the unrelia-
bility as long as¢ = r,,.
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Let

V(t) = (elB-vat —1),

B-1

We can easily show that for€ r; < rq, Eq (1 (T < t)LEF)/\7(t) — 1lase — 0. We
conjecture that this holds even figr< r, < ro + r,. If this conjecture is trughen we
have an approximate expression for the variance for the caseaibemall Then
itis easy to see why simulation using importance sampling becomes very inefficient
for the case wherg > rq. This is also explained by the results in Glyfiil]; the
variance of the likelihood ratio increas@sughly) exponentially fast in the number
of transitions of the Markov chainn experiments in NicolaNakayamaHeidel-
berger and Goyal30], it is shown that even for the case whefe= r,, one has
to tune the value of the failure-biasing parametdy trial and errarwhich can
be computationally expensividence for the case wherg = r, it is best to use the
“bounding approachas mentioned in Section. 1

Motivated by this we now investigate bounds on the unreliabiliys men-
tioned in Section Ibecause the system is regeneratikie time to failure is roughly
a geometric sum ofii.d. random variablesThere is some literature on bounds on the
distribution function of such random variab)eghich, in our casecorresponds to
the unreliability We investigate the bounds given[#]. For completenessve first
present the bound in its original foriVe then adapt it to the reliability model
described in this articleLet V; (generically denoted by ) be ii.d. nonnegative
random variables and I8t be another nonnegative random variable independent of
theV)’s. LetT= 3 "V, + V', whereNyis a geometric random variabliedepen-
dent of theV;’s andV', with probability of “successp (i.e., P(No=i)=(1—p)' *p
fori = 1). It is well known in the literaturde.g., Keilson[24] and Solovye\40])
that asp — 0, T converges in distribution to an exponentially distributed random
variable with meare(T). Here E(T) = (1 — p)E(V)/p + E(V’). Theorem 22 of
Brown[4] gives the following bound

E(V2) E(NV) 1
(vV®) ) )p. 5)

- — _ o tEM)| <
Pr=0=@a=eml < E2V) T EV) 1-p
In our setting a “success” in the geometric random variable definition corre-
sponds to system failure happening in a regenerative cyldee specificallyif we
defineNy=K,Vi=Z+ Wfor0=i=K—1 V' =27 + W (recall thatw is the
random variabl&\ conditioned on no failure event occurring in that cycle and that
W is the random variablé/ conditioned on a failure event occurring in that cycle
andp =, thenT=T:. Animportant point to note is that in our settirgyen though
W is not independent &€, theW,, 0= i = K — 1, andW are independent ¢€. Also,

1-v) (1/9) + E(W)
» —_—.

Y

E(Te) =

E(Z+W)+E(Z+W)=
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DefineUy(t) =1 — e VBT Let =1 (T < Ty) (resp, | =1 (Tz > T;)) and define

E((Z+W)2)+E(Z+W) 1 )
E2Z+W)  E@Z+W) 1-y)7

=[y(3—5y +2y?) + EW)q(4y — 2y? — 1+ qE(W))
+ E(W?1)g?(y — v?) — g°E*(W1) + E(W)q(1— )]
X [(1-y)?+2q(1—y)E(WM) +g*°E2(WI)] (6)

Uerr,b(t) = (

Then using Eq (5), we see that upper and lower bounds Wft) = P(Tg = t)
are given byUy(t) = Up(t) + Ugp p(t) andUy(t) = Up(t) — Ueq n(t), respectively
The bounds are in terms of regenerative-cycle-based measures

The quality of any upper bound and lower bound combination depends on how
close they are to each oth&efine therelative error of the boundé&his should not
be confused with the relative erf&®E, in the simulation contexthat was defined
earlien, REB, to be the difference between the upper bound and the lower bound
divided by twice the measure of intere¢The “twice” is motivated by the fact
that if we use the arithmetic mean of the upper and lower bound as an approximation
for our measure of intereghen the relative error between the approximation and
the actual value is always less than REB this case the REB is given by
REBy(t) = (Up(t) — Up(t))/2U(t) = Uep p(t)/U (1)

THEOREM 4: Ifry > g, thenUey n(t)/Up(t) = 0ase — 0; if ry = rg, thenUgy p(t)/
Up(t) isQ(1); if ry < rg, thenUg, p(t)/Up(t) — oo ase — 0. Hence, RER(t) — 0,
ase —» Oifand only if r, > rg.

Proor: We use the representation given in.E6). AssumptiongA.2) and(A.4")

imply that 1— vy is Q(1). Using the orders of, 1 — y, E(W), E(W), E(W?), and
E(Z) (see Sect2.2), we get thatE(Z + W) = Q(e ), E(Z + W) = Q(e "),

andE((Z + W)?) = Q(e~%). ConsequentlyUe,, ,(t) = Q(e"). Moreover since
E(Te) = Q(e "), Up(t) = Qe ") forr, < r + rp and Uy(t) = Q(1) for

r.=r + rq. The result for all three cases follows from these fa€tse last part of
the theorem follows from the fact that

Uerr,b(t) < 1 ) - REaa(t) - Uerr,b(t) ( 1 >
Ub(t) 1+ Uerr,b(t)/Ub(t) N B Ub(t) 1- Uerr, b(t)/Ub(t) )
Therefore REB,(t) — 0 if and only if Ugy p(t)/Up(t) — O. |

We also tried using the bounds in KalashniK@8], but there seems to be
some error in the boundMoreover as mentioned earlisthe bounds do not make
use of the special structure of the regenerative cydlest is they do not make
use of the fact that mifT,, T-} = Z + W, whereZ is exponentially distributed and
E(Z) > E(W). The following theorem provides bounds that make use of this special
structure
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THEOREM 5:

(@) LetU(t) =1 — e . Define I=I(t,q) = max(Vt, tvg) and letU(t) =
U(t) — Ugy(t), where
E(W)

Uer (1) = (eyq(tl) —e it ——(1— e*yq(tfl))
vl

gt = DEWI(T, < T¢)) e_yq“_.))

| (7
Then,U(t) =U(t) = U(t) forall eand t.

(b) Let REBt) denote the REB in this case. For » 0, REB(t) =
(U(t) — U(1))/2U(t) = Ug, (1)/2U(t) = 0 ase — 0.

Remark 1: These bounds are in terms of regenerative-cycle-based measures

Remark 2: These bounds converge for a much wider range of the time horizon as
compared to the range in Theorem 4

4. EXPERIMENTAL RESULTS WITH A LARGE MARKOVIAN MODEL

We took an example of a large computing system originally considered in Goyal
et al [15] and subsequently in many other articl&€he system is depicted in Fig-
ure 1 It consists of two sets of processors with two processors petveesets of

disk controllers with two controllers per sand six clusters of disks with four disks
per clusterin a disk clusterdata are replicated so that we can have one disk fail
without affecting the systenThe failure rates of processorntrollers and disks

are assumed t0 bgys, 005 aNdsags PEr housrespectivelylf a processor of a given

Processors l A ‘-_-I
=

Disk
Controllers |

Disk Cluster 1 Disk Cluster 3 Disk Cluster 4 Disk Cluster 6

Ficure 1. Block diagram of the computing system modeled
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set fails it has a 001 probability of causing the operating processor of the other set
to fail. Each unit in the system can fail in one of two failure modes which occur with
equal probabilityThe repair rates for all mode 1 and all mode 2 failures are 1 per
hour and; per hourrespectivelyThe system is defined to be operational if all data
are accessible to both processor typelsich means that at least one processor in
each setone controller in each seind three out of four disks in each of the six disk
clusters are operationalVe also assume that operational components continue to
fail at the given rates when the system failed

To keep the state space within manageable limtsrder to facilitate compar-
ison with approximate numerical results from SAVEoyal et al[15] assumed that
after each transitiofwhether failure or repairthe repairman picks a component at
random from the set of failed componenits this way the state variable does not
have to include the order of components waiting at the repair qir@u¢he purpose
of comparisonwe first use the same repair disciplineter, we also consider the
same example with first-come first-serveledCFS, where the numerical methods
implemented in SAVE cannot be used

In order to see the effect of our simulation schemeésestimate the unreliabil-
ity for different values of the time horizon using different techniqUé=® results are
presented in Table. The time horizon is given in the first colummhis model has
1,265625 states and is thus very difficult to solve by exact technigBeyal et al
[15] used SAVE to numerically compute approximations for values of the time
horizon up to 1024but give no bounds on the approximation erktle used SAVE
to complete these computations for the other time horizélhthese are reproduced
in column 2 The third column gives the estimate and the RE corresponding to
99% confidence interval€ls) if we use naive simulatiarThe fourth column gives
the estimate and the RE using failure biasing and forcitach of the naive and
importance-sampling-simulation cases were simulated fof0000eventsin the
fifth and sixth columnswe estimate the bounds of Browd] mentioned earlier
(henceforth referred to as.B. bounds. We do this by running 1 simulation of
400,000 events and estimatingE (W), E(WI(T, < Tg)), andE(W?2I (T, < Tg)). We
then used them to compute the boundsdbrt. These regenerative-cycle-based
measures can be estimated using the dynamic importance sarfplBigapproach
with balanced failure biasing as described in Goyal efid]. For building confi-
dence intervalsve use the delta methdd.g., see Serflind34, p. 124]) to establish
a central limit theorem

Next, we estimate the bounds which we develodedhis caseone has to first
estimate the regenerative-cycle-based measyeéwW), andE(WI(T, < Tg)). The
last two columns of Table 1 give the experimental results using these new hounds
We again use 1 simulation run of 4000 events to estimate the bound for tall
Compared to the MB. boundsit is simpler to build confidence intervals in this case
asthere are fewer measures to be estimated and the expressions are less complicated

In this exampleE(T,) =~ 125 andE(T:) ~ 152,240 For time horizons that are
significantly larger than 125one should not expect balanced failure biasing and
forcing to work well One can observe in Table 1 that for time horizon 1024 and
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TaBLE 1. Estimates of the UnreliabilityBrown’s[4] Bounds and the New Bounds

Approx Naive Sim Imp. Samp M.B. LB M.B. UB New LB New UB
(SAVE) Est and RE Est and RE Est and RE Est and RE Est and RE Est and RE

t (X 1073) (X 107%) (X 1073) (X 1073) (X 107%) (X 1073) (X 1073)
4 0.0153 00184+ 97%* 0.0154+ 4% —-23+3.7% 234+ 3.7% 0002+ 29% Q025+ 3.7%
16 00873 Q0871+ 49%* 0.0902+ 3.8% —22+37% 242+ 3.7% 004 + 4.8% 010+ 3.7%
64 0.380 Q417 + 28%* 0.381+ 4.3% -19+3.7% 271+ 3.7% 0258+ 3.9% 0399+ 3.7%
256 155 171+ 22% 158 + 5.6% —0.7+ 3.6% 389+ 3.7% 125+ 3.7% 159+ 3.7%
1,024 623 628+ 21% 622 + 21%* 396+ 3.7% 860+ 3.7% 532+ 3.7% 636+ 3.7%
2,048 124 151+ 19% 106 = 37%* 102+ 3. 7% 149 £ 3.7% 107 £ 3.7% 127+ 3.7%
4,096 249 242+ 21% 929 + 38%* 226 £ 3.7% 272+ 3.7% 214+ 3.7% 252+ 3.7%
8,192 478 525 + 20% 147 + 118%* 469 + 3.6% 515+ 3.6% 425 + 3.6% 498 + 3.6%
16,384 953 96.1+ 20% 106 + 46%* 936 + 3.5% 983 + 3.5% 832 + 3.6% 971+ 3.5%

Note: The asterisk indicates that the estimate of the quantity @anits variance was highly unstable
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beyond the estimates of the unreliability afar their REs using balanced failure
biasing and forcingbecome highly unstablén fact, we suspect infinite variance
either in the estimation of the quantity or its RE this range of the time horizgn
that is no matter how long we run the simulatiome will never get stabilityThe
estimates of the MB. bounds are “satisfactoryive define this to be less than 10%
REB) only for time horizon 4096 and beyonidowever for all time horizons where
failure biasing and forcing do not work weille., time horizon 1024 and beyond
the estimates of the new bounds are satisfackwoyvery large values df estimates
using MB. bounds do better than those using the new oHesice these could be
used for better accuracy for the higher time ranges

To verify the robustness of our methods for simulating rare eyam@gonsider
a more “rare” case where all the failure rates and the failure propagation probabili-
ties are reduced by a factor of 100¢e also use the FCFS service disciplihethis
caseE(T;) =~ 12500 andE(Tg) ~ 16.44 X 108. As earlier a total of 400000 events
were simulated for each casEhe results are presented in Tablel this case
importance sampling starts to become unstable from time horizoraritDoeyond
and we note the same relative trends in the bounds as we did darheldition the
RE using naive simulation goes up about 10 times from the previous less raye case
however the relative errors in the simulation of the bounds are almost unchanged
All of the (estimatedl REs in the estimates of the boundgcept fort = 10, ranged
from 3.7% to 38%.

In these experimentswe used balanced failure biasing to estimate the
regenerative-cycle-based measufesmentioned earliethis is guaranteed to pro-
duce a bounded RE in the estimation of these measti®sever other failure-
biasing schemes that are efficient in practieg., the failure distance scheme of
Carrascd5]) can also be used in the estimation of these regenerative-cycle-based
measures

5. DISCUSSION AND OPEN PROBLEMS

In this article we discussed the estimation of the unreliability in large Markovian
models of highly reliable system@d/e show that for small time horizopgimulation
using the importance-sampling techniques of failure biasing and forcing are prov-
ably effective For large time horizonssimulation using the above techniques be-
comes difficult In this casethe approach used is to first bound the unreliability in
terms of regenerative-cycle-based measures and then estimate the regenerative-
cycle-based measures using importance sampWegexplore bounds existing in
the literature and develop some bounds of our own

For the small-time-horizon case, = 0), this work complements the work in
HeidelbergerShahabuddirand Nicolg 18] and Nicola et al30], which deals with
the estimation of transient measures and proving corresponding BRE results for
non-Markovian reliability modelsHowever the frameworks used for simulation
and thus importance sampling in the non-Markovian setting are very different
from those used for Markovian models particulay a discrete-event-simulation
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TaBLE 2. Estimates of the Unreliability and the Bounds for Another Model

Naive Sim Imp. Samp
t Est and RE Est and RE MB. LB Est M.B. UB Est New LB Est New UB Est
10 N/A 5.02E— 9+ 3.9% —2.27E-5 227E-5 190E-9 6.05E-9
102 N/A 6.03E— 8+ 4.1% —2.26E-5 2.28E-5 451E-8 6.05E-8
10° N/A 5.98E—-7 £ 4.2% —2.21E-5 2.33E-5 553E-7 6.05E-7
10* N/A 594E-6 £ 4.7% —1.66E-5 2.87E-5 5.85E-6 6.05E-6
10° 4.27E— 5+ 257%* 488E— 5 £ 12%* 378E-5 8.32E-5 595E-5 6.05E-5
106 4.04E— 4 £ 257%* 686E— 5 + 16%* 582E-4 6.28-4 596E-4 6.05E-4
107 7.97E— 3 + 181%* 865E— 5 + 36%* 6.01E-3 6.01E-3 594E-3 6.03E-3
108 7TA1E— 2 £ 175%* 852E— 5 + 35%* 587E-2 587E-2 578E-2 587E-2

Note:All of the (estimatedl REs in the estimates of the bounécept fort = 10, ranged from 37% to 38%. The asterisk indicates that the estimate of the quantity @nits variance
was highly unstableThe N/A indicates that no samples of system failure before tinvere obtained
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approach angbr uniformization is used 18] and[30], whereas the CTMC ap-
proach is recommended and used for large Markovian maedelsSAVE). As was
the case in this articJ¢éhedirectimportance-sampling approaches describdd &
and[30] do not work when the time horizon is large

For the large-time-horizon non-Markovian case can easily extend the bound-
ing approach in this articldor the case when failure times are exponentially dis-
tributed but repair times are generally distribut&tis is because the regenerative
property is still preserved and one can use the techniques in Nicola]80hand
Nicola, ShahabuddinHeidelbergerand Glynn[31] to estimate the regenerative-
cycle-based measures efficientjoweverresults on the convergence of the bounds
to the actual measuralthough intuitively apparenare difficult to prove rigorously
The development of efficient large-time-horizon simulation techniques in models
for which both the failure times and repair times are nonexponentially distributed is
still an open problebecausgthen the regenerative structure is lost

It should be mentioned that even though we use balanced failure biasing for
estimating the transient measuigsr small time horizonsand the regenerative-
cycle-based measureme could also have used balanced failure transition distance
biasing(Carrascd5,6]) or the balanced likelihood ratio meth¢#élexopoulos and
Shulted 1] and Shulte§39]). Balanced failure transition distance biasing uses struc-
tural information about the system to failure bias aifis tends to produce more
accurate estimateslowever there is an implementation overhead that comes with
using more information that is not present in the case of balanced failure hiasing
Bounded relative error results for regenerative-cycle-based measures in the case of
balanced failure transition distance biasing follow as straightforward extensions of
the work in Shahabuddi86] (see e.g., Nakayamd 27,29] and Nicola et al[32]);
we expect the same to be true for transient measures in the case of small time hori-
zons The balanced likelihood ratio method has empirically been shown to work
better than balanced failure biasing on systems with larger redundamciymum
number of component failures required for the system tg t#dn those originally
considered in SAVEBIum et al [2,3]). Bounded relative error results for estimating
regenerative-cycle-based measures using the balanced likelihood ratio psettiod
an extension of the technique that uses structural information about the system are
also described in Alexopoulos and Shultgsand Shulte$39].
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APPENDIX

We first briefly review the notation and framework considered in Shahab{idéjnLet Ps be
the matrix constructed frof where the rows and columns corresponding to staied states
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in F are removedSince all states represented@ghave at least one ongoing repair transition
Pr is a matrix in which the positive elements above the diag@ra) probabilities of failure
transitiong are of the formce? + o(e9), ¢ > 0, d > 0, wherec andd are generic representa-
tions of constantsThe positive elements below the diagoriaé., probabilities of repair
transition$ are of the formc + o(1), ¢ > 0. Forx € U, let pe(x) = 2yer P(X,Y), pu(x) =
P(x,1), andpo(x) = P(1,x). Let the vectorpg, p1, andpg be given bype = {pe(X): x €
U-—1}, pr={pi(x):x € U -1}, andpo = { po(X) : x € U — 1}, respectivelyAll vectors are
assumed to be column vectoTféie positive elements @f; are of the fornt + 0(1), ¢ > 0, the
positive elements gfe areo(1), and the positive elements p§ areO(1). From Assumption
(A.4), we have that at least one elemenpgfis positive Letv, (x) = P(Tg < T1| Yo = x) and
v, ={v,(x):x € U — 1}. By Assumption(A.3), all elements of/, are positiveBy Assump-
tion (A.1), starting from any state € U — 1, the Markov chain hitd U F with probability 1
Consequentlyforx € U, P(T; < Tg|Yo=Xx) =1 —v,(x). By AssumptionA.2), we have that
all elements ok — v,, are positivewhereeis a vector of 1's

By a matrix or a vector being(e?) (resp, O(e9), O(e9), 0 (%)), d = 0, we mean that
all elements of that matrix or vector acge®) (resp, O(e9), O(e9), Q(e?). It has been
shown in Shahabuddif86] (see the proof of Lemma 3 in that artigléhat there exists a
nonnegative integer constalg such that

S Pk is o). A1)
Therefore
iP‘R is  O(1). (A.2)

i=0

It was shown in Shahabuddi86] that v, = >, Pkpe. Similarly, one can show that
e—v, =27 ,Pkp;. From Eq (A.2) and the fact mentioned earlier that is 0(1), we get
thatv,, is o(1).

Let P be a matrix constructed out &by removing the row and column corresponding
to statel. P has the same structure Bgin the sense that the positive elements above the
diagonal are of the formee? + o(e%), ¢ > 0, d > 0, and the positive elements below the
diagonal are of the forma + o(1), ¢ > 0. Thus

|5' is O(1) (A.3)

WMS

for exactly the same reason as.E4.2).
LEMMA A.1: E(Ty) = Q(e "),

Proor: Leth ={h(x):x € S— 1} (recall thath(x) = 1/q(x)) W(x) = E(Ty|Xo = x), and
W = {W(x): X € S— 1}. Then we have that = h + Ph, from which we getv = SEoPh.

From Assumptior{A.2) and the fact that the repair rates &rél), we get thah is (1), and
so from Eq (A.3), W is O(1). In addition pg is O(1), SOE(T;) = W(1) = h(1) + p{w =
Qe ) +0(1) = Q(e ). n

LEMMA A.2: E(W) and E(W) are O(1).
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Proor: For x € U, let W(x) = E(MIin(Ty, Te)1(Te < T)|Ye = x), and w(x) =
E(Min(Ty, TE) I (Ty < Tp)| Yo =X). Letw = {W(x): x € U — 1} andw = {w(x): x € U — 1}.
Leth = {h(x):x € U — 1}. Note thatw = h o (e — v,) + Prw (the *” denotes the scalar
product from which we getv = 32, Pk(h o (e — v,,)). Then using the fact from Section 2
that 1— vy > 0, we get that

E(W) = E(min(T, Tg) — Z|T, < Tg)

E((min(T, Te) — 2) (T, < Tg))
(1-v)

poW
= = A4
pse—v,) (A4)

In a similar fashionwe get thatv = 372, Pk(h ° v,)) and using the fact from Section12that
v > 0, we get that
E(W) = E(min(T, Te) = Z|T- < Ty)

T
0

Y
PoW
pF (1) + pgvy

he)
=

T
< PZ (A.5)

PoVy
By Assumption(A.4) and the fact that all elements of are positivep§v,, > 0. We will now
show thatw (resp, W) ande — v, (resp, v, ) are of the same ordefrom Assumptior(A.2)
and the fact that the repair rates &rél), we get that is Q(1). Consequentlyif an element
ofe—v, (resp,v,)is Q(e%) for somed = 0, then the corresponding elementrof (e — v,)
(resp, hov,)is alsoQ(e9) for the samed. Because>,>,P; = O(1), the corresponding
element ofw (resp, W) is similarly O(e?) for the samad. Using this fact in Eq(A.4) (resp,
Eq (A.5)), we see thaE(W) (resp, E(W)) is O(1).

LeEMma A.3: E(W?)is O(1).

Proor: We use notation from the proof of Lemma2A Furthermorelet H(x) denote the

holding-time random variable in stateClearly, H(x) is exponentially distributed with rate
q(x). Definel (x) = E(H?(x)) = 2/q%(x), | ={l(x): x € U — 1}, qx) = E((min(Ty, Te))? X

I(Ty < Te)|Yo = x), andq = {g(x):x € U — 1}. Then one can easily derive the recur-
sive equation that] = | = (e — v,) + 2h o (Prw) + Prq from which one gets that
q=2ZoPs(lo(e— vy) + 2h o (Prw)). In that case

E((min(Te, Ty) — Z2)21(T, < T¢))
(1—=v)

E(W?) =

= . A6
ol (A-6)
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Using the fact thav,, is o(1), we get that the elements ef— v,, areQ(1). In addition from
what was stated in the proof of Lemma2Aw is O(1). Thel andh areQ (1), 32, Pkis O(1),
and therefore g is O(1). Then the proof follows from Eq(A.6). u

PRrROOF OF ProposiTION 1: For any matrix(vecton, say Pg, with elements of the form
¢+ 0(1), c =0, let P be the matrix containing thec'part” of the elementdUsing the fact
mentioned earlier that, is o(1), we get that

M

Pips =e—v,=e—o0(1). (A7)

i=0

Using Eq (A.1) and the fact that the positive elementgefare of the fornc + o(1), c > 0,
we have that

w No No
__EOP.‘qpl = (_ZOP‘R + 0(1)> p1= > (Pr+0(1)(py+ 0(1)) + 0(1)

z

0

Pkp1+0(1). (A.8)
0

Comparing Eq(A.8) with Eq. (A.7), we see that

kP = €. (A.9)

i=0

As in Shahabuddif36], we construct the matriB = {B(x,y): X,y € S} by setting
B(x,y) = P2(x,y)/P’(x,y) for all x, y such thatP’(x,y) # 0; B(x,y) = 0 otherwise The
Bgr, b, b1, andbg are constructed frorB the same way aBg, pg, P1, andpg were con-
structed fromP. Note thatBg is a matrix in which the positive elements above the diagonal
are of the fornce? + 0(e9), ¢ > 0, d = 2, and the positive elements below the diagonal are of
the formc+ o(1), ¢ > 0. It has been shown in Shahabudf36] that for the samdly as earlier
> n+1Br = 0(1). Thus 2Z,Bk is O(1). It has also been shown in Shahabudf6]
that D = bg(X7oBkbe) + 2,cr B(Ly). Using a similar methadwe can show that
B=Db{(>ZoBkb,). The positive elements &f; are of the fornt + o(1), wherec > 0. Hence

No No

(2 Bk + o(1)> by = (Br+0(1)'(by +0(1)) +0(1) = X Bkby + 0(1)

™M
oy}
@
O
ke
Il

i=0

Yo\ L 1
<,§%)<m> PR><m ﬁl) +0(1) (A.10)

1 Noﬁi fol)= —etol A1l
1-9 Z;)Rpl 0()*1 06 o(1). (A.11)

%

Equation(A.10) follows from the form of the elements & and the fact that in the Markov
chain corresponding t®, the sum of all the repair transition probabilities from any state other
thanlis 1— o(1). The last equality follows from EqA.9). From Eq (A.11), we get that
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ble+o(1) = > PA(LX)

1-9 1-6 xé5-1 (1/r(1) o

B= bg<2 B‘Rb1> =
i=0

wherer (1) is the number of positive probability failure transitions frdnirhe last equality
follows from the fact thaP’(1,x) = 1/r(1).

The elements (1, x) can be represented in the foon o(1), c= 0. LetUC U — 1
be the set ok for which P(1, x) is of the formc + o(1), ¢ > 0. From Assumptior{A.4’), we
see thal,cg P(1,x) = 1. Sincer (1) = |J|, we have that

1 R
B= 1= |J| ZU(P(I,X) +0(1))2 + 0(1)

= ﬁ 10| X P2(1,x) +o(1)

xeu

= ()
= — +0().
1-6

The last inequality follows because the minimum of the funcfin, z,,...z) = KSK 72
subject to the constrainlB* .,z =1,z =0,z € R, Oi, is L Therefore
0
B-1=——+0(),
1-06

soB — 1 = O(1). Using the fact tha{2,Bk, by, andb, are O(1), we get thatB — 1 =
bi(Z2oBkb,) —1isO(1). Hence B— 1= Q(1). |
PrOOF OF THEOREM b5:

(@ TheU(t) = U(t) bound can be proved by exactly the same method as Lemia 1
will now prove the lower bound
Letfq 1(X) be the density of an Erlang random variable with asnd shape
parametek (i.e.,, the density oZ; + Z, + --- + Zy given thatk = k). Then

Ut)=P(Z+ Wy +Z, +Wo t - + Z + W =t)

e t k
=> f P<W1+ W=t —x|K=k > Z =x>
k=1 Jx=0 i=1
X fig 10 (X) dxy(1—y)<?
oo t k
=U(t)—2j P(Wl+~--+Wk>t—xK=k,22i=x)
k=1 Yx=0 i=1
X f(q, k)(X) dX’y(l - 'y)kil.

We now have to prove that the second term above is upper bounded, k).
GivenK = k, theW s are(conditionally) independent of thg&;’s. Also givenK =k,
the W;,W,, ..., W1 are ii.d. and have the distribution dfv. Moreover given
K =k, W, is independent of the/, W, ... W,_; and has the distribution &%. Thus
we can rewrite the second term and bound it as foltows
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o |
> J PWi+ -+ Wy + W >t = %) f () dxy (1= )
k=1 Jx=0

t

+ > PWp + o+ Wieeg + W >t — X) o (%) dxy (1 — y)k?
k=1

x=t—I

= (M (k—-1EW) +EW
zf R B o dxy@ -yt

(t—=x)
(using Chebyshev’s inequality

t

+> fo k(X) dxy (1 —y)<t
k=1

x=t—|

I

12 ' B
T Z, L (k= DE(W) + E(W))fy(X) dxy(1—y)< L

+ (e*'}/Q(tfl) — e*'yqt)
CEW e, W
vl
X (1 — e vat=) _ —yq(t — |)e*'VQ([*|)) + (e*YQ(t*U — e*?qt) (A12)

Uerr(t)-

(b) We will first show thatUe.(t)/U(t) — 0 ase — 0. The result then follows from the
fact that

REB t _ Uerr(t) = Uerr(t) 1
©=%00 = 2000 <1— ue”(t)/U(t))'

We use the representationdf,,(t) given by Eq (A.12).

First, let us study the properties ofIf ry < rq (resp, ry > rg), then for all
sufficiently smalle, t < 1/q (resp, t > 1/q), which implies thatVt > t\/q (resp,
VTt <t\Q). Thus lis Q(e~"/2) (resp, | is Q (e "+"0/2)). If ry = ro, thenl = Nt or
| = t/g, but in either casd = Q(e~"/2). Sincer, > 0 and forr, > rq, ry — rq/2 >
0, we have that Al is o(1). Sincery > 0 andr, > 0, we have that/t = o(1). It then
follows thatt — | is Q (e ").

Consider the case wherg<r + rq, so thate"""o~"* — 0 ase — 0. Using the
well-known fact that - e™* = x + 0(x), we get thatU (t) is Q (e ""o~"t). Hence all
we have to show is théite,(t) = 0(e ™). Sincet — 1 isQ (e ™), (1— e~ ¥at=D) =
yq(t—1)+o0(e o) isQ (e 0 "). LemmaA2 shows that botE (W) andE (W)
areO(1). Since ¥l is 0o(1), the first term in Eq(A.12) is o(e" "o~ "). Using the
well-known fact that - e X — xe ¥ isx?/2 + 0(x?) and the fact that— | isQ (e "),
one can easily show thal — e "9 — yq(t — [)e "9t js yq(t — 1) X
Q(e"ro7"), Considering separately the two cases ef @, = rgandro <r, <r +
ro, one can show thai(t — 1)/l is o(1) and thereforethe second term in E¢A.12)
iso(e o), Finally,
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e*?q(tfl) — e*Yql = (1 — e*'}’q[) — (1 — eVQ(lfl))
|
= ynt + 0(e" o),

Using the fact mentioned earlier thigt is 0(1), we can show that the last part of
Eq (A.12) iso(e o),

Now, consider the case wherg=r + ro. In this caseU(t) is Q(1). Thus all
we have to show is thate.(t) is o(1). Forr, =r + ro, 1 — e 791 and
1—e 79D —yq(t—1)e 79D areq(1). Forr, > r + ro, one can show the same
by using the fact that + e"* and 1— e~ ¥* — (1/x)e¥* approach 1 ag — 0.
Using the fact that Al is o(1), one can show that the first term of H&\.12) iso(1).
Note thatr, = r + rq implies thatr, > ro. Consequentlyl = t\q and Iyl
is Q(e"""/2) = o(1). Using this fact one can show that the second term of
Eq (A.12) is o(1). Express the last term of E¢A.12) ase @ (e®Vd — 1), For
ry >r + ro, it is easy to see that as— 0, this term tends to 0 andenceit is
0(1). Forr, = r + ro, € 79 is (1) and(e¥™Va — 1) is 0(1), and so the last term

is alsoo(1). [ |
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