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In this article we study a single-server queue with FIFO service and cyclic inter-
arrival and service time#n efficient approximative algorithm is developed for the
first two moments of the waiting timeNumerical results are included to demon-
strate that the algorithm yields accurate rests the special case of exponential
interarrival timeswe present a simple exact analysis

1. INTRODUCTION

The present study concerns a multiclass queuing model with cyclic interarrival and
service timesThis model can be usetbr example when the inflow of customers
depends on the day of the week or on the hour of the Blaye specifically this
model arises in the modeling of a manufacturing system producing replenishment
orders for stock locations that are controlled by periodic order-up-to paliciéisat
situation the interarrival times are typically deterministend the order sizes are
location dependent
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Cyclic queuing models have been studied by Morrice and GajuldBallThey
considered a model with cyclic exponential interarrival and service times and de-
rived bounds and exact results for the mean number in the sy&tehen[1] also
studied the cyclic model and presented functional equations for the stationary wait-
ing time distributionsThese equations formulate a Hilbert boundary value proplem
which can be solved if the Laplace—Stieltjes transfoth&Ts) of all the interarrival
time distributions or all of the service time distributions are rational

The central equation in this article is Lindley’s equation for the waiting tirttes
is used to derive an iterative method to compute approximations for the first two
moments of the waiting tim& his method extends the one developed by de [Rdk
it is applicable under generally distributed interarrival and service times and pro-
duces accurate resultsndley’s equation is also used to exactly determine the mo-
ments of the waiting time in the case of exponentwlErlang interarrival times

The article is organized as followSection 2 provides a description of the model
and introduces some notatidn Section 3we present the moment-iteration method
In Section 4 we treat the special case of exponent@l Erlang interarrival times
and present an exact method for the computation of the moments of the waiting time
Numerical results are presented in SectipwBere we compare the approximations
produced by the moment-iteration method with the exact results for the model with
Erlang interarrival and service times and with simulation results for uniform and
discrete interarrival time distributionSinally, Section 6 is devoted to an application
of the moment-iteration method

2. MODEL DESCRIPTION

We consider a single-server queue providing FIFO servide tigpes of customer
numbered L..,N. The customers arrive in a cyclic pattefinst a type 1 customer
then one of type 2then type 3 until typd\, and then the cycle repeat3efine, for
1=i= Nandk=1, the following

A, «is the time between the arrival of theh typei customer and the previous
arrival.

B; « is the service time of thkth typei customer

W  is the waiting time of théth typei customer

S.kis the sojourn time of th&th typei customer= W, , + B; \).

For eachi, both {A; «}k=1 and{B; «}x=1 are sequences of independent identically
distributed(i.i.d.) random variables he two sequences are also independent of each
other and independent of the sequences for diffarerftor stability we assume that
the traffic intensityp is less than one

> E[B]
p=" <1, (1)
;E[Ai]
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where the generic random variabkesandB; have the same distribution &g, and
Bi.«, respectivelylt is readily verified that fok = 1,

Wee = (Suker = A
V\Il,k: (S*l,k_Ai,k)Jr’ i:27-"7N’ (2)

where (x)* = max(x,0). These equations are the starting point for the iterative
method presented in SectionThis method approximates the first two moments of
the stationary waiting times

EIW] = fim E[W,.J,  EMWZ]=lim EIWA],  i=1...,N;
the limits exist by virtue of stability conditiofi).

3. MOMENT-ITERATION METHOD

Equation(2) relates the waiting time of a customer to the sojourn time of the pre-
vious customerFrom this equation we get the following expression for e
moments ol ,:

E[Wl']k]:fof (x—=2)"dFs,, () dFa ,(2),

E[W"] = fomfoo(x— 2)"dFg_, (X) dFs (2), i=2,...,N. 3)

Here we concentrate on the first two momerdgsn = 1,2). If the first two moments

of the sojourn time of the previous customer are known and we fit a tractable dis-
tribution to these two momentthen the above expressions with the fitted distri-
bution can be used to compute an approximation for the first two moments of the
waiting (and sojourh time of the present customefor the two-moment fitwe

may use a mixed Erlang or hyperexponential distribytepending on whether
the squared coefficient of variation is less or greater thanseee.g., Tijms [4]).

More specifically let E(S) and c2 denote the mean and squared coefficient of
variation of the sojourn time of the previous custoniet /k = c2 = 1/(k — 1) for
somek = 2,3,..., then the mean and squared coefficient of variation of the mixed
Erlang distributiorFs(-) with density

k—2 k—1
fs(t) = pp? M (1- pp =0 4
s(t) = pet k—21 (1-pu PR ) (4)
matche<E(S) andcZ, provided the parametepsandw are chosen as
p= oIk - (k1 + e ki), p= oL
1+c2 ° b E(S)’
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If cZ2> 1, then the mean and squared coefficient of variation of the hyperexponential
distributionFg(+) with density

fs(t) = pipae ™ + popy e e, t=0, %)

matche<E(S) andcZ, provided the parameters, L, p;, andp, are chosen as

o2, a3 _ 4
p’l_ E(S) Cé‘f’l ) “2_ E(S) Ul’

b :Ul{U2E(S)_1} p=1—p
' =M ? "
This distribution is called the hyperexponential distribution with the gamma nor-
malization because it has the property that its third moment as well matches that of
the gamma distribution with med®(S) and squared coefficient of variati@3.
The above procedure is then repeated for the next customer and 3ten
resulting iteration scheme is as follows

Iteration scheme

1. Initially, setE[W, o] = E[W%]=0fori =1,...,Nand sei = k=1.

2. Fitatractable distribution to the first two moments of the sojourn time of the
previous customeiCompute the first two moments and squared coefficient
of variation ofSy x_; if i =1 and ofS_, «if i > 1. Then according tq4) and
(), the fitted distributionFs,, ,(-) or Fg_,,(-) is a mixture of two Erlang
distributions with the same scale parameter if the squared coefficient of vari-
ation is less than onetherwise it is a hyperexponential distribution with the
gamma normalizatian

3. ComputeE[W, ] andE[W?] accoIding ta3), W[[h Fs...(-) andFg_  (+)
replaced by the fitted distributior@u,kflt) and stlk(.), respectively

4, If i <N, thensei =i + 1 and go to step;df i = N, compute the two sums
L1 EIW 11— E[W, ]| andZ | E[WA 1] — E[W?]]. If both are suf-
ficiently small then stop and use[W, ] andE[W?Z] as the approximation
for E[W ] andE[W?], respectivelyfori =1,..., N; otherwise sek=k+ 1
andi =1 and go to step.2

4. EXPONENTIAL INTERARRIVAL TIMES

In this sectionwe consider the special case that the interarrival #ms exponen-
tially distributed with mean A;,i =1,...,N. LetW andS§ be the waiting time and
the sojourn time in steady state of a typeustomerwith LSTs W (s) andS(s),
respectivelyLettingk — oo in (2), it follows that

W =(§:-A), i=1...,N
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where by conventiona type 0 customer is the same as a tipeustomerFrom
these equations we get

W(s) = E(e_s(sfl_Ai)Jr)
=P 1 -A<0+ E(eis(s’rAi)1[371—Ai20])

=P(S.1—A<0)+E(e®8+A) —E(eS Mg _a_q)

/\i—S

=P(A>S_,+ S-1(9)

— E(eSASD|A > S ,)P(A >S_))

for the transformsBy the memoryless propettyre overshootA; — S_1| A > S-1)
is again exponential with parametgr, so

i Ai

N s S-a(s) - h—s P(A > S-1)

Wi(s) = P(A; > §_) +

— - P>
= )\i_SS—l(S) A —s (A >S-0).

Note thatP(A; > S _,) is the probability that a typiecustomer does not have to wait
Let us write

P(Al>S_)=1-1]

(15 is the probability of waiting Further usingS(s) = W (s)B;(s) whereB;(s) is
the LST ofB;, the equations for the transforrig(s) can be written in the form

(S=ADWI(S) + AiB1(9W4(s) = (L —TI)s, i=12,...,N. (6)

From these equations we can soWg(s), yielding

Mz

(-5 [Ta- ) 1 B(s)
j=1 j=i

1

W (s) = - (7)

N N
i=1 i=1
Of course the other transform®\ (s) are given by similafsymmetrical expres-

sions To determine the unknown probabilitigls, we proceed as follows-irst, we
have to satisfy

W (0) = 1. (8)
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For the denominator ifi7), it holds that

i=1 A

f[Bi(s) - ﬁ(l— 5) - <§ % - i E[Bi]>s+ 0(s?), s—0, (9)

and for the numerator

2(1 H)SIH<1—)\E>H Bi(s) = s>, 1_Hi%—O(sz), s— 0.
=1 | j=1 i/ =i i=1 i
Hence from (8) we get
N _ 1 N
2 = ;/\— ; [Bi]. (10)

Further sinceW(s) is well defined for Rés) = 0, it follows that whenever the
denominator in(7) vanishes for somewith Re(s) = 0, the numerator should also
vanish In the Appendixwe will prove that the denominator has exadilyeross
with Re(s) = 0, saysy(= 0), Sy,..., Sv—1. We assume that these zeros are all distinct
Because the numerator 6f) must also vanish a = s,,...,S_1, We obtain the
following equations

2(1 AH)SK'H<1_%>H B(s) = k=1..,N-1
-1 i j=1 J

Together with(10), this forms a set oN equations forN waiting probabilities
IT4,...,Iy; it has a unique solutigrbecause under the condition of stabilitl),
there is a unique stationary waiting time distribution and thus also a unique solution
W (). This completes the determination of the transfolfWis), as given by(7).

In the remainder of this sectipwe show how the moments of the waiting times
can be determineds a starting pointwe take(6). Substituting the Taylor series

o) _1\k
W (s) = 2( Y E[WK]sk
k=0 K
and
o (__ k k
Bi_1(sS)\W_4(s) = 2 2( )E[\Nujl]E[Biki]Sk,
we obtain
o (_1)k71 - k k ) -
> K KE[W 1]+ A E[WK] = A X j E[W. IE[BZ]] ) s*
k=0 . P—
=(1-1I)s
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Equating the coefficients & on the left- and right-hand sides yields
1+ A (E[W]—E[W_1]) = A E[B_.] = (1Q—1I)), i=1,...,N,
(11)
and fork > 1,

KE[W* ']+ A (E[WF] — E[Wi1])
k—1 k . .
— A 2<j>E[vvi'1]E[Bi";]=o, i=1...,N. (12)
j=0

Adding (12) over alli = 1,..., N gives the equation

k=1

N N k .
SKEWE ] = 3 Ar S (j ) E[W/JE[B} ] = 0.
i=1 i=1 j=0

This can be rewritten ageplacek by k + 1)
S N k1l/k+1 ,
S EMWSI(k+1)(1— A1 E[B]) = D Aips > < J )E[V\/il]E[Bik+l—j]’
i=1 = =

(13)

which is valid fork = 1. Using (11)—(13), all momentsE[WX] can now be com-
puted recursivelyFirst, note that the addition ofLl1) over alli gives an identity
thereforewe can omit one of these equatioiiben together with(13) for k=1, we
have a set oN equationsfrom which the first moment&[W.],i =1,...,N, can be
computedTo find the second momentse usg12) and(13) for k=2, where we can
again omit one equation if12). Also, note that the loweffirst) moments occurring
in these equations are now knomirine third moments follow froni12) and(13) for
k=3, and so onlt will be clear that we can repeat usifitR) and(13) to successively
compute all momentgf they exis).

Remark 4.1 (Erlang Interarrival Times)if the interarrival timeA; is Erlangf (A;)
distributed then we can think of the interarrival time as consisting etibinterar-
rivals. By associating with each subarrival an arrival of a customvéere the first

r — 1 customers have zero service times and thetlast th customerhas a service
time B;, we can analyze this case along the same lines as the exponential case

Remark (Zeros):From (1) and (9) it follows thatsy = 0 is a simple zero of the
denominator in(7), but it might happen that some of the other zeros coindide
exampleif s; = s,, thens= s, is also a double zero of the numerato(); thus an
additional equation for the probabilitid$ can be obtained by requiring that the
derivative of the numerator also vanishes ats;.

https://doi.org/10.1017/50269964804183022 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964804183022

306 S. R. Smits, I. Adan, and T. G. de Kok
5. NUMERICAL RESULTS

In this sectionwe validate the approximative moment-iteration method by simula-
tion (and exact resulisf available. Table 1 shows 30 different settings for the mean
and squared coefficient of variation of the interarrival and service times for a model
with 2 customer typedn each settingthe distributions of the interarrival and ser-
vice times are matched to the mean and squared coefficient of variation according to
the recipe described in SectionBhe results are listed in Table the simulation
results are based on 10 independent replicas»fl6° arrivals

TaBLE 1. Different Settings for a Model with Two Customer Types

E[B.] Cél E[A1] Cfl E[B:] Céz E[A;] CA22

0.3336 09399 1 08556 Q7808 12154 1 03256
0.3262 08795 1 12677 Q4777 13142 1 17559
0.7425 07869 1 19567 Q7672 14500 1 14146
0.5946 16637 1 06724 03286 Q7612 1 18433
0.5593 14135 1 1594 Q4273 10227 1 03088
0.8825 11094 1 13081 08808 11256 1 10411
0.3946 06998 1 12938 08865 12776 1 06950
0.4902 Q9227 1 03806 Q7737 13612 1 17138
0.6998 04399 1 16961 07628 16648 1 12275
0.4858 08035 1 13663 08056 15750 1 14856
0.839 10517 1 04574 05701 Q7840 1 17097
0.7512 12887 1 13432 03304 12458 1 13743
0.6172 17934 1 13552 06019 11206 1 13740
0.8599 08801 1 05121 04384 06856 1 17459
0.6676 11854 1 15321 06752 05605 1 15766
0.8033 19531 1 14527 05419 08690 1 17902
0.5931 02726 1 13465 03258 13380 1 03060
0.3981 10487 1 09558 08055 06195 1 03989
0.4461 18262 1 17511 04292 13720 1 19803
0.4262 10165 1 04411 05804 05267 1 18240
0.6289 04006 1 15219 Q3476 06719 1 12117
0.5666 13757 1 13174 05500 16264 1 12899
0.8573 02094 1 18976 08043 16817 1 07575
0.7525 Q7981 1 16347 06474 Q7044 1 14072
0.4007 Q07300 1 04923 05535 04308 1 09953
0.3539 08127 1 07832 04452 15441 1 02640
0.6022 12763 1 04926 Q7937 14976 1 09524
0.4668 15906 1 12386 Q7049 16126 1 18389
0.7909 03568 1 13089 06698 13944 1 19856
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Note that the waiting time characteristics of the two customer types can differ
substantially when their interarrival time and service time characteristics are differ-
ent Table 2 indicates that the approximation method produces accurate estimates for
the first two moments of the waiting time$his is confirmed by a much more
extensive investigatigrihe results of which are now summarized

We consider models with deterministianiform, exponential or(mixed)

Erlang and hyperexponential distributions for the interarrival and service times
The models are indicated with the well-known three-letter Ry 1; it means that

TaBLE 2. Results for Different Settings of a Model with Two Customer Types

Moment Iteration Simulation

EMWi]  E[WZ]  E[We]  E[WF]  E[Wi]  E[WZ]  E[W]  E[WS]

0.6871 19184 05456 14561 06895 19216 05454 14612
0.4515 08193 Q3727 06417 04519 08182 03706 06440
3.4108 293421 34157 291897 34262 293963 34278 292493
0.5277 12622 05868 15251 05235 12677 05882 15222
0.4183 09046 05459 12136 04153 08989 05462 12023
7.5649 1309852 75719 1310929 75747 1283335 75817 1289578
1.4301 63987 12416 54483 14279 62962 12377 53500
1.3074 53483 11130 44958 13056 52616 11076 44158
2.6543 185757 26402 181529 2667 189389 26434 185326
1.8505 101854 16991 92076 18516 99634 16959 89868
1.6599 78088 17235 82086 16649 79895 17264 83945
0.8725 30285 10504 36878 08732 29375 10499 35984
1.4049 64153 14128 65671 14107 62725 14230 64154
1.1287 39331 12513 44406 11282 40422 12467 45577
1.7679 81164 17641 82278 17607 83844 17632 84844
2.3407 166898 24518 177260 23474 161483 24634 171840
0.1674 01904 03123 03110 01698 01938 Q03099 03213
0.6621 14162 05440 11663 06581 14618 05477 12014
0.6787 18049 06799 18501 06804 17454 06836 17890
0.4988 Q7705 03648 05864 04957 07968 03660 06085
0.4186 06394 05387 08303 04187 06668 05368 08607
1.0300 38423 10383 38382 10349 36907 10404 36890
4.5293 472243 45878 473631 45074 490084 45562 491670
1.9365 94356 19944 97612 19372 98670 19953 101904
0.2915 03161 Q02089 02306 02918 03285 Q02107 02407
0.1884 02785 Q01858 02241 Q1916 02839 01844 02357
1.7357 95550 16233 89008 17431 91600 16293 85018
1.4752 70664 13458 64338 14822 67821 13538 61468
2.5168 154079 25474 153549 25147 161702 25333 161406
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TABLE 3. Parameter Settings

Model Parameter Value
D/G/1 E[B;] U(0.2,0.99)
cs U(0.2,2)
A 1
U/G/1 E[B;] U(0.3,0.99
cs U(0.2,2)
min A; 0.7
maxA; 1.3
M/M/1 E[Bi] U(0.3,0.99)
E[A] 1
E./M/1 E[Bi] U(0.3,0.99
E[A] 1
k U{1,2})
Ec/E /1 E[Bi] U(0.3,0.99
I u{(1,2,3,4})
E[A] 1
k ud12})
Hy/Ho/1 E[B;] U(0.3,0.99)
cs u(1,2)
E[A] 1
ci U132

all customer types have the same type of interarrival time distribpitidicated by
A, and the same type of service time distributiomicated byB, but, of coursethe
parameters of the distributions depend on the customer Bgreeach case of inter-
arrival and service time distributionsve randomly generate #Gsettings of the
parametersand each setting will be evaluated far® and 25 customer type#f
only mean and squared coefficients of variation are spegcifiedfit a distribution
according to the recipe described in SectioT@ble 3 gives an overview of the
parameter settingsvhereU(a,b) denotes the uniform distribution o, b), and
U(S) denotes thédiscrete uniform distribution on the points in the s&t

Note that according to Table 3ve will generate settings with different traffic
intensities We divide the settings into three categoriksv load (0.4 < p < 0.6),
medium load0.6 = p < 0.8), and high load p = 0.8). We compare the estimates
produced by the moment-iteration method with the exact results of Section 4 in case
of exponential or Erlang interarrival times and with simulation results otherwise
Again, the simulation results are based on 10 independent replicasxofl@®
arrivals In Tables 4 and 5Swe display percentage erro@="V! and maxs ™! de-
note respectivelythe meanand maximumpercentage error of the average of the
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TABLE 4. Average Percentage Errors of the Moment-Iteration Method

Model
Ave.
Load Error N D/G/1 U/G/1 M/M/1 E/M/1 E/E/1 H,/Hy/1
04=p<06 &EW 2 299 199 219 359 578 035
5 414 397 093 154 331 Q37
25 589 543 091 Q73 082 081
57W) 2 630 645 209 395 7.02 338
5 725 683 129 346 827 331
25 939 885 034 133 759 386
06=p <08 &EW 2 193 238 130 193 360 036
5 304 336 078 086 304 035
25 393 356 127 Q70 Q75 069
§oW) 2 414 311 104 181 500 467
5 587 597 069 110 7.08 457
25 560 495 Q73 Q77 756 448
08=p SEWI 2 125 148 180 231 169 036
5 113 097 081 Q77 113 038
25 213 121 Q95 056 Q060 040
§7W) 2 373 477 284 052 304 486
5 361 589 Q76 Q76 309 580
25 341 340 064 270 453 420

waiting time over all customer types and all settings generated in a categaly
57 and maxs’™) denote respectivelythe averageand maximumpercentage
error of the standard deviation of the waiting time over all customer types and all
settings generated in a category

We can conclude that the moment-iteration algorithm produces accurate,results
especially for high loaddypically, the mean of the waiting times is more accurately
estimated than the standard deviati&or low loads the percentage error of the
moments of the waiting time might be higthe absolute errohowevey will be
modest(in comparison with the service timed-urther it seems that the type of
distribution of the interarrival times does not influence the quality of the estimates
produced by the moment-iteration methde traffic intensity and the squared co-
efficients of variation of the service times are more crucial

6. APPLICATION

In this sectionwe apply the moment-iteration method to the manufacturing problem
mentioned in Section.MWe consider a manufacturing system wiNhstockpoints
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TABLE 5. Maximum Percentage Errors of the Moment-Iteration Method

Model
Load Max Error N D/G/1 U/G/1 M/M/1 EJ/M/1 EJ/E/1 Hy/Hy/1
04=p <06 maxsEWl 2 1261 1452 462 435 904 111
5 1602 2487 223 7.23 1043 162
25 1942 2691 286 364 442 530
maxs W 2 1808 1873 534 7.05 1882 997
5 2227 2324 592 638 1982 836
25 2326 2555 345 590 1160 612
0.6=p <08 maxsEWl 2 887 1329 390 442 842 120
5 977 1357 403 381 1556 158
25 1224 1266 276 429 614 440
maxs? W) 2 1471 1877 527 408 1156 1157
5 1649 1988 424 401 1550 944
25 1935 2210 430 416 1161 7.96
08=p max§ MW 2 4.04 406 210 359 7.20 163
5 7.54 6.88 237 185 840 088
25 7.84 833 196 111 242 154
maxs? W) 2 962 1621 241 221 984 1081
5 1146 17.24 270 159 833 667
25 1253 1760 224 208 1086 662

one for each itemand one production facilitywhich produces all the items in a
FIFO order The objective is to determine the sojourn time of the replenishment
orders placed by the stockpoinEgure 1 is a schematic representation of the model
for N =4,

The stockpoints are controlled by periodic order-up-to policidse periodic
order-up-to policy operates as followBvery R; units the inventory position of
stockpointi is inspected and a replenishment order is placed at the production
facility to raise the inventory position up to the order-up-to levidie inventory
position is defined as the physical inventory level plus the stock on order minus
the backorderd/Ne assume that the review period of each item is identiRa+ R).

The processing times of replenishment orders from stockp@nt assumed to be
i.i.d.random variables with medf| B, ] and standard deviatian(B;). The first time
the inventory position is inspected is denotedyi = 1,...,N). The values oR;,
E[Bi], o(B;), andt’ (i =1,...,N) are listed in Table 6

Now, we are interested in the sojourn time or production lead &hod replen-
ishment orders of stockpointobviously the production lead tim§ is required for
setting an appropriate stock level
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A Stockpoint O Production facility

O Factory

Ficure 1. Schematic representation of the madel

311

The timeA; between the arrival of an itenreplenishment order and iteim- 1
replenishment order follows fron? andR; (i =1,...,N). Becausé, is determin-

istic, we are dealing with a cyclib/G/1 queueGivenA, and the first two moments

of B;, we can determine the first two momentsdifandS (i =1,..., N) by using the

moment-iteration method presented in SectioRt results are presented in Table 7
Note that the traffic intensity of the cyclio/G/1 queue describing the manu-

facturing system is.91. Hence Table 4 indicates that in this cageith N = 4), we

can expect errors in the mean waiting time close to 1% and in its standard deviation

close to 4%this seems sufficiently accurate for practical purposesm Table it

TABLE 6. Input Parameters

1 2 3 4
R 10533 10533 10533 10533
E[Bi] 19.24 2520 2715 2452
o(B) 7.05 802 534 481
0 0 2106 4869 7845
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TABLE 7. Numerical Results

1 2 3 4
A 26.88 2106 2763 2979
E[W] 542 576 611 581
o (W) 6.92 772 842 7.59
E[S] 24.66 3096 3326 3033
o(S) 9.88 1113 997 898

follows thatcg, = 0.37, cg, = 0.32, cg, = 0.20 andcg, = 0.20. In Table 7 we see that
replenishment orders from stockpoint 1 clearly benefit from the smaller variation in
processing times of replenishment orders from stockpoints 3 and 4
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APPENDIX

In this appendixwe will prove that the denominator ¢¥) hasN zeross with Re(s) = 0.
To do sqwe will use Rouche’s theoremwhich reads as followd et f (s) andg(s) be analytic
functions inside and on a smooth contdliand suppose thag(s)| < | f(s)| on C. Then
f(s) andf (s) + g(s) have the same number of zeros ins&€f coursewe may also replace
f(s) + g(s) by g(s) — f(s) in this formulation actually that is the form we will use

We first assume that there is some- 0 such that the transforni(s),i = 1,...,N, are
analytic for alls with Re(s) > —e. This assumption holdgor example for service time
distributions with a finite support or an exponential t&lbw, take

f(s) = ﬁ(l— i)

i—1 Ai

and

N
o) = I1 B (9.
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Sog(s) — f(s) is the denominator of7). As a contourwe take the circleCs with center
max A; and radiusd + max A; with 0 < § < e. It is easily verified that for alk on Cs,

l9(s)| = [1Bi(Re(s) = [[ Bi(~8) =g(~8),  f(-8) =[f(s)], (A1)

Note that

>‘||_\

N N
g =-3EBL fO=-3-
Hence the stability conditior(1) states thag’(0) > f’(0). Thus for sufficiently smalls > 0,
it holds thatg(—5) < f(—48), which implies together witlfA.1) that|g(s)| < |f(s)| forall s
on Cs. Rouche’s theorem now guarantees tha) andg(s) — f(s) have the same number of
zeros insideCs. Sincef (s) hasN zeros insideCs, the same holds fag(s) — f(s). Letting é
tend to zergit follows thatg(s) — f(s) has exactlyN zeros inside or on the circlg,. There
are no other zeros in the right half plane since fosaliith Re(s) = 0 outsideC, we have

g(s) = _E[lBi(Re(S)) = gBi(o) =1=1(0) <[f(9)].

To complete the progfve must remove the initial assumption that for sane 0, the
transformsB; (s) are analytic for als with Re(s) > —e. To this endfirst considerinstead of
B;, the truncated service times nil, K), whereK > 0 is some constanfor these truncated
service timesthe claim for the zeros of the denominai@® holds by letting K tend to
infinity, the claim also follows for the original service time distributions

Remark: In fact, we not only showed that the existenceNbfeross with Re(s) = 0 but also
that they are located inside or on the circle with center;maand radius max; ; this may be
useful for the numerical calculation of the zeros
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