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We consider the ordering of particles in a rheoscopic fluid (a suspension of microscopic
rod-like particles) in a steady two-dimensional flow, and discuss its consequences
for the reflection of light. The ordering is described by an order parameter which
is a non-oriented vector, obtained by averaging solutions of a nonlinear equation
containing the strain rate of the fluid flow. Exact solutions of this equation are
obtained from solutions of a linear equation which are analogous to Bloch bands for
a one-dimensional Schrödinger equation with a periodic potential. On some contours
of the stream function, the order parameter approaches a limit, and on others it
depends increasingly sensitively upon position. However, in the long-time limit a local
average of the order parameter is a smooth function of position in both cases. We
analyse the topology of the order parameter and the structure of the generic zeros of
the order parameter field.
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1. Introduction
Rheoscopic fluids are suspensions of microscopic asymmetric bodies, such as rods

or flakes, which have their longest axes brought into alignment by a fluid flow. They
enable the flow to be visualised due to the angular dependence of light reflection from
the particles (Matisse & Gorman 1984), and similar suspensions are used to make
art installations (Reed 2002) and to enhance the appearance of cosmetic products
(Preston 1984). The patterns produced by rheoscopic agents bear a complex relation
to the underlying flow, which is not yet thoroughly understood. For example, a simple
stirring motion produces an increasing tightly wound spiral pattern, illustrated in
figure 1 (which shows additive mixing of light scattered from red, green and blue
sources, as illustrated in figure 2). A priori, it is not clear how the orientation of the rods
should depend upon position within this pattern, or how it will evolve in the long-
time limit. In this paper, we motivate the definition of an order parameter for the
alignment of the particles in two-dimensional flows, and show how it may be related
to the colour of the reflected light. We use this to analyse the long-time limit of the
orientation patterns formed by steady flows in two dimensions, where trajectories of
the small particles follow contours of the stream function, ψ(x, y).
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Figure 1. A spiral pattern which may be generated by motion of a rheoscopic fluid in a
two-dimensional cellular flow, with stream function ψ(x, y) = sin(x) sin(y)/2π. The flow is
visualised by reflected light from three different coloured sources, as shown schematically in
figure 2 and as described in detail in § 3.3. As time increases the arms of the spiral tighten (and
become approximately parallel to contours of the stream function). The times are (successively
from a–c) t = 5, t = 9 and t =18, and the parameters in (2.1) and (2.2) are α1 = 0.95 and
α2 = 0.05.
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Figure 2. (a) The direction and degree of ordering of the axes of the particles in a rheoscopic
fluid can be revealed by scattering light from red, green and blue sources arranged around
the sample, which is observed from above (b) The degree of order of the particles is described
by an order parameter vector ζ lying within a unit circle, which points in the predominant
direction of alignment, with the magnitude 0 � |ζ | � 1 indicating the degree of alignment.
(c) The colour of the scattered light is a function of the order parameter: since the sign of
the vector ζ (the direction of the arrowhead in (b)) is irrelevant, this colour map is symmetric
under reflection.

In this paper, we idealise the suspended particles as being axisymmetric objects:
we refer to them as ‘rods’ but the formulae are equally valid for oblate and prolate
axisymmetric bodies. We assume that the bodies are much smaller than any length
scale of the flow, and for this reason we describe them as ‘particles’ for the remainder of
this paper. We also assume that the suspensions are sufficiently dilute that interactions
between the particles are unimportant. The motion of small ellipsoidal bodies in
steady two-dimensional flows was previously considered by Szeri (1993), who showed
that there may exist orbits (closed contours of ψ(x, y)), where the principal axis
approaches a constant direction, as well as orbits where the axis tumbles and where
spiral patterns such as those shown in figure 1 are seen. Szeri also showed that the
regions, where alignment occurs are characterised by a topological index, which was
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Figure 3. (Colour online) The Poincaré index is a topological invariant. For a vector field
in the plane, the Poincaré index of a closed curve is the number of 2π clockwise rotations
of the vector field as the curve is traversed, also clockwise. Curves with a non-zero Poincaré
index must encircle a singularity of the field. Since the axial vector of the rod-like particles
is non-oriented, singularities with half-integer Poincaré index are possible: (a) is a vortex, (b)
is a core and (c) is a delta, with indices +1, 1

2
, − 1

2
, respectively. If the curve encloses two

singularities, their indices are added: for example the Poincaré index of the curve in (d ) is
1
2

− 1
2
= 0.

termed the ‘flip number’, but which is in fact equal to twice the Poincaré index (the
definition of the Poincaré index is illustrated in figure 3). His results raise a variety of
interesting questions concerning the textures of rheoscopic flows, which are resolved
in this paper. What is the actual appearance of the system under reflected light? In
the regions where the particles tumble, they may still have a preferred alignment.
Does their alignment approach a time-independent limit in the regions where the
particles tumble, and if so, how is this limit approached? Is there an abrupt change
in appearance on crossing from the tumbling region to the aligning region? These
questions are most directly addressed by analysing an order parameter vector ζ (r, t)
which describes the predominant direction of alignment of the particles, even in
regions where they are tumbling.

We show that in the tumbling regions the order parameter forms a progressively
more tightly-wound spiral pattern, having an increasingly sensitive dependence upon
position. In the long-time limit the order parameter will fluctuate on a scale which
decreases until effects due to Brownian motion become significant. However, when
the length scale of these fluctuations falls below the resolving power of the eye, it
is advantageous to consider a local average of the orientations within a small disk,
from which we determine an averaged order parameter, denoted by 〈ζ 〉. We show
how the smoothly-varying local average is calculated, so that in the long-time limit
the ordering of the rods is described by a smoothly-varying function 〈ζ 〉(r), defined
in both the tumbling and the aligning regions. We find that this function has no
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Figure 4. The reflection of red, green and blue light from rheoscopic fluid in a ‘journal bearing’
flow in the long-time limit. This is a steady two-dimensional flow between two non-concentric
rotating non-slip circular walls. In this example, both walls rotate in the same direction, with
the angular velocity of the inner boundary exceeding that of the outer boundary by a factor

of 20. The aspect ratio of the ellipsoidal particles is β =
√

19.

discontinuity at the boundary between the regions. This raises a further question. It
is observed that the aligning regions have different Poincaré indices, which implies
that 〈ζ 〉(r) must have some form of singularity in the tumbling region. What is the
form of these singularities? We identify the normal forms for generic singularities
which are nodal points of the field 〈ζ 〉. These singularities have Poincaré index ±1/2
and have structures which are analogous to singularities, which are seen in the ridge
patterns of fingerprints.

The local average order parameter 〈ζ 〉 in the long-time limit is illustrated in figure 4
for a ‘journal bearing’ flow (that is, a two-dimensional flow between two non-slip non-
concentric rotating boundaries), using the visualisation method illustrated in figure 2.
The details of this example will be discussed in § 5, but figure 2 indicates that in some
cases the solution of this problem may be very complicated.

In two recent works (Wilkinson, Bezuglyy & Mehlig 2009; Bezuglyy, Wilkinson &
Mehlig 2010), we have considered the alignment of rheoscopic fluids in response to
generic, time-dependent flows. If a time-dependent flow does not decay (for example if
the fluid is continuously stirred), then there is a usually a positive Lyapunov exponent
(meaning that infinitesimal separations between fluid elements grow exponentially).
In the case of random flows, we also find singularities which are related to those in
fingerprints. However, there is an important distinction. In the case we consider here
the fingerprint-like singularities only emerge after performing a local average of the
order parameter in the long-time limit. In a random flow, by contrast, singularities
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may be observed at short times. The reasons for the difference are explained at the
end of this paper.

For the case of a steady two-dimensional flow, the limit of infinite aspect ratio
is a singular case, and we retain the aspect ratio β of the particles as a parameter
in our equations. The equation of motion for the unit vector n aligned with the
symmetry axis of the microscopic axisymmetric particles was originally obtained by
Jeffery (1922a). An elegant solution of this equation of motion was subsequently
given by Szeri (1993), who showed how the solution of this nonlinear equation may
be obtained by normalising a vector which evolves according to a companion linear
equation (Szeri gives credit to earlier works by Bretherton (1962) and Lipscomb et al.
(1988), but these do not contain the general solution). Most of the other literature has
applied concepts from dynamical systems theory to the nonlinear system of equations
obtained by Jeffery (see, for example Mallier & Maxey 1991; Shin & Maxey 1991,
1997; Szeri, Wiggins & Leal 1991; Szeri & Leal 1994; Gauthier, Gondoret & Rabaud
1998), and Szeri’s own paper makes very limited use of his general solution.

In this study, we combine Szeri’s solution with the insight that comes from
the analogy between the companion linear equation and the time-independent
Schrödinger equation in one dimension. Typically, the contours of the stream function
are closed curves, so that the trajectory of a fluid element is periodic in time, with a
period T which depends upon the contour. The evolution of the companion linear
equation for a trajectory on a closed contour is analogous to the propagation of
the solution of a time-independent Schrödinger equation in a spatially periodic
potential (Ziman 1976). The solution of this latter problem has bands of energy (the
Bloch bands), where generalised eigenstates exist (which take the form of Bloch waves),
interspersed by band gaps, intervals of energy for which the electron cannot propagate.
The regions, where the particles approach a constant direction correspond to the band
gaps in the solution of the Schrödinger equation, and the Bloch bands correspond to
the regions, where the particles tumble. In the following, we refer (for reasons which
will be discussed in § 5) to the regions where particles align as hyperbolic bands, and
the regions where they tumble as elliptic bands. The analogy with solid-state physics
will be useful to readers who are familiar with that field, but it is not essential in
understanding this paper.

In § 2, we discuss the equation of motion for the direction vector of a single
particle. We describe its general solution, and also consider the instructive special
case of flows with a uniform velocity gradient. In § 3, we consider the order parameter,
explaining the motivation for the definition which was used by Bezuglyy et al. (2010),
and explaining how the order parameter is related to the reflection of light from
the system. Section 4 discusses the case of recirculating flows in two dimensions,
including an analogy with Bloch’s theorem and ideas related to Anderson localisation
(described by Mott & Twose 1961; Ziman 1976). We show that the order parameter
has a quasi-periodic structure in regions where the rods tumble. Section 5 considers
the calculation of the locally averaged order parameter in the long-time limit, and
considers topological aspects of the solution. We show that the Poincaré index can
change by at most ± 1

2
on crossing a band (with simple annular topology), where the

rods tumble, and give a criterion for determining the change of Poincaré index. If the
Poincaré index changes upon crossing an elliptic band, there must be a singularity of
the average order parameter. In § 5, we identify normal forms for these singularities.
Section 6 contains some concluding remarks, and a discussion of how the results of
this paper differ from the case of random flows, considered by Wilkinson et al. (2009),
Bezuglyy et al. (2010).
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2. Equation of motion and its solution
2.1. Equations of motion

We consider the motion of very small rigid axisymmetric particles immersed in a
fluid flow with velocity field v(r, t). We assume they are small compared to the
characteristic length scale of the flow, and also sufficiently small that they do not
interact with each other or perturb the velocity field. They are assumed to have
negligible inertia so that their motion is dominated by viscous forces. The equation of
motion of the centre of the particle r(t) is then the advective equation ṙ = v(r, t) (we
shall use dots to indicate time derivatives). The motion of a unit vector n aligned with
the axis of symmetry is determined by the condition that the torque on the particle is
equal to zero. For sufficiently small particles, the equation of motion for n(t) can only
depend upon the gradient of the velocity field, described by a tensor A(t) with matrix
elements Aij (t) = ∂vi/∂rj (r(t), t), where r(t) is the particle trajectory. Jeffery (1922a)
determined the equation of motion for n(t) in the case of a spheroidal particle, and
Bretherton (1962) showed that the equation of motion for a general axisymmetric
particle is of the same form. The equation of motion may be written as

dn
dt

= Bn − n(n · Bn), (2.1)

where B is a matrix derived from the rate of strain matrix A as follows:

B = α1A − α2A
T, α1 + α2 = 1. (2.2)

Here AT is the transpose of the matrix A, and α1, α2 are dimensionless parameters
which are determined by the aspect ratio of the particle. In coordinate form, the
equation of motion reads

dni

dt
=

3∑
j=1

Bij nj − ni

3∑
j=1

3∑
k=1

nj Bjk nk, Bij = α1Aij − α2Aji. (2.3)

For an ellipsoid of aspect ratio β (with β � 1), Jeffery showed that α1 =β2/(β2 + 1),
α2 = 1/(β2 + 1). Jeffery originally wrote his equations of motion in component form,
however, (2.1) and (2.2) are equivalent to (10) and (12) in Mallier & Maxey (1991)
with E = 1

2
(A + AT) and ω = ∇ ∧ u.

2.2. Solution using a companion linear equation

Jeffery (1922a) also discussed the particular case of the motion of an ellipsoid of
revolution in a uniform shear flow, and showed that (except for the limiting case of a
rod) the particle exhibits a tumbling motion, which has been observed experimentally
by Savaş (1985). This has been extended to consider the tumbling motion of particles
in cellular flows (Mallier & Maxey 1991). The case of a general linear flow was
discussed by Szeri et al. (1991), who also discussed the response to a more general
flow field in the language of dynamical systems theory. Most other works (for example
Shin & Maxey 1991, 1997; Szeri & Leal 1994; Gauthier et al. 1998) have also used a
dynamical systems approach based upon the nonlinear equation of motion for n.

We can, however, solve (2.1) in terms of the solution of an auxiliary problem, which
is linear. Specifically, we solve the equation

dd
dt

= B(t)d (2.4)
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to determine a vector d(t). Here B(t) is the matrix B evaluated at the position reached
by the particle at time t , that is B(t) = α1A(r(t), t) − α2A

T(r(t), t). Equation (2.4) is
solved with the initial condition d(t0) = n0, where n0 is the initial orientation of the
particle at time t0. Now multiply d(t) by a scalar µ(t), chosen such that n(t) = µ(t)d(t)
is a unit vector. We find that this normalised vector does indeed satisfy (2.1). We
therefore have a solution of the nonlinear equation for n(t) in the form

n(t) =
d(t)

|d(t)| . (2.5)

This is an exact and completely general solution for the orientation, in terms of the
solution of a companion linear problem, (2.4). Because of the superposition principle,
it is almost always much easier to analyse a linear problem, even in circumstances
where exact solutions are not available. We exploit this advantage in the remainder
of this paper. This solution was first obtained by Szeri (1993), but remarkably most
subsequent papers did not make use of this powerful result.

Solving (2.5) is sufficient for determining the motion of a single particle with a
specified initial orientation, but in many cases we wish to consider the motion of
many small particles, or to obtain the solution for an arbitrary initial orientation. In
this context, instead of solving (2.5) we determine a matrix M(t) which is the solution
of

d

dt
M = B(r(t), t) M, (2.6)

with initial condition M(0) = I (the identity matrix). Given this matrix, the solution
of (2.6) is d(t) = M(t)d0, for any choice of d0, so that a single solution suffices for
all initial directions (although (2.6) must be integrated for every choice of the final
position r). A further generalization is to consider an arbitrary initial position for the
particle at time t0. Let M(r, t, t0) be the solution of (2.1) for a particle which reaches
position r at time t , having started at r0 at time t0. In this most general case, the
orientation is a vector field, n(r, t), and our exact solution becomes

n(r, t) =
M(r, t, t0)n(r0, t0)

|M(r, t, t0)n(r0, t0)|
. (2.7)

In the case of rod-like particles, where β → ∞, the matrix B(t) is equal to the
velocity-gradient matrix A(t), with elements Aij = ∂vi/∂rj . In this case, the matrix
M(t) has a simple physical interpretation, and in the following we use MA(t) to denote
the solution of (2.4) in the special case where B = A. Consider the trajectories of
two particles advected with the fluid: a reference particle with trajectory r(t), and a
nearby particle with trajectory r(t) + δr(t). To leading order in the separation |δr |,
the separation vector is determined by the matrix MA(t): we have δr(t) = MA(t) δr(0).
In the language of dynamical systems theory, a matrix with this property is termed
a monodromy matrix. We consider volume preserving flows, so that tr[A(t)] = 0. From
(2.2), the matrix B(t) has also the property that tr[B(t)] = 0, as if it were the velocity-
gradient of some ficticious volume-preserving flow, and consequently det[M(t)] = 1.
We will, therefore, refer to the solution M(t) of (2.6) as the pseudomonodromy matrix
of the flow. For the case of rod-like particles, where α1 = 1 and α2 = 0 in (2.2), it is
the same as the true monodromy matrix of the flow.

The degree to which the solution can be presented in closed form depends upon
the specifics of the flow field. Some important cases are considered below.
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2.3. Flows with uniform shear in three dimensions

First we comment on the exactly solvable case of a time-independent flow with
constant velocity gradient A, because this case already exhibits solutions showing
both alignment and tumbling. In this case, the matrix B is also a constant, and
the solution of the linear auxiliary (2.6) is d(t) = M(t)d0 = exp(Bt)d0. The matrix
exp(Bt) may be expressed in terms of the eigenvalues and eigenvectors of B. The
matrix B is typically non-Hermitian, and correspondingly its eigenvectors need not
be orthogonal. The behaviour of the solution is determined by the eigenvalues λi . We
consider incompressible flow, implying that tr[B] = 0, so the eigenvalues sum to zero.
The following discussion overlaps some comments made by Szeri (1993).

Apart from degenerate cases, the spectrum may take one of three forms in three
dimensions as follows.

(a) Eigenvalues real and distinct, with at least one of them positive. The axis of the
particle aligns with the eigenvector u+ corresponding to the largest eigenvalue, λ+ of
B (in the following we refer to these as the dominant eigenvector and eigenvalue).

(b) There may be a real and positive eigenvalue λ+, and a complex pair with
negative real part. In this case, the axis also aligns with the dominant eigenvector, u+.

(c) There may be two complex conjugate eigenvalues with positive real part (so
that the real eigenvalue is negative), with complex conjugate eigenvectors. When these
two eigenvectors are combined with complex-conjugate coefficients, the resulting real
vector lies in a plane. In the long-time limit, the vector d(t) spirals outwards in this
plane. This case corresponds to a tumbling motion of the particle.

Another way to understand the dynamics of the vector d(t) is to write M(t) as a
normal form

M(t) = XN(t) X−1, (2.8)

where X and N(t) are real-valued matrices. In case (a) the matrix N(t) is diagonal, with
diagonal entries exp(λi t). In cases (b) and (c), the matrix N(t) is in block-diagonal
form with a 2 × 2 block describing a spiralling motion,

N(t) =

⎛
⎜⎝

exp
(

− 1
2
λt

)
cos(ωt) exp

(
− 1

2
λt

)
sin(ωt) 0

−exp
(

− 1
2
λt

)
sin(ωt) exp

(
− 1

2
λt

)
cos(ωt) 0

0 0 exp(λt)

⎞
⎟⎠ . (2.9)

Here λ is the real eigenvalue of B, and the complex eigenvalues are − 1
2
λ ± iω. The

spiralling motion may be attractive (spiralling-in, when λ> 0), which is case (b), or
repelling (spiralling-out, when λ< 0), which is case (c).

2.4. Flows with uniform shear in two dimensions

In the case of two-dimensional incompressible flow, the matrix M may have two
reciprocal real eigenvalues (the hyperbolic case), or else two complex-conjugate
eigenvalues which lie on the unit circle (the elliptic case). In the hyperbolic case,
the vector d(t) comes into alignment with the eigenvector of B which corresponds
to the positive eigenvalue (the dominant eigenvector). In the elliptic case, where B
has purely imaginary eigenvalues ±iω, the pseudomonodromy matrix M(t) can be
expressed in terms of a normal form, analogous to (2.9), with N(t) replaced by a
rotation matrix R(ωt) representing rotation in the plane by an angle ωt .

Since B is (in the general case) non-Hermitian, its eigenvectors need not be
orthogonal. We briefly consider the consequences of this observation in the two-
dimensional case. If the matrix B is elliptic, the vector d(t) rotates, and the linear
transformation X in (2.8) transforms the circular motion of R(ωt)X−1d0 to motion on
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an ellipse. In some circumstances, this ellipse may have a large aspect ratio. In this
case, the vector n(t) = d(t)/|d(t)| will spend most of its time nearly aligned with the
long axis of the ellipse, reversing direction rapidly at times separated by π/ω.

2.5. Two-dimensional flow in a three-dimensional space

This paper discusses the motion of very small rod-like particles in two dimensions.
It is important to consider the relation between this problem and the physically
realisable case of a two-dimensional flow field in three-dimensional space. In the case
where the fluid velocity is independent of the vertical coordinate z, and where the
fluid velocity is confined to the (x, y) plane, the pseudomonodromy matrix has a very
simple structure so that the z-component of the vector d is constant

d(t) =
(
dx, dy, dz

)
= M(t)d0 =

⎛
⎜⎝

Mxx(t) Mxy(t) 0

Myx(t) Myy(t) 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

(d0)x

(d0)y

(d0)z

⎞
⎟⎠ . (2.10)

The direction vector n is obtained by normalizing this vector: n(t) = d(t)/|d(t)|. The
corresponding two-dimensional problem has direction vector n2(t) which is given by

n2 =
d2(t)

|d2(t)|
, d2(t) =

(
dx(t), dy(t)

)
=

(
Mxx(t) Mxy(t)

Myx(t) Myy(t)

) (
(d0)x

(d0)y

)
. (2.11)

It is natural to ask whether what is the relationship between the solution of the
two-dimensional problem, n2(t), and the projection of the three-dimensional solution,
np(t) = (nx(t), ny(t)). We observe that np(t) and n2(t) are co-linear. Furthermore, in
cases where the elements of x–y block of M(t) grow exponentially in the limit as
t → ∞, we see that the z-component of n(t) approaches zero exponentially, so that
the orientation vector collapses into the (x, y) plane, with n(t) → n2(t).

3. Order parameter and light scattering
3.1. General definition of the order parameter

The alignment of the particles may be described by an order parameter. If the
rheoscopic fluid is left to stand for a while, the particles become randomly oriented
due to Brownian motion. When the fluid is set in motion, the particles start to align,
and at later times we can describe the distribution of angles by a probability density.
In the case we consider below, the particles are aligned in a plane so that their
direction is defined by a single angle θ . Since the direction vector is non-oriented,
the probability density P (θ) satisfies P (θ + π) = P (θ). This probability density will
depend upon both position and time, but we suppress the arguments r and t in the
discussion below.

A suitable order parameter for the rod-like particles can be obtained from P (θ) by
first calculating the inertia tensor of the rods, which has components

Iij =

∫ 2π

0

dθ P (θ)(ni · n(θ))(nj · n(θ)), (3.1)

where n(θ) is a unit vector in the direction θ . The three distinct components of I11, I12

and I22 are not independent, because the vector n(θ) is constrained to have unit length.
They can be mapped to the order parameter vector ζ as follows. The inertia tensor
has real, positive eigenvalues I1, I2 and corresponding orthonormal eigenvectors U1,
U2, with I1 � I2. The eigenvalues satisfy I1 + I2 = 1, and the case I1 = 1 corresponds
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to perfect alignment, whereas I1 = I2 = 1/2 corresponds to an isotropic distribution.
We define ζ to be a non-oriented vector in the direction U1 with magnitude which
is a function of I1 − I2. Let us consider a special case where the rods align with the
direction θ̄ with probability p, or else are randomly distributed with probability 1−p,
that is

P (θ) =
p

2
[δ(θ − θ̄) + δ(θ − θ̄ − π)] +

1 − p

2π
. (3.2)

It is natural to define the order parameter so that ζ = pn(θ̄ ) in this case. For this
distribution, in the case θ̄ =0 we find I1 = (1 + p)/2 and I2 = (1 − p)/2, so that
I1 − I2 = p. We, therefore, define the order parameter as

ζ = (I1 − I2)U1. (3.3)

This is a general definition for the order parameter of rod-like particles in two
dimensions. An analogous definition can be used in three dimensions, where a general
inertia tensor has six independent components, but the inertia tensor for the rod
directions has five parameters because of the constraint that |n| =1.

3.2. Order parameter in terms of the monodromy matrix

Let us consider the evaluation of this order parameter for the case where the particles
are initially randomly oriented, so that the initial direction n0 in (2.2) is uniformly
distributed about the unit circle. According to the solution presented in § 2, a vector
n0 on this circle is mapped to a vector d(t) which lies on an ellipse. This ellipse is
described by its aspect ratio, ν � 1, and by the direction of its longest axis, θ̄ . In the
following, we obtain the probability density P (θ) and use this to obtain the order
parameter ζ in terms of ν and θ̄ .

An angle interval dφ on the unit circle is mapped to a segment of the ellipse which
is at an angle θ to its longer axis, and which spans an angle interval dθ . The angle θ

is independent of the overall scale of the ellipse, and we find it convenient to consider
the case where the short axis intersects the unit circle (see figure 5a, where θ̄ = 0 so
that the long axis is horizontal). The probability element for the direction of n0 being
in the original interval is dP = dφ/2π. This is the same as the probability element
for d(t) being in the interval dθ on the ellipse, so that the probability density P (θ)
satisfies

dP =
1

2π
dφ = P (θ)dθ. (3.4)

An elementary geometrical construction can be used to surmise the relation between
dφ and dθ . Instead of considering the mapping of a circle to an ellipse, let us consider
the image of a narrow annulus of angular width dφ between a circle with unit radius
and one with radius 1 − ε (with ε � 1), so that the area of this element is dA ∼ εdφ.
The element of the annulus is the set difference between two segments of disks
spanned by an angle dφ, one of unit radius, the other of radius 1 − ε. These segments
are transformed into regions which may also be approximated by segments of circles:
the larger one is approximated by a segment of a circle radius r spanned by an angle
dθ , having area ∼ 1

2
r2dθ and the smaller one by a segment which is smaller in area

by a factor (1 − ε)2 ∼ 1 − 2ε (see figure 5b). The area of the transformed image of the
annulus is, therefore, dA′ = εr2dθ . Since the transformation from a circular region to
an ellipse stretches the x-axis by the factor ν, we also have dA′ = νεdφ. We conclude
that dφ = r2dθ/ν, where r is the distance from the origin to a point on the ellipse at
angle θ from the long axis. The equation of the ellipse is ν2 = x2 + ν2y2, where
x = r cos θ , y = r sin θ , so that ν2 = r2[(ν2 − 1) sin2 θ + 1]. Using (3.4) we therefore
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dφ
dθ

φ θ

1

v

v

dA′dA

1

ε

(a)

(b)

r

Figure 5. (Colour online) The geometrical construction used to determine the probability
density for the angle, P (θ ).

conclude that the probability density for the direction of the vector d in (2.5) is

P (θ) =
r2

2πν
=

ν

2π

1

(ν2 − 1) sin2(θ − θ̄ ) + 1
. (3.5)

Using the identities ∫ 2π

0

dx
cos2 x

A sin2 x + 1
= 2π

√
A + 1 − 1

A∫ 2π

0

dx
sin2 x

A sin2 x + 1
= 2π

√
A + 1 − 1

A
√

A + 1
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.6)

we find that for this probability density, the elements of the inertia tensor are

I11 = 1 − I22 =
ν

ν + 1
cos2 θ̄ +

1

ν + 1
sin2 θ̄

I12 =
ν − 1

ν + 1
cos θ̄ sin θ̄ .

⎫⎪⎪⎬
⎪⎪⎭ (3.7)

The eigenvalues of the inertia tensor are then I1 = ν/(ν + 1) and I2 = 1/(ν + 1). The
order parameter for an initially uniform angular distribution is, therefore,

ζ =
ν − 1

ν + 1
n(θ̄ ), (3.8)

where n(θ) is a unit vector in the direction θ . It remains to express the aspect ratio
ν � 1 of the ellipse in terms of the matrix M. The equation defining the unit circle
|n0| =1 can be written x · x = 1. In terms of x ′ =Mx, this condition becomes the
equation for an ellipse: x ′ · Kx ′ = 1, with

K = (M−1)TM−1 = (MMT)−1. (3.9)
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The aspect ratio ν is, therefore, the square root of the ratio of the eigenvalues of
the real, symmetric positive definite matrix K. This may also be determined from the
ratio of the eigenvalues of K−1 = MMT. If the matrix K−1 has eigenvalues λ1, λ2 with
corresponding orthonormal eigenvectors U1, U2 ordered so that λ1 > λ2, then the
parameters in (3.8) are then ν =

√
λ1/λ2 and n(θ̄ ) = U1.

In a generic flow, the matrix B(t) is neither constant nor periodic, and we expect
that the solution of (2.4) will have a positive largest Lyapunov exponent. In this
case, the pseudomonodromy matrix M will become hyperbolic almost everywhere,
having a unique largest eigenvalue, which increases as time increases. The rods will
then align very close to the direction of the dominant eigenvector, irrespective of
their initial orientation. If the pseudomonodromy matrix remains elliptic, there is no
dominant eigenvector of M(t), and the final direction remains dependent upon the
initial orientation. However, even when M is elliptic there is a dominant eigenvector
of K =(M MT)−1, and whilst the rods are tumbling they tend to align in the direction
of its dominant eigenvector, U1. In the hyperbolic case where the rods approach
perfect alignment, the order parameter vector approaches a unit vector, but in the
elliptic case it is shorter than unit length.

3.3. Relating the order parameter to light scattering

The order parameter can be investigated experimentally by examining the reflection
of light by the rheoscopic fluid. Since we are primarily interested in two-dimensional
flows, we consider how the light scattering may be related to the order parameter in
the case where the illumination is confined to a surface. By way of examples, this
is relevant when the rheoscopic fluid is a thin layer floating on a denser, immiscible
fluid, or when the rheoscopic agent is used without dilution, so that the optical depth
is very small (implying that scattered light comes from a thin layer close to the
surface). The image contrast is greatest when the illumination comes from a direction
in the same plane as the surface. In the following, we describe the direction from
which the light is incident by projecting the incident ray onto the plane of the fluid
surface. We find it convenient to specify this direction by the angle φ of a line which
is perpendicular to this direction.

The intensity of light reflected by the microscopic particles depends upon their
orientation relative to the direction of the source of the light. The angular dependence
of the scattering depends upon a variety of factors, of which the ratio of the size of the
particles to the wavelength of light and their surface roughness are important. If the
particles are aligned with their long axis at angle θ , the intensity of the scattered light
will be f (φ − θ), for some function f which is even and periodic with period π. In the
following, we consider the limit where the particles are smaller than the wavelength
of light, in which case the amplitude of the scattered radiation is proportional to the
projected area of the particle in the direction of the incident light. This implies that
a rod at angle θ scatters light from a source which is perpendicular to the direction
φ with an intensity proportional to cos2(θ − φ) + γ , where γ is a contribution arising
from diffuse background scattering. In our subsequent discussion, we shall use this
form for the scattering kernel, with γ = 0.

More detailed information about the orientation of the particles may be revealed
by using three different light sources with different colours, illuminating the fluid from
three different directions. The intensity of the scattering of light from a given source
depends upon the direction of the particle relative to the direction of the light source.
At any given position, the fluid reflects with a colour C determined by additive mixing
of the scattered light from red, green and blue (R, G, B) sources, which we assume are
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arranged about the sample at directions separated by 120◦, as illustrated in figure 2.
This results in the light being scattered with a colour C, which is determined by
additive mixing of the primary colours R, G, B

C = I (0) R + I (2π/3) G + I (4π/3) B, (3.10)

where, in the limiting case of short rods, I (θ) is the inertia of the axial distribution
relative to the direction θ in:

I (θ) =

∫ 2π

0

dθ ′ P (θ ′) cos2(θ − θ ′). (3.11)

In principle, only two of the functions I (0), I (2π/2) and I (4π/3) are sufficient to
determine the two parameters of the order parameter. However, using three colours
has two advantages: with three colours the ratios of the scattered intensities can be
used, so that the normalisation of the intensities is not relevant. Also, as shown by
Bezuglyy et al. (2010), with three colours the Poincaré index of singularities can be
visualised directly. The mapping between the order parameter ζ and the colour C

of the reflected light is illustrated in figure 2. The use of coloured light sources to
enhance rheoscopic images was previously suggested by Thoroddsen & Bauer (1999).
Their work does not consider the relation between the colour mixing and the ordering
of the particles.

In our own experiments (Bezuglyy et al. 2010) using the technique illustrated in
figure 2, we found that good colour contrast is obtained with illumination by coloured
light-emitting diodes, positioned so that they are about 30◦ above the horizon from
the point at which the surface of the fluid is photographed. The rheoscopic fluid was
used without dilution. The photographs in Bezuglyy et al. (2010) show a randomly
stirred fluid. In order to observe the effects described in this paper, a steady flow
could be set up using a journal bearing. The flow has to be sufficiently slow that
its Reynolds number remains very small, but the period of the rotation about the
streamlines cannot be too large, otherwise the particle orientation is randomised by
Brownian motion. These considerations favour using a small system.

For larger rheoscopic particles, the function cos2(θ − θ ′) is replaced by another
function f (θ − θ ′). This would make a quantitative but not a qualitative difference to
the colour images which are displayed here.

4. Steady flows in two dimensions
4.1. Hyperbolic and elliptic bands

Now we turn to considering rheoscopic particles in a steady incompressible flow
where the velocity vector is confined to a plane with coordinates (x, y). This system
was previously considered by Szeri (1993), who showed that there are regions (which
we term hyperbolic bands) where the particles align with each other. His paper gives
a treatment of (2.1) using concepts from dynamical systems theory. In particular, the
regions in which the particles align are determined by looking for stable fixed points
of the Poincaré map for the particle axis direction as it is advected around a contour
of the stream function. In the following, we use the solution (2.7), which gives a more
thorough insight into this system, as well as being more computationally efficient
(because it is not necessary to repeat the calculation for different initial directions of
the rod). Together with the quadratic form for determining the order parameter, (3.9),
this also allows us to describe the alignment of the particles in the regions outside
the hyperbolic bands.
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The velocity field of a steady, incompressible two-dimensional flow may be derived
from a stream function ψ(x, y): we have v =(∂ψ/∂y, −∂ψ/∂x). By analogy with
Hamiltonian’s equations of motion for a one degree of freedom autonomous system,
we see that the trajectories follow contours of the stream function, so that a trajectory
labelled by ψ0 is defined by writing ψ(x, y) =ψ0. The contours may be either closed
or open. Particles which are advected along a closed contour have a periodic motion,
with a period T (which is a function of ψ0). This periodicity simplifies the analysis of
the behaviour of advected particles, and we concentrate on the periodic case. Periodic
behaviour can also occur if ψ(x, y) is periodic in one or both variables, and our
discussion is readily extended to such cases.

We have seen that the behaviour of axisymmetric particles is determined by
the pseudomonodromy matrix M(t). In the two-dimensional incompressible case,
this matrix is a 2 × 2 matrix which satisfies det[M(t)] = 1. Such a matrix is either
hyperbolic, having two reciprocal real eigenvalues, or elliptic, with two mutually
conjugate complex eigenvalues with modulus equal to one. The character of this
matrix is readily determined from its trace: if |tr[M]| > 2, the matrix is hyperbolic,
whereas if |tr[M]| < 2, the matrix is elliptic (and if |tr[M]| = 2, the matrix is a shear).
By comparison with the case of constant matrix B which was discussed in § 2, we
anticipate that if the matrix M is hyperbolic, the advected particles tend to approach
a given direction, whereas the elliptic case is associated with tumbling motion. This
expectation turns out to be correct, in a qualified sense as discussed below.

We can label points on a closed trajectory by the time t0 taken to reach the point
from an arbitrary reference point on the orbit. Let M(t, t0) be the pseudomonodromy
matrix for the trajectory which starts at time t0 and at the point labelled by t0,
ending a time t . Let us consider the evaluation of M(t, t0), in the case where t is
written in the form t = t1 + NT (where T is the period and N an integer). We can
express this general matrix in terms of a pseudomonodromy matrix for a single cycle,
M0 = M(T , 0), together with matrices representing short-time evolution for a fraction
of a cycle. We can write

M(t, t0) = M(t1, 0)[M0]
NM−1(t0, 0). (4.1)

This shows that the long-time behaviour is determined by the character of the matrix
M0, which can be computed by propagating a solution of (2.6) for a finite time. In
particular, if M0 is hyperbolic, the matrix M(t, t0) will have one eigenvalue which is
much larger than the other when t − t0 → ∞. Since the eigenvalues of a matrix are
invariant under a similarity transform, the structure of (4.1) implies that the character
of M0 (hyperbolic or elliptic) is independent of the choice of starting point on the
contour.

Since the elliptic or hyperbolic character of a trajectory is independent of its starting
point, we can label the contours of the stream function according to the character
of the one-period monodromy matrix, M0. From (4.1), we see that when t1 = 0 and
when M0 is hyperbolic, the particles align with the eigenvector of M0 corresponding
to its largest eigenvector. More generally, in the hyperbolic case the orientation at
any position aligns with the direction of the dominant eigenvector of the monodromy
matrix for the one-period orbit which ends at that position. On contours where M0

is elliptic, at any given position the particles continue to tumble as t − t0 → ∞. The
contours of ψ(x, y) may, therefore, be divided into elliptic bands, where the pseudo-
monodromy matrix is elliptic and the particles tumble, and hyperbolic bands, where
the pseudo-monodromy matrix is hyperbolic and where the direction approaches
a constant vector field. These bands are analogous to the bands which occur for
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Figure 6. (a) Contours of the stream function ψ(x, y) for a journal bearing system: both
circular boundaries rotate in the same direction, with the angular speed of the inner boundary
exceeding that of the outer boundary by a factor of 20. (b) These contours can be coloured
according to whether the transfer matrix M0 is elliptic |tr(M0)| < 2 (red), or hyperbolic,
tr(M0) > 2 (blue) and tr(M0) < −2 (green). Each hyperbolic band is labelled by its Poincaré
index. In this illustration, we set α1 = 0.95, α2 = 0.05 in (2.1) and (2.2), (which corresponds to

ellipsoidal particles with aspect ratio β =
√

19 = 4.36 . . .).

the solution of the Schrödinger equation for a one-dimensional potential (Ziman
1976), where the transfer matrix for solutions of the Schrödinger equation plays
the same role as the monodromy matrix for a single orbit M0. The hyperbolic
bands correspond to the bandgaps in the solution of the Schrödinger equation,
where the wavefunction increases exponentially in one direction, so that there are
no satisfactory eigenstates. The elliptic bands correspond to the energy bands of the
Schrödinger equation, where its solutions are Bloch waves (Ziman 1976). We remark
that our discussion may also be viewed as an example of the application of Floquet
theory. We emphasise that the hyperbolic bands are the same as the aligning regions
in Szeri (1993).

We remark that in the special case where the particles are rod-like (that is, α2 → 0 in
(2.2)), the matrix M(t, t0) is the true monodromy matrix. The one-period monodromy
matrix for a periodic two-dimensional flow is always a simple shear, and rod-like
particles will always align with the contours of the stream function.

The results given in § 2 show that in a simple shear flow, the particles always tumble
rather than coming into alignment (except for the limiting case where the aspect ratio
of the rods is infinite). Since a steady two-dimensional flow locally resembles a shear
flow, it might, therefore, be expected that the transfer matrix M0 would always be
elliptic, because it can be thought of as a product of matrices each of which would
individually be generated by an elliptic flow. This need not be the case, however. It
is known from studies of Anderson localisation for the one-dimensional Schrödinger
equation that products of elliptic matrices can be hyperbolic (Mott & Twose 1961). (In
the context of Anderson localisation, this statement is equivalent to the observation
that localised states occur for energies where there is no classical potential barrier
Ziman 1976). We, therefore, conclude that alignment of particles around periodic
trajectories is possible, although it might be argued to be unexpected.

We now turn to consider an example of textures formed by the alignment of
axisymmetric particles in steady two-dimensional flows. Figure 6(a) displays the
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contours of the stream function for a two-dimensional flow, exhibiting saddle points
as well as extrema. The flow is a ‘journal bearing’ flow, where the circular boundaries
rotate with different angular velocities. The stream function for this flow was obtained
by Jeffery (1922b), Müller (1942), Wannier (1950), and is discussed in detail by Ballal &
Rivlin (1976). In this example, the walls rotate in the clockwise sense, with the angular
velocity of the inner wall exceeding that of the outer wall by a factor of 20. The radius
of the inner wall is 0.3 times that of the outer wall, and the eccentricity parameter
ε̄ of Ballal & Rivlin (1976) is 3/4, so that the centre of the inner boundary is offset
by a multiple of 0.525 . . . times the radius of the outer wall. This system can be
realised physically by filling the space between two vertical rotating cylinders with
a rheoscopic fluid, and figure 4 (which will be explained in § 5) is an illustration of
the complexity of the pattern of light scattering from the surface which could be
observed in the long-time limit. The hyperbolic bands (blue or green) and elliptic
bands (red) are illustrated in figure 6(b), with the hyperbolic bands shaded blue if
tr(M0) > 2, green if tr(M0) < −2 (the reason for making the distinction between thee
two hyperbolic cases will be considered in § 5.3). There is a contour which marks a
transition from trM0 > 2 to trM0 < 2 without passing through an elliptic zone: this
is possible because the contour is a separatrix, where the topology of the contours
changes. This example of a steady two-dimensional flow is the same as was studied
by Szeri (1993), and the hyperbolic bands in figure 6(b) correspond to the aligning
regions which were obtained by Szeri. The Poincaré indices of the hyperbolic bands
are also shown, and these are equal to one-half of the ‘flip numbers’ which were
discussed by Szeri (1993).

The special case of contours which pass through stagnation points is hard to treat,
and also of little physical interest because the period of the motion is infinite, implying
that the particle orientation will be randomised by Brownian motion. This case will
not be considered further.

4.2. The order parameter in elliptic bands

Let us consider the form of the order parameter in the elliptic bands. Provided the
period T of an orbit depends upon the stream function ψ , a passive scalar function
will be wound into an increasingly tight spiral under the action of a two-dimensional
steady flow. Its lines of constant density will become closely aligned with the contours
of the stream function, with the scalar having an approximately periodic behaviour
when traced in a direction perpendicular to the streamlines. Figure 1 showed an
example of the evolution of the order parameter as time increases, showing the
development of an increasingly tight spiral pattern. However, we shall see that the
behaviour of the order parameter is more complicated than that of a passive scalar,
in that its variation in a direction perpendicular to the contours of ψ(x, y) is quasi-
periodic rather than periodic.

Consider the variation of the order parameter within an elliptic band as a function
of position for large time t , in the vicinity of a reference point which lies on a
closed contour of ψ . In the neighbourhood of this reference point (x0, y0), we use
two coordinates ψ and τ to label points (x, y). We define ψ =ψ(x, y) − ψ(x0, y0).
We define a reference point on other contours of ψ by drawing a line which is
perpendicular to the contour passing through (x0, y0). We label the distance along a
contour by the time τ taken to reach that point starting from the reference point on
the orbit. This coordinate system is illustrated in figure 7.

Now let us specialise by taking the reference point to lie on a contour such that t

is a multiple of the period T , so that t = NT for some integer N . For a set of isolated
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τ

�ψ

NT (ψ0) � t

(N+1) T (ψ0 – �ψ0) � t

Figure 7. The coordinates ψ , τ which are used in the discussion of elliptic bands.

contours the motion will also be periodic, making a different number of orbits in the
same time t . For large t , the spacing between these contours approaches zero and
they become approximately evenly spaced, with the spacing ψ0 of the contours of
the stream function being

ψ0 =

∣∣∣∣ T

N

dψ

dT

∣∣∣∣ =

∣∣∣∣ 1

N

A′

A′′

∣∣∣∣ , (4.2)

where A(ψ) is the area enclosed by the contour with stream function ψ .
The transfer matrix may be written in terms of its normal form, similar to (2.8).

First consider the form of this matrix along the line τ =0. At (x, y) = (x0, y0), we have
M(0, 0) = MN

0 , where M0 is the transfer matrix (that is, the pseudomonodromy matrix
for one orbit). We write the transfer matrix in normal form as follows:

M0 = XR(θ0) X−1, (4.3)

where R(θ) is a rotation matrix for angle θ . When ψ changes by ψ0, the trajectory
makes one additional orbit, so that the transfer matrix becomes M(ψ0, 0) =MN+1

0 .
We can, therefore, write M(ψ, 0) = XR(θ) X−1 Z(ψ/ψ0), where Z(x) is a 2 × 2
matrix which is a periodic function of x, with

θ = θ0

(
N +

ψ

ψ0

)
. (4.4)

and

Z(x + 1) = Z(x), Z(0) = I. (4.5)

With these notations and definitions, for a general position the transfer matrix is

M(ψ, τ ) = M(τ ) X R(θ) X−1 Z (ψ/ψ0) M−1(τ ). (4.6)

In the limit as N → ∞, the order parameter depends increasingly sensitively upon
ψ , but the sensitivity to τ is independent of N . The dependence of ζ upon ψ is
quasi-periodic, being associated with two periods. One period ψ0 is associated with
the change in ψ required for the trajectory to make an additional orbit in time t .
There is another periodicity associated with the change in ψ required for the phase
θ in (4.4) to increment by 2π. This additional periodicity is ψ1 = 2πψ0/θ0.
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θ

4π

2π

0 ψ�ψ0 2�ψ0

slope –––
θ0

�ψ0

Figure 8. The evolution of the angular variables in the representation (4.6), θ and ψ , as the
contour label ψ0 is varied. The periods of these variables are 2π and ψ0, respectively, and
(4.4) implies that the slope of the line is θ0/ψ0. The evolution can be ‘folded’ into a unit cell,
and provided θ0/2π is an irrational number this reduced dynamics is ergodic.

Equation (4.6) gives a complicated expression for the matrix of the quadratic form
describing the order parameter, (3.9), which does not seem to be useful. However, in
the next section we shall see that although the order parameter depends increasingly
sensitively on position in the long-time limit, the order parameter of the locally
averaged orientation has a very simple representation.

5. Averaging, singularities and topology of the order parameter
5.1. Local average of the order parameter

We have seen that in the elliptic bands, the order parameter varies increasingly rapidly
as a function of ψ in the limit as t → ∞. Eventually the order parameter fluctuates
on a length scale which is small compared to the resolving power of the eye. In this
limit it is necessary to perform a local average of the inertia tensor (3.1) representing
the distribution of orientations. The order parameter of this locally averaged quantity
determines the appearance of the rheoscopic suspension in the long-time limit.

In the limit as t → ∞, the periods associated with varying ψ , namely ψ1 and ψ0,
respectively, both approach zero. As the contour ψ0 is varied, the values of θ and ψ

both change linearly, along a trajectory illustrated in figure 8. The local averaging of
the orientation distribution is effected by averaging along this trajectory. Because of
the periodicity, the trajectory can be ‘folded back’ into a single unit cell. The folded
trajectory will fill this unit cell provided θ0/2π is an irrational number (i.e. not a ratio
of two integers). Since rational numbers are a measure zero case, we may perform
the local average by averaging (4.6) over the unit cell in figure 8.

Consider the behaviour of the order parameter of the locally averaged orientation
in terms of the representation (4.6) (without loss of generality we may consider the
line τ =0). We consider a region which is large compared to both of the periods
ψ0 and ψ1 (note that both periods approach zero in the long-time limit, so this
region can be made arbitrarily small). The orientation of n is initially distributed
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0

a c db

n X –1Zn 〈R(θ)X –1Zn〉θ X〈R(θ)X –1Zn〉θ

�ψ0

Figure 9. The transformations which are applied in succession to the distribution of the
initial direction vector n, in order to produce the vector d = M n, where M is expressed in
the form (4.6). The vector n is initially randomly distributed around a unit circle (a). After
application of the transformation X−1 Z, this circle is transformed into an ellipse, with the
parameters of the ellipse depending periodically upon ψ (b). If we average over the rotation
angle of the matrix R(θ ), the vectors which are randomly distributed on an elliptical curve are
mapped into an annular region (c). This region is mapped into an elliptic annulus by the final
transformation X(d ).

randomly around the unit circle. The matrix X−1 Z(ψ/ψ0) maps this circle to an
ellipse, the parameters of which depend periodically upon ψ , with period ψ0

(this is illustrated schematically in figure 9a, b). We will average over the period
ψ0 as the final stage of our argument. This ellipse is rotated by an angle θ , which
depends increasingly sensitively on ψ in the long-time limit, with a period ψ1

which is inversely proportional to time, so that we can average over the rotation
angle θ . Upon averaging over θ , the ellipse is, therefore, transformed into a circularly
symmetric distribution in the plane, as illustrated in figure 9(c). The action of the
matrix X transforms this annular region into a region bounded by two similar ellipses;
see figure 9(d ). These have an aspect ratio ν which is the square root of the ratio
of the eigenvalues of XXT, as described in § 3. The arguments developed in § 3 show
that the angular distribution P (θ) depends only upon the aspect ratio of the ellipse,
and not upon its overall scale. Furthermore, although the radial distribution in the
circular region depends upon ψ , it is only the aspect ratio of the elliptic region
which matters, and this is determined solely by the matrix XXT, so that the average
over ψ is trivial.

Thus, we conclude that in the elliptic regions the locally averaged order parameter
approaches a limit which varies smoothly as a function of position. The averaged
order parameter 〈ζ 〉(r) is determined by the matrix X(r) which occurs in the definition
of the normal form (4.3), in the same manner as the un-averaged order parameter
ζ (r, t) is determined from the pseudomonodromy matrix M(r, t, t0). In particular,
(3.9) for the matrix K defining the quadratic form for the inertia tensor of the angle
distribution is replaced by

K−1 = XXT. (5.1)

The locally averaged order parameter 〈ζ 〉 points in the direction of the eigenvector
corresponding to the largest eigenvalue of XXT, and if the square root of the ratio
of eigenvalues of this matrix is µ, then |〈ζ 〉| =(µ − 1)/(µ + 1). Equation (5.1) is
one of the principal results of this paper, since it expresses the long-time limit of
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Figure 10. (a) The locally averaged order parameter field computed by using (4.3) and (5.1).
The hyperbolic and elliptic bands are separated by red lines, and the positions of zeros of the
order parameter field are indicated by green dots for zeros with Poincaré index equal to 1/2,
green crosses for zeros with index −1/2. (b) The same image as figure 4, with the boundaries
between hyperbolic and elliptic bands indicated by solid black lines (and the positions of zeros
of 〈ζ 〉 are also marked).

the alignments of particles in terms of the normal-form of the transfer matrix M0.
The locally averaged order parameter field is illustrated in figure 10(a) for the same
journal bearing example as figures 4 and 6, respectively.

5.2. Continuity of the averaged order parameter

In a hyperbolic band, where the particles approach a fixed alignment, the asymptotic
rod direction at any point r approaches the dominant eigenvector u+ of the transfer
matrix M0(r), for a periodic orbit which ends at r . In the long-time limit, a local
average of this order parameter field, 〈ζ 〉(r), is also a smooth function of position
throughout the elliptic region. We should consider whether the locally averaged order
parameter varies continuously upon passing between elliptic and hyperbolic regions.

Wilkinson et al. (2009) showed that the transfer matrix at a boundary between
elliptic and hyperbolic regions, where tr(M) = 2, is in the form of a generalized shear

M = R(φ) S(κ) R(−φ), (5.2)

where R(φ) is a rotation matrix and S(κ) is a shear of the form

S(κ) =

(
1 κ

0 1

)
. (5.3)

It follows that eigenvectors of the monodromy matrix become co-linear as we
approach the boundary between elliptic and hyperbolic regions: both eigenvectors
approach u = (cosφ, sinφ), while both eigenvalues approach unity. As we approach
such a boundary from the hyperbolic side, the order parameter field aligns with
this common eigenvector. It will prove useful to express (5.2) in component form:

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

44
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004441


178 M. Wilkinson, V. Bezuglyy and B. Mehlig

introducing the notations c = cosφ, s = sinφ, we find that

M =

(
1 + κcs κc2

−κs2 1 − κcs

)
. (5.4)

However, it is not clear what happens as we approach the boundary from the elliptic
side, where the transfer matrix can be expressed in the form (4.3). As the boundary
is approached, the angle θ0 in (4.3) approaches zero, because tr(M) = 2 cos θ0 → 2, and
in the following discussion we treat θ0 as a small number. It is clear that the matrix X
in the representation (4.3) must become singular in order to approach (5.2) as θ0 → 0.
Let us assume that in this limit X takes the form

X =

(
cos(φ + δφ) cos(φ − δφ)

sin(φ + δφ) sin(φ − δφ)

)
=

(
c − δφ s c + δφs

s + δφc s − δφc

)
+ O(δφ2), (5.5)

where we shall assume that the small change in the angle is

δφ =
θ0

κ
+ O(θ2

0 ). (5.6)

We find det(X) = 2θ0, so the assumed form for X does indeed become singular as
θ0 → 0. Inserting the ansatz (5.5), (5.6) into (4.3), approximating

R(θ0) = I + θ0J + O(θ2
0 ), J =

(
0 1

−1 0

)
(5.7)

and ignoring O(θ2
0 ) terms, we find

M =

(
1 + κcs −κc2

κs2 1 − κcs

)
+ θ0

(
c2 − s2 0

0 s2 − c2

)
+ O(θ2

0 ). (5.8)

In the limit as θ0 → 0 we find that this expression agrees with (5.4), which confirms
that the ansatz (5.5), (5.6) was correct. We can now use this expression for X in (5.1)
to calculate the form of the matrix K−1 defining the quadratic form characterising the
order parameter we obtain

K−1 = 2

(
c2 cs

cs s2

)
+ O(θ2

0 ). (5.9)

The term which is independent of θ0 is a singular matrix: its eigenvectors are
U1 = (cosφ, sinφ) with eigenvalue Λ1 = 1, and U2 = (sin φ, −cosφ) with eigenvalue
Λ2 = 0. This shows that in the limit as θ0 → 0 the ellipse which is defined by
the quadratic form (X XT)−1 degenerates into a line, which is aligned with the
common eigenvector of (5.2). Since the aspect ratio of the ellipse approaches
infinity, the modulus of the order parameter approaches unity as the boundary
is approached. We conclude that the locally averaged order parameter is continuous
at the boundary between elliptic and hyperbolic regions (although it clearly has
discontinuous derivatives).

Finally, we comment on the nature of the discontinuity of the order parameter
at the boundary between the elliptic and hyperbolic bands. The fact that the O(θ0)
term in (5.9) is equal to zero implies that the determinant of XXT is det(K−1) = O(θ2

0 ),
implying that Λ2 =O(θ2

0 ). This implies that the aspect ratio of the ellipse is ν ∼ θ−2
0 .

Since tr(M) = 2 cos θ0 has a linear dependence upon the distance d from the boundary
with the hyperbolic region, we conclude that θ0 ∼

√
d , so that ν ∼ 1/d . This in turn

implies that the magnitude of the order parameter approaches unity linearly upon
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approaching the boundary of an elliptic band, so that 〈ζ 〉(r) has a discontinuous first
derivative.

5.3. Poincaré indices of the order parameter

The Poincaré index must be the same for any curve lying in a hyperbolic band,
because u+ cannot have any singularities there (Wilkinson et al. 2009). The Poincaré
index is most efficiently determined by evaluating u+ around a given contour of ψ

within the hyperbolic band. These Poincaré indices are indicated for each of the
hyperbolic bands in figure 6(b). They were also evaluated by Szeri (1993): his ‘flip
numbers’ are twice the Poincaré index.

We have seen that each hyperbolic band is associated with a Poincaré index, and
simulations confirm that the Poincaré indices of different hyperbolic bands need not
be equal. We have also seen that 〈ζ 〉 is continuous everywhere, so that a Poincaré
index can also be ascribed to the averaged order parameter field 〈ζ 〉(r) in the elliptic
bands. This raises the following question: is there a rule for determining the difference
between the Poincaré indices of the hyperbolic bands in terms of a property of the
intervening elliptic band?

The analogy with Bloch bands in solid-state physics suggests that a rule for Poincaré
indices might be found. The wavefunction of a Bloch band at any given energy is
characterised by a Bloch wavevector k, such that on traversing one period L of
the potential the wavefunction accumulates a phase factor exp(ikL). The phase θ0

in (4.3) corresponds to kL in the Bloch wavefunction. The wavevector is related to
the monodromy matrix by |trM| = 2 cos(kL). On traversing a band, the wavefunction,
therefore, rotates by π for every period of the potential. By analogy, in a steady flow
we might expect that the axis rotates by ±π on crossing every elliptic band, which
would imply that the Poincaré index changes by ±1/2 on crossing every elliptic band.
The following argument shows that this physical intuition is partially correct.

A rule for changes of the Poincaré index is obtained by the following argument. We
assume that the elliptic region has a simple annular topology, although cases where
an elliptic region has two or more ‘holes’ occur. In the elliptic band the eigenvalues
of M0 are complex numbers, with both the eigenvalues and eigenvectors occurring
as complex conjugate pairs. We can multiply the eigenvectors by complex numbers
chosen so that these vectors are purely real at the band edges. Let us combine the
two eigenvectors u1, u2 = u∗

1 to yield a real-valued vector a = 1
2
[u1 + u2]. This vector

depends upon position, because the matrix M0 depends upon the position r . In the
following, we use the same coordinates as in § 4, so that positions within the band
are labelled by the value of the stream function contour, ψ0, and by the time τ taken
to reach the point from a specified starting point on the contour (see figure 7). Note
that the matrix M0 at different points around the contour ψ0 is related by a similarity
transformation: M0(ψ0, τ ) = M(ψ0, τ ) M0(ψ0, 0) M−1(ψ0, τ ), implying that eigenvectors
satisfy ui(ψ0, τ ) = M(ψ0, τ )ui(ψ0, 0). Now let us consider some properties of the vector
field

A(ψ0, τ ) = M(ψ0, τ )a(ψ0, 0) = 1
2
M(ψ0, τ )[u1(ψ0, 0) + u2(ψ0, 0)]. (5.10)

We note the following properties of this vector field.
(a) At the inner and outer edges of the elliptic band (we label these contours ψ1 and

ψ2, respectively), the two eigenvectors u1, u2 become co-linear, and the real-valued
vector A(ψ, τ ) corresponds to the single eigenvector of the monodromy matrix. The
vector A, therefore, corresponds to the long-time limit of the order parameter at the
inner and outer edges of the elliptic band, and the Poincaré index of A on the inner
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and outer edges corresponds to the Poincaré indices (N1 and N2, respectively) of the
surrounding hyperbolic bands.

(b) The vector field A(ψ0, τ ) is clearly a smooth function of position within the
elliptic band. Also, since M(ψ0, τ ) is non-singular, and the vector a(ψ0, 0) does not
vanish for any value of ψ0 in the interval [ψ1, ψ2], this vector field a(ψ0, τ ) has no
zeros in the elliptic band.

(c) Let us consider a closed curve which is composed of the line τ =0 traversed
from the outer edge to the inner (from ψ0 = ψ2 to ψ0 = ψ1), the inner edge of the
elliptic band (that is, the line ψ0 = ψ1) traversed clockwise around one period, the
line τ = 0 traversed from ψ0 = ψ1 to the outer edge ψ0 = ψ2, and then the outer edge
(the line ψ0 = ψ2) traversed counterclockwise back to the starting point. This path is
illustrated in figure 11. Since the vector field A has no zeros and is everywhere smooth
within this region, the Poincaré index N of this field evaluated on the specified path
is equal to zero.

(d) However, we note that the vector field A(ψ, τ ) is periodic on the segments
which correspond to the inner and outer edges of the elliptic band (ψ0 = ψ1 or
ψ0 = ψ2), so that we can talk about a Poincaré index defined on these segments of
the path in isolation. Furthermore, since A corresponds to the order parameter field
〈ζ 〉 at the band edges, we see that the contribution to the Poincaré index N of A
on the closed paths, which arise from the inner and outer band edges, is equal to
the difference between the Poincaré index of the order parameter field at the inner
and outer edges of the elliptic band. We can, therefore, deduce this difference (i.e.
N1 − N2) by evaluating the contribution to the Poincaré index which arises from the
two segments along the line τ = 0.

(e) Although the path in space which is followed by the two ‘radial’ segments of
path considered in point (c) above is the same, the vector field differs because in one
case the matrix M(ψ0, T ) = M0(ψ0, 0) has been applied to the vector a(ψ0, 0). This
vector is constructed from the two complex-conjugate eigenvectors of M0, for which
the corresponding eigenvalues may be written as exp(iK), where tr(M0) = 2 cos(K). If
we write the eigenvectors of M0 in the form u = a +ib, where b is a real-valued vector,
then we can express the relation between the vector A on the two radial components
of the closed path as follows:

A(ψ0, T (ψ0)) = cos(K(ψ0))a(ψ0, 0) + sin(K(ψ0))b(ψ0, 0). (5.11)

(f) Equation (5.11) leads to two possible conclusions. The band edges correspond
to points at which tr(M0) = ± 2 = 2 cos(K). This implies that sin(K) = 0 at the band
edges and cos(K) = ± 1. If tr(M0) has opposite signs at the two band edges, then
(5.11) implies that A changes sign when the two radial elements of the closed path
in figure 11 are traversed in opposite directions. Since the Poincaré index for the
composite path is equal to zero, this change of sign implies that the Poincaré indices
of the inner and outer band edges differ by ±1/2. Conversely, if the sign of tr(M0) is
the same on the inner and outer band edges, then the Poincaré indices of the inner
and outer bands edges are equal. A more detailed argument, requiring information
about eigenvectors of M0 as well as its trace, is required to establish the sign of the
change in the Poincaré index.

In the context of solid-state physics, the structure of the Schrödinger equation
implies that the trace of the monodromy matrix always does change sign upon
crossing a band. In the problem we consider here, tr(M0) need not change sign upon
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τ = 0 

Ψ = Ψ2

Ψ = Ψ1

Figure 11. (Colour online) The path used in the discussion of Poincaré indices as
described in § 5.3.

crossing an elliptic band, so that the surmise about the Poincaré index based on the
solid-state physics analogy is only partially correct.

5.4. Singularities of the order parameter

As pointed out in §§ 5.2 and 5.3, the locally averaged order parameter vector 〈ζ 〉 varies
smoothly and is defined everywhere within the elliptic bands. However, we have
seen that the Poincaré index of the order parameter field may differ by ±1/2 between
the inner and outer edges of the band. When these Poincaré indices are different,
there must be at least one singular point inside the band, where there is a zero of the
averaged order parameter vector field 〈ζ 〉(r). We now consider the structure of these
singularities. A similar argument is presented in Bezuglyy et al. (2010), where we
discuss singularities of the order parameter ζ for random flows. Here, we discuss
singularities of 〈ζ 〉 for steady flows, and find that the mathematical structure of the
singularities is the same, although the argument has a different structure.

In the case where X in (4.6) is a unit matrix, there is a singularity where the
orientation remains uniformly distributed, implying that the order parameter vector
vanishes. We now examine the structure of the position-dependence of this matrix in
the vicinity of this singular point. A general 2 × 2 matrix A can be written in the form

A = α R(φ) diag(λ, λ−1) S(κ), (5.12)

which is described by four parameters α, φ, λ, κ , where S(κ) is the shear matrix, (5.3).
Consider the use of the representation (5.12) to parametrise the matrix X in (4.3). First
note that because the scaling constant α and the rotation matrix R(φ) both commute
with R(θ), if we express X in the form (5.12), the values of α and φ are irrelevant, so
that we may write X as a member of a two-parameter family: X= diag(λ, λ−1)S(τ ). By
a linear transformation T of the coordinate system, we may represent the position r
in the vicinity of a zero at r0 in terms of coordinates X = (X, Y ), writing X= T(r − r0).
This change of coordinates is non-inverting (i.e. det(T) > 0) and is determined so that
λ= 1 + 1

2
X + O(X2), κ = sY + O(X2), with the sign s = ± 1 chosen so that det(T) > 0.

The position dependence of the matrix X may, therefore, be parametrised as

X =

(
1 + 1

2
X 0

0 1 − 1
2
X

)(
1 sY

0 1

)
+ O(X2)
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(a) (b)Y Y

X X

Figure 12. (Colour online) Illustrating the normal forms for the zeros of the locally averaged
order parameter field 〈ζ 〉(X, Y ): (a) s = + 1 leads to a core singularity and (b) = − 1 leads to
a delta singularity.

=

(
1 + 1

2
X sY

0 1 − 1
2
X

)
+ O(X2). (5.13)

The parameter dependence of the matrix K−1 = XXT is, therefore, of the form

K−1 =

(
1 + X sY

sY 1 − X

)
+ O(X2). (5.14)

This matrix has eigenvalues λ± = 1 ± R, where R =
√

X2 + Y 2, and if we write
(X, Y ) = (R cos Θ, R sinΘ), we find that the eigenvector corresponding to the largest
eigenvalue, 1 + R, has angle θ = s 1

2
Θ . The aspect ratio is ν =

√
(1 + R)/(1 − R) = 1 +

R + O(R2). The magnitude of the order parameter is then |ζ | = R/2 + O(R2), so that
the locally averaged order parameter is

〈ζ 〉(X, Y ) =
R

2
n
( s

2
Θ

)
+ O(X2). (5.15)

The field 〈ζ 〉(X, Y ) is illustrated in figure 12 for both choices of the sign s. In both
cases the normal form of the singularity, (5.15), resembles forms which are seen
in ridge patterns of fingerprints (first described by Henry 1900): we have a core
singularity when s = + 1 or a delta singularity when s = − 1.

The singularities of our order parameter field are very closely related to ‘umbilic
points’ on surfaces, where the height z above the Cartesian plane is z = f (x1, x2). An
umbilic point is a point where the magnitudes of the principal curvatures are equal,
so that the surface is locally isotropic. Different ways of categorising umbilic points
are discussed by Berry & Hannay (1977). The principal curvatures are the defined by
the eigenvalues and eigenvectors of the real symmetric Hessian matrix, with elements
∂2f/∂xi∂xj . This is analogous to considering the matrix K(x, y) discussed above, and
the direction of one of the principal axes of curvature has the same singularities
as the direction of our order parameter. The classification of directions of principal
curvatures discussed by Berry & Hannay (1977) lists three types of singularity, star,
lemon and monstar. The star is equivalent to the delta singularity of fingerprint
patterns. The lemon and monstar are subdivisions of the core singularity. They are
distinguished by the number of lines along which the vector field is aligned radially.
In the core and delta singularities illustrated in figure 12, there is one such line for
the core singularity, and there are three such lines for the delta singularity. This figure
illustrates the two singularities expressed in the normal form coordinates, (X, Y ).
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Upon transforming back to the original Cartesian coordinates, x = T−1 X , however,
angles need to be preserved, and for some choices of T the core singularity has two
additional lines where the vector field points radially. Core singularities with one
radial line are termed lemons in Berry & Hannay (1977), and those with three radial
lines are monstars. Dennis (2008) gives a clear and nicely illustrated discussion of
monstar singularities.

Zeros of the order parameter can be identified in the journal bearing example,
and their positions are plotted in figure 10. These are generic zeros with the same
structure as the normal forms discussed above, but the transformation T from the
original coordinate system to that of the normal forms is close to being singular, so
that the structure of the normal forms is highly distorted in figure 10. The particles in
contact with the moving walls tumble, but their order parameter is in alignment with
the walls at the boundary. The Poincaré index of both the inner and outer boundaries
is, therefore, +1, like that of the ‘vortex’ in figure 2(a). The Poincaré index of the
hyperbolic regions can be seen to obey the rule discussed in § 5.3, changing by no
more than ±1/2 on crossing each annular elliptic band. There are a total of 16 zeros
of the order parameter lying in the elliptic bands: eight cores and eight deltas. Their
topological charges can be seen to be consistent with the changes of the Poincaré
index on crossing elliptic bands. It is interesting to note that in figure 10 the set of
zeros is symmetric under reflection, despite the fact that the order parameter field is
not. We discuss the behaviour under reflection in § 5.6.

We also investigated the alignment of particles for a ‘generic’ stream function,
defined by a two-dimensional real-valued Fourier series on a square domain with
random Fourier coefficients. An example is shown in figure 13, which shows contours
of the stream function (a), regions where the transfer matrix is hyperbolic and elliptic
and Poincaré indices of the hyperbolic bands (b), the averaged order parameter field
(c) and its colour mapping (d ), with the zeros marked. It can be verified that this
example satisfies the rule discussed in § 5.3, which related the Poincaré indices to tr(M0).

5.5. Behaviour close to centres of rotation

The arguments in § 5.4 show how the existence of zeros of the order parameter may
be deduced in elliptic bands which lie between hyperbolic bands. We now discuss the
regions surrounding stable fixed points of the fluid flow.

The fluid flow has elliptic fixed points (centres of rotation) at maxima and minima
of the stream function ψ(x, y). Szeri analysed the motion of rods at these elliptic
fixed points (Szeri 1993). He showed that the rod axis rotates at the fixed point, with
a frequency which is less than the frequency at which fluid elements rotate at this
point. This can be seen immediately from the general solution (2.7), because at the
fixed point the pseudomonodromy matrix is constant in time, so that the solution
discussed in § 2 can be applied directly. It follows that the elliptic fixed points of the
flow are always surrounded by elliptic bands of the pseudomonodromy matrix.

It is natural to ask whether the stable fixed points of the fluid flow correspond to
zeros of the order parameter. At the stable fixed point, the pseudomonodromy matrix
M is generated by exponentiating a constant velocity gradient A, so that the transfer
matrix is M0 = exp(BT ), where T is limit of the period of the flow fluid as the fixed
point is approached, and B is the matrix defined by (2.2), evaluated at the fixed point.
The normal-form decomposition of M0 will be a pure rotation if the minimum or
maximum is (to leading order) circularly symmetric, but in the general the matrix X
which occurs in (4.3) will not be the identity matrix. Thus we see that, except where
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Figure 13. Illustrating particle alignment in a randomly-generated stream function:
(a) contours of the stream function, which is periodic on a square of length 1/2. (b) The
elliptic bands, |tr(M0)| < 2 (red), and hyperbolic bands, tr(M0) < −2 (green) and tr(M0) > 2
(blue). The hyperbolic bands are labelled with their Poincaré index. (c) The locally averaged
order parameter field in the long-time limit. (d ) The colour mapping of the locally averaged
long-time order parameter field. The zeros are marked with green dots (cores) and crosses

(deltas). The aspect ratio parameters of the rod-like particles are α1 = 0.875, α2 = 0.125, β =
√

7.

fixed points are isotropic, the order parameter is non-zero at stable fixed points of
the velocity field.

Figures 10 and 13 confirm that the stable fixed points always occur in regions
where the transfer matrix is elliptic, and that stable fixed points do not coincide with
zeros of the order parameter.

5.6. Reflection symmetry

Th journal bearing example which is illustrated in figures 4, 6 and 10 above has a
stream function which is invariant under reflection about the line y = 0. It is interesting
to consider the extent to which this symmetry is reflected in the alignment of the
rod-like particles. This is most easily understood by comparing the transfer matrix
M0 at a point r = (x, y) with its value MR

0 at a reflected point rR = (x, −y). We find it
convenient to represent the effect of the reflection by a matrix Σ

rR = Σ r, Σ =

(
1 0

0 −1

)
. (5.16)
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The sense of rotation (clockwise or counter-clockwise) about a contour of the stream
function is reversed under reflection, which corresponds to taking the inverse of the
pseudomonodromy matrix. We can, therefore, construct MR

0 by applying a reflection,
applying time-reversed propagation at r , and then reflecting again, that is

MR
0 = Σ M0 Σ . (5.17)

In component form, the elements two transfer matrices are, therefore, related as
follows:

M0 =

(
m11 m12

m21 m22

)
, MR

0 =

(
m22 m12

m21 m11

)
. (5.18)

The corresponding matrices describing the quadratic form for the time-averaged order
parameter, K−1 =XXT at r and (KR)−1 at rR are, therefore, related as follows:

K−1 =

(
k11 k12

k12 k22

)
, (KR)−1 =

(
k11 −k12

−k12 k22

)
. (5.19)

Since they have the same determinant and trace, they have the same eigenvalues
and the length of the order parameter vector is the same at the reflected point. The
direction of the order parameter at two points satisfies θ + θR =2π, because the signs
of off-diagonal elements are opposite. This relation between the directions at reflected
points is apparent in figure 10(a).

It also follows that zeros of the order parameter come in symmetric pairs, except
where there is a zero on the line of symmetry. Also, the Poincaré index of a zero and
its reflected partner must be the same. This is confirmed in figure 10(b). A further
consequence is that the directions on the symmetry axis can only be aligned with the
axis, or else perpendicular.

6. Concluding remarks
The alignment of small anisotropic particles due to velocity gradients in fluid

flows is a significant problem, with a broad range of potential applications. There is
as yet no general solution for a triaxial body in a three-dimensional flow, but the
special case of an axisymmetric body is expected to exhibit most of the physically
important phenomena. A simple and powerful general solution for the axisymmetric
case was given by Szeri (1993), who showed how the orientation may be obtained
from a companion linear problem. This present work is the third paper which have
investigated the consequences of this solution in different situations. These concluding
remarks will set the results of this paper in the context of our earlier work.

The characteristics of the solution depend upon whether the flow is chaotic or
recirculating, and upon whether we average over a random initial configuration of
the particles. Wilkinson et al. (2009) considered the case where the initial orientation
of the particles is not random, and where they are advected in a non-steady flow
(which may be assumed to have a positive Lyapunov exponent in most cases). We
showed that the particle orientation field n(r, t) is a smooth function of the position r ,
but the numerical simulations in two dimensions exhibit apparent singularities, which
resemble the core and delta singularities in the ridge patterns of fingerprints. We
showed how the occurrence of these apparent singularities can be explained. We also
discussed the behaviour of the solution (2.7) in the long-time limit: we showed that,
despite the increasing sensitivity of M(r, r0, t) to the final position r , the direction
vector field is statistically stationary in the long-time limit. This is an apparently
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paradoxical conclusion, in that under the assumption that a Lyapunov exponent is
positive, we showed that there is not increasing sensitivity to the initial condition in
the long-time limit. The argument is quite subtle and we refer the reader to Wilkinson
et al. (2009) for an explanation of this result.

For non-steady flows, in the long-time limit the pseudomonodromy matrix becomes
hyperbolic almost everywhere, and the particles align with its dominant eigenvector.
This implies that in the long-time limit, the initial condition is forgotten for random
velocity fields. However, there are cases when the pseudomonodromy matrix does
not have large eigenvalues, so that there is some memory of the initial orientation.
In these cases, it is usually physically appropriate to assume that the initial particle
directions are randomly distributed, and to average over a uniform distribution of
the initial angle. In these cases, the typical orientation of the particles is described by
an order parameter field, ζ (r, t). The order parameter is required to characterize
the direction field at short times, for any type of flow. Also, in the case of
recirculating flows, such as those considered here, there is no guarantee that the
pseudomonodromy matrix has an eigenvalue which increases with time. Bezuglyy
et al. (2010) considered the order parameter field for random flows at short times,
and showed that this field has true singularities, which resemble the core and delta
singularities of fingerprints. Their normal forms were characterised, and their existence
was demonstrated experimentally.

In this paper, we considered the second situation where the order parameter is
relevant, that of a recirculating flow in the long-time limit. This example turns out
to be more subtle than the case of random flows at short times. This is primarily
because it is a complement to the theorem proved in Wilkinson et al. (2009). In this
case the Lyapunov exponent of the flow is zero, and the pattern formed by the order
parameter field can depend increasingly sensitively on position as t → ∞ (witnessed
by the increasingly tight spirals shown in figure 1). In order to fully understand the
evolution of the order parameter, in such cases it is necessary to understand how
to compute the order parameter of the locally averaged orientation in the long-time
limit. It is this calculation which is the central achievement of the present work. The
result is contained in (4.3) and (5.1), which show how the matrix defining the inertia
tensor of the direction distribution is related to the normal form decomposition of
the transfer matrix M0.

Our result on the locally averaged order parameter shows that the expression for
the quadratic form of the direction inertia tensor (5.1) has the same structure as for
the unaveraged case (3.9). This implies that the singularities of the averaged order
parameter have the same structure as for the unaveraged case. We also considered
the Poincaré indices of the hyperbolic bands, where the particles become perfectly
aligned. We showed that upon crossing an elliptic band with the topology of an
annulus, the change of the Poincaré index is ±1/2 if the trace of the transfer matrix
changes sign, and 0 if the sign of tr(M0) is unchanged.

Finally, we note that our results for recirculating flows depend upon the aspect
ratio of the particles (via the parameters α1 and α2 = 1 − α1 in (2.2)), and that in
most practical applications the particles may not all have the same aspect ratio.
This means that the boundaries between the elliptic and hyperbolic bands become
blurred. In the ideal case, these boundaries are only marked by a discontinuity of the
order parameter, so that in practical applications the boundaries may be very hard
to determine. However, the zeros of the order parameter are much more robust, and
their normal forms have the same structure even if the rheoscopic suspension has
particles which have a disperse aspect ratio.
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