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We investigate the properties of the global attractor of hyperbolic balance laws on
the circle, given by

ut + f(u)x = g(u).
The new tool of sub-attractors is introduced. They contain all solutions on the global
attractor up to a given number of zeros. The paper proves finite dimensionality of all
sub-attractors, provides a full parametrization of all sub-attractors and derives a
system of ordinary differential equations for the embedding parameters that describe
the full partial differential equation dynamics on the sub-attractor.

1. Introduction

Existence of global attractors has been proven for many partial differential equa-
tions. However, in most cases little is known about their exceeding existence and
bounds on the dimension of the attractor. Exceptions to this rule are hyperbolic
balance laws with dissipative source term:

ut(x, t) + [f(u(x, t))]x = g(u(x, t)). (H)

Despite the fact that the global attractor of (H) is infinite dimensional, a lot is
known about the structure of the attractor and the connecting properties of rotating
waves.

We consider (H) for x ∈ S1 with S1 := R/(2πZ), which is equivalent to imposing
periodic boundary conditions on a domain of length 2π. By a scaling argument, all
results remain true for the situation of periodic boundary conditions in a domain of
size L for any bounded and fixed L ∈ R. u is a function mapping S1 × R → R. The
nonlinearities f , g map R → R. Furthermore, we require the following hypotheses:

(H1) f is C2 and strictly convex (there exists γ ∈ R such that f ′′ > γ > 0);

(H2) g is C1 and dissipative, i.e. there exists a constant M > 0 such that

ug(u) < M (1.1)

for all |u| > M ;

(H3) g has finitely many zeros at u1 < u2 < · · · < un; all zeros are simple; (H2)
implies that n is odd.
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Hypotheses (H1)–(H3) guarantee the existence of a global attractor (see the next
section). One of the remaining questions regarding this attractor is its dynamic
description. This paper closes this gap for all solutions on the attractor with arbi-
trary but finite zero set. For our description we introduce sub-attractors for hyper-
bolic balance laws which will turn out to be of finite dimension. This approach
allows us to overcome several difficulties arising from the infinite dimensionality of
the full global attractor and from solutions with an infinite (countable or uncount-
able) zero set.

In addition, the sub-attractors show some striking similarities to the analogously
defined sub-attractors of the parabolically regularized version of (H),

ut + f(u)x = εuxx + g(u),

for small viscosity ε. This relation is explored thoroughly in [2].
The paper is organized as follows. The next section reviews what is known about

global attractors and the so-called connection problem. It provides the necessary
background on hyperbolic balance laws for this paper. In § 3 the notion of sub-
attractors is introduced. In § 4 we then formulate and prove the main result of the
paper: a parametrization of all sub-attractors, their finite dimensionality and their
dynamics. A section with examples follows. The paper concludes in § 6 with a brief
discussion of the results.

2. Global attractors and the connection problem

We shall present the tools and methods used in the proofs of the paper and then
discuss key results concerning global attractors of scalar hyperbolic balance laws.

The initial-value problem (Cauchy problem) of (H) can be solved by the method of
characteristics. The classical solution u(x, t) to an initial condition u(x, 0) =: u0(x)
is given by

u(χ(t), t) := v(t),

where v, χ are curves that solve the following ordinary differential equation:

χ′(t) = f ′(v),
v′(t) = g(v),
χ(0) = x0,

v(0) = u0(x0),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)

for all x0 ∈ S1. Classical solutions in general only exist for finite time. To overcome
this difficulty we work with weak solutions of (H).

In the weak framework, solutions are in general not unique. To overcome this
obstacle an additional entropy condition can be imposed that singles out a unique
weak solution. This idea derives from the physical entropy in thermodynamics.
Entropy conditions for hyperbolic balance laws were first considered by Volpert [12]
and Kruzhkov [8].

We follow their approach and define an entropy or admissible solution of the
hyperbolic balance law (H) in the following way.

https://doi.org/10.1017/S030821051000096X Published online by Cambridge University Press

https://doi.org/10.1017/S030821051000096X


Parametrizations of sub-attractors in hyperbolic balance laws 565

Definition 2.1. We call u ∈ BV([0,∞)×S1, R) an entropy or admissible solution
of (H) to the initial condition u0(x) if the following hold:

(i) u(x, 0) = u0(x);

(ii) it solves (H) in the weak sense,∫
S1×R+

[uϕt + f(u)ϕx − g(u)ϕ] dxdt = 0 (2.2)

for all ϕ ∈ C1
0 (S1 × R

+, R);

(iii) the entropy condition
u(x+, t) � u(x−, t) (2.3)

holds for all t > 0.

Here u(x+, t) defines the right-hand limit and u(x−, t) the left-hand limit of u
in x at time t and BV([0,∞) × S1, R) denotes the space of functions with bounded
variation mapping from [0,∞) × S1 to R.

Volpert [12] and later, and for more general initial conditions (L∞), Kruzhkov [8]
were able to prove the following result on the existence of solutions.

Proposition 2.2. If (H1) holds, the Cauchy problem of (H) possesses a unique
entropy solution u with the property u : (0,∞) → L1 is continuous in time and
u(·, t) ∈ BV(S1) for all times t > 0.

Equation (H), together with (2.3), therefore defines a semiflow on BV(S1, R). We
denote that semiflow by

Φ : BV ×R
+ → BV,

u0, t �→ Φ(u0, t) := u(·, t),

where u(·, t) is the unique entropy solution to the initial condition u0 at time t.
In order to work in the weak framework, Dafermos [1] generalized the concept of

characteristics.

Definition 2.3. A Lipschitz curve x = χ(t) defined on the interval [a, b] ⊂ R is
called a generalized characteristic associated with the solution u of (H) if it satisfies
the inequality

χ̇ ∈ [f ′(u(χ+, t)), f ′(u(χ−, t))] (2.4)

for almost all t ∈ [a, b].

Generalized characteristics coincide with classical characteristics χ(t) defined
in (2.1), wherever the solution is differentiable. Filippov was able to show in [6]
that there is at least one forward and one backward characteristic through any
point (x, t) ∈ S1 × R

+.
Equation 2.4 suggests that there is a lot of freedom in computing forward char-

acteristics. That this is in fact not the case is shown by a proposition found in [6].
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Proposition 2.4. Let χ : [a, b] → R be a generalized characteristic. Then the fol-
lowing holds for almost all t ∈ [a, b]:

χ̇(t) =

⎧⎪⎪⎨
⎪⎪⎩

f ′(u(χ(t)±, t)) if u(χ(t)−, t) = u(χ(t)+, t),

f(u(χ(t)+, t)) − f(u(χ(t)−, t))
u(χ(t)+, t) − u(χ(t)−, t)

if u(χ(t)−, t) > u(χ(t)+, t).

Hence, χ̇(t) is uniquely defined even at the shock positions. If the solution u(x, t)
possesses a shock at position x0, then the shock speed is given by the Rankine–
Hugoniot condition for shock speeds:

cshock =
f(u(x0+)) − f(u(x0−))

u(x0+) − u(x0−)
. (2.5)

To distinguish between generalized characteristics and the characteristics of clas-
sical solutions, the notion of genuine characteristics is important.

Definition 2.5. A characteristic on the interval [a, b] is called genuine if

u(χ(t)−, t) = u(χ(t)+, t) for almost all t ∈ [a, b].

The set of backward characteristics through a point (x̄, t̄) spans a funnel between
the minimal backward characteristic χ−(t; x̄, t̄) and the maximal backward charac-
teristic χ+(t; x̄, t̄).

The additional properties of characteristics that are of importance for us are
summarized in the next propositions. For proofs we refer the reader to [1].

Proposition 2.6. Let (x̄, t̄) ∈ S1 × R be arbitrary. Then the minimal backward
characteristic χ−(t; x̄, t̄) and the maximal backward characteristic χ+(t; x̄, t̄) are
genuine.

Proposition 2.7. Genuine characteristics intersect only at their end points; back-
ward characteristics do not intersect in particular.

We direct our attention to the existence of global attractors for (H). Fan and
Hale [5] have settled the existence question for hyperbolic balance laws, as follows.

Proposition 2.8. Assume (H1)–(H3) hold. Then

A := {u0 ∈ BV(S1, R) : Φ(u0, t) exists for all t ∈ R and is bounded} (2.6)

is the global attractor of (H) in Lp(S1), for any p ∈ [1,∞], i.e. it is invariant and
attracts bounded sets in Lp(S1).

This settles the existence of A. We turn to the structure of the global attractor.
Several authors have proved Poincaré–Bendixson-type results for the scalar bal-

ance laws (see, for example, [4, 9, 11]).

Proposition 2.9. For t → ∞, any solution of (H) either tends to a homogeneous
solution u ≡ ui for some i ∈ {1, . . . , n} or it converges to a rotating wave solution

u(x, t) = v(x − ct),

where the wave speed c can only take the values c = f ′(u2i) for i ∈ {1, . . . , 1
2 (n−1)}.

https://doi.org/10.1017/S030821051000096X Published online by Cambridge University Press

https://doi.org/10.1017/S030821051000096X


Parametrizations of sub-attractors in hyperbolic balance laws 567

For global solutions a theorem similar to proposition 2.9 holds true in backward
time. This leads to a description of the global attractor A as the unification of
the homogeneous steady states, the frozen and rotating waves and heteroclinic
connections between all these objects. A rotating wave is a solution of (H) of the
form

u(x, t) = v(x − ct)

for a profile v : S1 → R; c denotes the wave speed. If c = 0, the wave is called frozen.
For the definition of heteroclinic connections we define by E the set of homogeneous
equilibria of (H), F the set of frozen waves of (H) and R the set of rotating waves
of (H).

A heteroclinic connection is a solution u(x, t) of (H) that has the property that

lim
t→+∞

u(x, t) ∈ E ∪ F ∪ R,

lim
t→−∞

u(x, t) ∈ E ∪ F ∪ R.

⎫⎬
⎭ (2.7)

If we denote the set of heteroclinic connections by H, then the global attractor
A of (H) can be described as

A = E ∪ F ∪ R ∪ H. (2.8)

Fan and Hale showed in [5, theorem 3.7] that if two rotating waves are connected
by a heteroclinic orbit, then the waves must have the same velocity. Moreover, if a
heteroclinic orbit connects a homogeneous equilibrium u ≡ uj and a rotating wave
with speed f ′(u2i), then |j − 2i| = 1. It is a consequence of [5, proposition 1.5] that
all global solutions u(x, t) satisfy

u2i−1 � u(x, t) � u2i+1

for some i ∈ {1, . . . , 1
2 (n − 1)}. This implies that the homogeneous solutions u ≡

u2i±1 divide the global attractor into separate pieces, connected only at the homo-
geneous solutions. Hence, we can treat all these pieces separately and restrict our
analysis to the case where g possesses only three zeros. Without loss of generality
we can rewrite assumption (H3) as

(H3′) g has three simple zeros at u− < u0 < u+ and u0 = 0.

In our case this implies
c = f ′(0)

due to proposition 2.9. The hyperbolic balance law (H) is homogeneous in x and
we can perform a coordinate transformation

x �→ x − f ′(0)t,

which automatically freezes all rotating waves. Hence, we can assume without loss
of generality that

(H4) f ′(0) = 0.

This assumption fixes our coordinate system where all rotating waves have wave
speed c = 0; hence, we have R = ∅.
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In [10], Sinestrari proved that for any possible wave speed c = f ′(u0) and for any
closed set Z ⊂ S1 there exists a unique rotating wave uZ with the property

Z = {y ∈ S1 : uZ(y) = 0}.

The uniqueness automatically proves that these are all waves and hence F is fully
described. For the connection question we introduce the map Z(·) that assigns each
function u : S1 → R its zero set:

Z(u(·)) := {x ∈ S1; u(x) = 0}. (2.9)

In addition, we define the zero-number

z(u) := �Z(u);

if Z(u) is uncountable we define z(u) := ∞.
Härterich [7] was able to prove the following three theorems which settle the

connection question.

Theorem 2.10 (Härterich [7, theorem A]). For any rotating wave u−∞ there exist
heteroclinic orbits which connect u−∞ to the homogeneous states u ≡ u− and u ≡
u+.

Theorem 2.11 (Härterich [7, theorem B]). For any rotating wave u+∞ there exist
(several) heteroclinic orbits that connect the spatially homogeneous solution u ≡ 0
to u+∞.

Theorem 2.12 (Härterich [7, theorem C]). Suppose that for two rotating waves,
u−∞ and u+∞, the condition Z(u∞) ⊂ Z(u−∞) holds. Then there is a heteroclinic
solution that approaches u±∞ as the time t tends to ±∞.

3. Sub-attractors An of order n

One of the main obstacles in the description of the global attractor of (H) is the
huge number of stationary solutions due to Sinestrari’s [10] result. This results in
an infinite dimensionality of the attractor. To overcome this obstacle, we introduce
the notion of sub-attractors in this section. The underlying idea is to only consider
solutions with bounded zero number and to define the sub-attractors in such a way
that they remain invariant as sets under the semiflow of the equation. This allows
us to get rid of all solutions with an infinite or uncountable zero set.

Definition 3.1. Let n = 2α for α ∈ N. Then we define:

(i) En := {u ≡ u+, u ≡ u−};

(ii) Fn := {u ∈ F ; z(u) � α};

(iii) Hn := {u ∈ H; limt→±∞ ∈ En ∪ Fn}.

Then we define the sub-attractor of order n of the hyperbolic balance law (H) by

An := En ∪ Fn ∪ Hn. (3.1)
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We first prove the following lemma.

Lemma 3.2.

(i) Let An and Am be defined as above for some m, n ∈ N. Then

An ⊂ Am ⇐⇒ n < m.

(ii) We have the following alternative description for An:

An = {Wu(Fn)}.

(iii) An is invariant under the semiflow Φ generated by (H).

Proof. Part (i) is obvious by the definition of An. Part (ii) follows directly through

An =
α⋃

β=1

{Wu(u0); u0 ∈ F , z(u0) = β} ∪ Fn ∪ En

=
α⋃

β=1

{Wu(u0); u0 ∈ F , z(u0) = β}

= {Wu(Fn)}. (3.2)

Part (iii) is a direct consequence of the invariance of En and Fn.

At first glance it seems strange to denote the sub-attractors by An and not Aα.
However, one of the results in the following section will be dimAn = n, which
justifies the notation.

4. Parametrizations for An

We now turn to the question of parametrizing the sub-attractors An. We follow
an idea introduced by Härterich. In [7, § 4] Härterich presents an example of one
heteroclinic connection between two defined states for Burgers’s equation (f(u) =
1
2u2). The key idea is that the connection consists of stationary profiles that are
separated by shocks. The solutions on the connections only change if the connections
are at all close to the shocks. This idea guides the path towards the parametrization
of the sub-attractors by the position of the stationary profiles on the one hand and
the positions of the shocks on the other. A key step in the proof is to show that
this approach covers all heteroclinic connections.

We begin with the definition of the stationary profiles. Let φ(x) be the unique
solution of the following equation:

vx =
g(v)
f ′(v)

, v(0) = 0. (4.1)

Then φ(x) exists for all x ∈ R and

lim
x→−∞

φ(x) = u−, lim
x→∞

φ(x) = u+.
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Let n = 2α be given for some α ∈ N. Then we choose a sequence of α zeros
0 � x1 < x2 < · · · < xα < 2π. Due to [10], there exists a unique frozen wave v(x)
with

Z(v) = {x1, . . . , xα}.

Without loss of generality, we assume that x1 = 0. All other cases can be gener-
ated by a shift.

Note that for every solution of (H) it is true that between two zeros there must be
a shock and between two shocks with sign-changing left- and right-hand states there
must be a zero. This is even true in the case where f depends explicitly on x [3]. It
is, in particular, true for vα. Hence, there is a unique sequence of shocks ŷ1, . . . , ŷα

with
0 = x1 < ŷ1 < x2 < ŷ2 < · · · < ŷα−1 < xα < ŷα < 2π

such that v is given by

v =

{
φ(x − xi) for x ∈ [xi, ŷi],
φ(x − xi+1) for x ∈ [ŷi, xi+1].

(4.2)

For convenience let us define

{xα} := {x1, . . . , xα}

and denote the unique frozen wave with zero set xα by vxα
.

We now define the solution u{xα,yα}, with α shocks located between the zeros
{x1, . . . , xα}, that consists piecewise of shifted copies of φ(x). In general, u{xα,yα}
is not stationary.

Let 0 � x1 � y1 < x2 � · · · < xα � yα < 2π. Then we define

u{xα,yα} =

{
φ(x − xi) for x ∈ [xi, yi],
φ(x − xi+1) for x ∈ (yi, xi+1],

(4.3)

for i = 1, . . . , α.
Finally, let us define the general solution ũ{xα,yα}, with α or fewer shocks, that

consists piecewise of shifted copies of φ(x), where all shocks have sign-changing left-
and right-hand states.

Let 0 � ỹ1 � ỹ2 � · · · � ỹα < 2π. Then, if ỹi < ỹi+1, we define

ũ{xα,yα} =

{
φ(x − xi) for x ∈ [xi, ỹi],
φ(x − xi+1) for x ∈ (ỹi, xi+1],

(4.4)

and if ỹi = ỹi+1 = · · · = ỹi+m,

ũ{xα,yα} =

{
φ(x − xi) for x ∈ [xi, ỹi],
φ(x − xi+m+1) for x ∈ (ỹi+m, xi+m+1].

(4.5)

Then the two sets A{xα} and Ã{xα} of all these solutions with fixed {x1, . . . , xα} =
{xα} are given by

A{xα} := {u{xα,yα}; 0 � x1 � y1 < x2 � · · · < xα � yα < 2π} (4.6)
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and

Ã{xα} := {ũ{xα,yα}; 0 � y1 � · · · � yα < 2π}. (4.7)

Then we have the following lemma.

Lemma 4.1. Let xα and xβ be given with xβ ⊂ xα. Then we have

(i) vxα
∈ A{xα} ⊂ Ã{xα};

(ii) Ã{xβ} ⊂ Ã{xα};

(iii) there exists no u ∈ Ã{xα} with more than α shocks.

Proof. We only prove (iii). We first argue the case for two zeros: assume that the
solution has a zero located at x1 = 0 and another zero at x2. We explicitly construct
the set of all admissible solutions u(x) that consist piecewise of shifted copies of
φ(x − xi − 2πkj) for some kj ∈ Z and i ∈ {1, 2}; with the additional property that
u(x1 = 0) = 0 and show that, in fact, j = 2 necessarily.

Let us denote all shock positions by 0 < y1 < · · · < yj � 2π. Due to the fact that
between zeros there has to be shock, we obtain j � 2. Let us define the sequence
of stationary profiles:

. . . , φ(x + 2π), φ(x + x2), φ(x), φ(x − x2), φ(x − 2π), φ(x − x2 − 2π), . . . . (4.8)

Because u(0) = 0, we start at x = 0 with u(x) = φ(x) locally. At each of the shocks
yi the solution jumps one profile to the right in the above sequence due to the
entropy condition (2.3). However, we have to end with u(x) = φ(x − 2π) locally at
x close to 2π. Hence, j � 2 and therefore j = 2.

We now state the main theorem.

Theorem 4.2. Let n = 2α and α ∈ N. Then the following are true.

(a) The local unstable manifold Wu
loc(v{xα}) of v{xα} is given by A{xα} defined

in (4.6):
Wu

loc(v{xα}) = A{xα}, (4.9)

where v{xα} is the unique frozen wave of (H) with zeros at x1, . . . , xα.

(b) The global unstable manifold Wu(v{xα}) of v{xα} is then given by

Wu(v{xα}) = {Φ(u, t); u ∈ A{xα}, t ∈ R
+}, (4.10)

where Φ denotes the semiflow in BV(S1, R) generated by equation (H).

(c) The dynamics on Ã{xα} defined in equation (4.7) can be described by the
following equation for the shock parameters yj:

ẏj(t) =
f(φ(yj − xj)) − f(φ(yj − xj+1))

φ(yj − xj) − φ(yj − xj+1)
. (4.11)
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(d) The dimension of the sub-attractors An of order n is given by

dim An = n.

(e) Let v1 be a frozen wave of equation (H) with

z(v1) = 1.

Then there exist unique heteroclinic connections ũ(·, t) and û(·, t) with

lim
t→−∞

ũ(·, t) = lim
t→−∞

û(·, t) = v1,

lim
t→∞

ũ(·, t) ≡ u+,

lim
t→∞

û(·, t) ≡ u−.

(f) Let 0 � x1 < x2 < · · · < xα < 2π and let v1 and v2 be frozen waves of
equation (H) with the property

Z(v1) = {x1, . . . , xα} and Z(v2) = {xk1 , . . . , xkβ
}

with ki+1 − ki ∈ {0, 1} for all 1 � i � β − 1, where we have set β + 1 = α.
Then there exists, up to shifts in time, a unique heteroclinic connection u(x, t)
with the property

lim
t→−∞

u(·, t) = v1(·) and lim
t→∞

u(·, t) = v2(·).

The proof of the theorem will use the overflowing invariance of the sets Ã{xα}
and A{xα}, which we define, state and prove first.

Definition 4.3. Let A ⊂ X be a subset of the phase space X of a semiflow Φ.
A is called overflowing invariant if all u ∈ A have the following property: either
Φ(u, t) ∈ A for all t ∈ R or there exists t0 ∈ R such that Φ(u, t) ∈ A for t < t0 and
Φ(u, t) /∈ A for t > t0.

Lemma 4.4. Let {xα} := {x1, . . . , xα} with 0 � x1 < · · · < xα < 2π be given and
Ã{xα}, Ã{xα} be defined as above.

(i) The set Ã{xα} is overflowing invariant under the semiflow of (H).

(ii) The set A{xα} is overflowing invariant under the semiflow of (H).

Proof. Let u(x, 0) ∈ Ã{xα} such that u(x, 0) = u{xα,yα} with y1 > 0 and yα < 2π.
We first show local invariance: local forward invariance of Ã{xα} follows from

the fact that the profiles φ that define u{xα,yα} are stationary. Hence, u(x, t) is
stationary except near the points yj , and so we only have to prove invariance locally
at the shock points. We investigate only the shock located at y1; the argument works
equivalently for any other shock.

Let therefore u(x, 0) be given by

u(x, 0) =

{
φ(x) for y1 − δx � y1,

φ(x − x2) for y1 + δx > y1,
(4.12)
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~

Figure 1. Illustration of the minimal and maximal characteristics emanating in a shock
located at y1. The shape of the solution at t = 0 is indicated in light grey. Note that χ+

and χ− intersect transversely in (x, t) = (y1, 0).

for some δ > 0. At y1 there is a unique forward characteristic χ(t) on which the
shock evolves. The other characteristics in a neighbourhood of y1 necessarily point
towards χ(t) for t > 0. Hence, for x /∈ [y1−δ, y1+δ] the solution u(x, t) is stationary
and given by φ(x) for x � χ(t) and by φ(x − x2) for x > χ(t). See figure 1 for an
illustration.

χ(t) is uniquely determined by the differential equation

χ̇(t) =
f(φ(χ(t))) − f(φ((χ(t) − x2)))

φ(χ(t)) − φ((χ(t) − x2))
,

χ(0) = y1.

⎫⎬
⎭ (4.13)

The slope of χ(t) is bounded from above and hence, if t is sufficiently small, we
have obtained local forward invariance of the shock.

For the backward invariance we observe that for t < 0 a minimal characteristic
χ−(t) and a maximal backward characteristic χ+(t) emanate from y1. For the area
between χ− and χ+ there are in principle many possibilities to define the solu-
tion such that we obtain u(x, t) for t � 0 (there is no backward uniqueness!). For
backward invariance it is, however, enough if we can find one u(x, t) ∈ Ã{xα} for
t < 0.

Now let t0 < 0 be sufficiently small. Then we define

ũ(x, t0) :=

{
φ(x) for x ∈ [χ−(t0), χ̃(t0)],
φ(x − x2) for x ∈ (χ̃(t0), χ+(t0)],

for some χ̃(t0) ∈ [χ−(t0), χ+(t0)]. Local backward invariance follows if we can prove
that there is one χ̃(t0) such that if we solve (4.13) with initial condition χ̃(t0) we
obtain

χ̃(0) = χ(0) = y1.
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If we assume χ̃(t0) = χ−(t0), then monotonicity of φ and convexity of f imply
χ̃(0) < y1; if we assume on the other hand χ̃(t0) = χ+(t0), then the same argu-
ment yields χ̃(0) > y1. The intermediate value theorem yields the existence of a
ỹ ∈ (χ−, χ+) such that χ̃(t) with χ̃(t0) := ỹ has the desired property. Due to the
convexity of f and the monotonicity of φ the ỹ is even unique. Hence, backward
invariance follows.

Although ỹ is unique, the backward solution is not unique in Ã{xα} in general, due
to the possibility of shock splittings in the backward time direction. However, if we
assume that no shock splitting occurs, we even obtain uniqueness of the backward
solution in Ã{xα}.

Now we turn to the overflowing property. Note that for Ã{xα} overflowing now
means that if a solution u ∈ Ã{xα} leaves Ã{xα} at time t = t̃, then either y1 = x1
or yα = 2π in u{xα,yα} := Φ(u, t̃).

We assume u(x, 0) ∈ Ã{xα} with y1 = 0. Then the forward characteristic χ(t) in
x1 = y1 = 0 is given by

χ(t) =
−f(φ(yα − 2π))

−φ(yα − 2π)
< 0

for t ∈ [0, δ1), δ1 positive and small and χ(0) = 2π. Thus, after identification of 0
and 2π, we obtain that the solution is locally given by

φ(x − x2) for 0 < x < y2,

φ(x − x2 − 2π) for χ(t) < x < 2π,

φ(x − 2π) for yα < x < χ(t).

This proves the overflowing property of Ã{xα}, because the above solution is not in
Ã{xα} due to the fact that there are only α − 1 zeros but α shocks, one of which
has the same sign at the left and right states. This proves (i).

Due to the fact that A{xα} ⊂ Ã{xα}, we conclude invariance of A{xα} by virtue of
the same construction. The overflowing property works just as for Ã{xα}; here the
boundary is given by the condition yj = xj or yj = xj+1 for some j ∈ {1, . . . , α}.

Corollary 4.5. For every u(x, 0) ∈ A{xα} there is a unique backward orbit in
A{xα}.

Proof. From the proof of the previous lemma we deduce that it is sufficient to
show that shocks in u cannot split in backward time. By construction, any solution
in A{xα} has exactly α zeros and α shocks because, due to lemma 4.1(iii), shock
splitting cannot occur.

Proof of theorem 4.2. We have already proven part (c). Equation (4.13) yields ex-
actly (4.11) if we replace χ(t)± by the yj . Hence, we can integrate solutions along
the (invariant) manifold A{xα} by using (4.11) for every yj (1 � j � n). Note that
yj and yj+1 can meet. Thus, the yj are Lipschitz only in t and not in C1.

For (a) we prove that all solutions u(·, 0) ∈ A{xα} converge in backward time to
v{xα}. This shows that

A{xα} ⊂ Wu(v{xα}). (4.14)
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Then we show maximality of A{xα} by proving that all solutions u(·, t) converging
to v{xα} in backward time are contained in A{xα} for sufficiently small t < 0 which
proves

Wu
loc(v{xα}) ⊂ A{xα}. (4.15)

This yields (a) for appropriately chosen local neighbourhood in Wu(v{xα}).

The first part is a consequence of lemma 4.4 and the convexity of f : let u(·, 0) ∈
A{xα}. Because of the overflowing invariance and backward uniqueness (corol-
lary 4.5), we conclude that

u(·, t) ∈ A{xα}

for all t < 0. In addition,
lim

t→−∞
u(·, t) ∈ F ∪ E

due to proposition 2.9 v{xα} is the only frozen wave in A{xα}, and hence

A{xα} ∩ E ∪ F = {v{xα}}.

This yields (4.14).
For the other direction we argue indirectly. Assume there exists ũ(x, t) with

lim
t→−∞

ũ(x, t) = v{xα} and ũ(x, t) /∈ A{xα} for all t < 0.

Then for sufficiently small t̃ < 0 there exists x̃ ∈ S1 such that for all 1 � j � α + 1

ũ(x̃, t̃) �= φ(x̃ − xj), (4.16)

where we have set xα+1 = 2π.
Due to the fact that ũ connects to v{xα} we can always choose (x̃, t̃) such that

ũ(x̃, t̃) is smaller than the maximum and larger than the minimum of the stationary
solution with one zero.

We now construct a contradiction by proving that limt→−∞ ũ(·, t) has a zero xs

not coinciding with one of the x1, . . . , xα and therefore ũ cannot converge to v{xα}
in backward time.

We use a stationary solution us coinciding with ũ(·, 0) at x̃ to calculate explicitly
the backward characteristic of ũ emanating from (x̃, t̃).

From (4.16) we deduce that there is a stationary solution us ∈ F with the
following properties:

us(x̃) = ũ(x̃, t̃), Z(us) = {xs},

where xs /∈ {x1, . . . , xα}.
We investigate the (genuine!) backward characteristic (χ(t), v(t)) with

χ(t̃) = x̃,

v(t̃) = us(x̃, t̃) = ũ(x̃, t̃).

Because us is stationary, the characteristic has the property that

lim
t→−∞

χ(t) = xs

https://doi.org/10.1017/S030821051000096X Published online by Cambridge University Press

https://doi.org/10.1017/S030821051000096X


576 J. Ehrt

and

lim
t→−∞

v(t) = 0.

From this we deduce

(χ(t), v(t)) =⇒ lim
t→−∞

us(χ(t), t) = us(xs, ·) = 0;

this implies
lim

t→−∞
u(xs, t) = lim

t→−∞
us(xs, t) = 0.

Hence,
lim

t→−∞
ũ(χ(t), t) = v{xα}(xs) = 0.

This contradicts xs /∈ {x1, . . . , xα}, and maximality of A{xα} is proved.
Part (b) follows from the fact that due to unique forward solvability we obtain the

global unstable manifold by using the semiflow to forward-solve the local unstable
manifold. A{xα} ⊂ A ensures boundedness of the forward iteration; hence, (4.10)
follows.

For part (d) we use the fact that

dim(Wu
loc(v{xα})) = dim(Wu(v{xα})), (4.17)

which is true due to the forward uniqueness of solutions.
The sub-attractor of order n = 2 consists by definition of all frozen waves with

one zero and heteroclinic connections from these waves to u±. In other words,

A2 = Wu(F2) ∪ E2.

For fixed x1 we have

dim(Wu(v{x1})) = dim(A{x1}) = 1.

From the uniqueness of frozen waves with given x1 ∈ S1 we deduce that

dim A2 = 2.

For n = 2α > 2 we use

An = {Wu(u); u ∈ Fn} ∪ En. (4.18)

First, we prove
dim{Wu(u); u ∈ F , z(u) = α} = 2α = n.

For each fixed set of zeros {0 � x1 < · · · < xα < 2π} we have by part (a) that

dim(Wu
loc(v{xα})) = dim(A{xα}) = α.

Moreover, all frozen waves v with zero-number z(v) � α can be parametrized by
(x1, . . . , xα) ∈ (S1)α = T

α; hence,

dim Fn = dim T
α = α.

Putting everything together, by using (4.18) we obtain

dim An = dimWu
loc({Fn}) = dimWu

loc(v{xα}) + dim T
α = α + α = n.
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x 1 
=

 0

(y − x2)

u(x,0)

(x)φ

φ

(x − x2)φ

(x − 2π)φ

y
x2

Figure 2. Unique shock-splitting of one shock in backward time in A{x1,x2}.

For (e) we count dimensions to obtain uniqueness. For α = 1 the unstable mani-
fold of v1 is one dimensional; thus, the connection must be unique.

For (f) we argue in the following way: the condition ki+1 − ki ∈ {0, 1} implies
that at most every second zero can vanish; hence, we can reduce the proof to the
situation where

Z(v1) = {0, x2} and Z(v2) = {0}.

Let us denote the unique shock position of v2 by y and the two unique shock
positions of v1 by y1 and y2.

It is a consequence of (c) that in the class of solutions A{x1,x2} all stationary
shocks are unstable. In order to obtain the solution v2 with only one shock, the two
shocks emanating from y1 and y2 consequently have to meet at position y in such
a way that the resulting shock is stationary.

We define t = 0 as the time at which the two shocks collide. Thus, the question
of uniqueness of heteroclinic connections reduces to the question of uniqueness
of shock collisions in A{x1,x2}, or, in the negative time direction, the question of
uniqueness of the splitting of shocks at a given position.

Let u(x, t) be the solution where two shocks meet at time t = 0 at position x = y.
Then the lower state of the left shock and the upper state of the right shock have
to coincide. By construction of Ã{x1,x2}, this state is given by φ(y − x2):

lim
x↘y

lim
t↗0

u(x, t) = lim
x↗y

lim
t↗0

u(x, t) != φ(y − x2).

See figure 2 for an illustration.
Hence, uniqueness of the splitting follows by uniqueness of backward solutions in

the case of u ∈ A{x1,x2} with two shocks proved in corollary 4.5. This proves (e),
and the theorem is proven.

Note that for the situation in theorem 4.2(e) we can explicitly parametrize the
whole heteroclinic connection from v1 to u±. The stationary solution v1 with
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Z(v1) = {x1} has one unique shock at position y1. Then, using (b) and (c) of
theorem 4.2, we can parametrize the whole connection manifold Wu(v1) as follows:
for any k ∈ Z and any y1 ∈ [2kπ, 2(k + 1)π) we define

u∗
{x1,y1}(x) :=

{
φ(x − x1 + 2kπ) for 0 � x � y1 − 2kπ,

φ(x − x1 + 2(k − 1)π) for y1 − 2kπ < x < 2π.
(4.19)

Then Wu(v1) is given by

Wu(v1) := {u∗
{x1,y1} ∈ BV(s1, R); y1 ∈ R}. (4.20)

The next section will present a geometric representation of A2 = Wu(F2).

Corollary 4.6. Again let α ∈ N and n = 2α. Then the set of heteroclinic con-
nections between two frozen waves with zero-number z � α is completely contained
in

Ãn := {Ã{xα}; xα ∈ T
α and 0 � x1 < · · · < xα < 2π}. (4.21)

Proof. Let v1, v2 be two frozen waves with

Z(v1) = {x1, . . . , xβ},

Z(v2) ⊂ Z(v1),

for some given 0 � x1 < · · ·xβ < 2π and β � α. Let u(x, t) denote a heteroclinic
connection between v1 and v2. Then

u(·, t) ∈ A{xβ} ⊂ Ã{xβ} ⊂ Ã{x1,...,xβ ,...,xα}

for some xβ+1, . . . , xα and t sufficiently small.
Now assume u(·, t̃) /∈ Ã{x1,...,xβ ,...,xα} for some t̃ ∈ R. Then we conclude

u(·, t) /∈ Ã{x1,...,xβ ,...,xα}

for all t > t̃ due to the overflowing property of Ã{x1,...,xβ ,...,xα}.
This contradicts

lim
t→∞

u(·, t) = v2

because
v2 ∈ ˚̃A{x1,...,xβ ,...,xα}.

Here ˚̃A denotes the interior of Ã in the topology of the manifold Ã{x1,...,xβ ,...,xα}.

In the next section a geometric representation of the sub-attractors of order n = 2
and n = 4 will be given.

5. Examples

5.1. The sub-attractor A2

According to the definition the sub-attractor A2 consists of all frozen waves with
zero-number z = 1, the two stable homogeneous equilibria u ≡ u± and all hetero-
clinic connections between these objects. The frozen waves can be represented as
the S1 symmetry.
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(u, t) ≡ u+

(u, t) ≡ u−

H2

F2 = S1

A2

^

Figure 3. Geometric representation of the sub-attractor A2.

Due to theorem 2.10 all frozen waves are connected to u(x) ≡ u±. Theorem 2.10
states that these are all heteroclinic connections in A2 and theorem 4.2(e) yields
uniqueness of these heteroclinics. Equation (4.19) provides, together with (4.20),
an explicit parametrization of these connections. Hence, we can define an explicit
embedding

Σ2 : S1 × R → BV(S1, R),
(x1, y1) �→ Σ2(x1, y1) := u{x1,y1},

where u∗
{x1,y1} is defined in (4.19). The flow on graph(Σ2) can be computed explic-

itly and is given by (4.11).
By a stereographic projection S, we can map graph(Σ2) onto the surface of a

ball, thus obtaining a representation of A2 as an S2, as shown in figure 3.
The three diagrams on the right in figure 3 show schematically how the shape of

these solutions evolves on the S2 along a heteroclinic connection.

5.2. The sub-attractor A4

Following the definition of A4 := E4 ∪ F4 ∪ H4, we shall first classify all homo-
geneous equilibria and frozen waves. Due to Sinestrari the frozen waves can be
uniquely parametrized by the position of their zeros x1, x2 and hence form a two-
torus:

F4 = T
2 := S1 × S1,

and again E4 = {u−, u+}.
Each element of this torus has a heteroclinic connection to the homogeneous

equilibria u ≡ u±. This can be depicted by a spindle with a quadratic horizontal
section and u± located at the top and bottom (see figure 4(a)). The heteroclinic
connections are drawn with arrows. The edges of the quadratic horizontal section
have to be identified in order to obtain the torus. The sub-attractor A2 is contained
in this picture as well and is depicted by the thick lines. Figure 3 is obtained after
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u+

u−

(a) (b)

A2

F2
F2

F4 = T2^

F4 = T2^

x1

x2

2π

2π

filled with
heteroclinics

Figure 4. Heteroclinic connections in A4 with targets u ≡ u±.

identification of the two opposite corners on the torus F4. The spindle is completely
filled with heteroclinics starting in F4 and ending at u ≡ u− or u ≡ u+, respectively.

The more interesting part of A4 is the part of the attractor that consists of
all heteroclinic connections between F4 and F2. Theorem 2.12 yields that every
frozen wave ũ with zero-number z(ũ) = 2 is connected to two waves ũa, ũb with
zero-numbers z(ũa,b) = 1, theorem 4.2(f) yields uniqueness of these connections.

Hence, every point on the torus of frozen waves F4 \ F2 has two heteroclinic
connections to two points on the diagonal curve on that torus representing F2.
This is shown in figure 4(b), where we have parametrized the torus by the zeros
(x1, x2) given as the horizontal and vertical axes. Some heteroclinics are shown as
arrows for illustration. The lines are vertical if the zero x1 persists, and horizontal
if the zero x2 persists. Two heteroclinics emerge from every point.

Equations (4.4) and (4.5) provide an explicit parametrization of these connec-
tions.

To show the complete connection picture, it is convenient to use another represen-
tation that divides out the S1 symmetry. This representation is shown in figure 5.

To understand the figure it is best to start with the vertical line. This line rep-
resents F4/S1: the manifold that contains all frozen waves with zero-number z = 2
after having divided out the S1 symmetry. The centre point on this line is the
π-periodic frozen wave with equidistant zeros.

The coordinates on the vertical manifold are given by the distance between the
two zeros x1 and x2. On the bottom the distance is zero, in the middle (at the dot) it
is π and then it goes to zero again towards the top. x1 and x2 change in such a way
that the two shocks always remain in the same position (for Burgers’s equation this
means due to symmetries that 1

2 (x1 +x2) = π). Three of the solution profiles in fig-
ure 5 show how the solutions evolve along the vertical manifold. This manifold is also
included in parts (a) and (b) of figure 4 as a dashed line with a dot on the torus T

2.
Each of the frozen waves has two connections to frozen waves with z = 1, one

connection where the zero at x1 persists and one where the one at x2 persists. These
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F2

F4/S1

u2

x2 − x1

Figure 5. Heteroclinic connections in A4 from frozen waves with zero-number z = 2 to
waves with zero-number z = 1. The S1 symmetry is divided out.

are represented by the black arrows connecting to the circle representing F2 (equal
to frozen waves with one zero). To the left x1 persists and to the right x2 persist,
this induces coordinates on the circle of frozen waves with zero-number z = 1. The
eight remaining solution profiles in figure 5 indicate how solutions evolve along the
circle. A clockwise rotation along the S1 in the figure corresponds to a shift of the
solution to the right.

Now we are ready to include in the figure the S1 symmetry that was divided
out before. To do this we just have to rotate the whole figure along a circle in the
transverse direction attached to the dot representing the wave with two equidistant
zeros. We obtain a filled torus where we have a figure similar to that in figure 5 in
every slice.

Inside the torus, the vertical line and the heteroclinic connections rotate once
around the centre point with higher symmetry and therefore form a spiral. Figure 6
shows a geometric representation of this. We have plotted half of the torus. The
thick half circular line corresponds to the frozen waves in A4 with higher symmetry
(equidistant zeros). The heteroclinics are shown only in the beginning and the end.
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F2

F4/F2

u2

Figure 6. Torus representing W u(F4)TW s(F2).

They rotate with the vertical manifold. There is a colour gradient (light grey to
dark grey) included to illustrate the rotation of the heteroclinics. Note that the
there is no rotation on the torus’s surface.

To obtain the full picture we have to identify all points on the surface of the
torus with the S1 labelled with F2, and hence retract the torus surface to the S1

without rotating it!

6. Conclusions and discussion

Building on earlier results of Fan and Hale [5], Sinestrari [10] and Härterich [7]
and others, this paper closes on of the last remaining gaps in the full dynamic
description of the global attractor of hyperbolic balance laws. The introduction of
finite-dimensional sub-attractors in § 3 allowed us to overcome difficulties coming
from the infinite-dimensional nature of the global attractor.

Theorem 4.2 and corollary 4.6 provide explicit parametrizations of all finite-
dimensional sub-attractors of the global attractor and allow a geometric interpre-
tation of the results as given in the examples section.

A remaining question concerns the uniqueness of heteroclinic connections in sit-
uations where the assumption in theorem 4.2(f) is violated. It is unclear whether
convexity of f and monotonicity of the profiles φ is enough to guarantee uniqueness
of heteroclinic connections in case more than two shocks meet to form a stationary
shock.

In addition, the question remains how to describe the remaining part of the
global attractor. We believe that, in principle, heteroclinic connections emanating
from waves with infinite zero set can be treated analogously. A uniform explicit
parametrization covering the whole attractor seems to be difficult, due to the
infinite-dimensional nature of the global attractor.

Moreover, we believe that the introduced sub-attractors are a suitable tool to
investigate the relation between global solutions of the hyperbolic balance law with
global solutions of its parabolically regularized version the viscous balance laws
given by

ut + f(u)x = εuxx + g(u). (6.1)
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This relation is explored in [2]. Due to the non-persistence result in [2], the rela-
tion of global solutions of the hyperbolic and parabolic equation is more complicated
than one might expect. However, the sub-attractors help facilitating the description
of that relation.

Finally, the explicit results on the structure of the connections between waves
with finite zero number in this paper open an alternative door for the description of
heteroclinic connections in the parabolically regularized (6.1) other than by proving
invariant manifold results by spectral methods, which, despite serious efforts by
many people in recent decades, is still an unsolved problem.
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