
SOJOURN TIMES IN THE M/G/1
FB QUEUE WITH LIGHT-TAILED

SERVICE TIMES

M. MAAANNNDDDJJJEEESSS
CWI

Amsterdam, The Netherlands
and

KdV Institute for Mathematics, University of Amsterdam,
Amsterdam, The Netherlands

E-mail: michel.mandjes@cwi.nl

M. NUUUYYYEEENNNSSS
Department of Mathematics
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands
E-mail: mnuyens@few.vu.nl

The asymptotic decay rate of the sojourn time of a customer in the stationary M0G01
queue under the foreground–background ~FB! service discipline is studied+ The
FB discipline gives service to those customers that have received the least service
so far+ We prove that for light-tailed service times, the decay rate of the sojourn
time is equal to the decay rate of the busy period+ It is shown that FB minimizes the
decay rate in the class of work-conserving disciplines+

1. INTRODUCTION

The sojourn time of a customer ~i+e+, the time between his arrival and departure! is
an often used performance measure for queues+ In this article,we compute the asymp-
totic decay rate of the tail of the sojourn-time distribution of the stationary M0G01
queue with the foreground–background ~FB! discipline+ This decay rate is then used
to compare the performance of FB with other service disciplines like processor-
sharing ~PS! and first-in first-out ~FIFO!+

Probability in the Engineering and Informational Sciences, 19, 2005, 351–361+ Printed in the U+S+A+

© 2005 Cambridge University Press 0269-9648005 $16+00 351

https://doi.org/10.1017/S0269964805050205 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964805050205


The FB discipline gives service to those customers who have received the least
amount of service so far+ If there are n such customers, each of them is served at rate
10n+ Thus, when the age of a customer is the amount of service a customer has
received, the FB discipline gives priority to the youngest customers+ In the litera-
ture, this discipline has been called LAS or LAST ~least-attained service time first!
as well+

Let V denote the sojourn time of a customer in the stationary M0G01 FB queue+
Núñez Queija @6# showed that for service-time distributions with regularly varying
tails of index h � ~1,2!, the distribution of V satisfies

P~V � x! ; P~B � ~1 � r!x! xr `, (1)

where r is the load of the system, B is the generic service time, and; means that
the quotient converges to 1+ Using Núñez Queija’s method, Nuyens @7# obtained ~1!
under weaker assumptions+ In the case of regularly varying service times, the tail of
V under the disciplines last-in first-out ~LIFO!, PS, and shortest remaining proces-
sor time ~SRPT! satisfies relations similar to ~1!+ For nonpreemptive disciplines
however, like FIFO, it is heavier than the tail of B; see Borst, Boxma,Núñez Queija,
and Zwart @1# +

Additional support for the effective performance of FB under heavy tails is
given by Righter @8# , Righter and Shanthikumar @9# , and Righter, Shanthikumar,
and Yamazaki @10# + They show that for certain classes of service times ~including,
e+g+, the Pareto distribution!, the FB discipline minimizes the queue length, mea-
sured in number of customers, in the class of all disciplines that do not know the
exact value of the service times+

For light-tailed service times, the FB discipline does not perform as well,
although for gamma densities lax a�1 exp~�lx!0G~a! with 0 � a � 1, FB still
minimizes the queue length, and for exponential service times, the queue length is
independent of the service discipline+ However, for many other light-tailed service
times ~e+g+, those with a decreasing failure rate!, the queue shows opposite behavior
and the queue length is maximized by FB ~see Righter and colleagues @8–10#! + This
undesirable behavior of the FB discipline is very pronounced for deterministic ser-
vice times+ In this extreme case in the FB queue, all customers stay until the end of
the busy period, and the sojourn time under the FB discipline is maximal in the
class of all work-conserving disciplines+

In this article, we consider the ~asymptotic! decay rate of the sojourn time,
where the (asymptotic) decay rate dr~X ! of a random variable X is defined as

dr~X ! � � lim
xr`

x�1 log P~X � x!�,
given that the limit exists+ Hence, a larger decay rate means a smaller probability
that the random variable takes on very large values+ In this sense, sojourn times are
better when they have larger decay rates+

Assume that the service times for an M0G01 queue have a finite exponential
moment or, equivalently, the Laplace transform is analytic in a neighborhood of
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zero+ In other words, the tail of the service-time distribution decreases exponen-
tially+Our main result is that for the M0G01 FB queue under the light-tailed assump-
tion, large sojourn times are relatively likely+

Theorem 1: Let V be the sojourn time of a customer in the stationary M0G01 FB
queue and let L be the length of a busy period. If the service-time distribution has
a finite exponential moment, then the decay rate of V exists and satisfies

dr~V ! � dr~L!+ (2)

It is shown later that the decay rate of the sojourn time in an M0G01 queue with any
work-conserving discipline is bounded from below by the decay rate of the residual
life of a busy period+ For service times with an exponential moment, the decay rates
for normal and residual busy periods are equal+ Hence, ~2! is the lowest possible
decay rate for the sojourn time under a work-conserving discipline+Using the decay
rate of V as a criterion to measure the performance of a service discipline then leads
to the following conclusion: For service times with an exponential moment, the FB
discipline is the worst discipline in the class of work-conserving disciplines+

The article is organized as follows+ In Section 2, we present the notation, some
preliminaries, and prove the lower bound for the decay rate of the sojourn time
under any work-conserving discipline+ In Section 3, Theorem 1 is proved+ Section 4
discusses the result and the decay rate of the sojourn time in queues operating under
several other service disciplines+

2. PRELIMINARIES

Throughout this article, we assume that the generic service time B with distribution
function F in the M0G01 queue satisfies the following assumption+

Assumption 1: The generic service time B has an exponential moment (i.e.,
E exp~gB! � ` for some g � 0) .

In addition, let the stability condition r� lEB � 1 hold, where l is the rate of
the Poisson arrival process+ The proofs in this article rely on some properties of the
busy-period length L and related random variables, which we derive in this section+

Under Assumption 1, Cox and Smith @3# have shown that P~L � x! ;
bx�302e�cx for certain constants b, c � 0+ In particular, L has decay rate c+ In fact,
by expression ~46! in Cox and Smith @3, p+ 154# , c � l� z� lg~z!, where g is the
Laplace transform of the service-time distribution and z � 0 is such that g '~z! �
�l�1 + Hence, z is the root of the derivative of the function m~x!� l� x � lg~x!+
Since m~x! attains its maximum at the point z, we can write c in terms of the Leg-
endre transform of B:

c � dr~L!� sup
u
$u� l~EeuB � 1!%+ (3)

Remark: This expression shows up as well in the following context+ Consider a
Poisson stream, with intensity l, of independent and identically distributed ~i+i+d+!
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jobs, where every job is distributed according to the random variable B+ Let A~x!
denote the amount of work generated in an arbitrary time window of length x+ It is
an easy corollary of Cramér’s theorem that

lim
xr`

1

x
log P~A~x! � x!� �sup

u
$u� log EeuA~1! %+ (4)

Noting that

EeuA~1! � (
k�0

`

e�l
lk

k!
~EeuB !k � exp~l~EeuB � 1!!,

we observe that P~L � x! and P~A~x!� x! have the same decay rate+ This is some-
what surprising, as $A~x! � x% obviously depends just on A~x! ~i+e+, the amount of
traffic in a window of length x!, whereas $L � x% depends on A~ y! for all y �
@0, x# , due to

$L � x% �
d
$B1 � A~ y! � y, ∀y � @0, x#%+

Here, B1 is the first service time in the busy period L+

In renewal theory, the notion of residual life, also known as excess or forward-
recurrence time, is standard+ Let EL be the residual life of a busy period+ Then
P~ EL � x!� ~EL!�1*x

` P~L � y! dy; see, for instance, Cox @2# + Using standard cal-
culus, we find

dr~ EL! � � lim
xr`

1

x
log�

x

`

y�302e�cy dy�� c � dr~L!+ (5)

Hence, EL has the same decay rate as L+
Another ingredient used in the proofs below is the M0G01 queue with truncated

generic service time B ∧ t, t � 0+ Call this the t-queue and let L~t! denote the
length of a busy period ~a t-busy period ! in this queue+ Let EL~t! be its residual life
and define L*~t! to be the length of a t-busy period in which the first service time
B1 is at least t; that is,

P~L*~t! � x!� P~L~t! 6 B1 � t!+

We now show that the random variables L~t!, EL~t!, and L*~t! have the same decay
rate+

Lemma 2: Let t � 0 be such that P~B � t! � 0. Then

dr~L~t!! � dr~L*~t!!� dr~ EL~t!! � 0+

Proof: We show that L and L* have the same decay rate+ The proof is then com-
pleted by using ~5!+ Assume that t � 0 is such that P~B � t! � 0+ If B1 � t, then
the first service time is maximal in the t-queue, as all service times are bounded by
t+ Hence,
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P~L~t! � x!� P~L~t! � x 6 B1 � t!� P~L*~t! � x!, x � 0+

Further,

P~L~t! � x!� P~L~t! � x,B1 � t!

� P~L~t! � x 6 B1 � t!P~B1 � t!

� P~L*~t! � x!P~B1 � t!+ (6)

From ~6!, it follows that P~L*~t! � x! and P~L~t! � x! differ only by a factor
independent of x+ Hence, dr~L!� dr~ EL!+ �

In this article, we need the following lemma about the decay rate of the sum of
two independent random variables+

Lemma 3: Let X and Y be nonnegative, independent random variables such that
dr~X !� a1 and dr~Y !� a2 for some a1,a2 � 0. Then dr~X � Y !� min$a1,a2%.

Proof: Since both X and Y are positive,�min$a1,a2% is clearly a lower bound for
lim infxr` x�1 log P~X � Y � x!+ For the upper bound, let « � 0 and n � N be
fixed+ Then,

P~X � Y � x!� (
i�0

n�1

P�X �
ix

n
�P�Y �

~n � i � 1!x

n
�+

For x sufficiently large, for all i � $0, + + + , n � 1% ,

P�X �
ix

n
�P�Y �

~n � i � 1!x

n
� � exp��~a1 � «!

ix

n
� ~a2 � «!x

n � i � 1

n
�

� exp��~min$a1,a2 %� «!
~n � 1!x

n
�+

Hence,

lim sup
xr`

1

x
log P~X � Y � x!� �~min$a1,a2 %� «!�1 �

1

n
�+ (7)

Since ~7! holds for every n � N and « � 0, we can take the limits n r ` and
« f 0, and the result follows+ �

Let D be the time from the arrival of a customer until the first moment that the
system is empty+ The following proposition is valid even when Assumption 1 does
not hold+

Proposition 4: Consider a stationary queue with an arbitrary service-time distri-
bution, Poisson arrivals, and a work-conserving discipline. Then D �

d
A EL � L,

where P~A � 1!� r� 1 � P~A � 0! and A, EL, and L are independent.
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Proof: The value of the random variable D does not depend on the service disci-
pline+ There are two possibilities+ With probability 1 � r, the customer finds the
system empty+ In this case, D is just the length L of the busy period started by the
customer+ Second, if our customer enters a busy system, then the server can first
finish all the work in the system apart from the work of our tagged customer+ The
moment the remainder of the original busy period, which has length EL, is finished,
our customer starts a subbusy period+ This length of this subbusy period, which is
independent of EL, is distributed like L+ �

For the stationary t-queue with Poisson arrivals and a work-conserving disci-
pline, we have the following corollary+

Corollary 5: In the stationary t-queue, the random variable D satisfies D �
d

A~t! EL~t!� L~t! , where P~A~t!�1!�lE~B ∧ t! . If the customer has service time
t in the t-queue, then D �

d
A~t! EL~t!� L*~t! .

Since the system is work-conserving, the sojourn time of a customer is not
longer than D+ Hence, V �st D for every service discipline+ Since A EL and L satisfy
the conditions of Lemma 3, the following corollary holds+

Corollary 6: For every work-conserving service discipline, the sojourn time V of
a customer in the stationary queue satisfies

lim sup
xr`

1

x
log P~V � x!� lim

xr`

1

x
log P~A EL � L � x!� �dr~L!+

An immediate consequence of this corollary and Theorem 1, which will be
proved in the next section, is the following+

Corollary 7: The FB discipline minimizes the decay rate of the sojourn time in
the class of work-conserving disciplines.

In Section 4,we indicate that for service times with a finite exponential moment,
there are disciplines with a strictly larger decay rate than FB ~e+g+, FIFO!+

Interestingly, for service times with certain Gamma distributions, the FB dis-
cipline stochastically minimizes the queue length, as was mentioned in Section 1,
but the sojourn time has the smallest decay rate+ This shows that optimizing one
characteristic in a queue could have an ill effect on other characteristics+

The existence of a finite exponential moment in the corollary is crucial: For
heavy-tailed service times, the tail of V cannot be bounded by that of L+ For exam-
ple, in the M0G01 FIFO queue with service times satisfying P~B � x!� x�nL~x!,
where L~x! is a slowly varying function at` and n� 1, De Meyer and Teugels @4#
showed that

P~L � x! ; ~1 � r!�n�1x�nL~x!+

It may be seen that in this case, the tail of DB, the residual life of the generic service
time B, is one degree heavier than that of B+ Now, note that for the FIFO discipline,
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we have VFIFO � A DB+ Hence, the tail of V is at least one degree heavier than that of
L; see also Borst et al+ @1# for further references+ In the light-tailed case, this phe-
nomenon is absent because the tails of L and EL have the same decay rate+

3. PROOF OF THE THEOREM

In this section, Theorem 1 is proved+ The results in this section rely on the follow-
ing decomposition of V+ Let V~t! be the sojourn time in the stationary M0G01 queue
of a customer with service time t+ The sojourn time V of an arbitrary customer in
the stationary queue satisfies

P~V � x!��P~V~t! � x! dF~t!+ (8)

Here, F is the service-time distribution+ Hence, we may write P~V � x! �
EB P~V~B! � x!, where B is a generic service time independent of V~t!, and EB

denotes the expectation w+r+t+ B+ Theorem 1 is proved using this representation of V+
In Proposition 8, we compute the decay rate of V~t!+

Proposition 8: Let t � 0 be such that P~B � t! � 0. If the service-time distribu-
tion satisfies Assumption 1, then dr~V~t!!� dr~L~t!! .

Proof: By the nature of the FB discipline, the sojourn time V~t! of a customer
with service time t who enters a stationary queue is the time until the first epoch
that no customers younger than t are present+ This is the time until the end of the
t-busy period that he either finds in the t-queue, or starts+ By Corollary 5, V~t!
then satisfies

V~t! �
d

A~t! EL~t!� L*~t!, (9)

where EL~t! is the residual life of a t-busy period, L*~t! is a t-busy period that starts
with a customer with service time t,

P~A~t! � 1!� 1 � P~A~t!� 0!� lE~B ∧ t!,

and A~t!, EL~t!, and L*~t! are independent+ By Lemma 2, the random variables
A~t! EL~t! and L*~t! satisfy the condition of Lemma 3+ From ~9! and Lemma 2, it
follows that

dr~V~t!!� dr~A~t! EL~t!� L*~t!!� dr~L~t!!+ (10)

This completes the proof+ �

Having found the lower bound for the decay rate in Corollary 6, the following
lemma provides the basis for finding the upper bound+ The endpoint xF � @0,`# of
the service-time distribution F is defined as xF � inf $u � 0 : F~u!� 1% +
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Lemma 9: Let V be the sojourn time of a customer in the stationary M0G01 FB
queue. Suppose the service-time distribution satisfies Assumption 1. If t0 � 0 and
P~B � t0! � 0, then

lim inf
xr`

1

x
log P~V � x!� �P~B � t0 !

�1�
@t0 , xF #

dr~L~t!! dF~t!+ (11)

Here, F is the distribution function of the generic service time B.

Proof: We have

P~V � x!� P~V � x,B � t0 !� P~V � x 6 B � t0 !P~B � t0 !+ (12)

Using the representation ~8!, we find

log P~V � x 6 B � t0 !� log EB @P~V~B! � x!6B � t0 # + (13)

Since log x is a concave function, applying Jensen’s inequality to the conditional
expectation in ~13! yields

log EB @P~V~B! � x!6B � t0 #� EB @ log P~V~B! � x!6B � t0 # + (14)

From ~12!–~14!, it follows that Q :� lim infxr`~10x! log P~V � x! satisfies

Q � lim inf
xr`

1

x
�
@t0 , xF #

log P~V~t! � x! dF~t!0P~B � t0 !+ (15)

Applying Fatou’s lemma to ~15! yields

Q � P~B � t0 !
�1�

@t0 , xF #

lim
xr`

1

x
log P~V~t! � x! dF~t!+

The result now follows from Proposition 8+ �

The following lemma is used to develop the upper bound for the decay rate of
V from Lemma 9+We introduce the notation c~t!� dr~L~t!!, so that c � dr~L!�
c~xF !+

Lemma 10: The function c~t! is decreasing in t. Furthermore, c~t! r c~xF ! as
tr xF .

Proof: For all t, the function ht~u!� u� l~Eeu~B∧t! � 1! is concave in u, since
any moment generating function is convex+ Furthermore, limur�` ht~u! �
limur` ht~u! � �`+ By definition of L~t! and ~3!, we can write c ~t! �
supu$ht~u!% + Then c~t! is decreasing in t, since ht~u! is decreasing in t+ Since
c~t! � ht~0! � 0 for all t and c~t! is decreasing, c~t! converges for t r xF +
Now, note that ht~u! is continuous in t for all u � @0,sup $h : EehB � `%!, even
if B has a discrete distribution+ Since the supremum of u� l~EeuB � 1! is attained
in this interval, we have limtrxF

c~t! � c~xF !+ �
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Proposition 11: Let V be the sojourn time of a customer in the stationary M0G01
FB queue. If the service-time distribution satisfies Assumption 1, then

lim inf
xr`

1

x
log P~V � x!� �dr~L!+ (16)

Proof: If P~B � xF ! � 0, then choosing t0 � xF in ~11! yields

lim inf
xr`

1

x
log P~V � x!� �c~xF !� �dr~L!,

and ~16! holds+Assume P~B � xF !� 0 and let «� 0+ By Lemma 10, there exists an
x« � xF such that c~t!� c � « for all t� x«+ Choosing t0 � x« in ~11! then yields

lim inf
xr`

1

x
log P~V � x!� �P~B � x« !

�1�
@x« , xF #

c~t! dF~t!

� �P~B � x« !
�1�

@x« , xF #

~c � «! dF~t!� �c � «+

Since « � 0 was arbitrary, the lower bound ~16! follows+ �

Proof of Theorem 1: The lower bound for dr~V ! is established in Corollary 6,
and the upper bound in Proposition 11+ �

4. DISCUSSION

The decay rate of the sojourn time V in the M0G01 FB queue is the same as for the
preemptive LIFO queue+ Indeed, the sojourn time of a customer in the stationary
M0G01 queue under the preemptive LIFO discipline is just the length of the sub-
busy period started by that customer+ From Theorem 1, it follows that the decay
rates of the sojourn times for LIFO and FB are equal+

The sojourn time of a customer in the stationary queue under FIFO satisfies
VFIFO � B � W, where W is the stationary workload+ From the Pollaczek–Khinchin
formula,

Ee�sW �
s~1 � r!

s � l� lE exp~�sB!
, (17)

it follows that the decay rate of W is the value of s for which the denominator in
~17! vanishes+ Hence, dr~W ! is the positive root u0 of h~u! � u � l~EeuB � 1!+
Furthermore, since dr~B! � inf $u : h~u! � �`% , we have u0 � dr~B! � `+ An
analog of Lemma 3 then yields that cFIFO :� dr~VFIFO!� u0+

Since h is concave, h~0!� 0, and h '~0!�1 � lEB � 1, we have by Theorem 1
and ~3! that

cFB :� dr~VFB !� dr~L!� sup
u

h~u! � u0 � cFIFO , dr~B!; (18)
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see also Figure 1+ Hence, in the FIFO system, the decay rate of the sojourn time is
strictly larger than that in the FB queue+ As an illustration, consider the M0M01
queue in which the service times have expectation 10µ+ For stability, we assume
l � µ+ Straightforward computations then yield that cFB � ~Mµ � Ml!2, cFIFO �
µ � l, and dr~B!� µ+ Since l� µ, we conclude that for the M0M01 queue, inequal-
ity ~18! is satisfied+

Finally,Mandjes and Zwart @5# consider the PS queue with light-tailed service
requests+ They show that the decay rate of VPS is equal to dr~L! as well, under the
additional requirement that, for any positive constant k,

lim
xr`

1

x
log P~B � k log x!� 0+

For deterministic requests, clearly this criterion is not met+ Indeed, in @5# , it is shown
that the decay rate of V in the M0D01 queue with the PS discipline is larger than
dr~L!+
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