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 SUMMARY
 This paper deals with the kinematic synthesis of
 manipulators .  A new method based on distributed
 solving is used to determine the dimensional parameters
 of a general manipulator which is able to reach a set of
 given tasks specified by orientation and position .  First ,  a
 general  Distributed Sol y  ing Method  ( DSM ) is presented
 in three steps :  the problem statement ,  the objective
 functions formulations and the minimum parameters
 values determination .  Then ,  this method is applied to
 solve the synthesis of the Denavit and Hartenberg set of
 parameters of a manipulator with a given kinematic
 structure .  In this case ,  the kind and the number of joints
 are specified and a set of constraints are included such as
 joint limits ,  range of dimensional parameters and
 geometrical obstacles avoidance .  We show that if the
 Denavit and Hartenberg parameters (DH) are known ,
 the synthesis problem is reduced to an inverse kinematic
 problem .  We show also how the problem of robot base
 placement can be solved by the same method .  A general
 algorithm is given for solving the synthesis problem for
 all kind of manipulators .  The main contribution of this
 paper is a general method for kinematic synthesis of all
 kind of manipulators and some examples are presented
 for a six degrees of freedom manipulator in cluttered
 environment .

 KEYWORDS :  Kinematic synthesis ;  Manipulator ;  Distributed
 Solving Method ;  DH parameters .

 1  INTRODUCTION
 The kinematic synthesis problem can be defined as
 finding a set of parameters of a mechanism or a
 manipulator which allow it to reach a goal .  This problem
 is known as the inverse problem by opposition the
 forward problem which is defined as an analysis problem .
 The synthesis problem was very large investigated
 problem since the 1970 .  For very simple cases ,  an
 analytical solution may be obtained .  But for general
 6-dof manipulators ,  no analytical solution exists .  Many
 attempted to solve this problem numerically . 1 – 4

 In the last few years a new research paradigm has
 come into the international scientific area .  The
 Distributed Artificial Intelligence and multi-agent system

 has gained major importance as a paradigm for computer
 scientists .  The word agent 5  is used to designate an
 intelligent entity ,  acting rationally and intentionally with
 respect to its own goals and to the current state of its
 knowledge .  We focused on distributed problem solving
 where tasks are initially specified and distributed among
 several agents .  We show 6  that this method is able to
 solve numerically the inverse kinematics problem of all
 serial manipulators .  Our idea was to consider each body
 of the manipulator as an agent usefully cooperating
 towards the same collective purpose ,  which is reaching
 the position and the orientation of the end ef fector .
 Thanks to this dialogue between agents ,  the placing of
 the end ef fector is performed by successive stages .  Based
 on the same idea ,  we make the structural Denavit-
 Hartenberg parameters free to take any value included in
 some range ,  and the problem becomes now ,  compute all
 joints four DH parameters (three are constant and one
 variable) which satisfy the set of specified task goals .  The
 first part of this paper is devoted for a brief summary of
 the Distributed Solving Method (DSM) and for a
 mathematical formulation of the problem including the
 constraints .  Then the iterative process describing the
 method is detailed before the presentation the three kind
 of synthesis problems .  The next part deals with solving
 structural parameters synthesis for an known architecture
 manipulator able to reach all the specified task goals with
 at least one solution .

 In the conclusion section ,  we show the limits of the
 DSM and the feature which can be done to improve this
 method by taking into account other criterion such as
 redundancy ,  workspace maximization ,  kinematic and
 dynamic isotropy ,  etc .  .  .

 2  DISTRIBUTED SOLVING METHOD (DSM)
 The basic idea is to make the end ef fector of the
 manipulator reaching the specified task goal by
 minimizing the distance between a tool frame and a goal
 frame .  So ,  we have to consider that each joint associated
 with a link is an agent able to move  doing its best  to
 participate for achieving this global aim .  The distance
 between the tool and the goal frame is formulated by a
 Frobenius norm of a matrix representing the dif ference
 between two paths .  The first path joins the base and the
 goal frames and the second one binds the goal frame to
 the base one as shown in Figure 1 .
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 654  Kinematic synthesis

 Fig .  1 .  Position of several frames used for the manipulator
 description .

 2 . 1  Problem formulation
 2 .1 .1  Structural and joint parameters .  Using conven-
 tional Denavit and Hartenberg description of a
 manipulator ,  we have one set of constant parameters
 called  Structural  and another set of variable parameters
 (number of degrees of freedom) called  Joint  parameter .
 So a classical manipulator can be described by 3 n
 structural parameters with  n  the number of joints
 grouped in a vector  P d h :

 P d h  5  [ a  1  ,  a 1  ,  q ̃  1  ,  .  .  .  ,  a i  ,  a i  ,  q ̃  i  ,  .  .  .  ,  a n  ,  a n  ,  q ̃  n ] T  (1)

 with  q ̃  i  5  (1  2  s i ) θ i  1  s i d i  ,  and  s i  5  1 for revolute joint
 and  s i  5  0 for a prismatic one .  The end ef fector position
 and orientation in the space are given by the vector of
 joint parameters  q :

 q  5  [ q 1  ,  q 2  ,  .  .  .  ,  q n ] T  (2)

 2 .1 .2  Task .  The task can be specified by a six dimensions
 vector giving the position ( X ,  Y ,  Z ) and the orientation
 (i . e .  Euler angles  q  ,  w ,  c  ) of the goal frame in the
 reference frame .

 p  5  [ X ,  Y ,  Z ,  q  ,  w ,  c  ] T  (3)

 2 .1 .3  Base frame .  The position and orientation of the
 manipulator base frame can be specified regards to fixed
 global frame  5 f   with a vector  p 0  .

 p 0  5  [ X  0  ,  Y 0  ,  Z 0  ,  q  0  ,  w 0  ,  c  0 ]
 T  (4)

 This allows us to solve the problem of where the base of
 robot should be placed to carry out the task in crowded
 environment 7 .  So ,  the problem formulation gives us a
 (4 n  1  12)   dimensional space formed by the product of
 the structural (3 n ) ,  the joint ( n ) ,  the base (6) and the
 task spaces (6) .  A manipulator or a mechanism and its
 instantaneous posture represent a point of this global
 space .

 2 . 2 .  Kinematic synthesis problem
 2 .2 .1  Kinematic structure equations .  The kinematic
 constraints involved in the design problem can be
 formulated in set of kinematic structure equations which
 are given in a general form as following :

 T  0
 f

 j
 T  1

 0

 j
 T  2

 1  ?  ?  ?
 j

 T n
 n 2 1  5

 j
 T h

 j  ; j  5  1  ?  ?  ?  k  (5)

 where 
 j

 T  i
 i 2 1  the homogeneous transformation matrix

 (4  3  4) from  ith  joint frame to the  i  2  1 th  one for the  j th
 task ,   T  0

 f    the transformation between the fixed frame to

 the base frame and 
 j

 T  h
 f    the homogeneous transformation

 linking the goal frame to the fixed one .  So the kinematic
 design problem can be addressed as computing the  P d h

 vector ,  the base position and orientation  p 0  which allow
 to reach all the  k  tasks .  So in general form ,  this problem
 can be defined as finding the solution of a set of 12  p  k
 equations for (3  1  k )  p  n  1  6 unknowns .  The set of
 unknown can be defined as  8 t   as :

 8 t  5  !

 n

 i 5 1
 h a i  ,  a i  ,  q ̃  i j  !

 k

 j 5 1
 H !

 n

 i 5 1
 h q i j J

 <  h X  0  ,  Y 0  ,  Z 0  ,  q  0  ,  w 0  ,  c  0 j  (6)

 It is obvious that ,  if the structural parameters are known
 and the base frame is defined ,  the set of unknowns is
 reduced to :

 8 * t  5  !

 k

 j 5 1
 H !

 n

 i 5 1
 h q i j J  (7)

 The problem becomes then an inverse kinematic
 problem of  n  degrees of freedom manipulator for a set of
 k  tasks 8 .  In another hand ,  if the base frame is defined ,
 the number of unknowns will be (3  1  k )  p  n .

 2 .2 .2  Local frame equation .  As it was said ,  we have to
 solve the structure equations (5) .  It is necessary to
 distinguish the two kind of variables :  the structural
 variables which must be the same for all  k  tasks and the
 joint ones which depend on the task .  We have to use the
 main advantage of the DSM by making only one joint
 ( ith )   moving at each step .  All the other parameters can
 be considered as constant in this step .  So the equation
 (5) can be written in a local frame associated with the  ith
 joint as :

 j
 T  i

 i 2 1

 j
 T  n

 i  5
 j

 T h
 i 2 1  ; j  5  1  ?  ?  ?  k  (8)

 with 
 j

 T  h
 i 2 1  5  (

 j
 T i 2 1

 0  T  0
 f  )

 2 1
 j

 T h
 f  .  The main idea of the

 distributed formulation is to consider at each step a sub
 problem of the global synthesis problem in order to get
 the analytical expressions of the structural and joint
 variables which are the best to make the  ith  joint
 reaching its local goal (see Figure 2) .

 A general form of this local projection can be written
 as :

 T
 j

 i
 i 2 1 T

 j
 n
 i  5  T

 j
 h
 i 2 1  (9)

 This formulation have a more meaningful sense
 showing that we have to compute the amount of  ith  agent
 contribution to solve the problem .  The  ith  joint can be
 considered as a one degree of freedom manipulator
 doing its best (local) to reach the global goal .

 2 .2 .3  Distance metrics .  Assuming an inertial reference
 frame and length scale for physical space have been
 chosen ,  each frame can be assigned to an element of the
 special Euclidean group  SE (3) .  The problem of precisely
 ‘‘closeness’’ between frames is then reduced to the
 equivalent mathematical problem of defining a distance
 metrics in  SE (3) .  Any number of arbitrary distance
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 Fig .  2 .  Local frame projection of the structure equation of a manipulator .

 metrics can be defined 9  but some features make the
 metrics more physically meaningful .  Since any distance
 metrics combines position and orientation ,  one would
 like the metric to be scale-invariant .  So ,  in this paper ,  we
 base the measure on the Frobenius norm of a matrix
 i  M  i    with a length scale  L  defined by Wampler 1 0  such as :

 T 1  5 S  R 1

 0
 U  U 1

 1
 D  T 2  5 S  R 2

 0
 U  U 2

 1
 D

 d ( T 1  ,  T 2 )  5  d (( R 1  ,  U 1 ) ,  ( R 2  ,  U 2 ))

 5  i  R 1  2  R 2  i  2  1
 1

 L 2  i  U 1  2  U 2  i  2  (10)

 d ( T 1  ,  T 2 )  5  i  R  i  2  1
 1

 L 2  i  U  i  2  5 O
 ij

 R  2
 ij  1

 1
 L 2  O

 ij
 U 2

 ij

 with  L  the characteristic length which is defined as the
 maximum Euclidean norm of absolute end ef fector
 position .

 L  5  max
 q

 i  U n
 0  i  (11)

 2 .2 .4 .  Distributed objective functions .  In order to solve
 the kinematic synthesis problem ,  we have to minimize
 the distance between the tool frame and the task goal
 frame .  This distance can be expressed by using a
 Frobenius norm of the matrix 

 j
 M

 j
 M i   which represents the

 dif ference between the current position and the desired
 position .  Using the local projection of the structure
 equation (9) ,  this matrix can be expressed as :

 j
 M

 j
 M i  5

 j
 T i

 i 2 1

 j
 T n

 i  2
 j

 T h
 i 2 1  5  F  (

 j
 F ,

 j
 T n

 i  ,
 j

 T h
 i 2 1 ,  a i  ,  a i  ,  q ̃  i )  (12)

 So we have to determine  k  Frobenius norms :

 i
 j

 M i  i  2  5  i
 j

 T i
 i 2 1

 j
 T  n

 i  2
 j

 T h
 i 2 1  i  2  ; j  5  1  ?  ?  ?  k  (13)

 For each task ,  the joint variables must be dif ferent ,  so
 the objective function should be :

 j
 F i (

 j
 q i )  5  i

 j
 M i  i  2  (14)

 The general form of the  i
 j

 M i  i  2  is given in Appendix A .
 The structural parameters must be the same for the  k
 tasks ,  so each squared Frobenius norm should be equal
 to zero and their sum also .  The objective function

 depending on the structural parameters ( a i  ,  a i   and  q ̃  i )
 can be written as :

 G k
 i  ( a i  ,  a i  ,  q ̃  i )  5  O k

 j 5 1
 i

 j
 T i

 i 2 1

 j
 T n

 i  2
 j

 T h
 i 2 1  i  2  (15)

 The base positioning problem can be addressed as
 where we have to place the robot base frame  5 0  in the
 fixed frame  5 f   to be able to reach all tasks .  Using the
 position  X  0  , Y 0  , Z 0  and the orientation  q o  ,  w 0  ,  c  0
 parameters ,  we define the following structure equation
 including  T  0

 f    transformation .

 T  0
 f

 j
 T n

 0  5
 j

 T h
 f

 (16)
 T  0

 f  5
 j

 T g

 with 
 j

 T  g  5
 j

 T  h
 f  (

 j
 T n

 0 ) 2 1 .  We define the matrix 
 j

 M 0  which
 should be equal to zero as :

 j
 M 0  5  T  0

 f  2
 j

 T g  (17)

 The Frobenius norm  i
 j

 M 0  i  2  is given in Appendix A .  This
 objective function can be defined as a function of
 ( X  0  ,  Y 0  ,  Z 0 )   and ( q  0  ,  w 0  ,  c  0 ) as follows :

 H k ( X  0  ,  Y 0  ,  Z 0  ,  q  0  ,  w 0  ,  c  0 )  5  O k
 j 5 1

 i
 j

 M 0  i  2  (18)

 2 .2 .5 .  Minimum values of parameters .  Solving the
 kinematic synthesis problem becomes determining the
 values of the structural and joint parameters which
 minimize the global objective functions given below .  So ,
 we have now to compute the analytical expressions of the
 parameters giving a minimum value of each objective
 function .

 (i)  Joint parameter
 The expression of the objective function  F i   can be

 written by omitting the task index  j  as ;

 F i  5  2 s i ( DEN θ  p  sin  ( θ i )  1  NUM θ  p  cos  ( θ i ))

 1  (1  2  s i )( d i  2  d m ) 2  1  D θ  (19)

 The expressions of  DEN θ  , NUM θ  , d m   et  D θ   are also
 given in Appendix A .  If only the  ith  joint can move ,  the
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 minimum value of the joint parameter satisfies
 ­ F i

 ­ q i
 5  0 .  We can compute the derivatives from equation

 (19) and we obtain :

 ­  i  M i  i  2

 ­ q i
 5  2 s i ( 2 DEN θ  p  cos  ( θ i )

 1  NUM θ  p  sin  ( θ i ))  1  2(1  2  s i )( d i  2  d m )  (20)

 We get the value of the joint parameter  q m
 i    minimizing

 the squared norm  F i :

 q m
 i  5  s i θ  m

 i  1  (1  2  s i ) d m
 i  (21)

 with

 θ  m
 i  5  arctan

 NUM θ

 DEN θ
 (22)

 d m
 i  5  d m  (23)

 if the joint is a prismatic one ,  the value  d m   is a minimum
 of the norm of  M i   because its coef ficient in equation (20)
 is equal to 1 . 0 .  However ,  in the case of revolute joint ,

 there are two solutions for 
 ­  i  M i  i  2

 ­ q i
 5  0 which are  θ  m

 i    and

 θ  m
 i  1  π .  If we call  S 1  5  sin  ( θ  m

 i  ) and  C 1  5  cos  ( θ  m
 i  ) ,  the

 objective function has two possible forms :

 F i ( θ  m
 i  )  5  S 1 DEN θ  1  C 1 NUM θ  1  D θ  (24)

 F i ( θ  m
 i  1  π  )  5  2 S 1 DEN θ  2  C  1 NUM θ  1  D θ  (25)

 In the range  F  2
 π
 2

 ,
 π
 2
 G , C 1  is positive and the value of

 the joint parameter giving the minimum is obtained when
 DEN θ   has the same sign as  S 1 .  So we have the following
 condition :

 if  DEN θ  ,  0  then  θ  m
 i  5  θ  m

 i  1  π  (26)

 (ii)  Structural parameters
 The expression of the objective function  G k

 i    can be
 written in factorized form with  a i   and  a i   parameters :

 G k
 i  5  O k

 j 5 1
 (( DEN j

 a  p  sin  ( a i )  2  NUM j
 a  p  cos  ( a i ))

 1  ( a j
 i  2  a j

 m ) 2  1  D j
 a )  (27)

 The expressions for terms  DEN j
 a  , NUM j

 a  ,  D j
 a   and  a j

 m   are
 given in Appendix A .  We have the analytical expressions
 of parameters values minimizing the norm  G k

 i  :

 ­ G k
 i

 ­ a i
 5  O k

 j 5 1
 ( 2 DEN j

 a  p  cos  ( a i )  1  NUM j
 a  p  sin  ( a i ))  (28)

 which gives  a  m
 i

 a  m
 i  5  arctan

 o k
 j 5 1  NUM j

 a

 o k
 j 5 1  DEN j

 a

 (29)

 For  a i  ,  we can write :

 ­ G k
 i

 ­ a i
 5  a i  2  a m  (30)

 and

 a m
 i  5

 1
 k
 O k
 j 5 1

 a j
 m  (31)

 We can see that  a m
 i    is the average of the solutions for

 each task  a j
 m .

 For the last parameter  q ̃  i  ,  we can write the same norm
 and obtain :

 q ̃  m
 i  5  (1  2  s i ) θ  m

 i  1  s i d
 m
 i  (32)

 with

 θ  m
 i  5  arctan

 o k
 j 5 1  NUM j

 θ

 o k
 j 5 1  DEN j

 θ
 (33)

 d m
 i  5

 1
 k
 O k
 j 5 1

 d j
 m  (34)

 Values of  NUM j
 θ  , DEN j

 θ   and  d j
 m   are respectively that of

 NUM θ  , DEN θ   and  d m   by adding the task index  j .  We
 should notice that this formulation is a general one and
 independent of the number of tasks which is a powerful
 aspect of this kinematic synthesis method .

 (iii)  Base frame parameters
 The value of the parameters minimizing the Frobenius

 norm are given by solving the partial derivative of  H k

 through the position and orientation parameters .  We
 obtain the following expressions of all parameters :

 q  m
 0  5  arctan

 o k
 j 5 1  NUM j

 q  0

 o k
 j 5 1  DEN j

 q  0

 (35)

 w m
 0  5  arctan

 o k
 j 5 1  NUM j

 w 0

 o k
 j 5 1  DEN j

 w 0

 (36)

 c  m
 0  5  arctan

 o k
 j 5 1  NUM j

 c  0

 o k
 j 5 1  DEN j

 c  0

 (37)

 The position vector ( X  0  ,  Y 0  ,  Z 0 ) is given by

 X m
 0  5

 1
 k
 O k
 j 5 1

 j
 T g

 1 , 4

 Y m
 0  5

 1
 k
 O k
 j 5 1

 j
 T g

 2 , 4

 Z m
 0  5

 1
 k
 O k
 j 5 1

 j
 T g

 3 , 4

 with the expressions of  NUM j
 q  0

 , DEN j
 q  0

 , NUM j
 w 0

 ,
 DEN j

 w 0  , NUM j
 c  0

  and  DEN j
 w 0

  are given in Appendix A

 and 
 j

 T  g
 l , m   is the 

 j
 T  g ( l ,  m ) element .

 2 . 3  Variable constraints
 In several kinematic synthesis problems ,  we have to take
 into account some constraints on the variables .  These can
 be formulated with some penalty functions .  We show
 here how we can solve the problem of joint limits ,
 obstacle avoidance by including penalty functions .

 2 .3 .1 .  Variables range .  The structural and joint variables
 can be limited in a such domain .  The joint variables
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 should satisfy joint end stops for instance .  Some length
 must be included between a minimum value and a
 maximum one and so on .  Assuming that each space is a
 discrete one ,  a general formulation can be written for the
 two kind of variables .

 Angular variable  b  P  h q  0  ,  w 0  ,  c  0 j  !
 n
 i 5 1  h a i  ,  θ i j

 m i n b  #  b  #  m a x b  é  F l ( b  )  5 H max  F 0 ,  tan  S m i n b

 2
 D

 2  tan  S b

 2
 D G 2

 1  max  F 0 ,  tan  S b

 2
 D  2  tan  S m a x b

 2
 D G 2 J  (38)

 and linear  l  P  h X  0  ,  Y 0  ,  Z 0 j  !
 n
 i 5 1  h a i  ,  d i j   as :

 m i n l  #  l  #  m a x l  é  F l ( l )  5  h max  [0 ,  m i n l  2  l ] 2

 1  max  [0 ,  l  2  m a x l ] 2 j  (39)

 2 .3 .2 .  Complex environment .  The manipulator should
 have a free collision trajectory in its environment .  We
 show here that ,  by using the same formulation that of
 variable range ,  we can include the obstacles with a
 penalty functions in the distributed optimization process .

 (i)  Obstacle modelisation
 In order ,  to show how this kind of problems can be

 solved ,  we use a simplified models of obstacles :  each
 obstacle is defined as a box .  The cartesian coordinates of
 point ( X ,  Y ,  Z ) which belongs to the obstacle are defined
 by :

 m i n X  o b j  #  X  o b j  #  m a x X  o b j

 m i n Y o b j  #  Y o b j  #
 m a x Y o b j

 m i n Z o b j  #  Z o b j  #  m a x Z o b j

 The manipulator is assumed to be formed by a set of
 thickness lines .  This kind of assumptions for obstacles
 and manipulator are not restrictive because a real
 obstacle can be always approximated by a union of box
 primitives .  The thickness of the manipulator links can be
 corrected by increasing the box obstacles dimensions .

 (ii)  Penalty function (Figure 3)
 The penalty function should be proportional to the

 constraint violation .  The manipulator has to avoid
 passing through the obstacle .  We define a function which
 is equal to 1 if the manipulator intersect with the obstacle

 Fig .  3 .  Penalty function for obstacles

 and zero other wise .  The intersection length  +   will be
 integral over the manipulator length of this function .

 Minimizing the penalty function will reduce the
 intersection length  +  .  For the two kind of variables  l i

 and  b i  ,  we can denfie the penalty function taking into
 account the last computed values  c l i   or  c b i   as follows :

 F o b s t  5
 +

 L
 ( F i ( l i )  2  F i (

 c l i )) 2  (40)

 F o b s t  5
 +

 L
 S F i S tan  S b i

 2
 D D  2  F i S tan  S c b i

 2
 D D D 2

 (41)

 with  F i   the objective function defined without obstacles
 and  L  the characteristic length of the manipulator
 (equation 11) .

 So ,  the objective function expression for the  ith  joint
 is :

 F  t
 i  5  F i  1  F o b s t  (42)

 3  GENERAL ALGORITHM
 We show that the main assumption of the DSM ,  is that at
 each step ,  only one variable is optimized .  So a general
 algorithm should use this formulation by changing the
 whole problem of kinematic synthesis which is a
 multi-variables optimization to a multi-univariable
 optimization .  The method was implemented with Ada
 programming language using the multi-task concept .  The
 Ada Language of fers facilities to model tasks .  Tasks are
 entities which execution proceed in parallel in the
 following sense .  Dif ferent tasks proceed independently ,
 except at points where they synchronize .  The general
 algorithm is given by Figure 4 :

 4  RESULTS
 To illustrate the DSM capabilities ,  a kinematic synthesis
 of a general 6R manipulator with obstacle avoidance and
 a robot base placement problems are treated .

 4 . 1 .  Example  1 :   Kinematic synthesis with obstacle
 a y  oidance
 In this case ,  we have to find the best dimensional
 parameters of a 6R manipulator achieving a prescribed
 trajectory in a cluttered environment with its base fixed
 at the reference frame ( 5 0  ;  5 f  ) .  The trajectory is
 defined by three parts and a total number of  k  5  200
 points .  At each point ,  both position and orientation of
 the manipulator end ef fector have to reach the desired
 values given on Table I .

 To make the problem more complex ,  the prescribed
 trajectory is defined in a cluttered environment

 Fig .  4 .  General algorithm .
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 Table I .  Prescribed trajectory defined by 200 points

 Part  Range  Desired Position ( X i  ,  Y i  ,  Z i ) and Orientation ( q i  ,  w i  ,  c i )

 1  0  #  i  #  89  X i  5  1 . 87  2  0 . 033  3  i
 q i  5  0  1  0 . 5 o  3  i

 Y i  5  0 . 26  1  0 . 01  3  i
 w i  5  0  1  0 . 5 o  3  i

 Z i  5  1 . 86  2  0 . 015  3  i
 c i  5  0 . 0  1  0 . 5 o  3  i

 2  0  #  i  #  19  X i  5  2 1 . 18  1  0 . 001  3  i  Y i  5  1 . 18  2  0 . 001  3  i  Z i  5  0 . 52  1  0 . 032  3  i
 q i  5  45 8  w i  5  45 8  c i  5  45 8

 3  0  #  i  #  89  X i  5  2 1 . 20  1  0 . 033  3  i
 q i  5  45 o  2  0 . 5 o  3  i

 Y i  5  1 . 16  2  0 . 01  3  i
 w i  5  45 o  2  0 . 5 o  3  i

 Z i  5  1 . 16  1  0 . 01  3  i
 c i  5  45 o  2  0 . 5 o  3  i

 Table II .  Dimensions and position of obstacles

 Obstacle  Length  Width  Height  X  Y  Z

 A
 B
 C
 D
 E

 0 . 5
 1

 0 . 1
 0 . 1
 0 . 5

 0 . 5
 1

 0 . 1
 0 . 1
 0 . 1

 0 . 8
 0 . 4
 1 . 6
 1 . 6
 2 . 2

 2 0 . 7
 1 . 2
 0 . 5

 2 1 . 5
 1 . 8

 0
 0
 0
 0
 1

 0 . 6
 0 . 3
 0 . 8
 0 . 8
 0 . 2

 composed by five obstacles given by their dimensions and
 position in the fixed frame on Table II .

 A CAD representation made by ACT* software of the
 obstacles and the trajectory is given by Figure 5 .  Since
 the base parameters are fixed to null values ,  the total
 number of unknowns is (3  1  k )  3  6  5  1218 which is quite
 large and prove the power of the DSM to solve this kind
 of problems .  The algorithm is initialed with null values
 for all unknowns .  The dimensional DH parameters
 solution of the problem are given on Table III .

 The algorithm takes about 12 hours on Sparc 5 station
 to find the solution .  The computation time is long but the
 problem is quite constrained :  5 obstacles ,  200 tasks and
 the initial guess is null values .  It is obvious that the
 results for the values of angles or distances should be
 changed to some ‘‘realizable’’ values .  The new DH
 parameters are given by Table IV .  We can see that the
 three last axis are orthogonal (i . e .  twist angles  a i  5
 π
 2

 , i  5  4 ,  5 ,  6) but they do not intersect at the same point

 (i . e .  distances  d i   and  a i   are dif ferent from zero) .  The
 trajectory is checked again with this new manipulator .  A
 CAD representation of the ‘‘realizable’’ manipulator is
 given by Figure 6 .
 4 . 2 .  Example  2 :   base placement
 In this case ,  we have to find the base frame parameters
 ( X  0  ,  Y 0  ,  Z 0  ,  q  ,  w 0  ,  c  0 )   for a given manipulator in order
 to reach a given set of tasks .  So ,  we use the new
 realizable DH parameters values given by Table IV and
 re-compute the new position and orientation of the base
 of the 6R realizable manipulator in order to reach the
 same trajectory described below (Table I) .  The results
 show that it is necessary to make ‘‘small’’ change in the
 position and the orientation to take into account the
 ‘‘small’’ modifications of the initial DH parameters
 (Table 3) .  The results are given by Table V .

 5  DISCUSSION
 Due to the fact that at each step of our algorithm ,  only
 one parameter is modified ,  the DSM is less optimal than

 *  ACT is a Trade Mark of Aleph Technologies .

 Fig .  5 .  CAD representation of the obstacles and trajectory .

 usual numerical algorithms from computation time point
 of view .  Using the MIPS (Million Instructions Per
 Second) ratio ,  a comparison with last works dealing with
 the Kinematic Synthesis Problem (KSP) 4 , 11  and the
 Robot Base Placement (RBP) 2  was carried out .  The
 results given on Table VI ,  show that the proposed
 method is less ef ficient but the computation times taken
 are not so dif ferent .  On the other hand ,  the DSM is a
 general method able to solve in the  same way  a several
 problems :  the inverse kinematic problem ,  the kinematic

 Table III .  DH parameters of 6R manipulator

 a  a  d

 2 17 . 49
 2 140 . 21

 159 . 85
 89 . 67
 90 . 56
 89 . 63

 0 . 86
 0 . 01
 0 . 99
 0 . 01
 0 . 01
 0 . 0

 1 . 01
 0 . 94
 0 . 01
 0 . 05
 0 . 01
 0 . 0

 Table IV .  Realizable values of DH
 parameters

 a  a  d

 17 . 0
 2 140 . 0

 160 . 0
 90 . 0
 90 . 0
 90 . 0

 0 . 86
 0 . 01
 0 . 99
 0 . 01
 0 . 01
 0 . 0

 1 . 01
 0 . 94
 0 . 01
 0 . 05
 0 . 01
 0 . 0
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 Fig .  6 .  Kinematic synthesis of 6R manipulator in crowded
 environment .

 synthesis problem and the robot base placement
 problem .  The DSM is also independent from the number
 of tasks and does not need a feasible starting guess of the
 initial values of parameters .

 6  CONCLUSION
 In this paper ,  a general method for the kinematic
 synthesis of general manipulators is presented .  The
 method is based on a Distributed Solving Algorithm
 using a multi-agent concept .  A general formulation of
 the kinematic synthesis problem allows us to solve
 several problems :  the inverse kinematic problem ,  the
 determination of the structural parameters of a
 manipulator which is able to reach an unlimited set of
 positions and orientations and the robot base placement
 problem in cluttered environment .  At each step of the
 algorithm ,  only one variable is optimized which leads us
 to get the analytical expression of the optimal value of
 this parameter .  This method was tested for the design of
 a general 6R manipulator achieving a prescribed
 trajectory ,  and for a robot base placement problem .  The
 method is less ef ficient than usual numerical algorithms .
 However ,  it is independent of the number of tasks and
 does not need a feasible initial guess .  Further
 developments will concern the improvement of the
 method by using better initial values and including some
 optimization criteria to obtain an optimal solution .

 Table V .  Base position and orientation

 X  0  Y 0  Z 0  q  0  w 0  c  0

 2 0 . 0124  0 . 0137  2 0 . 0096  0 . 89 o  2 1 . 02 o  2 1 . 27 o

 Table VI .  Computation time comparisons

 KSP  Park 4 :  17 9 20 0
 Paredis & Khosla 1 1 :  12 9 07 0

 DSM :  19 9 43 0
 DSM :  11 9 45 0

 RBP  Chedmail & Wenger 2 :  1 9 30 0  DSM :  2 9 07 0
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 A .2  norm  i  M 0  i  2

 i  M 0  i  2  5  X  2
 0  1  Y 2

 0  1  Z 2
 0  2  2  cos  ( q  0 )  cos  ( c  0 ) T  g

 2 , 2

 1  T  g
 3 , 2

 2  1  2  sin  ( w 0 ) T  q
 3 , 1  1  T  g

 3 , 3
 2

 2  2 Z 0 T  g
 3 , 4  1  T  g

 3 , 4
 2  1  T  g

 1 , 4
 2  1  T  g

 3 , 1
 2

 1  T  g
 2 , 4

 2  1  T  g
 2 , 2

 2  1  T  g
 2 , 3

 2

 1  T  g
 1 , 2

 2  1  T  g
 1 , 3

 2  2  2 X  0 T  g
 1 , 4  1  T  g

 2 , 1
 2

 1  2  sin  ( q  0 )  cos  ( c  0 ) T  g
 1 , 2

 2  2  sin  ( q  0 )  sin  ( c  0 ) T  q
 1 , 3  2  2  sin  ( q  0 )  cos  ( w 0 ) T  g

 2 , 1
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 A .3  Structural parameters

 D j  5  2 2  sin  ( θ i ) T  n
 i  1 , 3 T  h

 i 2 1  2 , 3  2  2  sin  ( θ i ) T  n
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 A .4  Joint parameters
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 A .5  Base frame parameters

 NUM q  0
 5  sin  ( c  0 ) T  g

 2 , 2  1  sin  ( w 0 )  sin  ( c  0 ) T  g
 1 , 2

 1  sin  ( w 0 )  cos  ( c  0 ) T  g
 1 , 3  2  sin  ( c  0 ) T  g

 2 , 3

 1  cos  ( w 0 ) T  g
 1 , 1

 DEN q  0  5  2 sin  ( w 0 )  sin  ( c  0 ) T  g
 2 , 2  1  cos  ( c  0 ) T  g

 1 , 2

 2  sin  ( c  0 ) T  g
 1 , 3  2  cos  ( w 0 ) T g

 2 , 1

 2  sin  ( w 0 )  cos  ( c  0 ) T  g
 2 , 3

 NUM w 0
 5  sin  ( q  0 ) T  g

 2 , 1  1  cos  ( c  0 ) T  g
 3 , 3  1  sin  ( c  0 ) T  g

 3 , 2

 1  cos  ( q  0 ) T  g
 1 , 1  2  sin  ( q  0 )  cos  ( c  0 ) T  g

 2 , 3

 DEN w 0
 5  T g

 3 , 1  2  cos  ( q  0 )  sin  ( c  0 ) T g
 1 , 2

 2  cos  ( q  0 )  cos  ( c  0 ) T  g
 1 , 3  2  sin  ( q  0 )  sin  ( c  0 ) T  g

 2 , 2

 NUM c  0
 5  cos  ( w 0 ) T  g

 3 , 3  2  sin  ( q  0 ) T  g
 1 , 2

 1  cos  ( q  0 )  sin  ( w 0 ) T  g
 1 , 3

 1  cos  ( q  0 ) T  g
 2 , 2  1  sin  ( q  0 )  sin  ( w 0 ) T  g

 2 , 3

 DEN c  0
 5  cos  ( q  0 ) T  g

 2 , 3  2  cos  ( w 0 ) T  g
 3 , 2  2  sin  ( q  0 ) T  g

 1 , 3

 2  2  sin  ( q  0 )  sin  ( w 0 ) T  g
 2 , 2  2  cos  ( q  0 )  sin  ( w 0 ) T g

 1 , 2

https://doi.org/10.1017/S0263574797000787 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574797000787


 Kinematic synthesis  661

 B  APPENDIX B
 A task unit consists of a task specification and a task body :

 task – speci fi cation :  :=

 task   [type]   identi fi er   [is

 h entry – declaration j
 h representation – clause j

 end   [task – simple – name]

 g

 task – body :  :=

 task   body   task – simple – name   is

 [declarative – part]

 begin

 sequence – of – statements

 [exception

 exception – handler

 h exception – handler j ]
 end   [task – simple – name]

 Each agent of the distributed method (a joint) is modeled as a task in
 this manner :

 task   type   AGENT   is

 entry   INITIALISATION

 NUMBER:   in   integer;

 PARA:   in   out   parameters

 entry   COMPUTE

 MAT – DEST:   in   MAT – 44;

 MAT – OI:   in   MAT – 44

 end   AGENT

 link:   array   (1  .  .  n)   of   agent;

 task   body   AGENT   is

 begin

 accept   INITIALISATION   (.  .  .  .  .  .)   do

 id:   NUMBER

 end   INITIALISATION;

 loop

 accept   COMPUTE   (.  .  .  .  .  .)

 if   id 4 1   then

 MAT – DEST – LOC

 =INVERSE(MAT – OI)

 p  MAT – DEST   (equation  .  .  .)

 else

 MAT – DEST – LOC=MAT – DEST

 end   if;

 –  Computes   PARA

 if   id 4 1   then

 link   (id-1).COMPUTE   (.  .  .  .  .  .)

 else

 link(n).COMPUTE(.  .  .  .  .  .)

 end   if;

 end   COMPUTE;

 end   loop

 end   body   AGENT;

 The main program SYNTHESIS is :

 begin

 for   i   in   1  .  .  n   loop

 link(i).INITIALISATION   (.  .  .  .  .)

 end   loop;

 link(N).COMPUTE(.  .  .  .  .  .);

 end   SYNTHESIS
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