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Abstract

Objective. Anxiety can interfere with attention and working memory, which are components
that affect learning. Statisticalmodels have been designed to study learning, such as the Bayesian
Learning Model, which takes into account prior possibilities and behaviours to determine how
much of a new behaviour is determined by learning instead of chance. However, the
neurobiological basis underlying how anxiety interferes with learning is not yet known.
Accordingly, we aimed to use neuroimaging techniques and apply a Bayesian Learning Model
to study learning in individuals with generalised anxiety disorder (GAD).Methods. Participants
were 25 controls and 14 individuals with GAD and comorbid disorders. During fMRI,
participants completed a shape-button association learning and reversal task. Using a flexible
factorial analysis in SPM, activation in the dorsolateral prefrontal cortex, basal ganglia, and
hippocampus was compared between groups during first reversal. Beta values from the peak of
these regions were extracted for all learning conditions and submitted to repeated measures
analyses in SPSS. Results. Individuals with GAD showed less activation in the basal ganglia and
the hippocampus only in the first reversal compared with controls. This difference was not
present in the initial learning and second reversal. Conclusion. Given that the basal ganglia is
associated with initial learning, and the hippocampus with transfer of knowledge from short- to
long-term memory, our results suggest that GAD may engage these regions to a lesser extent
during early accommodation or consolidation of learning, but have no longer term effects in
brain activation patterns during subsequent learning.

Significant outcomes
• Most importantly, our paper uses Bayesian modelling approaches to track learning
in a clinical population.

• We provide evidence that GAD patients may engage the basal ganglia and the
hippocampus to a lesser extent during early learning accommodation or
consolidation, but show no difference in neural activation in subsequent learning.

Limitations
• The most important limitations of our study were our small sample size, and our
clinically heterogeneous patient group, who had a number of comorbidities.

• The use of this heterogeneous group strengthens the generalizability of our findings,
since the majority of GAD patients have comorbid disorder, but it also means that
our findings are not necessarily specific to only having GAD.

Introduction

Generalized anxiety disorder (GAD) is an anxiety disorder characterised by excessive,
uncontrollable, and often irrational worry about events or activities (American Psychiatric
Association, 2013). Trait anxiety, the primary component of GAD, has been theorised, in the
Attentional Control Theory (Eysenck et al., 2007; Derakshan and Eysenck, 2009), to interfere
with inhibition, shifting, and updating processes of working memory, which predicts that
individuals with anxiety will perform worse on cognitively demanding tasks. For instance,
individuals with high math anxiety demonstrate reduced working memory span, and in turn,
longer reaction times and more performance errors when completing mental additions
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concurrently with a memory load task (Ashcraft and Kirk, 2001).
Additionally, high-trait anxious individuals show slower target
identification when completing a response–conflict task under low
attentional demands and when threat-related stimuli are absent
(Bishop, 2009). Together, anxiety is linked to impairments in
attention and memory (Ashcraft and Kirk, 2001; Eysenck et al.,
2007; Bishop, 2009), which are components that can affect
learning.

Notably, a study exploring probabilistic learning in individuals
with GAD who were given either positive or negative affective
reinforcements showed that those with GAD learn the correct
probabilistic choices at a slower rate over time and to a lesser
degree than control participants regardless of reinforcement type
(LaFreniere and Newman, 2019). GAD is also associated with
underperformance during a n-back learning task, regardless of
working memory load, under threat (Vytal et al., 2016). Moreover,
decreased reward learning under stress is associated with
depression severity in GAD (Morris and Rottenberg, 2015).
However, all prior studies included a stressor or affective
component. Hence, there is a need to evaluate the purely cognitive
learning component and to investigate whether non-affective
learning is impaired in GAD in no-threat environments.

Real-time learning has rarely been explored in GAD. However,
exploring real-time, trial-by-trial learning could reveal more
nuanced impairments in GAD and account for time-sensitive
abnormalities associated with GAD, such as deficits in learning or
cognitive flexibility during specific trials or time periods. Bayes
Theorem is a commonly used statistical approach, which aims to
take into account the probability of some event occurring, given
some a priori feature, and can then be used to model the chances of
an event happening as a result of learning, given its odds of
happening by chance (Ahn, et al., 2017). This approach facilitates a
more precise understanding of the rate of inference and accuracy
when learning characteristics of new environments (Wilson et al.,
2007). It has proven to be a useful tool to quantify learning,
allowing for the trial-by-trial study of learning in psychiatric
patients (Ahn et al., 2017; Widge et al., 2017). However, this
statistical model has only been previously applied to studying the
degree of learning in psychiatric populations with anxiety-related
and mood disorders under conditions of threat or monetary
reward/punishment (Harlé et al., 2017; Aylward et al., 2019; Piray
et al., 2019). While prior studies utilised Bayesian Learning
Theorem, results appeared inconclusive, as Aylward et al. (2019)
and Harlé et al. (2017) concluded that patients with mood and
anxiety disorders and participants with higher trait-anxiety were
quicker to update their behaviour in response to negative or
threatening outcomes, while Piray et al., concluded that trait
anxiety was accompanied by disruption of optimal learning in
threatening situations. This enhanced or hindered learning process
can be further broken down into GAD patients’ ability to flexibly
update their learned knowledge or associations (learning accom-
modation) and their ability to transfer short-term learning to long-
term learning (learning consolidation). Learning accommodation
takes place when a new piece of knowledge substitutes an old,
previously learned fact. Learning consolidation takes place when a
piece of knowledge becomesmore quickly accessible in one’s mind,
and more automatic. Together, it is not yet known how GAD and
its neural underpinnings interfere with non-affective learning,
learning flexibility, and knowledge consolidation in a non-
threatening environment, in real time.

The purpose of this study is to investigate neural correlates of
real-time non-affective learning accommodation and

consolidation in individuals with GAD and healthy controls
(HC) in a stress-free environment. Consequently, we examine
Bayesian learning coefficients as measures of initial learning,
learning consolidation, and learning accommodation and use them
as regressors to average brain activation time course in a functional
magnetic resonance imaging (fMRI) associative learning paradigm
in a population with GAD and comorbid mood, anxiety, and
impulse-control disorders.

In previous research, the basal ganglia has been identified as an
area related to initial rapid learning and learning accommodation
(Graybiel, 1995; Packard and Knowlton, 2002). Additionally, the
hippocampus has been identified as an area related to the transfer
of knowledge (Jarrard, 1993; Myers et al., 2003). Furthermore, the
dorsolateral prefrontal cortex (dlPFC) has been associated with
working memory (Barbey et al., 2013), and learning accommo-
dation (Xue et al., 2013; Bartolo and Averbeck, 2020). Reduced
activation of the hippocampus (Bannerman et al., 2004; Engin and
Treit, 2007), the basal ganglia (Wu et al., 1991; Marchand, 2010),
and the dlPFC has also been associated with anxiety (Bishop, 2009;
Balderston et al., 2017). Consequently, we hypothesise that the
basal ganglia will show decreased activation in the GAD group in
those blocks requiring initial learning and memory accommoda-
tion, rather than those requiring memory consolidation.
Conversely, we hypothesise that individuals with GAD will display
decreased activation of the hippocampus in those blocks requiring
memory consolidation, rather than those blocks requiringmemory
accommodation or initial learning. Finally, we hypothesise that
individuals with GAD will display decreased activation of the
dlPFC in all blocks requiring working memory and learning
accommodation.

Material and methods

Participants

Study participants (ages 19–70) were 25 healthy participants and
14 individuals with GAD recruited at Massachusetts General
Hospital. See Table 1 for participant demographics. All
participants were right handed, had corrected to normal vision,
and provided written informed consent prior to participation in
accordance with the guidelines of the Mass General Brigham
Human Research Office/Institutional Review Board. All healthy
controls reported no history of significant medical, psychiatric, or
neurological illness, no history of substance abuse within the past
3 months, were not currently taking antidepressants, mood
stabilisers or benzodiazepines, all had normal or corrected-to-
normal vision and were all right-handed. All psychiatric patients
had been diagnosed with GAD with the Mini International
Neuropsychiatric Interview (Sheehan et al., 1998). Individuals
also had comorbid mood (bipolar disorder [n = 4], major
depressive disorder [n = 7]), impulse control (obsessive-com-
pulsive disorder [n = 2]), and other anxiety disorders (social
anxiety disorder [n = 4], panic disorder [n = 4], agorapho-
bia [n = 2]).

Associative learning fMRI task paradigm

During fMRI, participants completed a shape-button association
learning and reversal task, modelled after (Cools et al., 2002). In
this task, participants were shown shapes in the centre of a
computer screen and were asked to choose one of three keys
during each trial to learn which key each of the six shapes was
associated with (Fig. 1). When the button pressed was correct, the
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shape turned green, and when it was incorrect, the shape turned
red (Fig. 2). A blue circle was presented interspersed with the
shapes, which turned green upon the selection of any button.
Instructions were written on the screen during the training phase,
and participants were given the opportunity to ask clarifying
questions. The experiment had three phases; an initial learning
block lasting 82 trials and two reversal blocks (first reversal and
second reversal) lasting 100 trials. In the learning stage, three of
the six shapes were shown at greater, pseudo-randomized
frequency initially so that the participant could learn more
effectively, followed by a decrease in the frequency of
presentation of those shapes and an increase in the frequency
of the other three shapes for the second half of the learning phase.
In the first reversal block, the first half of shape-button
associations were pseudo-randomized, leaving the second half
of the shape-button associations unaltered. In the second reversal
block, the second half of the shapes were pseudo-randomized,
while the first half remained associated to the same button as the
previous phase. These blocks were designed to trigger two specific
learning processes: accommodation and consolidation. To
correctly encode the changes in button association, participants
needed to update (or accommodate) their previous learning.
However, to correctly recall the previous associations that had
stayed constant, participants needed to consolidate their previous
learning. Participants had 1.4 seconds to respond to each shape.

MRI scanning

AllMRI scans were completed at the Athinoula A.Martinos Center
for Biomedical Imaging. MRI data were collected using a 3.0-T
whole-body scanner (Trio-System), equipped for echo planar
imaging (Siemens Medical Systems, Iselin NJ) with a 32-channel
head coil. Foam cushions were used to restrict head movements.
Task images were displayed using a rear projection system and
MATLAB stimulus presentation software (Psychtoolbox,
MATLAB. (2010). version 7.10.0 (R2010a). Natick,
Massachusetts: The MathWorks Inc.). The structural sequences
involved a high-resolution, four-multiecho, T1-weighted, magnet-
isation-prepared, gradient-echo image (TR = 2510 ms, TE= 1.64
ms, flip angle= 7o, voxel size= 1.0 × 1.0 × 1.0 mm; Van Der
Kouwe et al. (2008)). Functional images were acquired using a
multiband SMS-3 T2*-weighted echo-planar-imaging (EPI)
sequence sensitive to blood-oxygen-level dependent (BOLD)
contrast (TR= 2200 ms, TE= 30 ms, flip angle= 75o, voxel
size= 2.0 × 2.0 × 2.0 mm).

Analysis

Learning model
The latent learning state of each participant during each trial was
estimated using Bayesian inference applied independently for each
shape. For this behavioural analysis, the prior likelihood was

Table 1. Participants’ demographics

Measure HC (N) HC (%) GAD (N) GAD (%) p-value

Sex Female
Male

13
12

52
48

7
7

50
50

0.1

Race White
Black
Asian

21
2
2

84
8
8

14
0
0

100
0
0

0.29

Ethnicity Latino/Hispanic
Non-Latino/Hispanic

2
23

8
92

0
14

0
100

0.16

HC (M) HC (SD) GAD (M) GAD (SD) p-value

Age 32.8 8.4 30.5 12.2 0.5

Note. Non-parametric measures tested for significance using Chi-squared tests. Parametric measures tested for significance using t-tests.

Figure 1. Stimuli: Above are the six stimuli that
were presented to participants, which had to be
associated with three different buttons during
the task.
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assumed to 1/n where n is the number of key choices available
which reflects the assumption that the participant is naive to the
shape-button associations at the start of every block had an equal
likelihood of choosing each button, and therefore had an equal
likelihood of selecting the correct association on the first trial.
Starting with the prior distribution on the first trial, this likelihood
distribution was then updated, independently for each shape using
Bayes rule, and the probability with the maximum value was taken
as an estimate of the latent learning state xi during trial i. The
standard deviation of the prior distribution was chosen based on
the likelihood that, after choosing the correct association,
participant correctly remembered the correct association on the
next trial where that shape was presented. The value of the
standard deviation was chosen such that after an update was
applied using Bayes rule, the maximum likelihood probability was
equal to the probability that the participant correctly recalled the
shape-button association after the first correct response. After
reversals, the mean of the prior distribution was assumed to be 1/xj

where xj is the latent learning state of the trial immediately before
the reversal. This reflects that participants are unlikely to respond
correctly the first trial after the reversal if they have learned the
shape-button association well. The model was chosen this way
because we had strong prior knowledge about the likelihood of
answering an unknown association correctly and the likelihood of
recalling an association. This analysis yielded an estimate of the
latent learning state xi for each trial i (Yousefi et al., 2019). Trials
with no response were excluded, and participants who had not
responded to more than 20% (seven in total: five controls, two
patients) of the stimuli were also excluded. See Fig. 3 for reference.

fMRI
Analyses were conducted using SPM8 (Wellcome Department of
Cognitive Neurology, London, UK). Raw data were presubtracted
using phase and magnitude fieldmap images, slice time corrected,
realigned and unwarped, co-registered, convolved into three-
dimensional space established by the Montreal Neurological

Figure 2. Task Paradigm: Once the stimulus appeared
on the screen, participants had to press a button (out of
three possible ones). If the figure turned green, the
correct button had been pressed, meaning that the
association was correct. If the figure turned red, the
participant had to try a new button next time the same
stimulus was presented again. Here, in the Initial
Learning block (top), the presented stimulus was
associated with button number 3. However, in one of
the reversal blocks (bottom), the presented stimulus
changed its association to button number 2. Participants
were then expected to press button number 2 when the
stimulus above was shown, instead of button number 3.

Figure 3. The prior distribution is
shown on the left and the resulting
posterior distributions are shown for
either a correct or an incorrect response
are shown on the right. In this example,
the participant correctly recalled the
shape-button association for 75% of
associations after the first correct
response for that association. So, the
prior distribution has a mean of 1/n
where n is the number of key choices
available to the participant and a
standard deviation such that if the
participant chooses correctly, it looks
like the distribution in the top right,
which has a maximum at 0.75. If the
participant chose wrong, their latent
learning state distribution would have,
in this example and in most cases, a
maximum at 0.
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Institute, segmented, normalised, and smoothed. For motion
correction, during preprocessing, the realignment step generated a
set of motion-related parameters and tracked participants’motion
in the x, y, and z directions, as well as in pitch, roll, and yaw. This
set of six parameters was included as covariates in the first-level
individual-subject analysis to correct for individual variation in
head motion. In first levels, Bayesian learning coefficients were
input as parametric modulators to individual functional data
(Zorowitz et al., 2019). Trials with no response were excluded.

Statistical analysis
In SPM, we conducted a GLM random effects flexible factorial
analysis to identify group differences in brain activation during the
initial learning, first reversal, and second reversal blocks of the task.
More specifically, we created contrasts of interest: GAD>HC and

HC>GAD initial learning block, GAD>HC andHC>GAD first
reversal block, GAD>HC and HC>GAD second reversal block.
We then created anatomical masks of our a priori regions using the
Wake Forest University Pick Atlas (Maldjian et al., 2003), the
bilateral dlPFC, hippocampus, and basal ganglia. We next
identified significant clusters in these a priori regions for our
contrasts of interest. Finally, we applied AFNI’s 3DClustSim’s
(Forman et al., 1995; Cox, 1996) correction to identify the
minimum cluster sizes in our a priori regions which would survive
multiple comparisons at α< 0.05 (voxel correction size of 134
voxels in the basal ganglia, 123 voxels in the hippocampus, and 189
voxels in the dlPFC). In order to better visualise the significant
group differences, we extracted beta weight values from spherical
ROIs (radius = 2 mm) (http://marsbar.sourceforge.net) centred on
the coordinates of the peak voxel of each significant cluster.

Results

Behavioural data

The average response accuracy, whether a subject correctly
picked the shape-button association, was 79.7% (SD = 13.2%) in
the HC group and 83.8% (SD = 8.2%) in the GAD group.
However, subjects learned shapes heterogeneously, meaning that
some subjects learned some button-shape associations correctly
right away but took more time to or failed to learn other
associations until the following reversal. Nonetheless, there were
no differences between the groups in response accuracy in the
Initial Learning condition (t(37) = 1.37, p = 0.18), the first-
reversal condition (t(37) = 1.40, p = 0.17), the second reversal
condition (t(37) = 0.04, p = 0.97), or across all conditions
(t(37) = 1.05, p = 0.30).

The average response timewas 0.91 seconds (SD= 0.18) in theHC
group and 0.87 seconds (SD= 0.08) in the GAD group. The groups
did not differ in response time in the Initial Learning condition
(t(37)= 0.95, p= 0.35), the first reversal condition (t(37)= 1.19,
p= 0.24), the second reversal condition (t(37)= 0.10, p= 0.92), or
across all conditions (t(37)= 0.73, p= 0.47).

fMRI results

Basal ganglia
The control group (M= 0.62, SD= 1.47) showed greater activation
in the basal ganglia (right Brodmann Area 48; x= 18, y=−14,
z= 24, Z-score = 2.36) compared to the GAD group (M=−0.61,
SD= 1.94) during the first reversal block (Figs. 4 and 6). There
were no significant differences, between the groups, in the initial
learning or second reversal blocks.

Hippocampus
The control group (M= 0.42, SD= 0.77) showed greater activation
in the hippocampus (right Brodmann Area 54; x=−36, y=−32,
z=−10, Z-score = 2.62) compared to the GAD group (M=−0.48,
SD= 1.80) during the first reversal block (Figs. 5 and 7). There
were no significant differences, between the groups, in the initial
learning or second reversal blocks.

dlPFC
There were no significant differences between the groups, during
any of the blocks, in the dlPFC. We have included post-hoc whole
brain analysis results in Supplemental Table 1.

Figure 4. Individual data points and group differences in the basal ganglia during the
first reversal block (right BA 48; x= 18, y= -14, z= 24). p= 0.03.

Figure 5. Individual data points and group differences in the hippocampus during
the first reversal block (right BA 54; x=−36, y= −32, z=−10). p= 0.03.
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Discussion

Using a simple fMRI button-association paradigm, the present
study aimed to compare neural activation associated with degree of
learning in a psychiatric population with GAD and healthy
controls. Results revealed a significant hypoactivation of both the
hippocampus and the basal ganglia in the GAD group compared to
the HC group, in the first reversal block.

Behavioral results from the learning task showed that subjects
from both groups understood the task and learned at a reasonable
speed and to a reasonable degree of accuracy. There was no
difference between the groups in degree of learning, response
accuracy, or in response time, implying that overall learning was
unaffected in the GAD group. These findings could suggest that
GAD does not negatively impact associative learning, learning
accommodation, or learning consolidation in stress-free environ-
ments, or that our sample was not large enough to capture
behavioural group differences.

Findings in the basal ganglia revealed a significant hypoacti-
vation in the GAD group in comparison to the HC group only for
the first reversal bock. This difference was not present in the Initial
Learning block and appeared to resolve by the second reversal,
implying that anxiety may only affect brain activation in early
stages of learning accommodation and re-consolidation. It is
notable that this difference occurred during early set shifting,
which is emblematic of the perseveration characteristic in GAD.
However, HCs did not show a constant activation of the basal
ganglia throughout the task, as was the case with the hippocampus.
In this case, HCs increased activation of the basal ganglia during
the first reversal block, meaning that they engaged this area in
response to having to accommodate new button-image associa-
tions and having to re-consolidate previous associations for the
first time. However, this increased activation dissipated by the
second reversal. This pattern of findings is in line with previously
reported evidence that the basal ganglia can be differentially
activated during various forms of learning and memory tasks in
healthy individuals such as working memory tasks (e.g., McNab
and Klingberg, 2008; Moore et al., 2013), and positive and negative
association learning (e.g., Seger, 2006), and habit learning (e.g.,

Packard and Knowlton, 2002). This is demonstrated by the fact
that during first reversal, which requires intact associative learning
and working memory, the healthy individuals showed increased
basal ganglia and hippocampal activation (Figs. 4 and 5). However,
while controls presented an increased activation of the basal
ganglia in an initial learning consolidation and accommodation,
GAD was associated with basal ganglia hypoactivation during
learning accommodation/consolidation. Our finding supports
previous research associating basal ganglia hypoactivation with
GAD (Wu et al., 1991), as well as previous studies showing basal
ganglia activation in relation to learning in controls (Packard and
Knowlton, 2002).

Similarly, results found in the hippocampus partially aligned
with our original hypothesis. While HCs showed similar
hippocampus activation throughout the task, GAD patients
showed hypoactivation in this area in the block where initially
learned associations changed for the first time. However, activation
abnormalities appeared to resolve by the second reversal block,
instead of remaining hypoactivated as we expected. This could be
due to individuals with GAD engaging this ROI to a lesser extent
while first adjusting or accommodating newmemories or requiring
more time to consolidate memories. However, given that our
behavioural data does not show any processing speed deficits, these
differences in basal ganglia and hippocampal activation could also
reveal compensatory neural mechanisms during the early stages of
memory consolidation or accommodation. While some previous
research has dissociated hippocampal activation patterns in
relation to anxiety and memory (Bannerman et al., 2004;
McHugh et al., 2004; Bertoglio, et al., 2006), our finding suggests
that anxiety and memory could functionally overlap in the
hippocampus. Our result gives support to previous research
associating hippocampal hypoactivation with anxiety (Mah, et al.,
2016), as a result of stress-induced damage in the brain, which in its
turn could have altered the activation of hippocampal regions
more typically associated with memory.

As briefly mentioned above, the functional brain differences
between the groups in the first reversal block were not observed in
the behavioural data. This could have been caused by compensa-
tory mechanisms that the GAD groupmay have engaged in, unlike

Figure 6. Basal ganglia activation.

Figure 7. Hippocampus activation.
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the HC group. Indeed, according to the processing-efficiency
hypothesis, individuals with GADmay require greater activation of
certain brain regions supporting cognitive control (such as our
ROIs), in order to maintain equivalent performance to healthy
controls (Eysenck et al., 2007). Another theory of cognitive control
proposed that this reduced cognitive efficiency may be the result of
changes in the temporal dynamics of these brain regions’
recruitment (Fales et al., 2008), which we also observed in our
findings.

Finally, no significant results between the groups were found in
the dlPFC, which did not align with our hypothesis. However,
previous studies exploring the role of the dlPFC in learning in
anxiety and anxiety-related disorders did not explore non-
threatening associative learning, nor did they explore reversal
learning (Wheelock et al., 2014; Balderston et al., 2017). Hence, our
null findings suggest either that a GAD diagnosis does not alter
dlPFC activation during associative learning or associative reversal
learning, or that our study was affected by a number of the
limitations described below, which could have reduced our power
to detect a difference in dlPFC activation between the clinical and
control groups.

It must be noted that our results’ interpretations are speculative,
as our findings were constrained by a number of limitations. Most
importantly, our study was composed of a small sample size, which
reduced our statistical power and overall predictive validity.
Additionally, while every individual in our psychiatric group had
been diagnosed with GAD, all patients had also been diagnosed
with comorbid mood, anxiety-related, and impulse-control
disorders, increasing variability within the GAD group. Future
research should test our findings using a larger and less
heterogeneous psychiatric group in order to investigate specific
associations with anxiety in particular.

Our findings suggest that GAD may affect regional brain
activation in initial but not later stages of learning accommodation
and consolidation. Particularly, the hippocampus and the basal
ganglia may be areas of interest in the study of associative learning
consolidation and accommodation in GAD in non-threatening
environments, and treatments targeting these areas may have the
potential to reduce anxiety symptomatology linked to learning
difficulties.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/neu.2022.16.
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