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SUMMARY
In this work, accuracy enhancement through backlash
elimination is considered. When a nonredundantly actuated
parallel manipulator is subjected to a wrench while following
a trajectory, required actuator torque switching (going from
positive to negative or vice versa) may occur. If backlash
is present in the actuation hardware for a manipulator,
torque switching compromises accuracy. When in-branch
redundant actuation is added, a pseudoinverse torque solution
requires smaller joint torques, but torque switching may still
occur. A method is presented where concepts of exploiting
a nullspace basis of the joint torques are used to ensure
that single sense joint torques can be achieved for the
actuated joints. The same sense torque solutions are obtained
using nonlinear optimization. The methodology is applied
to several examples simulating parallel manipulators in
machining applications.

KEYWORDS: Actuation redundancy; Parallel manipulators;
Backlash elimination; Optimization.

1. Introduction
Parallel manipulators (PMs) are being used for manu-
facturing tasks that require high precision. Clearances
in mechanical joints induce backlash and can prevent a
manipulator from performing at the desired level of accuracy.
Monolithic flexure joints have been proposed to replace
mechanically assembled joints that have inaccuracies due
to manufacturing tolerances.1–3

Inaccuracies due to backlash are eliminated if there are
no sign reversals in the control torques. Redundancy has
been proposed as a means to ensure no sign reversals.
Müller4 and Müller and Maisser5 considered additional
branch redundant actuation (a planar 4-RRR1 PM and a
spatial hexapod). They avoided backlash by considering
internal preloading, Lagrangian motion equations, and
inverse dynamics, allowing internal preload control. Müller
considers nullspace basis vectors to control required joint
torque senses. Wei and Simaan6 proposed using preloaded

* Corresponding author. E-mail: roger.a.boudreau@umoncton.ca
1 Within the PM descriptions, the preceding number indicates the
number of branches, R denotes a revolute joint, P a prismatic joint
and the underline indicates the actuated joint(s).

springs at the wrist joints of a planar 3-PRR PM to eliminate
backlash in the prismatic joints. The necessary torsional
preloads are determined by formulating a Lagrange problem
that minimizes the elastic energy of the robot.

Joint clearances in the passive joints also cause backlash.
They can be an important source of error on the position and
orientation accuracy of manipulators. Several methods have
been proposed for modeling clearance to determine its effect
on the performance of manipulators.7–9 Backlash in passive
joints is not considered here.

Within this work, in-branch actuation redundancy is
utilized to eliminate backlash created inaccuracies at the
actuated joints of a planar PM. In particular, the 3-branch
(3-RRR) manipulator considered by Gosselin and Angeles10

is in-branch redundantly actuated resulting in a 3-RRR PM.
While requiring the actuation of the elbow joints of the
device, the actuation of the elbow joints reduces the joint
torques of the branch 1st joints (base joints) requiring smaller
actuators.

Redundancy in PM components has been considered
by numerous researchers. There are several forms of this
redundancy. Redundant in-branch actuation11 and redundant
additional branch actuation12 have been investigated for the
elimination of PM force unconstrained configurations. Zibil
et al.13 considered analytical methods for determining force
moment capabilities of redundantly actuated planar PMs.
Kinematically redundant branches14 have been considered
to enhance workspaces and eliminate singularities of PMs.
Merlet15 considers the advantages of PMs with redundant
actuation.

In this current work, screw coordinate matrices of the
associated reciprocal screws (ARSs) are used to model the
force capabilities of PMs. Nullspace basis vectors of the
ARS matrices, and their multipliers, are used to allow elbow
joint torque-based compensation. Nonlinear optimization is
used to ensure nonreversing signs of the actuated torques.
Section 2 presents a description of the manipulator used in
this study. Section 3 presents some background on ARSs,
leading to the formulation of the torque solutions for the
nonredundant and the redundant manipulators in Sections 4
and 5, respectively. Section 5 also presents the nullspace
basis determination and the proposed method to obtain
nonreversing signs for the actuation torques of the redundant
manipulator. Section 6 presents the results simulating the
manipulator in machining applications. It is assumed that
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Fig. 1. 3-RRR manipulator, platform and base attachment points,
and associated reciprocal screws.

motion is slow, allowing a kinetostatic analysis. A discussion
and a conclusion follow. Within the work presented in this
paper, concepts of screw theory are utilized. For knowledge
beyond the work presented in this paper, the reader is referred
to Ball16 and Hunt.17

2. Manipulator Description
Figure 1 depicts a symmetrical 3-RRR PM with associated
labeling including Bj , Ej , and Wj being the base, elbow, and
wrist joints of the jth branch, j = 1, 2, and 3. Appendix A
presents an inverse displacement solution for the 3-RRR PM.

In Fig. 1, $′
11 and $′

21 denote the ARSs for the 1st and 2nd
(base and elbow) actuated joints of branch 1. Similar ARSs
exist for the actuated joints of branches 2 and 3. ARSs are
reciprocal to all joints in a branch except the actuated joint to
which it is associated. Since only revolute joints are present
in this manipulator, and hence to be reciprocal, the ARS of
an actuated joint passes through the other two joints of the
branch.

Within Fig. 1, a frame {p} is fixed to the platform and has
an origin p coincident with the payload platform center. The
orientation of {p} is defined by Xp being in the direction
parallel to a line from W3 to W1, and Yp being defined by
the location of W2. The fixed base frame {b} is located at the
geometrical center of the base joints.

3. Expressing Force Problems with Associated
Reciprocal Wrenches and Joint Torques (Wrench
Intensities)
Assume p F = p{fx, fy ; mzp}T = p{ f ; mzp}T is a wrench
composed of a force and moment to be applied by the
manipulator known with respect to (wrt) {p}. p F has force
components p f = p{fx, fy}T in the x- and y-directions and
a moment mzp that is about the point p and is only about the
z-direction. From p F, a wrench b F wrt {b} can be found,
i.e.,

b F = {
b
p Rp f ; mzp + brb−p × b

p Rp f
}
. (1)

In Eq. (1), b
p R is a rotation matrix describing the orientation

of {p} wrt {b}18; the position vector brb−p describes the
location of the origin of {p} wrt the origin of {b} in terms
of {b}’s orientation; and “×” denotes a vector cross product.
Note that since a planar manipulator is being considered
brb−p × b

p Rp f will be in the z-direction.
The wrench b F can also be expressed in terms of wrench

intensities, wij , and the ARSs, $′
ij , of the actuated joints. That

is,

b F =
∑

j

∑
i

b$′
ijwij , i = 1, nbj , j = 1, nb, (2)

where nbj is the number of actuated joints in branch j, and
nb is the number of branches. b$′

ij is reciprocal to the joints
other than joint i in branch j. Appendix B summarizes the
ARSs of the 3-RRR and 3-RRR PMs wrt {b}.

The wrench intensity required of the ith actuated joint of
branch j is wij . The required joint torque τij in terms of wij ,
b$′

ij , and b$ij is

τij = wij

(
b$′

ij �∗ b$ij

)
, (3)

where b$ij are the screw coordinates of the ith actuated joint
of branch j and �∗ indicates a reciprocal product, i.e.,

if F = { f ; m}T = {fx, fy ; mz}T and
V = {ω; v}T = {ωz; vx, vy}T,

F�∗ V = f · v + m · ω = fxvx + fyvy + mzωz.

(4)

Within Eq. (3), (b$′
ij �∗ b$ij ) is related to the mechanical

advantage of the ith actuated joint of branch j. It represents
the perpendicular distance between b$′

ij and b$ij .

4. Static Force Problem for the 3-RRR and 3-RRR
Manipulators
In terms of ARSs and wrench intensities, the wrench for a
3-RRR PM can be expressed as

b F = b[$′
11$′

12$′
13]{w11, w12, w13}T = b[$′

3]{w3}. (5)

The screw coordinates for the ARSs $′
11, $′

12, and $′
13 for

the actuated base joints Bj are given in Appendix B and
have been grouped in a matrix b[$′

3] in Eq. (5). The joint
torques τ ij are equal to the wrench intensities multiplied by
a mechanical advantage weighting factor, as in Eq. (3). A
similar equation using the ARSs and wrench intensities for
the elbow joints can be written for the 3-RRR PM. The screw
coordinates of the ARSs $′

21, $′
22, and $′

23 for the actuated
elbow joints Ej are also given in Appendix B.

The matrix b[$′
3] in Eq. (5) is due to three actuated joints,

is square (3 × 3), and the above static force problem can be
solved for the required {w3} values (a 3 × 1 vector) for a
given wrench by inversion of b[$′

3] or another linear algebra
technique19, i.e.,

{w3} = b[$′
3]−1b F, (6)
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where b F is the wrench applied by the manipulator. The joint
wrench intensities {w3} can be converted into corresponding
τij using Eq. (3). For a 3-RRR manipulator with the second
joint actuated, an equation similar to Eq. (6) can be used to
solve the static force problem where the ARSs of the second
actuated joints are used in [$′

3].

5. Required Input Torques for a 3-RRR Manipulator

5.1. Static force problem
In the case of the redundantly actuated 3-RRR PM, nb = 3,
and two joints (base and elbow) are actuated per branch. In
terms of ARSs, wrench intensities and the force to be applied,
the static force problem can be expressed by

b F = b[$′
11$′

12$′
13$′

21$′
22$′

23]{w11, w12, w13, w21, w22, w23}T

= b[$′
6]{w6}. (7)

Matrix [$′
6] is due to six actuated joints and is of dimension

3 × 6. There are three dimensions of solutions for the six
elements of {w6}. Within robotics it is often suggested
to use the right Moore–Penrose pseudoinverse19 of the
Jacobian matrix for joint redundant serial manipulators. A
pseudoinverse of [$′

6] could be considered, yielding

{w6} = b[$′
6]+b F, (8)

where [$′
6]+ = [$′

6]T(([$′
6][$′

6])T)−1. Note that a Moore–
Penrose pseudoinverse solution returns a solution with a
minimum 2-norm19 of the elements of {w6}.

5.2. Nullspace basis vectors for b[$′
6]

A single sense solution for the elements of {w6} can
be achieved by exploiting a nullspace basis of [$′

6]. One
approach for finding a nullspace basis for [$′

6] is to find basis
vectors by first resolving magnitudes required to produce
$′

21, $′
22, and $′

23 using the screw quantities of [$′
3]. Consider

the vectors vj that satisfy the following relation:

[$′
3]{vj } + $′

2j = 0 or {vj }3×1 = [$′
3]−1(−$′

2j ),

j = 1, 2, 3. (9)

Three nullspace basis vectors for [$′
6] can be assembled as

{V 1}6×1 = {{v1}T, 1, 0, 0}T, (10a)

{V 2}6×1 = {{v2}T, 0, 1, 0}T, (10b)

{V 3}6×1 = {{v3}T, 0, 0, 1}T. (10c)

Note that

[$′
6]3×6[V 1V 2V 3]6×3 = [0]3×3, (11)

i.e., the vectors {V j }, j = 1, 2, 3, form a nullspace basis of
[$′

6]. Wrench intensities based on multiples of the nullspace
vectors cause forces internal to the PM.

A wrench intensity solution for the 3-RRR can be expressed
as

{w}6 × 1 = {wp}6 × 1 + {wh}6 × 1. (12)

In Eq. (12), {wp} is a particular {w} solution that produces the
desired wrench bF . Also in Eq. (12), {wh} is a homogeneous
torque solution that lies in the nullspace of [$′

6]. Specifically,
for the chosen nullspace vectors

{wh}6×1 = [V 1V 2V 3]6×3{w21, w22, w23}T
3×1, (13)

i.e., the solution for {wh} is dependent on the values chosen
for w21, w22, w23.

5.3. Values for w21, w22, and w23 to ensure desired
w11, w12, and w13 values
To ensure specific (and therefore single sense) w11, w12,
and w13, let w11d, w12d , and w13d be the desired values
for w11, w12, and w13. Assume that particular values for
w11p, w12p, and w13p have been found from

{wp} = {w11p, w12p, w13p}T = b[$′
3]−1 b F. (14)

The difference ({w}df ) between the desired values and the
particular values found in (14) is given by

{w}df = {w11df , w12df , w13df }T = {w11d, w12d, w13d}T

− {w11p, w12p, w13p}T. (15)

The elbow wrench intensities {w21c, w22c, w23c}T that will
generate {w}h that compensates for {w11df , w12df , w13df }T

are
{w21c, w22c, w23c}T=[{v1}{v2}{v3}]−1{w11df , w12df , w13df }T.

(16)

The following equation shows that any desired {wd} =
{w11d, w12d, w13d}T wrench intensities for the first joint
found by summing a homogeneous solution based on
{w21c, w22c, w23c}T with the particular solution of Eq. (14)
produces the correct intensities.

{w11d, w12d, w13d}T = b[$′
3]−1b F

+ [v1v2v3]{w21c, w22c, w23c}T,

= {wp} + {w11df , w12df , w13df }T

= {wp} + {{wd} − {wp}} = {wd}.
(17)

For the problem at hand, same sense torques are desired
for all the actuated joints.

5.4. Method for ensuring nonreversing torque values
It is desired to find backlash-free torques to follow a trajectory
while the manipulator is subjected to a certain wrench. Note
that the following discussion is in terms of wrench intensities
but it is also valid for torques since the conversion is easily
obtained with Eq. (3). It is possible to impose desired nonre-
versing wrench intensities for the base joints. Elbow wrench
intensities can then be computed using Eq. (16) for those
desired values. To ensure that the computed elbow wrench in-
tensities do not change sign, the solution was formulated as a
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constrained nonlinear optimization problem. The multiplicity
of solutions to the inverse static force problem for a redundant
manipulator allows the minimization of an objective function
(OF) such that OF = ∑n

i=1 L along a trajectory divided
into n discrete points. The cost function was chosen here
as L = τTτ , where τ represents the vector of actuated joint
torques. The method is summarized as follows:

(a) Specify a function that does not change sign for the base
joint wrench intensities, i.e., desired values w1jd , j =
1, 2, 3. The parameters that define the function are the
search variables for the optimization. Then, at each step
of the trajectory:

(i) Compute the ARS of each actuated joint;
(ii) Compute the nullspace vectors {vj }Tusing Eq. (9);

(iii) Calculate a particular wrench intensity {w11p, w12p,

w13p}T solution using Eq. (14);
(iv) Calculate the vector {w11df , w12df , w13df }T con-

taining the difference between the desired wrench
intensity at the base joints {w11d, w12d, w13d}T and
the particular solution {w11p, w12p, w13p}T using
Eq. (15);

(v) Resolve {w21c, w22c, w23c}T using Eq. (16) to
determine the elbow joint wrench intensities
required to compensate for the difference;

(vi) Convert the wrench intensities into joint torques
using Eq. (3);

(b) Stop when the nth step in the trajectory has been reached;
(c) Compute the OF such that L = ∑

τTτ .

The problem was solved using a constrained nonlinear
optimization algorithm called fmincon found in Matlab’s
optimization toolbox. This function uses a sequential
quadratic programming method. Nonreversing signs of the
computed elbow torques were added as constraints in the
optimization routine.

6. Implementation and Results

6.1. Trajectories
Three examples are presented. In all examples, the
manipulator is considered to be used in a machining operation
following a given trajectory. It is assumed that motion
is very slow along the trajectory so that dynamic effects
are negligible and a kinetostatic analysis is justified. The
trajectories were chosen such as to generate torques that
switch directions when a nonredundant manipulator is used.
A 100 N force is considered to be acting on the manipulator
in the direction opposite to its motion, i.e., tangent to its
trajectory. No moment is considered to be applied on the
platform. However, from Eq. (1), it can be seen that a moment
will be applied wrt {b}. The orientation of the platform is
constant at π /6 rad.

The first trajectory considered is a circle centered at (0.1,
0.1) m with a radius of 0.05 m. The wrench applied by the
manipulator in frame {b} will be

b F = b{fx, fy ; mz}T = {−100 sin θ, 100 cos θ ;

−yfx + xfy}T N; Nm, (18)
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Fig. 2. (Colour online) Constant orientation workspace and
trajectories.

where θ is the angle between the horizontal line passing
through the center of the circle and the radius to a point on
the circle, and x and y are the coordinates of a point on the
circle.

The second trajectory is a logarithmic spiral described by
the following polar equation20:

ρ = aekβ with k = cot ψ, (19)

where ρ is the spiral radius for a given angle β, a is a constant
(set here at 0.02 m), and ψ is the angle between the tangent
and radial line at the polar point (ρ, β). Angle ψ is chosen
as 75◦, and the center of the spiral is at (−0.1, 0.1) m. The
wrench applied by the manipulator in this case is then

b F = b{fx, fy ; mz}T = {100 cos(β + ψ),

100 sin(β + ψ); −yfx + xfy}T N; Nm, (20)

where β varies in this example from 0 to 2π , and x and y are
the coordinates of a point on the spiral.

The third trajectory is an arc of radius r = 0.2 m, centered
at the origin, and limited by the horizontal axis and an angle of
2 rad (114.6◦). This trajectory was chosen because it contains
a position that is very close to a singularity when considering
the ARSs of the base actuated joints. The wrench is again
defined by Eq. (18).

Three manipulators are considered, the nonredundantly
actuated 3-RRR PM and 3-RRR PM, where one joint is
actuated in each branch, and the redundantly actuated 3-RRR
PM with two joints actuated in each branch. The PMs all
have length dimensions of 0.3 m for each arm segment and
for each edge of the common platform. The base platform
for the example has edge dimensions of 0.6 m.

Figure 2 shows the constant orientation workspace (φ =
π/6) obtained using a geometrical method21 of a 3-RRR
manipulator with the above dimensions. The assembly mode
shown in the Fig. 1 is used in all results. Also shown in the
figure are the circle, the spiral, and the arc trajectories.
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Fig. 3. 3-RRR manipulator joint torques to follow circle trajectory.
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Fig. 4. 3-RRR manipulator joint torques to follow circle trajectory.

6.2. Nonredundantly actuated PMs (circle trajectory)
The first results presented are for the circle trajectory with the
two nonredundantly actuated PMs. Illustrated in Fig. 3 are
the required torques τ11, τ12, and τ13 for the 3-RRR PM with
the wrench of Eq. (18). Notice that the required torques have
sign reversals (sometimes they are positive and sometimes
they are negative depending on the position). As mentioned
previously, when a joint torque value changes sign, if there
is any backlash present in the system used to transmit the

torque to the joint, a negative impact on the accuracy of the
PM will be present.

The resulting elbow torques necessary to follow the circle
trajectory for the 3-RRR PM are shown in Fig. 4. Again, sign
reversals are observed for the joint torque values.

6.3. Pseudoinverse solution for the 3-RRR PM
(circle trajectory)
Figure 5 illustrates the required joint torques considering
the Moore–Penrose pseudoinverse solution and the wrench
intensity to joint torque conversion of Eq. (3). The solution
does not ensure that the joint torques are of a single sense,
i.e., the goal of this work.

6.4. Optimization solution for the 3-RRR PM
(circle trajectory)
As outlined in Section 5.4, the first step is to specify functions
for the desired base joint wrench intensities. To avoid
backlash, these functions should not have sign reversals.
It can be seen in Fig. 5 that the torques obtained with the
pseudoinverse solution are similar to sine waves. Because
of this, and also due to the simplicity in specifying this
function’s sign, it was decided to use sine waves as functions
for the desired wrenches of the base joints. To ensure
that they do not change sign, the following was used for
w1jd , j = 1, 2, 3:

w1jd = wj + αjwj sin(θ + γj ) j = 1, 2, 3, (21)

where wj , αj , and γj are the mean value, a factor setting
the amplitude, and the phase angle, respectively, for the base
joint desired wrench intensity values of branch j. Note that
if values of αj are limited to values between 0 and less
than 1, the resulting sine wave will never change sign. The
search space thus consists of nine variables, the three values
introduced in Eq. (21) for each of the three branches. The
optimization algorithm searches for these variables with a
constraint that the joint wrench intensities of the elbow joints
that are computed in steps (a)(i) through (a)(vi) of Section 5.4
do not change signs.

The trajectory was divided into 200 intervals to produce
201 points where the steps (a)(i) through (a)(vi) of Section 5.4
are computed. In the optimization algorithm, the following
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Fig. 5. 3-RRR manipulator joint torques to follow circle trajectory using the pseudoinverse solution: (a) Base (1st) joint torques; (b) Elbow
(2nd) joint torques.
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Table I. Optimization results, circle trajectory.

Combination +++ ++− +−+ +−− −++ −+− −−+ −−−
OF/npoints (Nm) 802 779 DNCa 7831 1180 1524 DNC 1333
|τ̄ | (Nm) 11.6 11.4 – 36.1 14.0 15.9 – 47.1
aDNC = Did Not Converge.

bounds were used for the search terms that appear in Eq. (21):

5 ≤ wj ≤ 100,

0.1 ≤ αj ≤ 0.9,

0 ≤ γj ≤ π.

(22)

Note that when negative desired joint wrench intensities
were specified, the mean value was bounded by −100 ≤
wj ≤ −5.

Eight (23) different combinations of signs are possible
for the desired wrench intensities of the three base joints
(+++, ++−, +−+,+−−, −++, −+−, −−+, −−−). All
combinations were tested to find an optimized solution. Two
of the combinations did not converge to a solution, and for
the six combinations that were able to satisfy the constraints
of same sense elbow torques, some performed better than
others. The results obtained are sensitive to the initial input
vector of the search variables. For combinations that did
not converge, different initial vectors were tried to no avail.
The results obtained are not necessarily a global optimum
solution, but they nevertheless guarantee the elimination of
backlash when following the trajectory. Table I presents the
optimization results for all the combinations tested. The OF
was divided by the number of points to report the average
sum of torques squared for the trajectory. By dividing this
value by the number of actuated joints, i.e., 6, and taking
the square root, we obtain the average absolute value of the
torques |τ̄ | along the trajectory.

Table I shows that some combinations have a better
performance than others. Figure 6 presents the joint torques
obtained after optimization with the ++− combination for
the base joints to follow the circle trajectory that produced
the smallest value for the OF. Note that none of the joint
torques change sign.

For this trajectory, a comparison of Figs. 5 and 6
indicates that an increase in the magnitudes of the joint
torques is required when ensuring same sense torque
signs. For illustration purposes, results obtained with the
−+− combination for the base joints, which produced an
OF slightly larger in magnitude than that of the ++−
combination, are shown in Fig. 7.

6.5. Spiral trajectory results
For the spiral trajectory described by Eq. (19) and for the
applied wrench of Eq. (20), the nonredundantly actuated
manipulators require reversing torques at each joint (curves
not shown). The pseudoinverse solution for the actuated
torques is shown in Fig. 8.

Due to the reasons explained in Section 6.4, the desired
base joint wrench intensities were again modeled using
Eq. (21), and the bounds in Eq. (22) were again used.
The eight possible combinations of the signs of the desired
wrench intensities were tested and are reported in Table II.

Figure 9 illustrates the joint torques obtained after
optimization with the combination −−+ for the base joints
signs that produced the smallest value for the OF to follow
the spiral trajectory. Note that in Fig. 9(a), the desired sine

Table II. Optimization results, spiral trajectory.

Combination +++ ++− +−+ +−− −++ −+− −−+ −−−
OF/npoints (Nm) 1211 6110 1260 DNC DNC 3337 1137 2187
|τ̄ | (Nm) 14.2 31.9 14.5 – – 23.6 13.8 19.1
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Fig. 6. 3-RRR manipulator optimized joint torques to follow circle trajectory using ++− combination for the base joint torques: (a) Base
(1st) joint torques; (b) Elbow (2nd) joint torques.
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Fig. 7. 3-RRR manipulator optimized joint torques to follow circle trajectory using −+− combination for the base joint torques: (a) Base
(1st) joint torques; (b) Elbow (2nd) joint torques.

wave curves for the base joint torques do not start and finish
at the same amplitude, as would be expected for a sine wave
varying from 0 to 2π . The reason for this is that it is the
wrench intensities of the base joints that were input as the
sine wave, not the base joint torques. Since the start and end
positions on the spiral are not the same, as was the case for
the circle trajectory, the conversion from wrench intensities
to joint torques using Eq. (3) is different.

6.6. Arc trajectory results
The method applied thus far fails if it is applied to the arc
trajectory described in Section 6.1 since the ARSs of the base
actuated joints almost collapse into a pencil of screws, i.e.,
become a 2-system (singular), when the manipulator passes
through a certain point on the trajectory. This position is
shown in Fig. 10. It can be observed that the ARSs of the
first actuated joints of the first and second branches, which
pass through the distal links, are almost aligned, and thus, the
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Fig. 8. 3-RRR manipulator joint torques to follow spiral trajectory using pseudoinverse solution: (a) Base (1st) joint torques; (b) Elbow
(2nd) joint torques.
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Fig. 9. 3-RRR manipulator optimized joint torques to follow spiral trajectory using −−+ combination for the base joint torques: (a) Base
(1st) joint torques; (b) Elbow (2nd) joint torques.
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Fig. 10. (Colour online) Singular position of manipulator when
following arc trajectory.

three base actuated ARSs are close to meeting at a point. In
this case, matrix [$′

3] is ill-conditioned and problems occur
when trying to invert it. This causes difficulties when the
algorithm tries to compute Eq. (6) or Eq. (9).

To solve this problem, one can examine the static force
problem, Eq. (7), for the 3-RRR PM. Instead of writing the
equation as such, any order of the ARSs can be used. Since
the first three screws produce a matrix that is almost singular,
one of the ARSs of [$′

3] can be switched with one of the ARSs
of the elbow actuated joints to create another matrix that is
not singular. In what follows, a new matrix [$′

3]new is formed
by switching the order of the ARSs $′

11 and $′
21 of branch

1 in matrix $′
6. Note that this combination was chosen to

eliminate the condition described in the previous paragraph.
The ARSs of the second branch could also have been chosen
for switching. Note that switching the ARSs of the third
branch would not be a good choice, since the ARSs of the
base actuated joints of the first and second branches would
still be almost aligned and the new matrix formed would also
be ill-conditioned.

The new matrix formed by the switching proposed here is
used in Eq. (9) to compute the nullspace basis vectors and

in Eq. (14) for the particular solution. The desired values are
then specified for the wrench intensity values of the elbow
actuated joint of the first branch and for the base actuated
joints of branches 2 and 3, i.e., w21, w12, and w13. The
compensation wrench intensities computed with Eq. (16) are
then obtained for the base actuated joint of the first branch
and for the elbow actuated joints of branches 2 and 3. The
method described in Section 5.4 is basically followed but
with different ARSs in the matrices.

The optimization algorithm was applied with the method
described. A sine wave was again selected for the desired
wrench intensities. It converged to a solution in six of the pos-
sible eight sign combinations for the desired wrench intens-
ities. The optimization results are given in Table III. The tra-
jectory was again divided into 201 points. Figure 11 presents
the optimization results obtained with the −++ combination.

7. Discussion
Nonredundantly actuated PMs require positive and negative
joint torques to follow trajectories with arbitrary applied
force directions. This switching of joint torque sense will
have an ill effect on payload accuracy, if there is backlash
present. The addition of actuation redundancy and the use of a
pseudoinverse solution decrease the joint torques required to
sustain a wrench as can be seen by a comparison of Figs. 3–5.
However, the pseudoinverse solution of the static force prob-
lem for the redundantly actuated 3-RRR PM also produces
joint torques that change sign and are a cause of backlash.

Considering redundant actuation with the 3-RRR PM
allowed the use of a nonlinear optimization routine. By
exploiting a nullspace basis of the ARS matrix, a method was
proposed that assures nonreversing torques for the actuated
joints thus eliminating backlash. The cost of this elimination
is the necessity of slightly larger torques at the elbow joints
for compensation (compare Figs. 5–7, or Figs. 8 and 9).

If singular configurations are present or if the manipulator
passes close to a singular configuration when following a
trajectory, switching some of the ARSs allows different
matrices to be constructed that are better conditioned and
thus numerically stable. The method presented in Section 5.4
can then be used with different ARSs in the matrices.
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Fig. 11. 3-RRR manipulator optimized joint torques to follow arc trajectory using −++ combination for the desired joint torques: (a) Base
(1st) joint torques; (b) Elbow (2nd) joint torques.
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Table III. Optimization results, arc trajectory.

Combination +++ ++− +−+ +−− −++ −+− −−+ −−−
OF/npoints (Nm) 641 1852 DNC DNC 461 822 1050 4842
|τ̄ | (Nm) 10.3 17.6 – – 8.8 11.7 13.2 28.4

In all the results presented, a sine wave was used to
model the desired wrench intensities. This curve was chosen
because of its simplicity in specifying search parameters that
assure same sense outputs. With the amplitude defined by a
factor less than 1 that multiplies the mean sine wave value
(see Eq. (21)), same sense outputs are guaranteed. Other
curves could also be used as long as proper care of the
function signs is taken.

This work dealt with in-branch actuation redundancy. It
should be noted that if a similar method was implemented
on redundant additional branch actuation manipulators with
prismatic joints, tensile forces in the prismatic joints would
be analogous to a cable-driven manipulator. The prismatic
joints could be replaced by a pulley mechanism.

8. Conclusion
Backlash elimination is not possible for nonredundant PMs,
since there is only one solution to the static force problem.
Redundantly actuated PMs have an infinite number of
solutions to the inverse static force problem, thus allowing
optimization to be used. The proposed method allows the
specification of same sense desired torques for three of the
joints. Compensation torques for the three other joints are
then computed and can be obtained having the same sign
by imposing constraints in the nonlinear optimization. The
results presented are not necessarily the globally optimum
solution that minimizes the joint torque amplitudes, but the
optimized solution does guarantee nonreversing signs of all
the actuated torques and thus avoids any backlash problems.
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Appendix A. Inverse displacement solution for the
3-RRR PM
For each of the three branches, values for the locations of the
base revolute joints (Bj ) on the base platform are known

bx1j = {x1j , y1j }T = rbase

{
cos

(−π

6
+ (j − 1)

2π

3

)
,

cos

(−π

6
+ (j − 1)

2π

3

)}T

, j = 1, 2, 3, (A1)

where rbase is the radius of the base platform.
Also known are values for the locations of the wrist joints

(Wj )

bx3j = {x3j , y3j }T = brb−p + b
pRprp−Wj

, j = 1, 2, 3,

(A2)
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prp−Wj
is the position vector from the center of the platform

to joint Wj expressed in {p}. Once the locations of the
base and wrist joints are known for each branch, the inverse
displacement solution simply becomes the elbow up or elbow
down solution of a planar serial manipulator with two links
that can readily be found in any elementary robotics textbook.
Using the solution of ref. [15], we have

cos θ2j = a2
j + b2

j − bje
2
j − ejwj

2bjej ejwj

, j = 1, 2, 3, (A3)

where bjej and ejwj are the lengths between the base
joints and elbow joints, and between the elbow joints and
wrist joints, respectively, aj = x3j − x1j and bj = y3j − y1j .
Values of θ2j between 0 and π are used in this work. The
solutions for θ1j are given by

θ1j = atan2(bj , aj ) − atan2(k2j , k1j ), (A4)

where k2j = bjej + ejwj cos θ2j and k1j = ejwj sin θ2j .

Appendix B. The ARSs of the 3-RRR, 3-RRR
and 3-RRR PMs

The ARSs of the actuated base joints of the 3-RRR wrt the
base frame are given by

$′
1j = {cos(θ1j + θ2j ), sin(θ1j + θ2j ); d1j }T, (B1)

where d1j = x2j sin(θ1j + θ2j ) − y2j cos(θ1j + θ2j ) with
x2j = x1j + bjej cos(θ1j ) and y2j = y1j + bjej sin(θ1j ).

The ARSs of the actuated elbow joints of the 3-RRR wrt
the base frame are given by:

$′
2j =

{
x1j − x3j

norm
,
y1j − y3j

norm
; d2j

}T

, (B2)

where norm = √
(x3j − x1j )2 + (y3j − y1j )2 and d2j =

x1j
(y1j −y3j )

norm − y1j
(x1j −x3j )

norm .
For the redundantly actuated 3-RRR PM, the ARSs consist

of the ARSs given by Eqs. (B1) and (B2).
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