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SUMMARY
This paper discusses analytical and deterministic models
for a plane curve with minimum deformation that may be
utilized in planning the motion of elastic linear objects and
investigating the inverse kinematics of a hyper-redundant
robot. It usually requires intensive computation to determine
the configuration of elastic linear objects. In addition,
conventional optimization-based numerical techniques that
identify the shape of elastic linear objects in equilibrium
involve non-deterministic aspects. Several analytical models
that produce the configuration of elastic linear objects in
an efficient and deterministic manner are presented in this
paper. To develop the analytical expressions for elastic
linear objects, we consider a cantilever beam where the
deflections are determined according to the Euler–Bernoulli
beam theory. The deflections of the cantilever beam are
determined for prescribed constraints imposed on the
deflections at the free end to replicate various elastic linear
objects. Deflections of a cantilever beam with roller supports
are explored to replicate elastic linear objects in contact with
rigid objects. We verify the analytical models by comparing
them with exact beam deflections. The analytical model
is precisely accurate for beams with small deflections as
it is developed on the basis of the Euler–Bernoulli beam
theory. Although it is applied to beams undergoing large
deflections, it is still reasonably accurate and at least as
precise as the conventional pseudo-rigid-body model. The
computational demand involved in using the analytical
models is negligible. Therefore, efficient motion planning
for elastic linear objects can be realized when the proposed
analytical models are combined with conventional motion
planning algorithms. We also demonstrate that the analytical
model solves the inverse kinematics problem in an efficient
and robust manner through numerical simulations.

KEYWORDS: Elastic linear objects; Euler–Bernoulli beam
theory; Elasticity theory; Hyper-redundant robots; Motion
planning; Inverse kinematics.

1. Introduction
The kinematics of flexible systems has been of interest to
many researchers for decades because it is of importance
in planning the motion of flexible systems such as hyper-
redundant robots, cables, elastic sheets and sutures. To under-
stand the kinematics of flexible systems, there is a need to rep-
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licate their kinematics using reasonably accurate and simple
models. The focus of this paper is to develop deterministic,
efficient and reasonably accurate models for flexible systems
based on the analogy between flexible systems with min-
imum deformation and elastic systems in equilibrium. Con-
figurations with minimum deformation are always preferred
in designing the motion of flexible systems. If the system does
not have minimum deformation, additional energy is required
for the system to achieve the configuration. It is a challenging
task to model flexible systems because they can take on an
infinite number of feasible configurations and a number of de-
grees of freedom are required to describe their configurations.

In this paper, we are concerned with extensible or
inextensible flexible plane curves that have minimum
deformations. Since the deformations occur on a two-
dimensional plane, the plane curves are defined only by the
curvature.10,15 The deformation of a plane curve of length l

is measured by the curvature energy defined as follows:

CE =
∫ l

0
κ(s)2 d s, (1)

where s denotes the coordinate along the curve and κ refers
to the curvature at s. We refer to optimal plane curves as those
with minimum curvature energy. The optimal path between
two given configurations consists of optimal curves.

The motivation for this research stems from the need
to understand the kinematics of flexible systems such as
a cable, an elastic sheet or a hyper-redundant robot for
their motion planning. Hyper-redundant robots are often
modelled as flexible curves to solve the inverse kinematics
problem.3,29 The configurations of the hyper-redundant
robot with a specific end-effector configuration are acquired
from the curves with equivalent endpoint configurations.
There are several fitting techniques for approximating a
continuous curve with a piecewise linear one, which enables
determining the configuration of a hyper-redundant robot
for a given desired curve.1,7 Unfortunately, conventional
computational techniques that determine optimal curves
require intensive computation and involve non-deterministic
aspects. It is important to establish an efficient and
deterministic means of predicting the behaviour of elastic
linear objects in order to realize practical motion planning
for flexible systems and hyper-redundant robots. In this
paper, we aim to develop simple analytical models for
elastic linear objects in a two-dimensional space that
provide the configurations in equilibrium in an efficient and
deterministic manner. Although it is desirable to develop
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136 Optimal plane beams modelling elastic linear objects

an analytical model for spatial curves with minimum
deformation, one can hardly take an analytical approach
to the modelling due to the high degree of complexity
involved in dealing with three-dimensional curves. Since
no extensive analytical models have been developed even
for general plane curves with minimum deformation, it
still requires intensive computation to determine optimal
spatial curves if one employ conventional computational
techniques. The analytical model proposed in this paper will
produce plane curves with minimum deformation without
expensive computation, and hence is useful in planning the
motion of hyper-redundant robots manipulated on a plane
and identifying their configurations for a given end-effector
configuration in a practical and efficient manner. We can also
explore the kinematics of various flexible systems operated
in a two-dimensional world on the basis of the analytical
models. Elastic systems, such as a cable or an elastic sheet,
can be modelled as an elastic linear object of constant length.

There is a large body of literature on flexible curves
with minimum deformations. Horn10 developed an analytical
expression that approximates extensible plane curves with
minimum curvature energy. Kallay15 derived a set of
non-linear equations that govern optimal plane curves
of constant length with a specific endpoint constraint.
Kallay18 also proposed an intuitive iterative method that
approximates an inextensible optimal curve with specific
endpoint configurations. Chirikjian and Burdick3 modelled
a hyper-redundant robot as an extensible flexible curve
and developed a Jacobian-based method that determines
an extensible curve with minimum deformation energy for
a particular set of boundary conditions. Wakamatsu and
Hirai27 parameterized a spatial curve using four shape-
functions and formulated an unconstrained optimization
problem to determine optimal curves. Based on this work,
Wakamatsu et al.28 proposed a path planning technique for
knotting/unknotting of linear flexible objects using their
topological representations. Ladd and Kavraki13 applied
motion planning techniques to find a sequence of motion to
untangle mathematical knots. Moll and Kavraki21 developed
a subdivision scheme that determines a spatial curve with
minimum strain energy. The strain energy of a curve in a
three-dimensional space takes into account both the curvature
and the torsion of the curve. Moll and Kavraki21 represented
a spatial curve as a sequence of segments with constant
curvature and torsion, and minimized the curve strain energy
by subdividing each segment in a way that the strain energy
of each segment decreases. Kim and Chirikjian18 derived
differential equations for a spatial curve with minimum
deformation in order to investigate the stable conformations
of DNA. The differential equations were derived from
the stationary condition of the Lagrangian defined for a
three-dimensional elastic rod with minimum deformation
and solved through an iterative procedure. An analytical
expression for symmetric elastic rods was developed by
Coleman et al.5 and Swigon et al.25 on the basis of the theory
of Kirchhoff in order to examine the effects of geometric
conditions imposed at the endpoints of DNA loops that have
a symmetric configuration and parallel endpoints.

In spite of the significant progress that has been made in
this area, the conventional approaches possess the following

common drawbacks: (1) there are no analytical expressions
for general optimal curves including asymmetric curves of
constant length; (2) although several promising numerical
techniques have been proposed,3,9,16,19,21,27 the conventional
computational approaches usually entail intensive
computation; and (3) the conventional optimization-based
numerical approach involves non-deterministic aspects.12,23

One needs to solve either a constrained or an unconstrained
optimization problem to compute optimal curves. As a
result, it is difficult to determine the optimal curves unless
one has information on the optimal solution prior to the
optimization. It is also a challenging task to acquire the
solutions to the differential equations for optimal spatial
curves in a deterministic manner.15,18 Finally, the feasibility
of the endpoint constraints has never been discussed. Given
the length of a curve and the configuration at the endpoint, it
is not apparent whether the prescribed endpoint configuration
can be achieved without the elongation of the curve.

In order to develop a simple analytical model for plane
curves with minimum curvature energy, we are concerned
with an elastic linear object with zero slope at one of the
endpoints. Then various configurations of plane curves can
be determined for a variety of constraints imposed on the
position and slope at the other endpoint. Consequently, the
problem under consideration is analogous to determining
the deflections of a cantilever beam for prescribed boundary
conditions at the free end. We derive analytical expressions
for extensible optimal plane curves based on the Euler–
Bernoulli beam theory.6,8 The problems that will be
addressed to establish the analytical models are as follows:
First, given the position and slope at the endpoint and
the length of a curve, we extract a plane optimal curve
from an equivalent cantilever beam; secondly, elastic linear
objects in contact with rigid objects will be determined
from an equivalent cantilever beam with roller supports;
and thirdly, for any given two optimal configurations, the
motion of elastic linear objects will be planned using the
optimal plane curves. We acquire the analytical expressions
by solving a differential equation that governs elastic beams
with small deflections. The analytical models are verified
by comparing them with closed-form solutions developed
for cantilever beams.6,8,26 The accuracy of the analytical
models is verified in comparison with a pseudo-rigid-body
model.11 The comparison with the pseudo-rigid-body model
reveals that the analytical models are more accurate than
the conventional pseudo-rigid-body model for beams with
large deflections. Analytical models for a cantilever beam
with roller support are also developed in order to represent
elastic linear objects in contact with rigid objects. Finally,
we demonstrate how the analytical models can be used in
motion planning for elastic objects as a local path planner.

The remainder of this paper is divided into several sections
as follows: In Section 2, an analytic expression for optimal
plane curves is developed on the basis of the Euler–Bernoulli
beam theory. In Section 3, the deflections of elastic beams
with an overhang are evaluated in order to replicate elastic
linear objects in contact with a rigid object. The proposed
analytical model is generalized in order to represent elastic
linear objects in contact with multiple rigid objects in
Section 4. The proposed models are validated and their
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Fig. 1. A cantilever beam loaded by a distributed moment.

potential applications are investigated in Section 5. The
contributions are summarized and concluding remarks are
provided in the last section.

2. Analytical Model of Optimal Plane Curves
In this section, we develop a deterministic and analytical
model for optimal plane curves based on the Euler–Bernoulli
beam theory.6,8

A plane curve is modelled as the cantilever beam loaded
by the distributed moment M(x) shown in Fig. 1. In view of
the Euler–Bernoulli beam theory, the bending moment Mb(x)
developed by M(x) is proportional to the rate of change of
the slope φ along the beam

Mb(x) = EI
dφ

dx
, (2)

where E is the elastic modulus of material and I is the second
moment of area of the cross-sectional area. The rate of change
of the slope, dφ/dx, indicates the curvature. The curvature
may be expressed in terms of the deflection v(x) as follows:

dφ

dx
= d2v/dx2[

1 + (dv/dx)2
]3/2 . (3)

Note that no assumptions have been made in deriving
Eq. (2). Hence, the solution to Eq. (2) describes the exact
deflections of elastic beams. Closed-form solutions to Eq.
(2) have been developed only for the beams subjected to
simple loading and boundary conditions.11

When the deflections developed by external loads are
small, the slope dv/dx is small compared to unity; hence the
term (dv/dx)2 in Eq. (3) becomes negligible. Consequently,
cantilever beams with small deflections are governed by
the following linear differential equation that defines the
relationship between the curvature d2v/dx2 and the bending
moment Mb(x):

d2v

dx2
= Mb(x)

EI
. (4)

The differential equation (4) is referred to as the moment–
curvature relationship. The small slope assumption is valid
only when the beam undergoes small deflections, and hence
the moment–curvature relationship predicts precisely accur-
ate deflection curves for beams with small deflections. In
addition, the Euler–Bernoulli beam model does not take into
account angular deflections due to shear which are negligible

when the deflections are small. The analytical model that
will be developed in this section is acquired by solving the
moment–curvature relationship for a generalized bending
moment distribution. Therefore, the deflections estimated by
the proposed model are accurate only for beams with small
deflections. However, the computational demand involved in
computing deflection curves using the analytical model is
negligible. One may want to use the model depending on the
degree of accuracy required in applying the model. Although
the deflection estimated by the analytical model may not be
precisely accurate for beams with large deflections, it still
could be accurate enough depending on the application.

The deflection curve v(x) is determined by integrating
the linear differential equation (4) two times. Traditionally,
the solution to Eq. (4) has been developed for certain loading
conditions to acquire the deflection curve of a beam, whereas
we are interested in identifying the loading condition that
yields the deflection curve satisfying prescribed boundary
conditions. The cantilever beam loaded by the distributed
moment M(x) in Fig. 1 is explored because such a
loading condition can produce any feasible deflection curve.
Consequently, we need to determine the distributed moment
M(x) that yields the deflection curve satisfying the prescribed
vertical deflection δF and angular deflection φF at the free end.

In order to describe the bending moment Mb(x), developed
by the distributed moment M(x), in the most general manner,
we make use of Fourier series that expresses the bending
moment in terms of sine and cosine shape functions

Mb(x) = a0 + a1 sin

(
2πx

L

)
+ a2 cos

(
2πx

L

)
, (5)

where L is the horizontal coordinate of the free end. We
exclude higher-order terms in this series representation of the
bending moment Mb(x) in Eq. (5) because this is the simplest
form of Mb(x) that can yield any feasible deflection curves
for prescribed vertical and angular deflections at the free end
as will be discussed later. The deflection is determined by
solving the following differential equation, which is acquired
by substituting Eq. (5) into Eq. (4):

EI
d2v

dx2
= a0 + a1 sin

(
2πx

L

)
+ a2 cos

(
2πx

L

)
. (6)

Integration of Eq. (6) leads to the angular deflection dv/dx

across the beam

EI
dv

dx
= a0x − a1

(
L

2π

)
cos

(
2πx

L

)

+ a2

(
L

2π

)
sin

(
2πx

L

)
+ c1, (7)

where c1 is the constant of integration. Integration of Eq. (7)
yields the following deflection curve v(x):

EIv = a0

2
x2 −

(
a1L

2

4π2

)
sin

(
2πx

L

)

−
(

a2L
2

4π2

)
cos

(
2πx

L

)
+ c1x + c2, (8)
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where c2 is an undetermined integration constant. Note that
the deflection curve v(x) in Eq. (8) contains five unknown
quantities {a0 a1 a2 c1 c2}. To determine the distributed
moment that produces the deflection curve that is compatible
with the given boundary conditions at the free end, we need to
determine the unknown quantities using appropriate bound-
ary conditions. Boundary conditions concerning the vertical
and angular deflections at the fixed and free ends provide
four equations that relate the five unknown quantities to each
other. The cantilever beam has no vertical and angular deflec-
tions at the fixed end that leads to the following equations:(

dv

dx

)
x=0

= a1L

2π
+ c1 = 0, (9)

(v)x=0 = −a2L
2

4π2
+ c2 = 0. (10)

Since the vertical and angular deflections at the free end
are given, the following equations are obtained from the
prescribed boundary conditions:

φF =
(

−dv

dx

)
x=L

= −a0L

EI
+ a1L

2πEI
− c1

EI
, (11)

δF = (−v)x=L = −a0L
2

2EI
+ a2L

2

4π2EI
− c1L

EI
− c2

EI
. (12)

Therefore, {a0 a1 a2 c1 c2} should be determined in such
a way that Eqs. (9)–(12) are satisfied simultaneously. This
task is accomplished by solving a linear system Ay =
b established in accordance with Eqs. (9)–(12) for y =
[a0 a1 a2 c1 c2]T .

Since the linear system Ay = b contains more equations
than the number of unknown quantities, the solution y is
not unique.24 This implies that there are multiple bending
moment distributions that create the deflections compatible
with the given boundary conditions. Note that we are seeking
an optimal beam shape that is characterized by minimum
strain energy. We need to identify one particular beam shape
with minimum strain energy among those satisfying the given
boundary conditions. In order to acquire the deflection curves
that satisfy the given boundary condition, we determine a
general solution to Ay = b that consists of a homogeneous
solution and a particular solution. The homogeneous solution
yh to Ay = b is determined by solving its null space problem
Ayh = 0. The solution to Ay = b leads to its particular
solution yp. Therefore, the general solution to Ay = b is
obtained by superposing the homogeneous solution yh and
the particular solution yp.

y = yp + yh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−EIφF

L
EIπ

L2
(−2δF + LφF)

0
EI

2L
(−2δF + LφF)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ λ

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

4π2

L2

0
1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(13)

where λ ∈ (−∞, ∞) ⊂ �. The general solution y in Eq. (13)
implies that there are an infinite number of solutions to Ay =
b since any vectors from the null space of A to the particular
solution yp is a solution to Ay = b. Substituting Eq. (13) into
Eqs. (5) and (8), we can express the bending moment Mb and
the deflection curve v as a function of λ.

Since we are concerned with a cantilever beam on a plane,
the strain energy is determined solely by the curvature. Ac-
cording to the Euler–Bernoulli Beam theory, the strain energy
(SE) is approximated in terms of the deflection v as follows:

SE = 1

2

∫ L

0

M2
b

EI
dx = EL

2

∫ L

0

(
d2v

dx2

)2

dx. (14)

Considering the bending moment is a function of λ, we can
verify that the strain energy is also a function of the single
variable λ following Eq. (14). In order for the beam to have
minimum strain energy, the following stationary condition
has to be satisfied:

d SE

dλ
= 0. (15)

This optimality condition for strain energy SE in Eq. (14)
allows us to determine a unique λ∗, for which the bending
moment Mb(x) yields the deflection curve that has minimum
strain energy as well as satisfies the prescribed boundary
condition. From the optimality condition in Eq. (15), the
following λ∗ for minimum strain energy is obtained:

λ∗ = 0. (16)

The second derivative of strain energy verifies that SE is
minimum for λ = λ∗.

d2SE

dλ2
= 8π4

EIL3
> 0 (17)

Consequently, the analytical expression for an optimal
cantilever beam can be obtained by substituting λ∗ given in
Eq. (16) into Eq. (8), and may be written as follows:

vopt = 1

4Lπ

[
I 2(2πx(2δF + φF(x − L)))

+ L(LφF − 2δF) sin

(
2πx

L

)]
. (18)

The cantilever beam with minimum strain energy in Eq.
(18) is referred to as an optimal beam or an optimal beam
model. The optimal beam model is capable of creating
optimal beams for any boundary conditions imposed on the
vertical deflection δF and the angular deflections φF at the
free end.

It is straightforward to extend the aforementioned
procedure for determining optimal plane curves to the
cases using the Fourier series representation of Mb(x) with
higher-order terms. When higher-order terms are included in
Eq. (5), a more accurate representation of Mb(x) is possible,
and hence the deflection curve v in Eq. (8) can describe plane
curves with minimum deformation in a more precise manner.
However, the higher-order terms added to Eq. (5) may lead
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Fig. 2. Elastic linear objects in a continuous contact with a rigid surface; (a) elastic linear objects in contact with a flat surface; (b) elastic
linear objects in contact with a curved surface.

to the increase in the dimension of the null space of A. The
boundary conditions in Eqs. (9)–(12) provide four equations
from which the coefficients in Eq. (5) and the integration
constants in Eq. (8) can be determined. The number
of unknown variables in the system Ay = b increases,
whereas the number of equations that enable determining the
coefficients and integration constants is fixed. As a result, the
linear system Ay = b contains more unknown variables than
the system established using Mb(x) in Eq. (5). The increase
in the number of variables leads to the increase in the number
of basis vectors that span the null space of A. Consequently,
the optimal deflection curve in Eq. (8) and the strain energy
in Eq. (14) become a function of multiple variables. Note
that the bending moment and the strain energy are a function
of the single variable λ when they are determined using the
bending moment in Eq. (5). If the bending moment and the
strain energy include multiple variables due to the higher-
order terms added to Eq. (5), the stationary condition and
the minimality of SE should be analysed on the basis of the
Jacobian and Hessian matrices of A. Although such a high-
order representation of Mb(x) could lead to more elaborate
models for optimal plane curves, the analytical expression
tends to be complicated and the complexity involved in the
analysis tends to increase. Therefore, we decided to use
Mb(x) in Eq. (5) to develop a simple analytical expression for
optimal plane curves as it allows us to determine reasonably
accurate optimal curves without intensive computation.

A drawback of the optimal beam model lies in the fact
that it estimates only the vertical deflections of a beam.
Since the Euler–Bernoulli beam theory is designed for beams
with small deflections, it is also assumed that there are
no changes in the horizontal coordinate L of the beam’s
end. However, if the beam undergoes large deflections,
the horizontal deflections caused by flexural shortening
are no longer negligible. In order to represent inextensible
elastic linear object with large deformations, we adjust the
horizontal coordinate of the free end in such a way that
the beam maintains its initial length. In a two-dimensional
space, the length of a deflection curve v(x), l(L), is written
as follows:

l(L) =
∫ L

0

√
1 +

(
dv

dx

)2

dx, (19)

where L is the horizontal coordinate of the free end. The
symbolic form of l(L) is obtained from vopt in Eq. (18). In

order to determine the horizontal deflection that is compatible
with the given length lp, one may want to consider the
following root-finding problem:

l(L) − lp = 0. (20)

Unfortunately, the algebraic expression for l(L) is not
available due to the complexity involved in the symbolic
expression of the integrand of Eq. (19). Hence, we use
the bisection search method to determine the horizontal
coordinate L∗ for the given length lp. The bisection search
method is an efficient root-finding algorithm that is suitable
for a unimodal function such as l(L).22 The horizontal and
vertical deflections of optimal curves of constant length can
be efficiently decided for any prescribed boundary conditions
at the free end in this manner.

The optimal beam model can be extended in order to
represent elastic linear objects in a continuous contact with
the surface of a rigid object. When an elastic linear object is
tangent to the surface of a rigid object, the bending moment
in the region in contact with the surface is determined by
the curvature of the rigid surface according to the moment–
curvature relationship in Eq. (4). For instance, let us consider
the elastic linear object in Fig. 2(a). The segment AB is in
continuous contact with the flat rigid surface. Therefore, the
segment AB has zero curvature and the bending moment
in the region AB is zero as well according to the moment–
curvature relationship given in Eq. (4). Since the bending
moment is constant in the region AB, the shear force is
also zero. The deflections of the remaining curved segment
BC can be determined on the basis of the optimal beam
model. Since the curved segment BC should smoothly join
with the segment AB, the angular deflection at point B must
be zero. Therefore, the segment BC can be modelled as a
cantilever beam. Then the deflections of the segment BC can
be acquired using the optimal beam model for prescribed
deflections at point C. Let us consider another example
shown in Fig. 2(b). In Fig. 2(b), the elastic beam is bent
around the curved rigid object. Since the elastic beam is in
continuous contact with the curved rigid surface, its curvature
is identical with that of the rigid surface. Then the bending
moment in the segment AB is obtained from the curvature
ρ(s) of the rigid surface in accordance with the moment–
curvature relationship given in Eq. (4). The segment BC can
be modelled as a cantilever beam. The curvature of the beam
at point B should be the same as that of the rigid surface
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Fig. 3. An elastic beam with an overhang subjected to a distributed moment.

since there should be no abrupt changes in the curvature
along the beam. Given the deflections at points B and C, the
deflections of the segment BC can be decided by the optimal
beam model. In this manner, we can replicate elastic linear
objects in a continuous contact with a rigid surface using the
optimal beam model.

3. Optimal Plane Curves in Contact with Rigid Objects
It is of interest to explore optimal curves in contact with rigid
objects in order to utilize them for motion planning for elastic
linear objects that may collide with obstacles. The motion
of rigid bodies is usually designed such that their collision
with obstacles is avoided. Unlike motion planning for rigid
bodies, the contact between objects and obstacles sometimes
needs consideration for efficient motion planning for flexible
systems. If an elastic linear object travels through a narrow
and complicated passage between obstacles, it is difficult
to discover a continuous feasible path of the elastic object
that does not collide with the obstacles. Even if a collision-
free path is found, it will still be difficult to manipulate the
object in a way that collision with the obstacles is completely
avoided. It could be easy and convenient for us not only to
plan the motion but also to manipulate the object when we
take into account its contact with the obstacles and its sliding
motion on the surface of the obstacles. On the other hand,
it could be difficult to decide the points on the body that
will be in contact with rigid obstacles before the contact
occurs in planning the motion. However, considering it is
preferable to maneuver the body following a collision-free
path, the contact with the obstacle would be considered only
when the collision-free path can hardly be discovered. If one
encounters such circumstances, a collision-free path can be
designed until the body gets in contact with the obstacle
at prescribed points and plan the remaining path using the
model that takes into account contacts with obstacles which
will be presented in this section. We will discuss an analytical
model for optimal beams in contact with rigid obstacles in
this section.

One of the most common circumstances that the elastic
linear object may experience would be the one in which
it is in contact with obstacles at several points along the
object. In order to represent an elastic linear object in contact
with a rigid object, we are concerned with the beam with an
overhang subjected to a distributed moment shown in Fig. 3.
The roller support at point B represents the contact between
the elastic object and the rigid object. To represent elastic

linear objects in various shapes, we determine the deflection
curve for various vertical and angular deflections at the free
end. We assume that there is no friction between the beam
and the roller support. The support of the roller located at
distance x0 from the free end develops the reaction RB

A. The
free-body diagram of the entire beam in Fig. 3 indicates that
there are three unknown reactions; RB

A, RL and ML. As there
are only two available equations of equilibrium for moments
and for vertical forces, the number of the unknown reactions
exceeds the number of equations of equilibrium. Therefore,
this system is statically indeterminate to the first degree.
In order to determine the reaction forces in the statically
indeterminate system, we will treat the reaction RB

A as an
unknown quantity so that the remaining reactions, ML and
RL, can be determined based on the statics of the system
once RB

A is decided.
Since the bending moment changes abruptly due to the

effect of the reaction RB
A at point B, the deflection of the beam

should be analysed for two separate segments. In order to
express the moment distribution in the most general manner,
the bending moments MAB

b in segment AB and MBC
b in

segment BC are expressed in terms of sine and cosine shape
functions as follows:

MAB
b (x) = a1 sin

(
2πx

L

)
+ a2 cos

(
2πx

L

)
, (21a)

MBC
b (x) = a1 sin

(
2πx

L

)
+ a2 cos

(
2πx

L

)
+ (x − x0)RB

A.

(21b)

In establishing the bending moments MAB
b and MBC

b , we
assume that the bending moment across the entire beam
developed by the distributed moment M(x) is given by Mb(x)
in Eq. (5). MAB

b and MBC
b indicate the bending moment

acting on segments AB and BC, respectively. Substituting the
bending moments in Eqs. (21a) and (21b) into the moment
curvature relationship in Eq. (4), we obtain the following
second-order differential equations of the deflection curves
vAB for segment AB, and vBC for segment BC:

EI
d2vAB

dx2
= a1 sin

(
2πx

L

)
+ a2 cos

(
2πx

L

)
, (22a)

EI
d2vBC

dx2
= a1 sin

(
2πx

L

)
+ a2 cos

(
2πx

L

)
+ (x − x0)RB

A.

(22b)
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Integration of Eqs. (22a) and (22b) leads to the following
equations that represent the angular deflection of the beam:

EI
dvAB

dx
= −a1

(
L

2π

)
cos

(
2πx

L

)

+ a2

(
L

2π

)
sin

(
2πx

L

)
+ c1, (23a)

EI
dvBC

dx
= −a1

(
L

2π

)
cos

(
2πx

L

)
+ a2

(
L

2π

)
sin

(
2πx

L

)

+
(

x2

2
− x0x

)
RB

A + c2, (23b)

where c1 and c2 are the constants of integration. The
equations for the vertical deflection can be acquired by
integrating Eqs. (23a) and (23b)

EIvAB = − a1

(
L

2π

)2

sin

(
2πx

L

)

−a2

(
L

2π

)2

cos

(
2πx

L

)
+ c1x + c3, (24a)

EIvBC = − a1

(
L

2π

)2

sin

(
2πx

L

)
− a2

(
L

2π

)2

cos

(
2πx

L

)

+ RB
A

6
x3 − RB

Ax0

2
x2 + c2x + c4, (24b)

where c3 and c4 are the constants of integration.
As shown in Eqs. (24a) and (24b), the integration of the

differential equations (22a) and (22b) yields a total of four
unknown constants of integration, c1, c2, c3 and c4. Because
the coefficients of the shape functions, a1 and a2, in the
bending moment and the reaction RB

A are also unknown
quantities, this problem contains a total of seven unknown
quantities. Therefore, we need seven conditions to determine
the unknown quantities. The seven conditions can be acquired
from boundary conditions and continuity conditions. The
vertical and angular deflections are zero at the fixed end

(
vBC

)
x=L

= −a2

(
L

2π

)2

+ RB
A

6
L3 − RB

Ax0L
2

2
+ c2L + c4 = 0, (25)(

dvBC

dx

)
x=L

= −a1

(
L

2π

)
−

(
L2

2
− x0L

)
RB

A + c2 = 0.

(26)

The prescribed vertical and angular deflections at the free
end lead to the following equations:

δF = (−vAB
)
x=0 = 1

EI

[
a2

(
L

2π

)2

− c3

]
, (27)

φF =
(

−dvAB

dx

)
x=0

= 1

EI

[
a1

(
L

2π

)
− c1

]
, (28)

where δF and φF denote vertical and angular deflections at the
free end, respectively. The deflection at x = x0 is assumed to
be prescribed

δB = (−vAB)x=x0 = a1

(
L

2π

)2

sin

(
2πx0

L

)
+ a2

(
L

2π

)2

× cos

(
2πx0

L

)
− c1x0 + c3, (29)

where δB denotes the prescribed vertical position of the
roller support at point B. The continuity conditions for the
deflection curve stems from the fact that the deflection curve
should be continuous at the point where the reaction force is
acting. In order to satisfy the continuity of the deflection
curve at point B, the vertical and angular deflections as
determined for the left-hand part of the beam should be the
same as those determined for the right-hand part of the beam.

[
dvAB

dx

]
x=x−

0

=
[

dvBC

dx

]
x=x+

0

: c1 − c2 + x0

2
RB

A = 0 (30)

[vAB]x=x−
0

= [vBC]x=x+
0

: x0c1 + c3 − x0c2 − c4 + x3
0

3
RB

A = 0

(31)

The seven linear algebraic equations (25)–(31) are
sufficient to determine the seven unknowns, y =[
a1 a2 c1 c2 c3 c4 RB

A

]T
. We can construct a linear system

Ay = b in accordance with Eqs. (25)–(31) in order to solve
these equations simultaneously for y. Note that the number of
equations in Ay = b is the same as the number of unknowns.
Therefore, the unique deflection y can be decided in a
deterministic way for a given boundary condition. For a
cantilever beam without roller supports, an infinite number
of beam deflections could be found for prescribed boundary
conditions. Unlike those free cantilever beams, the beam with
an overhang has only one unique equilibrium configuration,
because only one deflection curve passes through the given
contact point among those satisfying the prescribed boundary
conditions.

4. Elastic Linear Objects in Contact with Multiple
Obstacles
In this section, we will extend the analytical model for beams
with an overhang in order to represent elastic linear objects in
contact with multiple rigid objects. The optimal beam model
to be discussed in this section replicates elastic linear objects
that may collide with a number of rigid obstacles.

In order to represent elastic linear objects in contact with
multiple rigid objects, we consider the cantilever beam with
N − 1 roller supports in Fig. 4. This beam is loaded by a
distributed moment that creates a deflection curve that is
compatible with prescribed deflections at the free end. The
bending moment is expressed using sine and cosine shape
functions in Eq. (21a). The N − 1 supports develop reaction
forces, R2

1, R3
2, . . ., Ri+1

i , . . ., RN
N−1 where Ri+1

i denotes the
reaction force between segments Si and Si+1. The free-body
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Fig. 4. A free-body diagram of a cantilever beam with N − 1 roller supports.

diagram in Fig. 4 indicates that the vertical reaction force RL

and the reaction moment ML are acting on the beam at the
fixed end and hold the beam in equilibrium with the N − 1
reaction forces. As there are only two available equations of
equilibrium, this beam is statically indeterminate. In order
to determine these unknown reaction forces and moments,
we regard the reaction forces Ri+1

i , i = 1, 2, . . . , N − 1, as
unknown quantities.

Apparently, the reaction forces acting on the beam give
rise to abrupt changes in the bending moment. Therefore,
the bending moment should be evaluated for segments
between the reaction forces. Substituting the bending
moments that are evaluated for each segment into the
moment–curvature relationship in Eq. (4), we may obtain
N differential equations from which the deflection curve can
be acquired. Note that the beam consists of N segments.
Then the deflection curve is determined by integrating these
differential equations two times. Therefore, the algebraic
equations for the deflection curve contain 2N integration
constants. In addition to these integration constants and the
reaction forces, we need to determine the coefficients of the
shape functions, a1 and a2, that define the bending moment
in the beam. Therefore, a total of 3N + 1 unknown quantities
should be determined in order to obtain the deflection curve.

As was done for beams with an overhang, these unknown
quantities can be determined using boundary and continuity
conditions. The boundary conditions imposed on the angular
and vertical deflections at the fixed end and the free end
provide four conditions. The vertical deflections at the points
where the roller supports are located may be assumed to
be known without a loss of generality. The prescribed
deflections at the contact points yield N − 1 conditions.
Since the continuity condition implies that the deflection
curves determined for each segment should be continuous,
the vertical and angular deflections at the points where
the segments meet each other should also be continuous.
Since the beam contains N − 1 contact points, and two
equations are established for each contact point, the
continuity condition leads to a total of 2N − 2 conditions.
Consequently, the boundary conditions and the continuity
conditions provide a total of 3N + 1 conditions that exactly
match the number of unknown quantities. In this way, the
unique deflection curve of a cantilever beam in contact with
N − 1 rigid objects can be decided in a deterministic manner.

Moll and Kavraki21 also modelled a spatial curve in contact
with rigid objects. In order to make the problem tractable,
they assumed that the slope at the points where the curve
is in contact with the rigid object was given. Then optimal
curves were acquired by minimizing the deformation energy

for the curves between contact points. However, it is difficult
to obtain globally optimal curves from such a curve model
because the slope at contact points has to be determined such
that the deformation energy of the entire curve is minimized.

5. Performance of the Optimal Beam Models
In this section, the performance of the optimal beam
model is explored by examining its accuracy and practical
applications. In Section 6.1, we verify the optimal beam
model given in Eq. (18) by comparing it with closed-form
solutions to Eq. (4) and the exact deflections of a cantilever
beam with large deflections. The accuracy of the optimal
beam model is investigated in comparison with the pseudo-
rigid-body model. In order to explore the accuracy further, we
compare the deflection curves determined using the optimal
beam model with those acquired by minimizing the curvature
energy in Eq. (1). The applications of the optimal beam model
are demonstrated through several numerical simulations.
Cantilever beams with several roller supports are presented
in order to demonstrate how the optimal beams with roller
supports represent elastic linear objects in contact with rigid
objects. The inverse kinematics of hyper-redundant robots
is solved for prescribed end-effector configurations using
the optimal beam model. Finally, we demonstrate how the
optimal beam model can be exploited as an efficient local
path planner. The optimal motion of elastic linear objects
between two given optimal plane curves will be planned
using the optimal beam model.

5.1. Verification of the optimal beam models
In order to verify that the optimal beam model given in
Eq. (18) identifies curves with minimum curvature energy, we
compared the optimal beams with closed-form solutions to
Eq. (4) that are available in classical solid mechanics text
books.6,8 The moment–curvature relationship depicted in
Eq. (4) is for beams with small deflections. Hence, if
the optimal beam contains only small displacements, its
deflection curve should be identical to the closed-form
solutions. Let us consider the cantilever beam with the
concentrated moment M0 and concentrated force P at the
free end in Fig. 5(a). The vertical deflection v and angular
deflection v′ can be acquired by solving Eq. (4) for the
moment M0 and the force P 6,8:

v = −M0x
2

2EI
− Px2

6EI
(3L − x). (32)

We assume that the beam has a unit length and a unit
flexural rigidity EI without loss of generality. For the
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Fig. 5. (a) Cantilever subjected to a concentrated moment M0 and a concentrated force P at the free end; (b) deflection curves determined
for various M0 and P . Solid lines represent optimal beams while the asterisks (∗) represent the exact deflections of a cantilever beam
following the Euler–Bernoulli beam model.

beam to have small deflections, the vertical and angular
deflections in Eqs. (32a) and (32b) are determined for
M0 = {0.05 0.1 0.15 0.2}T and P = {0.05 0.1 0.15 0.2}T .
In order to ensure the deflections are small, the vertical
deflections are expressed as a dimensionless quantity relative
to the length of the beam L. The dimensionless vertical
and angular deflections at the free end developed by M0

and P are δF/L = {0.0417 0.083 0.125 0.167}T and φF =
{0.075 0.15 0.225 0.3}T (rad), respectively. In this example,
there are no changes in the horizontal coordinate of the
free end because we are dealing with a cantilever beam
with small deflections. In Fig. 5(b), each ∗ represents the
deflections determined by Eq. (32); On the other hand,
the solid lines represent optimal beams where vertical
and angular deflections at the free end are the same as
those determined by the closed-form solution in Eq. (32).
Figure 5(b) shows that the optimal beams are identical with
the exact deflections obtained from Eq. (32). Hence, this
example verifies that the optimal beam model in Eq. (18)
not only captures the deflections for prescribed constraints
imposed on the vertical and angular deflections at the free
end but also produces curves with minimum curvature
energy. Note that the deflection curves acquired from the
moment–curvature relationship have minimum strain energy.
Consequently, this result also confirms that the optimal beam
model in Eq. (18) is valid for beams with small deflections

and captures the beam deflections with minimum curvature
energy that satisfy prescribed constraints imposed on the
vertical and angular deflections at the free end.

The optimal beam model in Eq. (18) is derived from the
Euler–Bernoulli beam model that is valid for beams with
small deflections. If deflection curves need to be estimated
for beams with large deflections, the optimal beam model
in Eq. (18) becomes less accurate because when the beam
undergoes large deflections, its horizontal deflection, due to
flexural shortening, is no longer negligible. In order to take
into account changes in the horizontal deflection, we adjust
the horizontal deflection at the free end in such a way that the
beam maintains constant length using Eq. (20). The verifica-
tion of these optimal beams of constant length with large de-
flections is undertaken by comparing them with closed-form
solutions developed for a cantilever beam with large deflec-
tions. Let us consider a cantilever beam with a concentrated
force at the free end. When the cantilever beam undergoes
large deflections, the horizontal deflection a and the vertical
deflection b at the free end are expressed in terms of elliptic
integrals.11 In Fig. 6(a), the circles and solid lines represent
the deflections acquired from the optimal beam model in Eq.
(18). The exact deflection path following the elliptic-integral
solution is represented by +. The deviation of the optimal
beams from the elliptic-integral solution tends to occur as
the beam undergoes large deflections. In order to explore the

Fig. 6. (a) The deflections of a cantilever beam with a concentrated force at the free end; (b) the relative error versus the angular deflections
at the free end.
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ranges in which the optimal beam model is valid, we examine
the distance between the optimal beams and the elliptic-
integral solution. The deflections of the optimal beam are rep-
resented by the distance between the free end of the deformed
beam and that of the undeformed beam defined as follows:

δo =
√

(L − α)2 + β2, (33)

where α and β denote the horizontal and vertical deflections
at the free end, respectively. Analogously, the exact
deflections following the elliptic-integral solution can be
written as follows:

δr =
√

(L − a)2 + b2. (34)

Then, the accuracy of the optimal beam model can be
analysed based on the following dimensionless error that is
measured relative to the real deflections:

Error

δr

= ‖δr − δo‖
δr

, (35)

where ‖δr − δo‖ represents the Euclidean distance between
δr and δo.20 Figure 6(b) shows that the relative error is just
below 0.2 when the angular deflection at the free end is
near 75◦. The accuracy of the optimal beam model becomes
apparent when the relative error of the optimal beam model
is compared with that of the pseudo-rigid-body model.11

The pseudo-rigid-body model estimates the deflections of
a flexible beam based on an equivalent system composed
of rigid bodies and torsional springs. In Fig. 6(a, b), the
deflection path and the relative error acquired from the
pseudo-rigid-body model are represented by the asterisks
(∗). The relative error almost reaches 0.4 when the angular
deflection at the free end approaches 75◦, which is greater
than that of the optimal beam model. This error analysis
result verifies that elastic beams with large deflections are
better represented by the optimal beam model than by the
conventional pseudo-rigid-body model.

The accuracy of the optimal beam model is explored
further by comparing it with deflection curves determined
by minimizing the curvature energy in Eq. (1). In order
to acquire curves with minimum curvature energy, we are
concerned with discretized curves acquired from the optimal
beam model. It is difficult to determine optimal curves
through such local optimization processes as the convergence
to the optimal solution is not assured in general. However,
if the curves obtained from the optimal beam model are
used as an initial guess for the optimization, we can at
least determine curves with lower curvature energy as those
determined by the optimal beam model are located near
true optimal solutions. Let us consider an optimal curve
that is discretized with N nodes. These nodes are uniformly
distributed along the curve and the position of the ith node is
denoted by ri = {xi, yi}, i = 1, 2, . . . , N. xi and yi indicate
the x and y coordinates of the ith node ri , respectively. Then
the curvature energy can be approximated by summing up the
angles between adjacent line segments. The angle θi between
the line segments ri,i−1 = ri−1 − ri and ri,i+1 = ri+1 − ri

Fig. 7. Deflection curves acquired from the optimal beam model
versus those determined through the minimization of curvature
energy.

may be determined as follows:

θi = arccos

[
(ri−1 − ri) · (ri+1 − ri)

‖ri−1 − ri‖ ‖ri+1 − ri‖
]

for i = 2, 3, . . . , N − 1. (36)

Then we solve the following optimization problem in order
to approximate optimal plane curves:

Max
{θ1,θ2,...,θN }

N−2∑
i=1

θi

Subject to

φF = yF − yN−1

xF − xN−1
(37)

The equality constraint in Eq. (37) indicates that the endpoint
of the curve should be compatible with the prescribed
boundary condition imposed on the vertical and angular
deflections at the free end. The position and slope at
the endpoint, rN = {xN, yN } should be {xF, yF} and φF,
respectively. The optimization was conducted for the optimal
curves determined for {xF, yF, φF} = {0.88, 0.4, π/3} and
{xF, yF, φF} = {0.67, 0.7, π/3}. Line A in Fig. 7 rep-
resents the optimal curve determined for {xF, yF, φF} =
{0.88, 0.4, π/3}, and line B is determined for {xF, yF, φF} =
{0.67, 0.7, π/3}. The black dots in Fig. 7 represent optimal
curves determined using the optimal beam model. As line A
in Fig. 7 indicates, there is no discrepancy between the curve
determined by solving Eq. (37) and the optimal beam as the
curve undergoes small deflections. The curvature energy of
line A is 0.8084 which is the same as that of the optimal
beam represented by black dots (•). However, the difference
between those curves is noticeable when they have large
deflections as line B indicates. The curvature energy of line
B in Fig. 7 is 1.2423 and that of the curve determined using
the optimal beam model is 1.2084. The optimization allowed
us to obtain a curve with lower curvature energy when it
is conducted using the optimal beam as an initial guess.
Note that it is usually difficult to obtain optimal solutions to
Eq. (37) as long as the optimization is executed using local
optimization methods. The approximation to the optimal
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Fig. 8. The deflections of a cantilever beam with one roller support at {x, y} = {0.5, 0}. (a) The deflections determined for
δF = {0.05, 0,−0.05,−0.1}T and φF = 0.1; (b) the deflections acquired for φF = {−0.4,−0.2, 0, 0.2}T and δF = 0.1.

plane curves shown in Fig. 7 could be accomplished only
because the optimal beam model provided the initial guess. In
addition, such optimization requires intensive computation in
general as the problem contains a number of design variables.
In contrast, the optimal beam model enables determining
reasonably accurate optimal curves in an efficient manner.

5.2. Applications of the optimal beam models
The optimal beam model may have a wide range of practical
applications. We will explore the potential applications
through several examples that demonstrate how the model
can be exploited to represent elastic linear objects in contact
with rigid obstacles, to solve the inverse kinematics of hyper-
redundant robots, and to plan the path of elastic linear objects.

As discussed in Section 3, the optimal beam model with
roller supports is capable of representing elastic linear objects
in contact with rigid objects. In order to acquire various
elastic linear objects in contact with rigid obstacles, we
determine the deflection curves for prescribed vertical and
angular deflection at the free end and for the prescribed
position of roller supports. Figure 8(a) shows optimal
beams with a roller support positioned at {x, y} = {0.5, 0}
determined for various vertical deflections at the free end. The
deflections with various angular deflections at the free end are
also shown in Fig. 8(b). In order to represent elastic linear
objects in contact with two rigid obstacles, the deflections
of a cantilever beam supported by two roller supports are

evaluated. The two roller supports in Fig. 9(a, b) are located at
{x, y} = {0.2, 0.03} and {x, y} = {0.6, −0.03}, respectively.
The optimal beams in Fig. 9(a) are determined for various
vertical deflections at the free end and Fig. 9(b) represents
optimal curves determined for various angular deflections at
the free end. Since these beams undergo small deflections,
there are no horizontal deflections at the free end. As
discussed in Section 5, the optimal beam model proposed
in this paper allows us to plan the motion of elastic linear
objects in contact with any number of rigid obstacles.

Chirikjian and Burdick3 and Yim29 represented a hyper-
redundant robot using flexible curves in order to exploit the
curves to identify the configuration of a hyper-redundant
robot with an equivalent end-effector configuration. The
fitting techniques developed by Andersson1 and Fahimi
et al.7 enable determining the configuration of hyper-
redundant robots for a given desired curve. The optimal beam
model in Eq. (18) identifies extensible optimal plane curves
for a given endpoint constraint with negligible computation
and provides an efficient means of solving the inverse
kinematics problem. Figure 10(a) exhibits optimal curves
determined for various endpoint constraints using the optimal
beam model. Note that, given the position and slope at
the end point, the length of the curves in Fig. 10(a) is
automatically adjusted according to Eq. (20). These curves
can be used to determine the configuration of a hyper-
redundant robot in a two-dimensional plane for prescribed

Fig. 9. The deflections of a cantilever beam with two roller supports. (a) The deflections determined for δF = {−0.04,−0.06,−0.08,−0.1}T
and φF = −0.1 (rad); (b) the deflections acquired for φF = {−0.4,−0.2, 0, 0.2}T (rad) and δF = 0.02.
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Fig. 10. (a) Optimal beams determined for various constraints imposed on the vertical and angular deflections at the free end and for various
lengths of the beam; (b) a sequence of piecewise linear lines approximates a hyper-redundant modular robot that consists of 11 modules.

end-effector configurations. Figure 10(b) shows how a plane
curve determined using the optimal beam model explore the
inverse kinematics of a hyper-redundant robot that consists
of 11 modules. In Fig. 10(b), a sequence of piecewise
linear lines is acquired from a continuous optimal curve
determined for the vertical deflection δF/L = 0.2 and the
angular deflection φF = 2.0 at the free end. The squares
in Fig. 10(b) represent the modules building the hyper-
redundant robot. The configuration of these modular robots
and the piecewise linear lines were determined following the
fitting method proposed by Andersson.1

One of the most remarkable features of the optimal
beam model is that efficient motion planning for elastic
linear objects can be realized when the optimal beam
model is incorporated into conventional motion planning
algorithms4,17,19 as a local path planner. Given two
configurations, a local path planner determines intermediate
configurations such that the object does not collide with
obstacles. Unlike motion planning for a rigid-body, local
path planning for elastic linear objects requires intensive
computation if we utilize the conventional optimization-
based method.19,21 In contrast, the computational demand
involved in evaluating intermediate configurations based
on the following local path planning method is negligible
compared to the optimization-based methods.

The motion of a cantilever beam is divided into two
components; a rigid-body transformation and a deformation.

In order to describe the deformation of the cantilever, a
local coordinate frame {x, y} is attached to the beam as
shown in Fig. 11(a). The optimal deflection curve is uniquely
determined for the prescribed vertical deflection δF and
angular deflection φF at the free end. On the other hand,
the rigid body transformation of the cantilever is defined by
the position and orientation of the local frame {x, y} relative
to the space-fixed reference coordinate frame {X, Y } in
Fig. 11(a). The orientation and position of the local frame
{x, y} are denoted by {x0, y0} and θ0, respectively. Therefore,
the configuration of the cantilever beam is entirely expressed
by five parameters q = {x0, y0, θ0, δF, φF}. Given the initial
configuration qi and the final configuration qf , the local
path planner determines the intermediate configurations qm

between qi and qf by linearly interpolating the values of the
parameters as follows:

qm = qi + t(qf − qi) for t ∈ [0, 1] ⊂ �. (38)

Then the intermediate optimal configuration qm is uniquely
determined for the intermediate parameters using the optimal
beam model. Figure 11(b) shows the motion of an elastic
linear object planned using the optimal beam model. The
two solid lines in Fig. 11(b) represent the initial and final
configurations. The intermediate configurations represented
by the dashed lines are determined for the parameters
that are uniformly sampled in accordance with Eq. (38).

Fig. 11. (a) A cantilever beam expressed in a local coordinate frame attached to the beam; (b) local motion planning for elastic linear
objects using the optimal beam model.
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The conventional local path planning method performs
optimization in order to determine the optimal intermediate
configurations, which entail intensive computation. Whereas,
the optimal beam model provides optimal configurations
using the analytical expression in Eq. (18), which explains
why the motion planning based on the optimal beam model
is more efficient than the conventional techniques.

The optimal beam model may also be applied to global path
planning for elastic linear objects. Unlike the aforementioned
local path planning algorithm, the trajectory of the fixed
end is important in designing the global path for given
initial and final configurations. Once the trajectory of the
fixed end is decided, the entire global path can be decided
with the help of the aforementioned local path planning
algorithm. The trajectory of the fixed end may be planned
using any conventional path planning algorithms such as
the probabilistic road-map method,17 the artificial potential
field method2 and the rapid-exploring random trees.14 Using
the optimal beam model, it is not difficult to compute all
admissible configurations that do not intersect with rigid
obstacles. Therefore, the configuration at each step of the
trajectory may be determined so as to reduce the deformation
of elastic linear objects during the motion.

6. Conclusion
The deflections of a cantilever beam loaded by a distributed
moment have been determined for prescribed boundary
conditions at the free end in order to replicate elastic
linear objects in equilibrium or flexible plane curves with
minimum deformation. We developed the optimal beam
model to provide an analytical expression for optimal
plane curves. Since the computational demand involved in
calculating the deflections using the optimal beam model is
negligible, efficient local path planning for elastic objects
can be realized. The optimal path between two given optimal
configurations was planned using the analytical optimal
beam model. In order to plan the motion of elastic linear
objects that may collide with multiple rigid obstacles, we
explored a cantilever beam supported by multiple roller
supports. The analytical expressions for the deflections
provide a convenient and efficient means of replicating
elastic linear objects in contact with multiple rigid objects.

The verification of the optimal beam model was
accomplished in comparison with the pseudo-rigid-body
model. We verified that the optimal beam model better
represent beams with large deflections than the pseudo-rigid-
body model. Since the optimal beam model is developed
on the basis of the Euler–Bernoulli theory, the optimal
deflections deviate from the exact deflections as the beam
undergoes large deflections. However, in practice, the
deformation of elastic objects is limited if the objects are
manipulated within its elastic region. Therefore, the optimal
beam model may be an accurate tool for motion planning
for elastic objects that are manipulated within the elastic
region. If the object is so flexible that it may experience
large elastic deformations and an accurate estimation of the
large deformation is required, one may want to employ the
conventional optimization-based method using the optimal
beams as an initial guess to acquire more accurate optimal
plane curves.

We would also like to stress the following strengths of
the optimal beam models over the conventional models.
First, the optimal beam model supplies optimal curves with
reasonable accuracy in a deterministic manner. All existing
numerical methods possess the possibility of obtaining a
curve corresponding to the local minimum of the curvature
energy. Second, the optimal beam model creates extensible
optimal plane curves for any prescribed endpoint constraints.
The length of the optimal curve is adjusted automatically
such that the given endpoint configuration becomes feasible.
Finally, the analytical optimal beam model identifies optimal
plane curves in contact with rigid objects where its curvature
energy is globally minimum. The slopes of the curve at the
contact points are decided so as to minimize the curvature
energy of the entire curve.

The optimal beam model represents two-dimensional
curves with minimum deformations. Hence, it is useful for
motion planning for elastic linear objects or one-dimensional
flexible systems manipulated on a plane. The inverse kin-
ematics of a hyper-redundant robot operated on a plane can
also be explored using the optimal beam model and the fitting
techniques developed by Andersson1 and Fahimi et al.7. If we
employ the conventional computational models to determine
plane optimal curves, computational expenses involved in
determining the optimal curves become demanding. In
contrast, the optimal beam model creates optimal plane
curves without intensive computation in a deterministic
manner as the optimal curves are computed on the basis
of the analytical expressions for optimal plane curves. The
efficiency of the optimal beam model in solving the inverse
kinematics problem has been verified through several nu-
merical simulations in which the configuration is determined
using the fitting technique proposed by Andersson.1

Efficient path planning for flexible linear objects is also
feasible as the path may be constructed so as to reduce the
deformations along the path. In the future, we will explore
global path planning algorithms based on the optimal beam
model that realize convenient and efficient path planning for
flexible objects. Although we have developed the optimal
beam model for motion planning for elastic objects, it can
also be applied to the animation of any flexible linear object
that might collide with rigid objects.
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