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ON THE CLASSIFICATION BY MORIMOTO AND NAGANO

ALEXANDER ISAEV∗

Abstract. We consider a family M3
t , with t > 1, of real hypersurfaces in

a complex affine three-dimensional quadric arising in connection with the

classification of homogeneous compact simply connected real-analytic hyper-

surfaces in Cn due to Morimoto and Nagano. To finalize their classification,

one needs to resolve the problem of the Cauchy–Riemann (CR)-embeddability

of M3
t in C3. In our earlier article, we showed that M3

t is CR-embeddable

in C3 for all 1 < t <
√

(2 +
√

2)/3. In the present paper, we prove that M3
t

can be immersed in C3 for every t > 1 by means of a polynomial map. In

addition, one of the immersions that we construct helps simplify the proof of

the above CR-embeddability theorem and extend it to the larger parameter

range 1 < t <
√

5/2.

§1. Introduction

This paper concerns the following classical problem investigated by Morimoto and

Nagano in [MN]: determine all compact simply connected real-analytic hypersurfaces in Cn
homogeneous under an action of a Lie group by Cauchy–Riemann (CR)-transformations.

It was shown in [MN] that every such hypersurface is CR-equivalent to either the sphere

S2n−1 or, for n= 3, 7, to a manifold from the one-parameter family Mn
t as defined below.

To introduce Mn
t for any n> 2, consider the n-dimensional affine quadric in Cn+1:

(1.1) Qn := {(z1, . . . , zn+1) ∈ Cn+1 : z21 + · · ·+ z2n+1 = 1}.

The group SO(n+ 1, R) acts on Qn, with the orbits of the action being the sphere Sn =

Qn ∩ Rn+1 as well as the compact strongly pseudoconvex hypersurfaces

(1.2) Mn
t := {(z1, . . . , zn+1) ∈ Cn+1 : |z1|2 + · · ·+ |zn+1|2 = t} ∩Qn, t > 1,

which are simply connected for n> 3. These hypersurfaces are all nonspherical (see

[I1, Remark 2.2]) and pairwise CR-nonequivalent (see [KZ, Example 13.9], [BH, The-

orem 2]). They are the boundaries of Grauert tubes around Sn (note that Qn can be

naturally identified with the tangent bundle T (Sn)). In [MN], Morimoto and Nagano did

not investigate the question as to whether or not Mn
t admits a real-analytic CR-embedding

in Cn for n= 3, 7; thus, their classification in these two dimensions was not finalized.

The family Mn
t was studied in our papers [I1, I2]. In particular, in [I1, Corollary 2.1], we

observed that a necessary condition for the existence of a real-analytic CR-embedding of

Mn
t in Cn is the embeddability of the sphere Sn in Cn as a totally real submanifold. The

problem of the existence of a totally real embedding of Sn in Cn was considered by Gromov

(see [G1] and [G2, p. 193]), Stout–Zame (see [SZ]), Ahern–Rudin (see [AR]) and Forstnerič
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210 A. ISAEV

(see [F1, F2, F3]). In particular, Sn was shown to admit a smooth totally real embedding in

Cn only for n= 3; hence, M7
t cannot be real-analytically CR-embedded in C7. On the other

hand, since S3 is a totally real submanifold of Q3, any real-analytic totally real embedding

of S3 in C3 (which is known to exist, for instance, by [AR]) extends to a biholomorphic map

defined in a neighborhood of S3 in Q3. Owing to the fact that M3
t accumulates to S3 as

t→ 1, this observation implies that M3
t admits a real-analytic CR-embedding in C3 for all

t sufficiently close to 1. Thus, the classification of homogeneous compact simply connected

real-analytic hypersurfaces in complex dimension 3 is special as it contains manifolds other

than the sphere S5.

More precisely, in [I2, Theorem 1.1], we showed that M3
t embeds in C3 for all 1<

t <
√

(2 +
√

2)/3 by means of a real-analytic CR-map. This was proved by analyzing

the holomorphic continuation of the explicit polynomial totally real embedding of S3

in C3 constructed in [AR] (see Remark 4.3 for details), and the argument was quite

involved computationally. Since the hypersurfaces in the family M3
t are all pairwise CR-

nonequivalent, [I2, Theorem 1.1] leaves the problem of the CR-embeddability of M3
t in C3

for t>
√

(2 +
√

2)/3 completely open. In this paper, we make steps toward resolving this

problem and also look at related matters.

Even the question as to whether every M3
t can be immersed in C3 is nontrivial. The

answer to this question is positive as the quadric Qn is known to admit a holomorphic

immersion in Cn for every n> 2 (see [BN, p. 19]). This immersion is not algebraic. In fact,

[BN] states without proof that an immersion of Qn in Cn cannot be algebraic (we could not

confirm that assertion). In our first main result, we show that, nevertheless, an algebraic

immersion exists for each M3
t .

Theorem 1.1. Every hypersurface M3
t with t > 1 can be immersed in C3 by means of

a polynomial map C4→ C3.

In the proof of Theorem 1.1 in the next section, for every n ∈ N, we explicitly construct

a polynomial map Fn : C4→ C3 that yields an immersion of M3
t for all 1< t < tn, where

tn→∞ as n→∞. None of the maps Fn is injective on M3
t if t>

√
2; thus, these maps

certainly cannot be used to establish the CR-embeddability of M3
t in C3 for t>

√
2 (see

Remark 4.1). We did not investigate Fn for injectivity on M3
t if

√
(2 +

√
2)/3 6 t <

√
2 and

n > 1. It is possible that for some t in this range and sufficiently large n, the immersions of

M3
t given by the maps Fn are in fact embeddings, but the calculations required to verify

the injectivity of Fn on M3
t for n > 1 appear to be rather prohibiting. In fact, even studying

the fibers of a much simpler polynomial map considered in [I2] was computationally quite

hard.

At the same time, the first map F1 in the sequence {Fn} turns out to be easier to handle

than its counterpart studied in [I2], which allows us to improve [I2, Theorem 1.1] and obtain

our second main result.

Theorem 1.2. The hypersurface M3
t admits a real-analytic CR-embeddings in C3 if

1< t <
√

5/2.

Note that the bound
√

5/2 that appears in Theorem 1.2 is only slightly greater than

the bound
√

(2 +
√

2)/3 of [I2, Theorem 1.1]. Thus, our purpose here was not so much to

enlarge the range of t as to produce a more transparent argument for CR-embeddability,
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which we were able to achieve by invoking the map F1 instead of the map arising from

[AR]. Theorem 1.2 is established in Section 3.

Our construction of the sequence {Fn} is, to some extent, inspired by article [AR], in

which harmonic polynomials were used to produce the map presented in the main theorem

therein (see Remark 4.3). However, we do not explicitly utilize harmonicity; rather, we

directly come up with suitable polynomial immersions. The maps Fn are also of independent

interest as each of them yields an explicit totally real embedding of S3 in C3. It then

follows that each Fn defines a CR-embedding of M3
t to C3 for 1< t < τn, where τn 6

√
2

(see Remark 4.2).

§2. Proof of Theorem 1.1

For convenience, we will argue in the coordinates

w1 := z1 + iz2, w2 := z1 − iz2, w3 := z3 + iz4, w4 := z3 − iz4.

In these coordinates, the quadric Q3 becomes

(2.1) {(w1, w2, w3, w4) ∈ C4 : w1w2 + w3w4 = 1}

(see (1.1)), the sphere S3 ⊂Q3 becomes

(2.2) {(w1, w2, w3, w4) ∈ C4 : w2 = w̄1, w4 = w̄3} ∩Q3

and the hypersurface M3
t ⊂Q3 becomes

(2.3) {(w1, w2, w3, w4) ∈ C4 : |w1|2 + |w2|2 + |w3|2 + |w4|2 = 2t} ∩Q3

(see (1.2)).

Let F : C4→ C3 be a map of the form

(2.4) (w1, w2, w3, w4) 7→ (w1, w3, f(w1, w2, w3, w4)),

where f is an entire function. Clearly, F yields an immersion of M3
t in C3 if and only if its

restriction F̃ := F |Q3 is nondegenerate at every point of M3
t . We need the following fact.

Lemma 2.1. The map F̃ is nondegenerate at a point w0 = (w0
1, w

0
2, w

0
3, w

0
4) ∈Q3 if and

only if one has

(2.5) w0
3

∂f

∂w2
(w0)− w0

1

∂f

∂w4
(w0) 6= 0.

Proof. Observe that |w1|+ |w3|> 0 on Q3 (see (2.1)). We can assume without loss of

generality that w1 6= 0 (the case w3 6= 0 follows from this by interchanging the pairs of

variables w1, w2 and w3, w4). Then we choose w1, w3, w4 as local coordinates on Q3 and

write the third component of F̃ as

ϕ := f

(
w1,

1− w3w4

w1
, w3, w4

)
.

In this coordinate chart, the Jacobian JF̃ of F̃ is calculated as

JF̃ =
∂ϕ

∂w4
=−w3

w1

∂f

∂w2

(
w1,

1− w3w4

w1
, w3, w4

)
+

∂f

∂w4

(
w1,

1− w3w4

w1
, w3, w4

)
;

hence, it is nonvanishing at w0 ∈Q3 with w0
1 6= 0 if and only if (2.5) holds.
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212 A. ISAEV

We will now construct a sequence {Fn}n>1 of maps of the form (2.4):

(2.6) Fn(w1, w2, w3, w4) = (w1, w3, Pn(w1, w2, w3, w4)),

where Pn is a polynomial having the property: there exists tn > 1 such that

(2.7) w3
∂Pn
∂w2

− w1
∂Pn
∂w4

6= 0 on M3
t for 1< t < tn,

and

(2.8) tn→∞ as n→∞.

Lemma 2.1 will then imply the theorem.

Our strategy for coming up with polynomials Pn as above is as follows:

(A) Choose some polynomials Rn having the property: there exists tn > 1 such that

(2.9) Rn 6= 0 on M3
t for 1< t < tn,

and (2.8) holds.

(B) For each n, find a polynomial Pn that solves the equation

(2.10) w3
∂Pn
∂w2

− w1
∂Pn
∂w4

=Rn everywhere on C4.

By (2.9), the polynomials Pn will satisfy (2.7) as required.

Coming up with suitable polynomials Rn in Part (A) such that there are solutions to

(2.10) in Part (B) is not easy. After much computational experimentation, we discovered

that polynomials of the following form work well:

(2.11) Rn :=
((

1
2 + ian

)
w1w2 −

(
1
2 − ian

)
w3w4

)2n
,

where an are positive numbers to be chosen later.

Let us study the zeroes of Rn on M3
t . First of all, we restrict Rn to Q3 by replacing w1w2

with 1− w3w4:

(2.12) Rn|Q3 =
(
w3w4 −

(
1
2 + ian

))2n
(see (2.1)). Thus, Rn vanishes at a point w = (w1, w2, w3, w4) ∈Q3 if and only if

w1w2 = 1
2 − ian, w3w4 = 1

2 + ian.

Such a point lies in M3
t for some t > 1 if and only if

|w1|2 +

∣∣∣∣12 − ian
∣∣∣∣2 1

|w1|2
+ |w3|2 +

∣∣∣∣12 + ian

∣∣∣∣2 1

|w3|2
= 2t

(see (2.3)), or, equivalently, if and only if

(2.13) |w1|2 +

(
1

4
+ a2n

)
1

|w1|2
+ |w3|2 +

(
1

4
+ a2n

)
1

|w3|2
= 2t.

The following elementary lemma, which we state without proof, will often be helpful.
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Lemma 2.2. For fixed p > 0, let

g(x) := x+
p

x
, x > 0.

Then minx>0 g(x) = 2
√
p.

Letting in Lemma 2.2

p= 1
4 + a2n,

from (2.13), we see

t> 2
√

1
4 + a2n.

We then set

(2.14) tn := 2
√

1
4 + a2n.

Clearly, with this choice of tn, condition (2.9) holds. To satisfy (2.8), the positive numbers

an will be chosen to increase to ∞.

Remark 2.3. Note that the map F̃n := Fn|Q3 degenerates at some point ofM3
t whenever

t> tn. Indeed, for any such t, find x0 > 0 satisfying g(x0) = t. Then the point(
√
x0,

1
2 − ian√

x0
,
√
x0,

1
2 + ian√

x0

)

lies in M3
t , and F̃n is degenerate at it.

Let us now turn to Part (B). We fix n> 1 and look for a solution to equation (2.10) in

the form

(2.15) Pn =

2n∑
k=1

αkw
2n−k
1 w2n−k+1

2 wk−13 wk4 ,

where αj are complex numbers, which will be computed in terms of an shortly. With Pn
given by (2.15), the left-hand side of (2.10) is

−α1(w1w2)
2n + α2n(w3w4)

2n

+

2n−1∑
k=1

((k + 1)α2n−k − (2n− k + 1)α2n−k+1)(w1w2)
k(w3w4)

2n−k.(2.16)

Write the right-hand side of (2.10) as(
1

2
+ ian

)2n

(w1w2)
2n +

(
1

2
− ian

)2n

(w3w4)
2n

+
2n−1∑
k=1

(−1)k
(

2n

k

) (
1

2
+ ian

)k (1

2
− ian

)2n−k
(w1w2)

k(w3w4)
2n−k.(2.17)

Comparing (2.16) and (2.17), we, first of all, see that

(2.18) α1 =−
(
1
2 + ian

)2n
, α2n =

(
1
2 − ian

)2n
.
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Next, using the expression for α2n from (2.18), comparison of (2.16) and (2.17) for k

increasing from 1 to n− 1 yields by induction

α2n−k =
1

k + 1

(
2n

k

) k∑
`=0

(−1)`
(

1

2
+ ian

)` (1

2
− ian

)2n−`
, k = 1, . . . , n− 1,

in particular,

(2.19) αn+1 =
1

n

(
2n

n− 1

) n−1∑
`=0

(−1)`
(

1

2
+ ian

)` (1

2
− ian

)2n−`
.

Similarly, using the expression for α1 from (2.18), comparison of (2.16) and (2.17) for k

decreasing from 2n− 1 to n+ 1 yields by induction

α2n−k+1 =− 1

2n− k + 1

(
2n

k

) 2n−k∑
`=0

(−1)`
(

1

2
+ ian

)2n−` (1

2
− ian

)`
,

k = n+ 1, . . . , 2n− 1,

in particular,

(2.20) αn =− 1

n

(
2n

n+ 1

) n−1∑
`=0

(−1)`
(

1

2
+ ian

)2n−` (1

2
− ian

)`
.

We will now compare the remaining terms of (2.16) and (2.17), namely, the ones

corresponding to k = n:

(n+ 1)(αn − αn+1) = (−1)n
(

2n

n

) (
1

2
+ ian

)n (1

2
− ian

)n
.

Invoking formulas (2.19) and (2.20) then leads to the following condition on an:

(2.21)

2n∑
`=0

(−1)`
(

1

2
+ ian

)` (1

2
− ian

)2n−`
= 0.

Dividing by (12 − ian)2n and setting

An :=−
1
2 + ian
1
2 − ian

,

we see that (2.21) is equivalent to
2n∑
`=0

A`n = 0.

Summing up the first 2n+ 1 terms of the geometric series with common ratio A, we then

obtain

1−A2n+1 = 0,

or, equivalently,

(2.22) Re
(
1
2 + ian

)2n+1
= 0.
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Thus, an must have the property that the value of the function z2n+1 at 1
2 + ian is an

imaginary number. Certainly, z2n+1 takes imaginary values on the line Re z = 1/2, and

we let 1
2 + ian be the point with the largest possible argument at which arg z2n+1 = π/2.

Namely, we choose an > 0 so that

(2.23) arg

(
1

2
+ ian

)
=

π
2 + 2πK

2n+ 1
,

where K is the largest integer less than n/2. It is then clear that (2.22) holds and

arg

(
1

2
+ ian

)
→ π

2
as n→∞;

hence, the sequence {an} converges to ∞. Therefore, by (2.14), condition (2.8) is satisfied.

We have thus found two sequences of polynomials {Rn} and {Pn} as required in Parts

(A) and (B). The proof of the theorem is complete.

To give a better idea of the above argument, we will now write out details for n= 1. This

special case will be required for our proof of Theorem 1.2 in the next section.

Example 2.4. Let n= 1. Condition (2.23) yields

a1 =
1

2
√

3
.

Hence, by (2.11), we have

R1 =

(
1

6
+

i

2
√

3

)
(w1w2)

2 − 2

3
w1w2w3w4 +

(
1

6
− i

2
√

3

)
(w3w4)

2,

and (2.15) and (2.18) lead to a formula for P1:

(2.24) P1 =−
(

1

6
+

i

2
√

3

)
w1w

2
2w4 +

(
1

6
− i

2
√

3

)
w2w3w

2
4.

Further, by (2.14), we have

(2.25) t1 =
2√
3
.

Then, by Remark 2.3, the map F̃1 is nondegenerate at every point of M3
t if and only if

1< t < 2/
√

3. We will investigate F̃1 for injectivity in the next section.

§3. Proof of Theorem 1.2

In order to produce a CR-embedding of M3
t in C3 for 1< t <

√
5/2, we will utilize the

map F̃1. It is clear from (2.25) that
√

5/2< t1; thus, we only need to show that F̃1 is

injective on each M3
t for t in this range.

We start by studying the fibers of F̃1.

Proposition 3.1. Let two points w = (w1, w2, w3, w4) and ŵ = (ŵ1, ŵ2, ŵ3, ŵ4) lie in

Q3 and assume that F̃1(w) = F̃1(ŵ). Then we have the following:

(a) ŵ1 = w1, ŵ3 = w3;

(b) if w1 = 0 or w3 = 0, then ŵ = w;
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(c) if w1 6= 0 and w3 6= 0, then either ŵ = w or one of the following holds:

ŵ4 =−1 + i
√

3

2w3
(w3w4 − 1),

ŵ4 =−1− i
√

3

2w3

(
w3w4 −

1 + i
√

3

2

)
;

(3.1)

(d) neither of the two values in the right-hand side of (3.1) is equal to w4 if w ∈M3
t for

t < t1;

(e) the two values in the right-hand side of (3.1) are distinct if w ∈M3
t for t < t1.

Hence, the fiber F̃−11 (F̃1(w)) consists of at most three points, and, if w ∈M3
t with w1 6= 0,

w3 6= 0 for t < t1, it consists of exactly three points.

Proof. Part (a) is immediate from (2.6). Furthermore, (2.24) yields

−
(

1

6
+

i

2
√

3

)
w1ŵ

2
2ŵ4 +

(
1

6
− i

2
√

3

)
ŵ2w3ŵ

2
4

=−
(

1

6
+

i

2
√

3

)
w1w

2
2w4 +

(
1

6
− i

2
√

3

)
w2w3w

2
4,(3.2)

which, together with (2.1), implies part (b).

From now on, we assume that w1 6= 0 and w3 6= 0. Then using (2.1), we substitute

(3.3) w2 =
1− w3w4

w1
, ŵ2 =

1− w3ŵ4

w1

into (3.2), and simplifying the resulting expression obtain

(ŵ4 − w4)

[
−w

2
3

3
ŵ2
4 +

((
1

2
+

i

2
√

3

)
w3 −

w2
3w4

3

)
ŵ4

+

(
1

2
+

i

2
√

3

)
w3w4 −

w2
3w

2
4

3
−
(

1

6
+

i

2
√

3

)]
= 0.(3.4)

We treat identity (3.4) as an equation with respect to ŵ4. By part (a) and formula (3.3),

the solution ŵ4 = w4 leads to the point w. Further, the solutions of the quadratic equation

given by setting the expression in the square brackets in (3.4) to zero are shown in formula

(3.1). This establishes part (c).

Next, for ŵ4 = w4, the expression in the square brackets in (3.4) becomes

−
(
w3w4 −

(
1

2
+

i

2
√

3

))2

=−R1|Q3

(cf. (2.12)), which implies that F̃1 is degenerate at w. This contradicts our choice of w and

thus establishes part (d).

Finally, the two values in (3.1) are easily seen to be equal if and only if

w3w4 =
1

2
+

i

2
√

3
,

which leads to the same contradiction as in part (d), so part (e) follows. The proof is

complete.
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Proposition 3.1 implies that in order to establish Theorem 1.2, it suffices to show that

for every value 1< t <
√

5/2 and every point

w =

(
w1,

1− w3w4

w1
, w3, w4

)
∈M3

t with w1 6= 0, w3 6= 0,

the point ŵ := (w1, (1− w3ŵ4)/w1, w3, ŵ4) does not lie in M3
t for any of the two choices

of ŵ4 in (3.1). In fact, we only need to consider the first solution in (3.1) as the second

solution turns into the first one upon interchanging w4 and ŵ4.

Let now ŵ correspond to the first choice of ŵ4 in (3.1) and assume that ŵ ∈M3
t . Set

b := w3w4, b̂ := w3ŵ4. Then by (3.1), we see

(3.5) b̂=−1 + i
√

3

2
(b− 1).

We have

(3.6)

|w1|2 +
|b− 1|2

|w1|2
+ |w3|2 +

|b|2

|w3|2
= 2t,

|w1|2 +
|b̂− 1|2

|w1|2
+ |w3|2 +

|b̂|2

|w3|2
= 2t,

where, by (3.5), the second equation can be rewritten as

(3.7) |w1|2 +

∣∣∣∣∣b− 1 + i
√

3

2

∣∣∣∣∣
2

1

|w1|2
+ |w3|2 +

|b− 1|2

|w3|2
= 2t.

By Lemma 2.2, it then follows that the point b lies in the intersection of the interiors of

two ellipses:

D := E1 ∩ E2,

where

E1 :=

{
z ∈ C : |z − 1|+ |z|<

√
5

2

}
,

with ∂E1 having foci at 1 and 0, and

E2 :=

{
z ∈ C : |z − 1|+

∣∣∣∣∣z − 1 + i
√

3

2

∣∣∣∣∣<
√

5

2

}
,

with ∂E2 having foci at 1 and (1 + i
√

3)/2.

Subtracting (3.7) from the first equation in (3.6) yields

(3.8)
b1 −

√
3b2

|w1|2
+

1− 2b1
|w3|2

= 0,

where b1 := Re b and b2 := Im b. Observe that neither of the numerators in (3.8) is zero since

neither of the lines 2b1 − 1 = 0, b1 −
√

3b2 = 0 intersects D.

By (3.8), we have

|w1|2 =
b1 −

√
3b2

2b1 − 1
|w3|2.
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Plugging this expression into the first identity in (3.6) and simplifying the resulting formulas,

we obtain (
b1 −

√
3b2

2b1 − 1
+ 1

)
|w3|2 +

(
|b− 1|2(2b1 − 1)

(b1 −
√

3b2)
+ |b|2

)
1

|w3|2
= 2t.

Lemma 2.2 then yields

(3.9)

(
b1 −

√
3b2

2b1 − 1
+ 1

)(
|b− 1|2(2b1 − 1)

(b1 −
√

3b2)
+ |b|2

)
<

5

4
.

Let us denote the left-hand side of (3.9) by φ(b). We will now study the behavior of the

function φ in the domain D and prove the following.

Lemma 3.2. One has

φ(b) > 5
4

for all b ∈ D.

Proof. Let L be the line b1 +
√

3b2 − 1 = 0, which we write in parametric form as

−3 + i
√

3

8
σ + 1, σ ∈ R.

The segment I := L ∩ D passes through the common focus of ∂E1 and ∂E2 at 1 (for σ = 0)

and its closure joins the two points of the intersection ∂E1 ∩ ∂E2. By restricting φ to I, one

obtains the quadratic function

φ̂(σ) := 1
4(3σ2 − 6σ + 8),

which is easily seen to be greater than or equal to 5/4 everywhere.

Next, we will restrict φ to line segments orthogonal to L and lying in D. Fix σ0 ∈ I and

consider the line Lσ0 given in parametric form as

1 + i
√

3

2
τ +
−3 + i

√
3

8
σ0 + 1, τ ∈ R.

Clearly, Lσ0 passes through the point

b0 :=
−3 + i

√
3

8
σ0 + 1 ∈ I

and is orthogonal to L. Restricting φ to the segment Lσ0 ∩ D, one obtains the function

(3.10) φ̂σ0(τ) :=
4− 3σ0

4((4− 3σ0)2 − 16τ2)
((32− 48σ0)τ

2 − 9σ30 + 30σ20 − 48σ0 + 32)

for some range of the parameter τ . Note that in (3.10), the denominator vanishes exactly at

the two points where Lσ0 intersects the lines 2b1 − 1 = 0, b1 −
√

3b2 = 0; these two points

lie outside of D.

It is straightforward to see from (3.10) that φ̂σ0 takes its minimum at τ = 0, that is, at

the point b0 ∈ I. Indeed, one computes

φ̂′σ0(τ) =
32(3σ0 − 4)2(3σ20 − 6σ0 + 4)

((3σ0 − 4)2 − 16τ2)2
τ.
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As 3σ20 − 6σ0 + 4 > 1, the derivative of φ̂σ0 vanishes only at τ = 0, which is the minimum

point of φ̂σ0 , as required.

Since the function φ̂ is already known to be greater than or equal to 5/4, it follows that

φ̂σ0 is greater than or equal to 5/4 everywhere.

This completes the proof of the lemma.

As Lemma 3.2 contradicts inequality (3.9), the theorem follows.

§4. A few remarks

We conclude the paper by making a number of observations and comments.

Remark 4.1. First of all, it is easy to see that F̃n is not injective on M3
t for every

t>
√

2 and every n. Indeed, fix t>
√

2, let u 6= 0 be a real number satisfying

2u2 +
1

u2
= 2t

(cf. Lemma 2.2) and consider the following two distinct points in Q3:

(4.1) w :=

(
u,

1

u
, u, 0

)
, w′ :=

(
u, 0, u,

1

u

)
.

Then w, w′ ∈M3
t , and it follows from (2.6) and (2.15) that F̃n(w) = F̃n(w′) = (u, u, 0).

Remark 4.2. The polynomials Rn constructed in the proof of Theorem 1.1 do not

vanish on the sphere S3 ⊂Q3 (see (2.2)). Therefore, by (2.6), (2.10) and Lemma 2.1, all the

maps F̃n are nondegenerate at every point of S3. It is also clear that all F̃n are injective on

S3. Hence, each F̃n yields an explicit real-analytic totally real embedding of S3 to C3. It

then follows that each F̃n is biholomorphic is a neighborhood of S3 in Q3 and thus defines

a CR-embedding of M3
t in C3 if 1< t < τn for some τn. We did not attempt to determine

or estimate τn for n > 1 as the calculations involved appear to be quite hard. Recall that,

by Remark 4.1, the map F̃n fails to be injective on M3
t for all t>

√
2, so we have τn 6

√
2.

Remark 4.3. Article [AR] yields a class of maps of the form (2.4), with the restriction

of f to S3 being a harmonic polynomial given by

P =

(
w̄1

∂

∂w3
− w̄3

∂

∂w1

) m∑
j=1

Qj
pj(qj + 1)

 ,

where Qj is a homogeneous harmonic complex-valued polynomial in w1, w̄1, w3, w̄3 of total

degree pj > 1 in w1, w3 and total degree qj in w̄1, w̄3 such that the sum Q :=Q1 + · · ·+Qm
does not vanish on S3. Every map of this kind defines a totally real embedding of S3 to C3

and therefore a CR-embedding of M3
t for t sufficiently close to 1. One can homogenize P by

multiplying its lower-degree homogeneous components by suitable powers of the polynomial

|w1|2 + |w3|2, which is equal to 1 on S3. The resulting polynomial P̂(w1, w̄1, w3, w̄3) may

no longer be harmonic; however, the map

(w1, w3) 7→ (w1, w3, P̂(w1, w̄1, w3, w̄3))

still defines the same totally real embedding of S3 to C3 and its extension to C4

(4.2) (w1, w2, w3, w4) 7→ (w1, w3, P̂(w1, w2, w3, w4))

the same CR-embedding of M3
t for t sufficiently close to 1.
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As one example, in [AR], the authors set

P = w3w̄1w̄
2
3 − w1w̄

2
1w̄3 + iw̄1w̄3

=

(
w̄1

∂

∂w3
− w̄3

∂

∂w1

) (
|w1|4 − 4|w1|2|w3|2 + |w3|4

6
+
i(|w3|2 − |w1|2)

2

)
.

Here,

(4.3) Q= |w1|4 − 4|w1|2|w3|2 + |w3|4 + i(|w3|2 − |w1|2),

and it is not hard to see that Q indeed does not vanish on S3. To homogenize P, one

multiplies its lowest-degree homogeneous component iw̄1w̄3 by |w1|2 + |w3|2, which yields

the polynomial

P̂(w1, w̄1, w3, w̄3) = (1 + i)(w3w̄1w̄
2
3 + iw1w̄

2
1w̄3).

This is the polynomial (up to the factor 1 + i) that appears in the main theorem of [AR].

Its natural extension to C4 is

(4.4) P̂(w1, w2, w3, w4) = (1 + i)(w2w3w
2
4 + iw1w

2
2w4).

In [I1, I2], we investigated the corresponding map (4.2) for nondegeneracy and injectivity

and eventually proved in [I2, Theorem 1.1] that this map yields a CR-embedding of M3
t to

C3 for all 1< t <
√

(2 +
√

2)/3. Most of our effort went into establishing injectivity for t in

this range.

The polynomials Pn that we utilized in the proof of Theorem 1.1 in Section 2 (see formula

(2.15)) are homogeneous by construction, and, except in the case n= 1, we do not know

whether they arise from suitable harmonic polynomials by the homogenization procedure

described above. For n= 1, calculations are easy, and P1 is readily seen to come from the

inhomogeneous harmonic polynomial

− 1

6
w3w̄1w̄

2
3 +

1

6
w1w̄

2
1w̄3 −

i

2
√

3
w̄1w̄3.

Note that for the polynomial P̂ from (4.4), the expression

w3
∂P̂
∂w2

− w1
∂P̂
∂w4

,

when restricted to Q3, has two distinct roots if regarded as a function of the product w3w4

(see [I2, formulas (2.7), (2.8)]). For comparison, from (2.10), we see that the analogous

expression for Pn in place of P̂ is equal to Rn whose restriction to Q3 has only one (multiple)

root (see (2.12)). This makes our polynomials Pn easier to deal with in computations. One

illustration of this is the proof of Theorem 1.2, where we used F1 instead of map (4.2) with

P̂ given by (4.4), on which the proof of [I2, Theorem 1.1] was based. In particular, formulas

(3.1) are less complicated than the corresponding formulas in [I2]. Overall, the proof of

Theorem 1.2 is computationally much more transparent than that of [I2, Theorem 1.1].

It is possible that one can investigate the CR-embeddability of M3
t in C3 for all t by

using other maps of the form (4.2). Note, however, that while it is tempting to take Q to be

a polynomial in |w1|2, |w3|2 (as was done in (4.3)), one should avoid doing so as otherwise

map (4.2) will not be injective on M3
t with t>

√
2. This follows exactly as in Remark 4.1;

namely, (4.2) takes equal values at the two points defined in (4.1).
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[F2] F. Forstnerič, On totally real embeddings into Cn, Expo. Math. 4 (1986), 243–255.
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