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Diffusive convective elliptic problem in
variable exponent space and measure data
Safimba Soma , Ibrahime Konaté, and Adama Kaboré
Abstract. In this article, we study a class of convective diffusive elliptic problem with Dirichlet
boundary condition and measure data in variable exponent spaces. We begin by introducing an
approximate problem via a truncation approach and Yosida’s regularization. Then, we apply the
technique of maximal monotone operators in Banach spaces to obtain a sequence of approximate
solutions. Finally, we pass to the limit and prove that this sequence of solutions converges to at
least one weak or entropy solution of the original problem. Furthermore, under some additional
assumptions on the convective diffusive term, we prove the uniqueness of the entropy solution.

1 Introduction

Solving partial differential equations and variational problems combined with
assumptions of p(x)-growth has undergone significant evolution, both through the
theoretical development of mathematics in Sobolev spaces with variable exponent
and through their accuracy applications in modeling various real-word phenomena.
Indeed, fluids that change their chemical properties when subjected to an electric
field can be efficiently modeled in Sobolev spaces with variable exponents [1, 10,
24]. A Leray–Lions type operator with p(.)-growth also appears in biology, as it was
discovered that blood exhibits electrorheological fluid properties. In [8], Chen et al.
demonstrated the importance of such equations in image processing. For example,
such operator can be used to search for a perfect image from a noisy one.

The aim of this article is to study the existence and uniqueness of solution for the
following nonlinear elliptic problem.

(P){ −div a(x ,∇u) + β(u) + divϕ(u) ∋ μ in Ω
u = 0 on ∂Ω,(1.1)

where Ω is an open bounded domain of RN (N ≥ 2), β is a maximal monotone graph
with bounded domain on R (i.e., dom(β) = [m, M] ⊂ R) such that 0 ∈ β(0) and μ is
a Radon diffuse measure.

In the literature, there are numerous works related to the problem (P), but it’s
important to emphasize that none of these studies have addressed the problem (P)
under measure data and with divϕ ≠ 0 simultaneously. Going into detail, when β is
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assumed to be a continuous and nondecreasing function with divϕ = 0, the authors in
[6] proved the existence and uniqueness of entropy solution to the problem (P)when
the right-hand side datum belongs to L1. For other works in the same direction, we
refer to [2, 4, 5, 9, 11]. In the context of classical Sobolev space with constant exponent,
Soma et al. [16] analyzed the existence and uniqueness of solution of problem (P)
when the convective diffusive term ϕ is null (see also [3]). Furthermore, they also
obtained in [22] the existence and uniqueness of the entropy solution in the framework
of variable exponent spaces and measure data. In the case of the right-hand side
being in L1, Wittbold and Zimmermann [26] used the bi-monotone technique and
the comparison principle to prove the existence and uniqueness of the renormalized
solution to the problem (P).

The aim of this article is to extend the main results of [26] to the framework
of measure data on the right-hand side. However, due to the lack of regularity in
the measure data, we cannot use the same method, therefore, we must proceed
differently. To achieve our goal, we first construct an approximate problem (Pε)
through approximation by truncation and Yosida regularization. Then, using the
technique of maximal monotone operators in Banach spaces, we ensure the existence
of a sequence of solutions to the problem (Pε). We conclude by proving that this
sequence of solutions converges to the solution of the problem (P).

The remaining part of this article is organized as follows: In Section 2, we introduce
some preliminary results that can be useful throughout the article. In Section 3, we
present the necessary assumptions on the data of the problem and also we provide the
main results. In Section 4, we prove the existence of at least one weak and/or entropy
solution. In Section 5, we explore the question of uniqueness of the solution.

2 Preliminaires

Let Ω be a bounded open domain in R
N (N ≥ 3) with smooth boundary ∂Ω. In this

entire article, p(.) ∶ Ω 
→ R
+ is a continuous function satisfying

1 < p− ∶= min
x∈Ω

p(x) ≤ p+ ∶= max
x∈Ω

p(x) < ∞.(2.1)

We define the set

C+(Ω) = {p ∈ C(Ω) ∶ min
x∈Ω

p(x) > 1}.

For any p ∈ C+(Ω), the variable exponent Lebesgue space is defined by

Lp(.)(Ω) ∶= {u ∶ Ω → R measurable ∶ ∫
Ω
∣u∣p(x)dx < ∞}.

If the exponent is bounded, i.e., p+ < ∞, then the expression

∥u∥p(.) ∶= inf {λ > 0 ∶ ∫
Ω
∣u(x)

λ
∣

p(x)

dx ≤ 1}
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Diffusive convective elliptic problem 3

defines a norm in Lp(.)(Ω) called the Luxemburg norm. Then (Lp(.)(Ω), ∥u∥p(.)) is
a separable Banach space. Moreover, if 1 < p− ≤ p+ < ∞, then Lp(.)(Ω) is uniformly
convex, hence reflexive, and its dual space is isomorphic to Lp′(.)(Ω), where 1

p(x) +
1

p′(x) = 1 in Ω.
The p(.)-modular of the Lp(.)(Ω) space is the mapping ρp(.) ∶ Lp(.)(Ω) 
→ R

defined by

ρp(.)(u) ∶= ∫
Ω
∣u∣p(x)dx .

For any u ∈ Lp(.)(Ω), the following inequality (see [12, 13]) will be used later.

min{∥u∥p−
p(.); ∥u∥p+

p(.)} ≤ ρp(.)(u) ≤ max{ ∥u∥p−
p(.); ∥u∥p+

p(.)} .(2.2)

For any u ∈ Lp(.)(Ω) and v ∈ Lp′(.)(Ω), we have the Hölder type inequality (see [19]).

∣ ∫
Ω

uvdx∣ ≤ ( 1
p−

+ 1
q−
) ∥u∥p(.)∥v∥q(.).(2.3)

If Ω is bounded and p, q ∈ C+(Ω) such that p(x) ≤ q(x) for any x ∈ Ω, then the
embedding Lq(.)(Ω) ↪ Lp(.)(Ω) is continuous (see [19, Theorem 2.8]).

Proposition 2.1 ([19]) For un , u ∈ Lp(x)(Ω) and p+ < ∞, the following assertions hold
true.

(i) ∥u∥p(.) < 1 (resp, = 1, 1) if and only if ρp(.)(u) < 1 (resp, = 1, 1);
(ii) ∥u∥p(.) > 1 imply ∥u∥p−

p(.) ≤ ρp(.)(u) ≤ ∥u∥p+
p(.), and ∥u∥p(.) < 1 imply ∥u∥p+

p(.) ≤
ρp(.)(u) ≤ ∥u∥p−

p(.);
(iii) ∥un∥p(.) → 0 if and only if ρp(.)(un) → 0, and ∥un∥p(.) →∞ if and only

ρp(.)(un) → ∞.

Now, we define the variable exponent Sobolev space as follows

W 1, p(.)(Ω) ∶= {u ∈ Lp(.)(Ω) ∶ ∣∇u∣ ∈ Lp(.)(Ω)},

with the norm

∣∣u∣∣1, p(.) = ∥u∥p(.) + ∥∇u∥p(.).

For a measurable function u ∶ Ω 
→ R, we introduce the following notation

ρ1, p(.)(u) ∶= ∫
Ω
∣u∣p(x)dx + ∫

Ω
∣∇u∣p(x)dx .

We denote by W 1, p(.)
0 (Ω) the closure of C∞0 (Ω) in W 1, p(.)(Ω).

The Sobolev exponent is defined as p∗(x) = N p(x)
N−p(x) if p(x) < N and p∗(x) = ∞ if

p(x) ≥ N .
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Proposition 2.2 (see [25, 27]) For u ∈ W 1, p(.)(Ω), the following properties hold

(i) ∥u∥1, p(.) > 1 ⇒ ∥u∥p−
1, p(.) < ρ1, p(.)(u) < ∥u∥p+

1, p(.);

(ii) ∥u∥1, p(.) < 1 ⇒ ∥u∥p+
1, p(.) < ρ1, p(.)(u) < ∥u∥p−

1, p(.);
(iii) ∥u∥1, p(.) < 1 (respectively, = 1, 1) ⇐⇒ ρ1, p(.)(u) < 1 (respectively, = 1, 1).

Theorem 2.3 ([13, 14])
(i) Assuming 1 < p− ≤ p+ < ∞, the space W 1, p(.)(Ω) is a separable and reflexive

Banach space.
(ii) If q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω, then the embedding

W 1, p(.)
0 (Ω) ↪↪ Lq(.)(Ω) is continuous and compact.

(iii) Poincaré inequality: there exists a constant C > 0, such that

∥u∥p(.) ≤ C∥∇u∥p(.) , ∀u ∈ W 1, p(.)
0 (Ω).

(iv) Sobolev–Poincaré inequality: there exists a constant C > 0, such that

∥u∥p∗(.) ≤ C∥∇u∥p(.) , ∀u ∈ W 1, p(.)
0 (Ω).

Remark 2.4 By (iii) of Theorem 2.3, we deduce that ∥∇u∥p(.) and ∥u∥1, p(.) are
equivalent norms in W 1, p(.)

0 (Ω).

We denote by LN the N-dimensional Lebesgue measure of RN and by Mb(Ω) the
space of bounded Radon measures in Ω, equipped with its standard norm ∣∣.∣∣Mb(Ω).
Note that, if μ belongs to Mb(Ω), then ∣μ∣(Ω)(the total variation of μ) is a bounded
positive measure on Ω.

Given μ ∈Mb(Ω), we say that μ is diffuse with respect to the capacity W 1, p(.)
0 (Ω)

(p(.)-capacity for short) if μ(A) = 0, for every set A such that Capp(.)(A, Ω) = 0.
For every A ⊂ Ω, we denote

Sp(.)(A) = {u ∈ W 1, p(.)
0 (Ω) ∩ C0(Ω) ∶ u = 1 on A, u ≥ 0 on Ω}.

The p(.)-capacity of every subset A with respect to Ω is defined by

Capp(.)(A, Ω) = inf
u∈Sp(.)(A)

{∫
Ω
∣ ▽ u∣p(x)dx}.

In the case Sp(.)(A) = ∅, we set Capp(.)(A, Ω) = +∞.
The set of bounded Radon diffuse measure in the variable exponent setting is

denoted by M
p(.)
b (Ω). We will use the following decomposition result of bounded

Radon diffuse measure due to Nyanquini et al. (see [22]).

Theorem 2.5 Let p(.) ∶ Ω 
→ (1,+∞) be a continuous function and μ ∈Mb(Ω).
Then μ ∈Mp(.)

b (Ω) if and only if μ ∈ L1(Ω) +W−1, p′(.)(Ω).

Lemma 2.6 Let Ω be a bounded open subset of RN (N ≥ 1). If u ∈ W 1, p(x)
0 (Ω), then

∫
Ω

div(u)dx = 0.
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If γ is a maximal monotone operator defined on R, by γ0 we denote the main
section of γ; i.e.,

γ0(s) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

minimal absolute value of γ(s) if γ(s) ≠ ∅
+∞ if [s,+∞) ∩ D(γ) = ∅
−∞if (−∞, s] ∩ D(γ) = ∅.

We also recall an important result on convergence (see [22]).

Lemma 2.7 Let (βn)n≥1 be a sequence of maximal monotone graphs such that βn → β
in the sense of the graph (for (x , y) ∈ β, there exists (xn , yn) ∈ βn such that xn → x and
yn → y). We consider two sequences (zn)n≥1 ⊂ L1(Ω) and (wn)n≥1 ⊂ L1(Ω).

We suppose that: ∀n ≥ 1, wn ∈ βn(zn), (wn)n≥1 is bounded in L1(Ω) and zn → z in
L1(Ω). Then,

z ∈ dom(β).

Throughout the article, we use the truncation function Tk , (k > 0) defined by

Tk(s) = max{−k, min{k; s}}.(2.4)

It is obvious that lim
k→∞

Tk(s) = s and ∣Tk(s)∣ = min{∣s∣; k}.

We define T
1, p(.)
0 (Ω) as the set of the measurable function u ∶ Ω 
→ R such that

Tk(u) ∈ W 1, p(.)
0 (Ω).

We denote by

Hε = min( s+

ε
; 1) and sign+0 (s) = { 1 if s > 0,

0 if s ≤ 0,

Remark that as ε goes to 0, Hε(s) goes to sign+0 (s).
To outline our definition of solution and the principal results, we set

int(dom(β)) = (m, M) with −∞ < m ≤ 0 ≤ M < +∞.

For any r ∈ R and any measurable function u on Ω, [u = r], [u ≤ r] and [u ≥ r] denote
the set {x ∈ Ω ∶ u(x) = r}, {x ∈ Ω ∶ u(x) ≤ r}, {x ∈ Ω ∶ u(x) ≥ r}, respectively.

3 Assumptions and main results

3.1 Assumptions

We study the problem (P) under the following assumptions on the data.
Let Ω be a bounded open domain in R

N (N ≥ 2) with smooth boundary domain
∂Ω.

We assume that p(.) verifies (2.1) and a ∶ Ω ×R
N 
→ R

N denotes a Carathéodory
function satisfying the following conditions.
(H1) there exists a positive constant C1 such that

∣a(x , ξ)∣ ≤ C1( j(x) + ∣ξ∣p(x)−1),(3.1)
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for almost every x ∈ Ω and for every ξ ∈ RN , where j is a non-negative function in
Lp′(.)(Ω), with 1

p(x) +
1

p′(x) = 1;
(H2) for all ξ, η ∈ RN with ξ ≠ η and for every x ∈ Ω,

(a(x , ξ) − a(x , η)).(ξ − η) > 0,(3.2)

(H3) there exists a positive constant C2 such that

a(x , ξ).ξ ≥ C2∣ξ∣p(x) ,(3.3)

for ξ ∈ RN and almost every x ∈ Ω.
(H4) dom(β) = [m, M] ⊂ R where −∞ < m ≤ 0 ≤ M < +∞.
(H5) ϕ ∶ R
→ R

N is a continuous function with ϕ(0) = 0 and there exists a
constant C3 > 0 such that

∀s ∈ R, ∣ϕ(s)∣ ≤ C3∣s∣p(x)−1 .(3.4)

3.2 Notions of solutions and main results

Definition 3.1 Let μ ∈Mp(.)
b (Ω). We say that a couple (u, b) ∈ W 1, p(.)

0 (Ω) × L1(Ω)
is a weak solution of problem (P) if there exists ν ∈Mp(.)

b (Ω) satisfying ν " LN and

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u ∈ β(u)LN − a.e . in Ω, b ∈ β(u)LN − a.e . in Ω,
ν+ is concentrated on [u = M],
ν− is concentrated on [u = m],

(3.5)

such that

∫
Ω

a(x ,∇u).∇φdx + ∫
Ω

bφdx + ∫
Ω

φdν − ∫
Ω

ϕ(u).∇φdx = ∫
Ω

φdμ,(3.6)

for any φ ∈ W 1, p(.)
0 (Ω) ∩ L∞(Ω).

Moreover,

lim
n→+∞∫{n<∣u∣<n+1}

∣∇u∣p(x)dx = 0.(3.7)

Definition 3.2 Let μ ∈Mp(.)
b (Ω). An entropy solution of problem (P) is a couple

(u, b) ∈ W 1, p(.)
0 (Ω) × L1(Ω) such that (3.5) holds and

∫
Ω

a(x ,∇u).∇Tk(u − φ)dx + ∫
Ω

bTk(u − φ)dx − ∫
Ω

ϕ(u).∇Tk(u − φ)dx

≤ ∫
Ω

Tk(u − φ)dμ,(3.8)

where k > 0 and φ ∈ W 1, p(.)
0 (Ω) ∩ L∞(Ω) such that φ ∈ domβ.

Theorem 3.3 Assuming (H1) − (H5) and μ ∈Mp(.)
b (Ω). Then, the problem (P)

admits at least one renormalized solution in the sense of Definition 3.1.

The connection between our notion of weak solution and the entropy solution is
formulated as follows.
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Theorem 3.4 A solution of problem (P) in the sense of Definition 3.1 is also an entropy
solution.

Proof Let (u, b) be a weak solution of (P) and φ ∈ W 1, p(.)
0 (Ω) ∩ L∞(Ω) such that

φ ∈ dom(β).
For any k > 0, taking Tk(u − φ) as a test function in (3.6) one obtains

∫
Ω

a(x ,∇u).∇Tk(u − φ)dx − ∫
Ω

ϕ(u).∇Tk(u − φ)dx + ∫
Ω

bTk(u − φ)dx

+ ∫
Ω

Tk(u − φ)dν = ∫
Ω

Tk(u − φ)dμ.(3.9)

Neglecting the positive term ∫
Ω

Tk(u − φ)dν (see [18]), we obtain (3.8). ∎

4 Existence of solution for a regular right hand side data

In this section we study the following problem

(Pϕ
g ,γ){

−div a(x ,∇u) + g(u) + divϕ(u) = γ in Ω
u = 0on ∂Ω,(4.1)

where g is a continuous and nondecreasing function such that g(0) = 0 and γ ∈
L∞(Ω).

Theorem 4.1 Under assumptions (H1) − (H3), the problem (Pϕ
g ,γ) admits at least one

weak solution in the following sense:
u ∈ W 1, p(.)

0 ∩ L∞(Ω), g(u) ∈ L∞(Ω) and

∫
Ω

a(x ,∇u).∇φdx + ∫
Ω

g(u)φdx − ∫
Ω

ϕ(u).∇φdx = ∫
Ω

φγdx .(4.2)

Proof For any k > 0, let us consider the following problem

(Pϕ
Tk(g),γ){

−div a(x ,∇uk) + Tk(g(uk)) + divϕ(uk) = γ in Ω
uk = 0on ∂Ω,

Theorem 4.2 Under assumptions (H1) − (H3), the problem (Pϕ
Tk(g),γ) admits at least

one weak solution in the following sense:
u ∈ W 1, p(.)

0 (Ω) and

∫
Ω

a(x ,∇uk).∇φdx + ∫
Ω

Tk(g(uk))φdx − ∫
Ω

ϕ(uk).∇φdx = ∫
Ω

φγdx .(4.3)

for any φ ∈ W 1, p(.)
0 (Ω) ∩ L∞(Ω).

Moreover

∀k > ∥γ∥∞, ∣g(uk)∣ ≤ ∥γ∥∞ a.e. in Ω.(4.4)

∎
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Proof We define the operators A1, A2 and A ∶= A1 + A2, acting from W 1, p(.)
0 (Ω) into

its dual W−1, p′(.)(Ω) as follows

⟨A1u, φ⟩ = ∫
Ω
(a(x ,∇u) − ϕ(u)).∇φdx , ∀ u, φ ∈ W 1, p(.)

0 (Ω)

and

⟨A2u, φ⟩ = ∫
Ω

Tk(g(u))φdx , ∀ u, φ ∈ W 1, p(.)
0 (Ω).

We have

∣ ∫
Ω

Tk(g(u))φdx∣ ≤ ∫
Ω
∣Tk(g(u))∣∣φ∣dx

≤ k∫
Ω
∣φ∣dx

≤ k( 1
p−

+ 1
p′−
)(meas(Ω) + 1)

1
p′− ∥φ∥p(.)

≤ C4∥φ∥1, p(.) .

According to (H1), one has

∣ ∫
Ω

a(x ,∇u).∇φdx∣ ≤ ∫
Ω
∣a(x ,∇u)∣∣∇φ∣dx

≤ C1 ∫
Ω

j(x)∣∇φ∣dx + C1 ∫
Ω
∣∇u∣p(x)−1∣∇φ∣dx

≤ C1(
1

p−
+ 1
(p′)−)(∥ j∥p′(.) + ∥∣∇u∣∥p(x)−1

p(.) )∥∇φ∥p(.)

≤ C5∥φ∥1, p(.) .

By using the growth condition (H5) on ϕ, one obtains

∣ ∫
Ω

ϕ(u).∇φdx∣ ≤ ∫
Ω
∣ϕ(u)∣∣∇φ∣dx

≤ C3 ∫
Ω
∣u∣p(x)−1∣∇φ∣dx

≤ C3(
1

p−
+ 1
(p′)−)∥∣u∣

p(x)−1∥p′(.)∥∇φ∥p(.)

≤ C6∥φ∥1, p(.) .

Claim 1: the operator A is bounded.

Indeed, for any u, φ ∈ W 1, p(.)
0 (Ω), one has

∣⟨Au, φ⟩∣ ≤ C7∥φ∥1, p(.) .

Therefore, A is bounded.
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Diffusive convective elliptic problem 9

Claim 2: A is coercive.
Indeed, since the divergence theorem implies ∫

Ω
ϕ(u).∇udx = 0, and

∫
Ω

Tk(g(u))udx ≥ 0, thanks to Proposition 2.1 and the Poincaré-type inequality,
one obtains

⟨Au, u⟩ = ∫
Ω

a(x ,∇u).∇udx + ∫
Ω

Tk(g(u))udx − ∫
Ω

ϕ(u).∇udx

≥ ∫
Ω

a(x ,∇u).∇udx

≥ C1 ∫
Ω
∣∇u∣p(x)dx

≥ C1∥∇u∥α
p(.)

≥ C8∥u∥α
1, p(.)

where

α = { p+ if ∥∇u∥p(.) ≤ 1,
p− if ∥∇u∥p(.) > 1.

Thus, we obtain

⟨Au, u⟩
∥u∥1, p(x)


→∞ as ∥u∥1, p(.) 
→∞.

Claim 3: A1 is of type (M).

Indeed, let (un)n∈N be a sequence in W 1, p(.)
0 (Ω) such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

un ⇀ u in W 1, p(.)
0 (Ω) as n →∞,

A1un ⇀ χ in W−1, p′(.)(Ω) as n →∞,
lim

n→∞
sup⟨A1un , un⟩ ≤ ⟨χ, u⟩.

(4.5)

Let us set hn(x) = b(x , un ,∇un) where b(x , s, φ) = a(x , φ) − ϕ(s), ∀(x , s, φ) ∈ Ω ×
R ×R

N .
Then, one has

∣hn(x)∣ = ∣a(x ,∇un) − ϕ(un)∣ ≤ C9( j(x) + ∣un ∣p(x)−1 + ∣∇un ∣p(x)−1),(4.6)

where C9 = max{C1 , C3}.
We aim to show that

⟨A1un , un⟩ 
→ ⟨χ, u⟩ as n 
→∞, where χ = A1u.

Due to the compact embedding W 1, p(.)
0 (Ω) ↪↪ Lp(.)(Ω), one has un → u in

Lp(.)(Ω) as n →∞ (up to a subsequence still denoted (un)n∈N). Since (un)n∈N is a
bounded sequence in W 1, p(.)

0 (Ω), one can deduce from (4.6) that (hn)n∈N is bounded
in (Lp′(.)(Ω))N . Therefore, there exists a function h ∈ (Lp′(.)(Ω))N such that

hn ⇀ h in (Lp′(.)(Ω))N as n →∞.(4.7)

https://doi.org/10.4153/S0008414X24001196 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24001196


10 S. Soma, I. Konate, and A. Kabore

For all φ ∈ W 1, p(.)
0 (Ω), one has

⟨χ, φ⟩ = lim
n→∞

⟨A1un , φ⟩ = lim
n→∞∫Ω

hn(x).∇φdx = ∫
Ω

h(x).∇φdx = ⟨A1u, φ⟩.(4.8)

This implies that χ = A1u.
Applying (4.5), one obtains

lim sup
n→+∞

⟨A1un , un⟩ ≤ ∫
Ω

h(x).∇udx .(4.9)

Using (H2), for any φ ∈ (Lp(.)(Ω))N , one has

∫
Ω
(b(x , un ,∇un) − b(x , un , φ)).(∇un − φ)dx

= ∫
Ω
(a(x ,∇un) − a(x , φ)).(∇un − φ)dx ≥ 0.

This is equivalent to

∫
Ω

hn .∇undx − ∫
Ω

hn .φdx − ∫
Ω

b(x , un , φ).(∇un − φ)dx ≥ 0.(4.10)

Since un ⇀ u in W 1, p(.)
0 (Ω), then up to a subsequence still denoted (un)n∈N one has

un → u in Lp(.)(Ω), un → u a.e in Ω as n →∞, and ∣un ∣ ≤ v ∈ Lp(.)(Ω).
Since the function b(x , s, φ) is continue with respect to s, on has

b(x , un , φ) 
→ b(x , u, φ) a.e in Ω.

On the other hand, one has

∣b(x , un , φ)∣ ≤ C9( j(x) + ∣v∣p(x)−1 + ∣φ∣p(x)−1) ∈ (Lp′(.)(Ω))N .

Then, using Lebesgue dominated convergence theorem, one obtains

b(x , un , φ) 
→ b(x , u, φ) a.e in (Lp′(.)(Ω))N .

Therefore, we have

lim
n→∞∫Ω

b(x , un , φ).(∇un − φ)dx = ∫
Ω

b(x , u, φ).(∇u − φ)dx

and

lim
n→0∫Ω

hn .φdx = ∫
Ω

h.φdx .

Passing to the limit as n →∞ in (4.10) and using (4.9), we obtain

∫
Ω
(h − b(x , u, φ)).(∇u − φ)dx ≥ 0.(4.11)

By considering φ̃ ∈ (D(Ω))N and replacing in (4.11) φ by ∇u + tφ̃, t ∈ R, one obtains

(−t)∫
Ω
(h − b(x , u,∇u + tφ̃)).φ̃dx ≥ 0.(4.12)

https://doi.org/10.4153/S0008414X24001196 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24001196


Diffusive convective elliptic problem 11

Dividing the above inequality by t > 0 and by t < 0, then letting t go to 0, one can
deduce from Lebesgue’s dominated convergence theorem that

∫
Ω
(h − b(x , u,∇u)).φ̃dx = 0,

this implies that h = b(x , u,∇u). Hence A1u = χ.

Claim 4: A2 is monotone and weakly continue.
Since for any k > 0, the function Tk(g) is non-decreasing and satisfies Tk(g(0)) =

0, one has

⟨A2u − A2φ, u − φ⟩ = ∫
Ω
(Tk(g(u)) − Tk(g(φ)))(u − φ)dx ≥ 0.

Hence, A2 is monotone.
Let (un)n∈N be a sequence in W 1, p(.)

0 (Ω) such that un ⇀ u in W 1, p(.)
0 (Ω) as n →

∞. Then, for all φ ∈ W 1, p(.)
0 (Ω), one has

⟨A2un − A2u, φ⟩ = ∫
Ω
(Tk(g(un)) − Tk(g(u)))φdx .

Since un ⇀ u in W 1, p(.)
0 (Ω), up to a subsequence still denoted (un)n∈N, one has un →

u in Lp(.)(Ω), un → u a.e in Ω as n →∞, and ∣un ∣ ≤ v ∈ Lp(.)(Ω).
By the continuity of the function Tk(g), it follows that

(Tk(g(un)) − Tk(g(u)))φ → 0 a.e in Ω as n →∞.

Moreover,

∣(Tk(g(un)) − Tk(g(u)))φ∣ ≤ 2k∣φ∣ ∈ L1(Ω).

Leveraging the Lebesgue dominated convergence theorem, one arrives at

∫
Ω
(Tk(g(un)) − Tk(g(u)))φdx = 0.

Therefore, A2un ⇀ A2u as n →∞.
Since A is the sum of an operator of type (M) and a monotone, weakly continuous

operator, A is of type (M). Adding the fact that A is bounded and coercive, we
conclude that A is surjective.

Therefore, for any L ∈ W−1, p′(.)(Ω), there exists at least one solution u ∈
W 1, p(.)

0 (Ω) such that A(uk) = L.
Setting L(φ) = ∫

Ω
γφdx, we conclude that the problem (Pϕ

Tk(g),γ) admits at least
one solution.
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To complete the proof of Theorem 4.2, it remains to prove (4.4). To this end, we take
Hε(uk − R) as a test function in (4.2), where ε > 0 and R > 0 is a real to be specified
later. One obtains

∫
Ω

a(x ,∇uk).∇Hε(uk − R)dx

+ ∫
Ω

Tk(g(u))Hε(uk − R)dx − ∫
Ω

ϕ(uk).∇Hε(uk − R)dx

= ∫
Ω

γHε(uk − R)dx .(4.13)

For the first term of (4.13), one has

∫
Ω

a(x ,∇uk).∇Hε(uk − R)dx = 1
ε ∫{∣uk−R∣<ε}

a(x ,∇uk).∇uk ≥ 0.

By setting ψε(uk) = ∫
uk

0
ϕ(s)χ{0≤∣uk−R∣<ε}(s)ds, one obtains

∫
Ω

ϕ(uk).∇Hε(uk − R)dx = ∫
Ω

1
ε

ϕ(uk).∇uk χ{0≤∣uk−R∣<ε}dx

= ∫
Ω
∇.(∫

uk

0
ϕ(s)χ{0≤∣uk−R∣<ε}(s)ds)dx

= ∫
∂Ω

ψε(uk).νdσ = 0 (as uk = 0 on ∂Ω).

Consequently, (4.13) becomes

∫
Ω

Tk(g(u))Hε(uk − R)dx ≤ ∫
Ω

γHε(uk − R)dx .(4.14)

Using the inequality above, one can deduce (4.4) (see [15, 17, 22] for the details). ∎

Setting k = k0 = ∥γ∥∞ + 1, Theorem 4.1 is a consequence of Theorem 4.2.

5 Proof of Theorem 3.3

This section is devoted to the proof of Theorem 3.3.

5.1 Approximate problem

For every ε > 0, we consider the Yosida regularization βε ∶ R→ R of β (see [7]), given
by

βε =
1
ε
(I − (I + εβ)−1).

We emphasize that the function βε is both non-decreasing and Lipschitz-continuous
Since μ belongs to M

p(.)
b (Ω), so, by Theorem 2.5, it can be decomposed as μ =

f − div(F), where f ∈ L1(Ω) and F ∈ (Lp′(.)(Ω))N .
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By introducing the function fε(x) = T 1
ε
( f (x)) for a.e .x ∈ Ω, the regularized form

of the measure μ is given by

με = fε −∇. F for any ε > 0.

Therefore, one has με ∈Mp(.)
b (Ω), με ⇀ μ and με ∈ L∞(Ω).

Then, we consider the following approximating scheme problem.

Pb(βε , ϕ)(με){
βε(uε) − diva(x ,∇uε) + divϕ(uε) = με in Ω
uε = 0 on ∂Ω.(5.1)

Theorem 5.1 Let (H1) − (H3) hold true. Then, the problem Pb(βε , ϕ)(με) admits at
least one weak solution uε in the sense that uε ∈ W 1, p(.)

0 (Ω), βε(uε) ∈ L1(Ω) and∀φ ∈
W 1, p(.)

0 (Ω) ∩ L∞(Ω),

∫
Ω

a(x ,∇uε).∇φdx + ∫
Ω

βε(uε)φdx − ∫
Ω

ϕ(uε).∇φdx = ∫
Ω

φdμε .(5.2)

Proof We just need to set g = βε and γ = με in Theorem 4.1. ∎

5.2 A priori estimates

Now, we derive a priori estimates for the sequence of solutions (uε)ε>0 which will
enable us to obtain the necessary convergence results.

Proposition 5.2 Let k > 0 and uε be a solution to the problem Pb(βε , ϕ)(με). Then,
(i) there exist a constant C10 > 0 such that

∫
{∣uε ∣≤k}

∣∇uε ∣p(x)dx ≤ C10 ,(5.3)

(ii) the sequence (βε(uε))ε>0 is uniformly bounded in L1(Ω),
(iii) the sequence (βε(Tk(uε)))ε>0 is uniformly bounded in L1(Ω).

Proof Taking φ = Tk(uε) as a test function in (5.2) we obtain

∫
Ω

a(x ,∇uε).∇Tk(uε)dx + ∫
Ω

βε(uε)Tk(uε)dx − ∫
Ω

ϕ(uε).∇Tk(uε)dx

= ∫
Ω

fεTk(uε)dx + ∫
Ω

F .∇Tk(uε)dx .(5.4)

The third term of (5.4) is zero. Indeed, we have

∫
Ω

ϕ(uε).∇Tk(uε)dx = ∫
Ω

ϕ(Tk(uε)).∇Tk(uε)dx

= ∫
Ω
∇(∫

Tk(uε)

0
ϕ(s)ds)dx = 0,(5.5)

The remainder of the proof follows in the same manner as [23] (see also [18]). ∎
Proposition 5.3 ([23]) Let uε be a weak solution of Pb(βε , ϕ)(με) and let k > 0 large
enough. Then, we have

meas{∣uε ∣ > k} ≤ C(μ, Ω)
min{βε(k), ∣βε(−k)∣}(5.6)
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and

meas{∣∇uε ∣ > k} ≤ C11(k + 1)
kp− + C(μ, Ω)

min{βε(k), ∣βε(−k)∣ ,(5.7)

where C11 is a positive constant.

5.3 Convergence results

Proposition 5.4 ([23]) Let uε be a weak solution of Pb(βε , ϕ)(με). Then, there exists
u ∈ W 1, p(.)

0 (Ω) ⊂ T
1, p(.)
0 (Ω) such that u ∈ dom(β) a.e. in Ω and

uε 
→ u in measure and a.e. in Ω as ε 
→ 0.(5.8)

Lemma 5.5 For every function h ∈ W 1,+∞(R), h ≥ 0 with supp(h) compact,

lim sup
ε→0

∫
Ω
[a(x ,∇uε) − ϕ(uε)].∇[h(uε)(Tk(uε) − Tk(u))]dx ≤ 0,(5.9)

lim sup
δ→0

lim sup
ε→0

∫
{δ<∣uε ∣<δ+1}

a(x ,∇uε).∇uεdx ≤ 0(5.10)

and

lim sup
ε→0

∫
Ω

a(x ,∇uε).[∇Tk(uε) − ∇Tk(u)]dx ≤ 0.(5.11)

Proof By choosing h(uε)(Tk(uε) − Tk(u)) as a test function in (5.2), one obtains

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω
[a(x ,∇uε) − ϕ(uε)].∇[h(uε)(Tk(uε) − Tk(u))]dx

+∫
Ω

βε(uε)h(uε)(Tk(uε) − Tk(u))dx

= ∫
Ω

fε h(uε)(Tk(uε) − Tk(u))dx + ∫
Ω

Fε .∇[h(uε)(Tk(uε) − Tk(u))]dx .

(5.12)

● Let us start by proving (5.9). The following inequality holds

lim sup
ε→0

∫
Ω

βε(uε)h(uε)(Tk(uε) − Tk(u))dx ≥ 0.(5.13)

Indeed, for any r > 0 sufficiently small we set

ur = (u ∧ (M − r)) ∨ (m + r).

According to [23], for any k > 0, Tk(ur) ∈ W 1, p(.)
0 (Ω), one has

∫
Ω

h(uε)(βε(uε) − βε(ur))(Tk(uε) − Tk(ur))dx ≥ 0,

and

∫
Ω

βε(uε)h(uε)(Tk(uε) − Tk(u))dx ≥ ∫
Ω

h(uε)βε(ur)(Tk(uε) − Tk(ur))dx

+ ∫
Ω

h(uε)βε(uε)(Tk(ur) − Tk(u))dx

=∶ Iε ,r + Jε ,r .
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Having in mind that m + r ≤ ur ≤ M − r, one has (see [23])

lim sup
ε→0

Iε ,r = ∫
Ω

h(u)β0(ur)(Tk(u) − Tk(ur))dx ≥ 0.

We treat the term Jε ,r as follows

Jε ,r ∶= ∫
Ω

h(uε)βε(uε)(Tk(ur) − Tk(u))dx ∶= Aε ,r + Bε ,r + Cε ,r + Dε ,r ,

where

Aε ,r ∶= ∫
Ω

h(uε)(Tk(ur) − Tk(u))dμε ,

Bε ,r ∶= −∫
Ω

h(uε)a(x ,∇uε).∇(Tk(ur) − Tk(u))dx ,

Cε ,r ∶= −∫
Ω

h′(uε)(Tk(ur) − Tk(u))a(x ,∇uε).∇uεdx ,

Dε ,r ∶= −∫
Ω

ϕ(uε).∇[h(uε)(Tk(ur) − Tk(u))]dx .

According to [23], one has lim
r→0

Aε ,r = lim
r→0

Bε ,r = lim
r→0

Cε ,r = 0.

Dε ,r = ∫
Ω

ϕ(uε).∇[h(uε)(Tk(ur) − Tk(u))]dx

= ∫
Ω

ϕ(Tl(uε)).∇[h(uε)(Tk(ur) − Tk(u))]dx ,

where l > 0 is such that supph ⊂] − l , l[.
Thanks to (H5), one has

∣ϕ(Tl(uε))∣ ≤ ∣Tl(uε)∣p(x)−1 ≤ (l + 1)p(x)−1 ≤ (l + 1)p+−1 .

It follows that (ϕ(Tl(uε)))ε is uniformly bounded. Adding the fact that
∇[h(uε)(Tk(ur) − Tk(u))] ⇀ 0 in (Lp(.)(Ω))N (see [23]) as r → 0, one obtains

lim
r→0

Dε ,r = ∫
Ω

ϕ(Tl(uε)).∇[h(uε)(Tk(ur) − Tk(u))]dx = 0.

From above results, one deduces that lim
r→0

Jε ,r = 0 and (5.13).
Therefore, passing to the limit as ε → 0 in (5.12), one obtains (5.9).
● Taking φδ(uε) = T1(uε − Tδ(uε)) as test function in (5.2), one obtains

∫
Ω

a(x ,∇uε).∇T1(uε − Tδ(uε))dx + ∫
Ω

βε(uε)T1(uε − Tδ(uε))dx

− ∫
Ω

ϕ(uε).∇T1(uε − Tδ(uε))dx

= ∫
Ω

fεT1(uε − Tδ(uε))dx + ∫
Ω

F .∇T1(uε − Tδ(uε))dx .(5.14)
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On the other hand, one has

∫
Ω

ϕ(uε).∇φδ(uε)dx = ∫
Ω
∇(∫

φδ(uε)

0
ϕ((φδ)−1 ○ (s))ds)dx = 0.

The rest of the proof of (5.10) and (5.11) follow the same lines as in [23]. ∎

The following results are necessary for the sequel.

Lemma 5.6 Let uε be a weak solution of Pb(βε , ϕ)(με) and k > 0. Then

ϕ(Tk(uε)) 
→ ϕ(Tk(u)) in Lp′(.)(Ω) as ε → 0,(5.15)

lim
ε→0∫Ω

ϕ(uε).∇[h(uε)(Tk(uε) − Tk(u))]dx = 0,(5.16)

lim
ε→0∫Ω

fε h(uε)(Tk(uε) − Tk(u))dx = 0(5.17)

and

lim
ε→0∫Ω

Fε .∇[h(uε)(Tk(uε) − Tk(u))]dx = 0.(5.18)

Proof ● Since ϕ(Tk(uε)) 
→ ϕ(Tk(u)) a.e. in Ω, the growth condition (H5)
implies that

∣ϕ(Tk(uε))∣ ≤ C3∣Tk(uε)∣p(x)−1 ∈ Lp′(.)(Ω).

On the other hand, the sequence (∣Tk(uε)∣p(x)−1)ε>0 is bounded in Lp′(.)(Ω) and
∣Tk(uε)∣p(.)−1 
→ ∣Tk(u)∣p(.)−1 in Lp′(.)(Ω) as ε → 0. Thanks to the generalized
Lebesgue convergence theorem, we obtain (5.15).
● For l > 0 such that supph ⊂] − l , l[, one has

∫
Ω

ϕ(uε).∇[h(uε)(Tk(uε) − Tk(u))]dx = ∫
Ω

ϕ(Tl(uε)).∇[h(uε)(Tk(uε) −

Tk(u))]dx.
Using the convergence (5.15), one deduces (5.16).
For the proofs of (5.17) and (5.18), see [23]. ∎

Proposition 5.7 [23] Let uε be a weak solution of Pb(βε , ϕ)(με) with k > 0. Then, as
ε → 0, we have
(i) a(x ,∇Tk(uε)) ⇀ a(x ,∇Tk(u)) in (Lp′(.)(Ω))N ,

(ii) ∇Tk(uε) → ∇Tk(u) a.e. in Ω,
(iii) a(x ,∇Tk(uε)) ⋅ ∇Tk(uε) 
→ a(x ,∇Tk(u)) ⋅ ∇Tk(u) a.e. in Ω and strongly in

L1(Ω),
(iv) ∇Tk(uε) → ∇Tk(u) in (Lp(.)(Ω))N .

Remark 5.8 Since Tk is continuous, for k > 0, it follows that Tk(uε) → Tk(u) a.e.
in Ω. Finally, applying Lemma 2.7, we deduce that for all k > 0, Tk(u) ∈ dom(β) a.e.
in Ω. Therefore, since Tk(u) ∈ dom(β), we conclude that u ∈ dom(β) a.e . in Ω, and
sine dom(β) is bounded, we have u ∈ W 1, p(.)

0 (Ω).
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Lemma 5.9 [23] For any h ∈ C1
c(R) and ξ ∈ W 1, p(.)

0 (Ω) ∩ L∞(Ω),

∇[h(uε)φ] 
→ ∇[h(u)φ] strongly in Lp(.)(Ω) as ε → 0.

5.4 Existence of solution

Let us introduce, for any l0 > 0, the function h0 defined by
(i) h0 ∈ C1

c(R), h0(r) ≥ 0, for all r ∈ R,
(ii) h0(r) = 1 if ∣r∣ ≤ l0 and h0(r) = 0 if ∣r∣ ≥ l0 + 1.
To demonstrate the Theorem 3.3, one chooses h0(uε)φ as a test function in (5.2) to
obtain

∫
Ω

a(x ,∇uε).∇(h0(uε)φdx − ∫
Ω

ϕ(uε).∇[h0(uε)φ]dx + ∫
Ω

βε(uε)h0(uε)φdx

= ∫
Ω

fε h0(uε)φdx + ∫
Ω

F .∇[h0(uε)φ]dx ,(5.19)

where φ ∈ W 1, p(.)
0 (Ω) ∩ L∞(Ω).

By applying the same arguments as [23], one can express

lim
ε→0∫Ω

a(x ,∇uε).∇(h0(uε)φdx = ∫
Ω

a(x ,∇u).∇(h0(u)φdx

= ∫
Ω

a(x ,∇u).∇φdx ,(5.20)

lim
ε→0∫Ω

fε h0(uε)φdx = ∫
Ω

f h0(u)φdx = ∫
Ω

f φdx ,(5.21)

and

lim
ε→0∫Ω

F .∇[h0(uε)φ]dx = ∫
Ω

F .∇[h0(u)φ]dx = ∫
Ω

F .∇φdx .(5.22)

According to Lemma 5.9 and the convergence (5.15), one has

lim
ε→0∫Ω

ϕ(uε).∇[h0(uε)φ]dx = ∫
Ω

ϕ(Tl0+1(uε)).∇[h0(uε)φ]dx

= ∫
Ω

ϕ(Tl0+1(u)).∇[h0(u)φ]dx

= ∫
Ω

ϕ(u).∇[h0(u)φ]dx

Therefore,

lim
ε→0∫Ω

ϕ(uε).∇[h0(uε)φ]dx = ∫
Ω

ϕ(u).∇φdx .(5.23)

In order to pass to the limit in the sequence (βε(uε))ε>0 as ε goes to 0, we need the
following lemmas.

Lemma 5.10 [20] Let j be a lower semi-continuous function on R with dom( j) =
[m, M] ⊂ R, and let jε be a sequence of lower semi-continuous functions such that

jε(t) ≥ 0,∀t ∈ [m, M], and jε ↑ j as ε ↓ 0.
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Consider two sequences (vε)ε>0 and (zε)ε>0 of measurable functions on Ω satisfying

{ vε 
→ vLN a.e in Ω, v ∈ dom( j)LN a.e . in Ω,
∀ε > 0, zε ∈ ∂ jε(vε)LN a.e in Ω.

Assume that there exists z ∈Mp(.)
b (Ω) ∩ [(W 1, p(.)(Ω))∗ + L1] such that for all φ ∈

C1
C(Ω), φ ≥ 0,

lim inf
ε→0 ∫

Ω
(t − vε)φh0(vε)zεdx ≥ ∫

Ω
(t − v)φdz, ∀t ∈ R.(5.24)

Then,

{ z = wLN + zs with ν " LN , w ∈ ∂ j(v)LN a.e in Ω, w ∈ L1(Ω),
z+s is concentrated on [u = M], z−s is concentrated on [u = m].

Lemma 5.11 Let l0 > 0 such that D(β) = [m, M] ⊂ [−l0 , l0]. Then, there exists σ ∈
M

p(.)
b (Ω) such that h0(uε)βε(uε)

∗⇀ σ , as ε → 0.

Proof ● According to Proposition 5.2-(ii), for any k > 0, the sequence
(h0(uε)βε(uε))ε>0 is bounded in L1(Ω). Then, there exists σ ∈Mb(Ω) such
that h0(uε)βε(uε)

∗⇀ σ in Mb(Ω) as ε → 0.
● One can write σ ∈Mp(.)

b (Ω) ∩ (W−1, p′(.) + L1(Ω)).
Indeed, for any φ ∈D(Ω), one has

∫
Ω

φdσ = ∫
Ω

h0(u)φdσ = lim
ε→0∫Ω

h0(uε)φβε(uε)dx

= − lim
ε→0∫Ω

[a(x ,∇Tl0+1(uε)) − ϕ(Tl0+1(uε))].∇[h0(uε)φ]dx

+ lim
ε→0∫Ω

fε h0(uε)φdx + lim
ε→0∫Ω

F .∇[h0(uε)φ]dx

= −∫
Ω

a(x ,∇Tl0+1(u)).∇[h0(u)φ]dx + ∫
Ω

ϕ(Tl0+1(u).∇[h0(u)φ]dx

+ ∫
Ω

f h0(u)φdx + ∫
Ω

F .∇[h0(u)φ]dx

= −∫
Ω

a(x ,∇u).∇φdx + ∫
Ω

ϕ(u).∇φdx + ∫
Ω

f φdx + ∫
Ω

F .∇φdx .

Therefore, σ = diva(x ,∇u) − divϕ(u) + μ in D′(Ω) and σ ∈Mp(.)
b (Ω) ∩

(W−1, p′(.)(Ω) + L1(Ω)). ∎

Remark 5.12 The measure σ can be written as σ = bLN + ν with ν " LN such that
all the properties of (3.5) hold.

Indeed, for any φ ∈ C1
c(Ω), t ∈ R, one has

lim
ε→0∫Ω

(t − uε)h0(uε)φβε(uε)dx

= − lim
ε→0∫Ω

[a(x ,∇Tl0+1(uε)) − ϕ(Tl0+1(uε))].∇[(t − uε)h0(uε)φ]dx

+ lim
ε→0∫Ω

fε(t − uε)h0(uε)φdx + lim
ε→0∫Ω

F .∇[(t − uε)h0(uε)φ]dx
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= −∫
Ω

a(x ,∇Tl0+1(u)).∇[(t − u)h0(u)φ]dx

+ ∫
Ω

ϕ(Tl0+1(u)).∇[(t − u)h0(u)φ]dx

+ ∫
Ω
(t − u) f h0(u)φdx + ∫

Ω
F .∇[(t − u)h0(u)φ]dx

= −∫
Ω

a(x ,∇u).∇[(t − u)h0(u)φ]dx + ∫
Ω

ϕ(u).∇[(t − u)h0(u)φ]dx

+ ∫
Ω
(t − u) f h0(u)φdx + ∫

Ω
F .∇[(t − u)h0(u)φ]dx

Setting vε = uε and zε = βε in Lemma 5.10, one can deduce (3.5). Since ν = ( f − b) −
div(a(x ,∇u) − F) in D′(Ω), one has also ν ∈Mp(.)

b (Ω)).

Using the results above, by letting ε → 0, one obtains

∫
Ω

a(x ,∇u).∇φdx − ∫
Ω

ϕ(u).∇φdx + ∫
Ω

bφdx + ∫
Ω

φdν = ∫
Ω

φdμ.(5.25)

Now, we focus on the proof of (3.7) to end the demonstration.
For that, one chooses T1(uε − Tn(uε)) as test function in (5.2) to obtain

∫
Ω

a(x ,∇uε).∇T1(uε − Tn(uε))dx + ∫
Ω

βε(uε)T1(uε − Tn(uε))dx

+ ∫
Ω

ϕ(uε).∇T1(uε − Tn(uε))dx = ∫
Ω

T1(uε − Tn(uε))dμε .(5.26)

Observing that ∫
Ω

βε(uε)T1(uε − Tn(uε))dx ≥ 0 and ∇T1(uε − Tk(uε)) =
∇uε χ{n<∣uε ∣<n+1}, (5.26) becomes

∫
{n<∣uε ∣<n+1}

a(x ,∇uε).∇uεdx + ∫
{n<∣uε ∣<n+1}

ϕ(uε).∇uεdx

≤ ∫
Ω

fεT1(uε − Tn(uε))dx + ∫
{n<∣uε ∣<n+1}

F .∇uεdx .

Using (H3), we deduce that

C3 ∫
{n<∣uε ∣<n+1}

∣∇uε ∣p(x)dx + ∫
{n<∣uε ∣<n+1}

ϕ(uε).∇uεdx

≤ ∫
Ω

fεT1(uε − Tn(uε))dx + ∫
{n<∣uε ∣<n+1}

F .∇uεdx .(5.27)

Let us consider Φ(t) = ∫
t

0
ϕ(τ)dτ. Then Φ(Tn(uε)) ∈ (W 1, p(x)

0 (Ω))N ,
By using Lemma 2.6, one gets

∫
{n<∣uε ∣<n+1}

ϕ(uε).∇uεdx

= ∫
Ω

ϕ(Tn+1(uε)).∇Tn+1(uε)dx − ∫
Ω

ϕ(Tn(uε)).∇Tn(uε)dx

= ∫
Ω

divΦ((Tn+1(uε)))dx − ∫
Ω

divΦ(Tn(uε))dx = 0.(5.28)
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Consequently, (5.27) becomes

C3 ∫
{n<∣uε ∣<n+1}

∣∇uε ∣p(x)dx ≤ ∫
Ω

fεT1(uε − Tn(uε))dx + ∫
{n<∣uε ∣<n+1}

F .∇uεdx .

Arguing similarly as in [23], one obtains the rest of the proof of the condition (3.7).

Lemma 5.13 Suppose that ϕ is a Lipschitz function. let s ∈ W 1, p(.)
0 (Ω), σ in M

p(.)
b (Ω)

and λ ∈ R such that

{ s ≤ λ a.e . in Ω (resp. s ≥ λ)
σ = −div a(x ,∇s) + div ϕ(s) in D′(Ω).(5.29)

Then,

∫
[s=λ]

φdσ ≥ 0,(5.30)

(resp.)

∫
[s=λ]

φdσ ≤ 0,(5.31)

for any φ ∈ C1
c(Ω), φ ≥ 0.

Proof For n ≥ 1, we consider the function θn defined by

θn(r) = inf{1, (nr − nλ + 1)+}, ∀r ∈ R.

Note that θn(r) converges to χ[λ ,∞)(r) for every r ∈ R, so θn(s(x)) converges to
χ[λ ,∞)(s(x)) at every x where s(x) is defined.

Since s is defined quasi everywhere and χ[λ ,∞) ○ s = χ{x∈Ω∶s(x)=λ}, then the con-
vergence of θn(s) to χ[λ ,∞)(s) is quasi everywhere.

Therefore, since σ is diffuse, then θn(s) converges to χ{x∈Ω∶s(x)=λ}, σ-a.e. in Ω.
∀φ ∈ C1

c(Ω) such that φ ≥ 0, one has

∫
[s=λ]

φdσ = lim
n→+∞∫Ω

φθn(s)dσ

= lim
n→+∞∫Ω

a(x ,∇s).∇[φθn(s)]dx + lim
n→+∞∫Ω

div ϕ(s)(φθn(s))dx

≥ ∫
Ω

θn(s)a(x ,∇s).∇φdx + lim
n→+∞∫Ω

div ϕ(s)(φθn(s))dx .

Since ϕ is a Lipschitz function, one has

∫
Ω

div ϕ(s)(θn(s))dx = ∫
Ω
(θn(s))ϕ′(s) ⋅ ∇sdx .

It follows that

∣ ∫
Ω

div ϕ(s)(θn(s))dx∣ = ∣∫
Ω
(θn(s))ϕ′(s) ⋅ ∇sdx∣

≤ ∥φ∥∞∫
{λ− 1

n ≤s≤λ}
∣ϕ′(s)∣ ∣∇s∣dx


→ 0 as n → +∞.
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On the other hand, we have

∣ ∫
Ω

θn(s)a(x ,∇s).∇φdx∣ ≤ ∥∇φ∥∞∫
{λ− 1

n ≤s≤λ}
∣a(x ,∇s)∣dx


→ 0 as n → +∞.

Hence, the relation (5.30) holds.
In the case where s ≥ λ, one reasons similarly as above after setting s̃ = −s, λ̃ = −λ

and ã(x , z) = a(x ,−z) to obtain (5.31). ∎

Remark 5.14 Moreover, if ϕ is a Lipschitz function, then a weak solution u of problem
(P) satisfies

ν+ ≤ μs⌊ [u = M],(5.32)

ν− ≤ −μs⌊ [u = m].(5.33)

Indeed, since

ν = div a(x ,∇u) − div ϕ(u) − bLN + μ,

one has

μ − ν − bLN = −div a(x ,∇u) + div ϕ(u).

According to Lemma 5.13, the proof follows the same approach as in [21, Theorem
1.3]).

Remark 5.15 In the case where the right-hand side data is a regular function (for
example, an L1-function), one has μs = 0, so that ν+ = ν− = 0 and the notion of weak
solution in this article coincides with the usual one.

6 Uniqueness of solution

The study of the uniqueness of the solution depends on additional conditions on the
convection term

Theorem 6.1 Let ϕ be a Lipschitz function. If (u1 , b1) and (u2 , b2) are two solutions
of (4.1), then

∫
Ω
(b1 − b2)sign0(u1 − u2)dx = 0.(6.1)

Proof By choosing φ = u2 and φ = u1 as tests functions in (3.8) for (u1 , b1) and
(u2 , b2), respectively, we obtain

∫
Ω

a(x ,∇u1).∇Tk(u1 − u2)dx + ∫
Ω

b1Tk(u1 − u2)dx − ∫
Ω

ϕ(u1).∇Tk(u1 − u2)dx

≤ ∫
Ω

Tk(u1 − u2)dμ(6.2)
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and

∫
Ω

a(x ,∇u2).∇Tk(u2 − u1)dx + ∫
Ω

b2Tk(u2 − u1)dx − ∫
Ω

ϕ(u2).∇Tk(u1 − u2)dx

≤ ∫
Ω

Tk(u2 − u1)dμ.(6.3)

By adding (6.2) and (6.3), we obtain

∫
Ω
(a(x ,∇u1) − a(x ,∇u2)) .∇Tk(u1 − u2)dx + ∫

Ω
(b1 − b2)Tk(u1 − u2)dx

−∫
Ω
(ϕ(u1) − ϕ(u2)).∇Tk(u2 − u1)dx ≤ 0.(6.4)

Since a(x , .) is monotone, the first term of (6.4) is non-negative, and we deduce from
(6.4) that

∫
Ω
(b1 − b2)Tk(u1 − u2)dx − ∫

Ω
ϕ(u).∇Tk(u2 − u1)dx ≤ 0.

Dividing the above inequality by k > 0, we get

1
k ∫Ω

(b1 − b2)Tk(u1 − u2)dx − 1
k ∫Ω

(ϕ(u1) − ϕ(u2)).∇Tk(u2 − u1)dx ≤ 0.(6.5)

Setting Ak ∶= {0 ≤ ∣u1 − u2∣ ≤ k}, the second term of (6.5) gives

∣ − 1
k ∫Ω

(ϕ(u1) − ϕ(u2)).∇Tk(u2 − u1)dx∣

= ∣ 1
k ∫Ω

(ϕ(u1) − ϕ(u2)).∇(u2 − u1)χAk dx∣

≤ 1
k ∫Ω

∣(ϕ(u1) − ϕ(u2)).∇(u2 − u1)χAk ∣dx

≤ C
k ∫

Ω
∣u2 − u1∣ ∣∇(u2 − u1)∣χAk dx

≤ C ∫
Ω
∣∇(u2 − u1)∣χAk dx .

Since

∣∇(u2 − u1)∣χAk 
→ 0 a.e. in Ω as k → 0

and

∣∣∇(u2 − u1)∣χAk ∣ ≤ ∣∇(u2 − u1)∣ ∈ L1(Ω).

By Lebesgue’s dominated convergence theorem, one obtains

lim
k→0∫Ω

∣∇(u2 − u1)∣χ{0≤∣u1−u2 ∣≤k}dx = 0.

https://doi.org/10.4153/S0008414X24001196 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24001196


Diffusive convective elliptic problem 23

Therefore,

lim
k→0

− 1
k ∫Ω

(ϕ(u1) − ϕ(u2)).∇Tk(u2 − u1)dx = 0.

For the first term of (6.5), we have
1
k
(b1 − b2)Tk(u1 − u2) → (b1 − b2)sign0(u1 − u2) a.e . in Ω, as k → 0

and

∣ 1
k
(b1 − b2)Tk(u1 − u2)∣ ≤ (b1 − b2) ∈ L1(Ω).

Hence,

lim
k→0

1
k ∫Ω

(b1 − b2)Tk(u1 − u2)dx = 0.

By taking the limit as k → 0 in (6.5), we arrive at (6.1). ∎

Corollary 6.2 Let ϕ be a Lipschitz function and let β be a continuous, increasing
function on R. Then b1 = b2 a.e. in Ω.

Proof Let β be a continuous and increasing function on R. One can deduce that

(b1 − b2)sign0(u1 − u2) = ∣b1 − b2∣.

Then, using Theorem 6.1, it follows that

∥b1 − b2∥L1(Ω) = 0.(6.6)

Hence, b1 = b2 a.e. in Ω. ∎
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