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We determined the protein expression of adipogenic transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) and its
co-repressor and co-activator complexes in adipose tissue from the obese offspring of under- and over-nourished dams. Female rats were fed either a
high-fat (60% kcal) or control (10% kcal) diet before mating, and throughout pregnancy and lactation (Mat-OB). Additional dams were 50%
food-restricted from pregnancy day 10 to term [intrauterine growth-restricted (IUGR)]. Adipose tissue protein expression was analyzed in
newborn and adult male offspring. Normal birth weight Mat-OB and low birth weight IUGR newborns had upregulated PPARγ with variable
changes in co-repressors and co-activators. As obese adults, Mat-OB and IUGR offspring had increased PPARγ with decreased co-repressor and
increased co-activator expression. Nutritionally programmed increased PPARγ expression is associated with altered expression of its co-regulators
in the newborn and adult offspring. Functional studies of PPARγ co-regulators are necessary to establish their role in PPARγ-mediated
programmed obesity.
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Introduction

The contribution of developmental programming resulting
from perturbed maternal nutrition to the obesity epidemic is
well recognized. Evidence from epidemiological studies
and animal models indicate that maternal overnutrition (e.g.
obesity and high-fat diet) as well as maternal undernutrition is
associated with increased risk of offspring obesity. Notably in
humans, both low and high birth weight lead to increased risk
for childhood and adult obesity, suggesting increased risk of
obesity at both ends of the birth weight spectrum.1 Animal
models have replicated human epidemiologic findings and
have identified adipose tissue as one of the principal targets
contributing to offspring obesity.2,3

Adipogenesis involves adipocyte differentiation, lipogenesis
and lipid accumulation within the adipocytes.4 Adipocyte
differentiation is triggered by a set of interacting transcription
factors, the peroxisome proliferator-activated receptor gamma
(PPARγ) and CCAAT/enhancer binding proteins (C/EBPβ,
C/EBPα).5 In particular, C/EBPs activate the principal
adipogenic transcription factor, PPARγ, leading to terminal
adipocyte differentiation.5 Activated PPARγ induces lipogenic

transcription factor sterol regulatory element binding protein
(SREBP1)6 and SREBP1, in turn, induces the expression of
lipolytic (lipoprotein lipase) and lipogenic (fatty acid synthase)
enzymes, which modulate fatty acid uptake and synthesis.7

In addition, the lipolytic enzyme, hormone-sensitive lipase,
hydrolyzes intracellular triglycerides and enables fatty acid
release from adipocytes.8 The transcriptional activity of PPARγ
is modulated by select co-repressors [sirtuin (SIRT1), nuclear
receptor co-repressor (NCoR), silencing mediator for retinoid
and thyroid hormone receptor (SMRT)]9 and co-activators
[p160 family members: steroid receptor co-activator 1 (SRC1);
transcriptional intermediary factor 2 (TIF2)].10

Adipogenesis occurs in both the prenatal and postnatal
states, though there is now convincing evidence that adipo-
genesis occurs throughout the lifetime. In rodents, white
adipose tissue develops mainly after birth. In humans, white
adipose tissue development begins early in the second trimester
of gestation and by birth is well developed in both the visceral
and subcutaneous depots.11,12

We have established rat models of maternal obesity and
maternal food-restriction that result in programmed offspring
obesity.13,14 Maternal obesity results in normal birth weight
newborns that exhibit early (neonatal) onset of obesity (Mat-OB),
hypertriglyceridemia and insulin resistance.13 In contrast,
maternal food-restriction results in growth-restricted newborns
[intrauterine growth-restricted (IUGR)] that develop later (adult)
obesity as well as hypertriglyceridemia and insulin resistance.14

In the IUGR offspring, we have demonstrated that the obesity is,
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in part, a result of increased adipogenesis and lipogenesis with
increased expression of the adipogenic transcription factor PPARγ
that is evident in newborn and adult offspring.15,16 Importantly,
we have shown functional changes in lipogenesis of increased
adipose tissue de novo synthesis and desaturase activity in IUGR
and Mat-OB male newborns.17,18 In addition, using primary cell
cultures we have demonstrated increased preadipocyte prolifera-
tion, increased adipocyte lipid content and increased adipocyte
glucose uptake in IUGR males at ages, 1 day and 3 weeks.19

We hypothesized that programmed Mat-OB offspring
obesity was similarly associated with increased expression of
PPARγ. In view of the increased adipogenic factors in IUGR
offspring, we sought to determine if concomitant alterations in
PPARγ co-regulator expression accompanied increased PPARγ
expression.

Methods

Animals and diet

Both rat models have been previously described.13,14 Briefly,
Sprague Dawley rats (Charles River Laboratories, Hollister,
CA, USA) were housed with a 12 h day/night cycle with lights
on at 6 am in a temperature (21 ± 1°C) controlled room. At
weaning the rat pups were housed four per cage. The animals
were separated to two per cage at 125 g and into singular
housing when their weight was above 250 g, such that no cage
contained >500 g of total rat body weight. All rats were housed
in polycarbonate cages (Ancar Corp., Bellmore, NY, USA) fil-
led with paperchip bedding (Sherpherd Specialty Papers,
Watertown, TN, USA) enriched with red plastic boxes and
nylabones for enrichment.

Mat-OB model

Weanling female rats were fed ad libitum diet with either a
normal fat (10% kcal fat, Research Purified Diet 12450B58Y2,
New Brunswick, NJ, USA; Control n = 6) or a high-fat
(60% kcal, Purified Diet 1249258Y1, New Brunswick, NJ,
USA; Mat-OB; n = 6) content. At 11 weeks of age, rats
were mated and continued on their respective diets during
pregnancy and lactation.

IUGR model

First time pregnant rats (~11 weeks of age) were fed ad libitum
diet of standard laboratory chow (Lab Diet 5001, Brentwood,
MO, USA) until gestation day 10, at which time they were
either continued on ad libitum diet (Control; n = 12) or pro-
vided 50% food-restricted diet determined by quantification of
normal intake in Controls (IUGR; n = 6) until term.

In both models, at day 1 after birth, litter size was reduced to
four males and four females to standardize lactation. Individual
body weights were recorded. To allow catch-up growth, all
IUGR newborns were cross-fostered to Control dams fed
ad libitum during pregnancy and lactation, and all Control and

Mat-OB pups were cross-fostered to dams of the same diet to
normalize the study design. All offspring were weaned to the
diet consumed by their respective controls (Mat-OB to normal
fat diet 12450B58Y2 and IUGR to standard laboratory chow
diet 5001) at 3 weeks of age. Since estrogen is known to affect
adiposity and lipid metabolism,20 we elected to study male
offspring as females would have required estrus assessment.

Body composition

At 9 months of age, one male from each of six different litters
in each group (n = 6) were anesthetized using Ketamine
(90 mg/kg i.p.) and Xylazine (10 mg/kg, i.p.) and placed in
a micro-isolator cage with warm water bottles to avoid
hypothermia. Rats underwent a short (1–2 min) non-invasive
dual energy X-ray absorptiometry scan (software program for
small animals; QDR 4500 A; Hologic, Bedford, MA, USA) to
obtain an in vivo scan of body composition.

Plasma analysis

At 9 months of age, one male from each litter was fasted
overnight and blood was collected via cardiac puncture in
heparinized tubes for analysis. Plasma insulin was measured
using rat specific commercial radioimmunoassay kits (insulin
RIA kit; LINCO Research Inc., St. Charles, MO, USA).
Plasma triglycerides were measured using Raichem Enzymatic
Reagents (Cat No. 80008; Raichem, Inc., San Diego, CA,
USA) with control serum level 1 (#83082) and control serum
level 2 (#83083) and run on an automated Cobas-Mira
Chemistry Analyzer (RocheDiagnostic Systems Inc., Sommerville,
NJ, USA). Blood glucose determined using Hemocue B-Glucose
Analyzer (HemoCue Inc, Mission Viejo, CA, USA).

Adipose tissue analysis

At day 1 after birth, adipose tissue was collected from the pups
that were culled to standardize the litter size. Newborns were
decapitated and inguinal (subcutaneous) adipose tissue was
pooled from four males per litter. At 9 months of age, retro-
peritoneal (visceral) adipose tissue, which is associated with
obesity and insulin resistance,21,22 was collected and samples
frozen in liquid nitrogen and stored at −80°C till protein
analysis. To control for litter effects in the adult studies, one
male was studied from each of the litters. Thus, when n = 6, it
represents one male from each of six different litters in Control,
IUGR and Mat-OB groups.
Protein was extracted in radioimmuno precipitation assay

buffer that contained protease inhibitors (HALT cocktail;
Pierce, Rockford, IL, USA). Supernatant protein concentration
was determined by BCA solution (Pierce). Protein expression
was determined byWestern Blotting, as previously described.15

Antibodies were obtained from Santa Cruz, CA unless other-
wise specified and the band density was analyzed as indicated:
PPARγ (57 kDa; Thermo Scientific, Rockford, IL, USA),
C/EBPα (42 kDa), SREBP1c (125 kDa), FAS (270 kDa),
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hormone-sensitive lipase (84 kDa), SIRT1 (120 kDa), NCoR
(270 kDa), SMRT (160 kDa), SRC1 (160 kDa), TIF2 (158
kDa) and β-actin (Sigma, A-5441; 40 kDa).

Statistical analysis

Differences between Mat-OB/IUGR and Control groups were
compared using unpaired Student’s t-test. Protein values were
normalized to β-actin, which showed no differences between
groups at 1 day or 9 months of age. Values are presented as fold
change (mean ± S.E.).

Results

Body weight, body fat and food intake

As previously reported,13,14 Mat-OB dams had higher body
weights at mating, and throughout pregnancy and lactation as
compared with Control dams. Further, the total food intake
was similar among the two groups of dams with Mat-OB
receiving greater percentage of kilocalories via fat. As intended,
food-restricted dams had consistently lower body weight.

At 1 day of age, IUGR pups had reduced body weight
(6.8 ± 0.2 v. 7.2 ± 0.2 g, P< 0.01) whereas Mat-OB offspring
had similar body weight (7.4 ± 0.2 v. 7.3 ± 0.1 g) to the
Controls. BothMat-OB and IUGR offspring had increased food
intake and corresponding increased weight gain compared with
their respective controls, both during lactation and throughout
the post-weaning period.13,14 Subsequently, at 9 months of age,
both Mat-OB and IUGR male offspring weighed significantly
more than did their respective Controls (Mat-OB: 875± 27 v.
660± 20 g, P< 0.001; IUGR: 742± 15 v. 647± 18 g,
P< 0.001). This was reflected by greater percentage of body fat
in both Mat-OB (30.7± 2.1 v. 15.9± 1.7%, P< 0.001) and
IUGR (20.3± 1.6 v. 12.4± 1.5%, P< 0.001) offspring com-
pared with their respective Controls.

Metabolic profile

At 9 months of age, both Mat-OB and IUGR male offspring
had significantly higher levels of blood glucose, plasma insulin
and plasma triglycerides as compared with their respective
Controls (Table 1).

Protein expression of adipogenic and lipid factors

Mat-OB newborns at 1 day of age had increased adipose tissue
protein expression of adipogenic transcription factors PPARγ
(two-fold) and C/EBPβ (~1.5-fold), whereas C/EBPα was
decreased compared with Controls (Fig. 1a). In addition,
Mat-OB newborns demonstrated increased protein expression
of lipogenic factors (SREBP1, 1.5-fold; fatty acid synthase,
three-fold) as well as intracellular lipolytic enzyme (hormone-
sensitive lipase, 1.8-fold) though with unchanged lipoprotein
lipase compared with Controls (Fig. 1b). At 9 months of age,
Mat-OB males showed persistent increased expression of
PPARγ (2.5-fold), SREBP1 (three-fold) and fatty acid synthase

(four-fold) and decreased expression of C/EBPα (0.6-fold) and
both lipases (~0.5-fold; Fig. 2a and 2b).
IUGR newborns, as previously reported,14 had increased

protein expression of adipogenic transcription factors (PPARγ,
2.3-fold; C/EBPβ, 2.1-fold; C/EBPα, 2.3-fold), however, the
expression of SREBP1, hormone-sensitive lipase and fatty acid
synthase were similar in IUGR and Control newborns.14 At
9 months of age, IUGR males continued to exhibit increased
protein expression of PPARγ (1.8-fold) and C/EBPβ (2.1-fold),
but not C/EBPα (1.3-fold) compared with Controls, as well
as increased expression of SREBP1 (1.7-fold) and lipid
enzymes (hormone-sensitive lipase, 6.4-fold; fatty acid synthase,
1.8-fold).14

Protein expression of PPARγ co-regulators

At 1 day of age, Mat-OB newborns had decreased protein
expression of all co-repressors (SIRT1, NCoR, SMRT) and the
co-activator SRC1 (Fig. 3a). TIF2 expression was unchanged
(Fig. 3b). At 9 months of age, Mat-OB males continued to
show reduced levels of co-repressor protein (SIRT1, NCoR,
SMRT), though with increased protein expression of
co-activators (SRC1, TIF2; Fig. 4a and 4b).
At 1 day of age, IUGR males exhibited increased expression

of co-repressors SIRT1 and SMRT though with decreased
expression of NCoR (Fig. 3a). The co-activator SRC1 was
increased, whereas TIF2 expression was unchanged (Fig. 3b).
At 9 months of age, expression of SIRT1 and SMRT was
decreased, but NCoR expression was paradoxically increased in
IUGR males (Fig. 4a). In addition to increased TIF2, SRC1
expression continued to be increased (Figs. 3b and 4b).

Discussion

Despite divergent maternal nutrient exposure and intrauterine
growth, offspring exposed to maternal obesity and maternal
undernutrition develop obesity, insulin resistance and hyper-
triglyceridemia. In the current study, even though the Mat-OB
newborns were normal birth weight, they had increased protein
expression of the adipogenic transcription factor PPARγ as well
as its upstream regulatory transcriptional factor, C/EBPβ.

Table 1. Metabolic profile of adult males

Adult Glucose (mg/dl) Insulin (ng/ml) Triglyceride (mg/dl)

Control 104 ± 2 0.62 ± 0.05 52 ± 6
IUGR 115 ± 3** 0.83 ± 0.08* 97 ± 8***
Control 97 ± 3 0.69 ± 0.04 85 ± 8
Mat-OB 116 ± 4** 1.90 ± 0.09** 126 ± 12***

IUGR, intrauterine growth-restricted.
Blood glucose and plasma triglyceride and insulin in overnight fasted

9-month-old Control, IUGR andMat-OBmales. Values are mean± S.E.
*P< 0.05; **P< 0.01; ***P< 0.001 v. respective Controls.
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Concomitant with this, Mat-OB newborns exhibited increased
lipogenic potential, as indexed by increased SREBP1 and fatty
acid synthase that persisted in adult offspring. However, both
lipase enzymes were decreased in Mat-OB adult offspring,
suggesting decreased adipocyte uptake and release of fatty acids.
Although IUGR newborns had lower birth weight, they too
exhibited programmed upregulation of adipogenic signaling
cascade. We have previously demonstrated that these changes
persist in adult offspring who also show evidence of increased
lipogenesis and adipose tissue lipases, indicating enhanced fatty
acid uptake, synthesis and release from adipocytes.15

Unlike IUGR offspring, Mat-OB newborns, as well as adult
offspring, had significantly decreased C/EBPα expression
compared with Controls. Although C/EBPα is known to

promote adipocyte differentiation,23 it does so only in the
presence of PPARγ, whereas PPARγ can induce adipogenesis in
absence of C/EBPα.24 Accordingly, C/EBPα deficient cells are
capable of adipocyte differentiation, though these cells are
insulin resistant.25 Consistent with these data, although C/
EBPα expression was decreased in Mat-OB offspring, they had
increased adipocyte differentiation and insulin resistance.13

The protein expression of both hormone-sensitive lipase, which
regulates the release of intracellular fatty acids, and lipoprotein
lipase, which controls the entry of exogenous fatty acids into
adipose tissue, were decreased in the adult Mat-OB offspring, in
contrast to increased expression of these lipases that occurred in
adult IUGR offspring.14 Hormone-sensitive lipase levels increase
under conditions of starvation26 and decrease in obese insulin-

Fig. 1. Adipose tissue adipogenic and lipid factors in newborn male offspring. Protein expression of (a) peroxisome proliferator-activated
receptor (PPARγ) and CCAAT/enhancer binding protein family members (C/EBPβ and C/EBPα) and (b) sterol regulatory element binding
protein (SREBP1), fatty acid synthase (FAS), hormone sensitive lipase (HSL) and lipoprotein lipase (LPL) in Control (■) and Mat-OB ( )
newborn males. Data are normalized to β-actin and presented as fold change. Adipose tissue was studied from pooled male samples from each
of the six litters per group. *P< 0.01 v. Control offspring.
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resistant state.27 Similarly, increased lipoprotein lipase activity is
associated with obesity28 and reduced/deficient levels lead to
hypertriglyceridemia with increased upregulation of de novo fatty
acid synthesis.29 Thus, reduced expression of both lipases may
contribute to the insulin resistance, hypertriglyceridemia,
decreased release of fatty acids from the adipocytes and increased
de novo fatty acid synthesis observed in Mat-OB offspring.13,18

Despite the marked difference in nutrient environments and
differing birth weights, both Mat-OB and IUGR offspring had
enhanced adipogenesis and lipogenesis with upregulated
PPARγ expression that was evident at birth. Regardless of the
increased PPARγ expression, the co-regulator proteins were

differentially expressed. Overall, in Mat-OB newborns the
co-regulators were suppressed, whereas in IUGR newborns
they were increased. Notably, in both Mat-OB and IUGR
adults, there was predominantly decreased expression of
co-repressor proteins and increased expression of co-activator
proteins, consistent with increased expression of PPARγ and
their obese phenotype.
Reduced NCoR is associated with greater insulin sensitivity,

as demonstrated by adipocyte specific NCoR knockout mice.30

In IUGR offspring, the changes in NCoR expression are con-
sistent with their glucose/insulin status – newborns with
reduced NCoR and increased insulin sensitivity and adults with

Fig. 2. Adipose tissue adipogenic and lipid factors in adult male offspring. Protein expression of (a) peroxisome proliferator-activated receptor
(PPARγ) and CCAAT/enhancer binding protein family members (C/EBPβ and C/EBPα) and (b) sterol regulatory element binding protein
(SREBP1), fatty acid synthase (FAS), hormone sensitive lipase (HSL) and lipoprotein lipase (LPL) in Control (■) and Mat-OB ( ) adult
males. Data are normalized to β-actin and presented as fold change. Number of animals studied was one male from each of six litters per
group. *P< 0.001 v. Control offspring.
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increased NCoR and an insulin-resistant phenotype.14,31 In
Mat-OB offspring, changes in NCoR expression are more
consistent with their obese phenotype rather than their insulin-
resistant phenotype.

Consumption of a high-fat diet is associated with increased
expression of SRC1 and TIF2 in adipose tissue, as well as an
increase in the ratio of TIF2/SRC1 expression, which may
contribute to weight gain.32 In the present study, Mat-OB
newborns show decreased SRC1 expression, while IUGR
newborns had increased SRC1. Accordingly, Mat-OB new-
borns had an increased ratio of TIF2/SRC1 expression (~2)
and we have previously shown that they exhibit accelerated
weight gain during the nursing period.13 Notably, SRC1 also
regulates the expression and the transcriptional activity of
C/EBPα gene,33 and C/EBPα in turn, regulates SIRT1

expression during adipogenesis.34 This is consistent with our
findings of decreased expression of SRC1, C/EBPα and SIRT1
in Mat-OB newborns, and increased SRC1, C/EBPα and
SIRT1 in IUGR newborns.15

In both IUGR and Mat-OB offspring, the co-activator TIF2
was unchanged in the newborns, whereas it was upregulated in
adulthood, suggesting that increased TIF2 expression may
not be developmentally programmed, but rather may occur
secondary to increased fat storage in obese adult offspring. This
is consistent with increased lipid accumulation seen in 3T3-L1
cell line that had overexpressed TIF2, and importantly, this
occurred only in the presence of PPARγ.32 Further supporting
evidence emerges from TIF2 knockout mice that have lower
PPARγ, reduced potential for fat storage and are protected
against obesity when fed a high-fat diet.32

Fig. 3. Adipose tissue co-repressors and co-activators in newborn male offspring. Protein expression of (a) co-repressor proteins Sirtuin
(SIRT1), nuclear receptor co-repressor (NCoR) and silencing mediator for retinoid and thyroid hormone receptor (SMRT) and (b) co-activator
proteins steroid receptor co-activator 1 (SRC1) and transcriptional intermediary factor 2 (TIF2) in Control (■), intrauterine growth-restricted
(IUGR) (□) and Mat-OB ( ) newborn males. Data are normalized to β-actin and presented as fold change. Adipose tissue was studied from
pooled male samples from each of the six litters per group. *P< 0.001 v. Control offspring.
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The regulation of PPARγ transcription is not only
dependent upon the presence of co-regulators9,10 but is also
modulated by energy status,35 and the availability of PPARγ
ligands.36,37 In newborn offspring, the variable effects of
nutritional programming on PPARγ co-regulator proteins may
be attributed to the availability of PPARγ ligands. In the
absence of its ligand, PPARγ enlists co-repressors37 whereas
upon ligand binding to PPARγ, the co-repressors are released
and co-activators recruited.38,39 Unsaturated fatty acids,
including palmitoleate and oleate are natural ligands for
PPARγ,40,41 and we have previously shown that the plasma
palmitoleate and oleate levels are higher in IUGR newborns17

whereas Mat-OB newborns have lower palmitoleate levels.18

We speculate that changes in the availability of plasma fatty
acid ligands may affect the recruitment of PPARγ co-activator

and co-repressor proteins that activate gene expression and
drive adipogenesis.
Increased PPARγ levels are seen in adipose tissue of obese

animals and humans.42–44 Further higher levels are associated
with high-fat diet and decreased levels occur during fasting.38

Specifically, PPARγ expression is downregulated in obese
humans on a low calorie diet45 and obese rodents undergoing
exercise.46,47 In addition, SIRT1 which represses PPARγ,9 is
also a nutrient sensor that increases in response to undernutrition
with reduction in fat storage and an increase in lipolysis.9,48.
The downregulated SIRT1 in Mat-OB offspring born to
overnourished dams in the current study is consistent with their
exposure to the maternal high-fat diet, and likely contributes to
the increased expression of PPARγ in these animals. Although
the upregulated SIRT1 in IUGR offspring at birth is also

Fig. 4. Adipose tissue co-repressors and co-activators in adult male offspring Protein expression of (a) co-repressor proteins Sirtuin (SIRT1),
nuclear receptor co-repressor (NCoR) and silencing mediator for retinoid and thyroid hormone receptor (SMRT) and (b) co-activator proteins
steroid receptor co-activator 1 (SRC1) and transcriptional intermediary factor 2 (TIF2) in Control (■), intrauterine growth-restricted (IUGR)
(□) and Mat-OB ( ) adult males. Data are normalized to β-actin and presented as fold change. Number of animals studied was one male
from each of six litters per group. *P< 0.001 v. Control offspring.
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consistent with its role as a nutrient sensor, the mechanism
underlying the failure of SIRT1 to suppress PPARγ in these
animals is presently unknown. The effect of modulating
co-regulators of PPARγ on adipogenesis and lipid storage has
been effectively demonstrated using 3T3 cells as stated above,
wherein increased expression of co-activators and decreased
expression of co-repressors induce fat storage.32,49

In conclusion, our studies show that despite the divergent
nutritional environment, Mat-OB offspring demonstrate
enhanced adipogenesis akin to IUGR newborns. Mat-OB
newborns, unlike IUGR, showed early induction of lipogenic
factors likely contributing to early onset of adiposity and asso-
ciated metabolic abnormalities, which exacerbate with age.13

Thus, both under- and overnutrition programs increased
adipogenesis. Although the underpinning contributory factor
in both models is attributed to upregulated PPARγ, it may be
mediated via different mechanisms. Differential recruitment of
co-activators and co-repressors in IUGR and Mat-OB may
provide the basis for a transcriptional switch that controls
adipocyte differentiation and lipogenesis. However, further
functional studies are required to elucidate the relative roles of
different co-regulator proteins in the activation of PPARγ in
nutritionally programmed obesity.
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