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A new model of random graphs – random intersection graphs – is introduced. In this model,

vertices are assigned random subsets of a given set. Two vertices are adjacent provided

their assigned sets intersect. We explore the evolution of random intersection graphs by

studying thresholds for the appearance and disappearance of small induced subgraphs. An

application to gate matrix circuit design is presented.

1. Introduction

1.1. The model

In most models of random graphs, the edges enjoy all the attention and the vertices are

passive bystanders. In Erdős–Rényi random graph theory, we are given n vertices, and

flip coins to see where the edges go – the appearance of one edge is independent of any

other. Such a model is useful when the ‘relations’ between ‘objects’ are independent of

one another.
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In this paper, we explore a model of random graphs in which the vertices are the focus.

We independently assign to each vertex a random structure and then assess the adjacency

of two vertices by comparing their assigned structures. To do this, we use the concept of

an intersection graph.

Let G be a (finite, simple) graph. We say that G is an intersection graph if we can

assign to each vertex v ∈ V (G) a set Sv so that vw ∈ E(G) (we write v ∼ w) exactly

when Sv ∩ Sw 6= ∅. In this case, we say G is the intersection graph of the family of sets

S = {Sv : v ∈ V (G)}. It is easy to check that every graph is an intersection graph (see

[15]).

If one restricts the choices for the sets Sv , various classes of graphs can be defined; the

best known example is the class of interval graphs, in which the Sv must be real intervals.

(See [17, 18] for a discussion of random interval graphs.)

We are now ready to define random intersection graphs. Let n, m be positive integers and

let p ∈ [0, 1]. For every positive integer k with 1 6 k 6 n, let Sk be a random subset of

M = {1, 2, . . . , m} formed by selecting each element of M independently with probability

p. Thus the probability that we choose a particular set S for k is ps(1 − p)m−s, where

s = |S |. Finally, let G(n, m, p) be the intersection graph of the Sks.

Thus G(n, m, p) has n vertices {1, 2, . . . , n}. We assign to each vertex k a random subset

(as described above) Sk ⊆ {1, 2, . . . , m} and we have i ∼ j if and only if Si ∩ Sj 6= ∅.
Now, given two vertices u and v of G(n, m, p) the probability that there is an edge

connecting them is Pr{u ∼ v} = 1 − (1 − p2)m, since the probability that Su and Sv are

disjoint is simply (1 − p2)m. It follows that the expected number of edges in G(n, m, p) is(
n
2

) [
1− (1− p2)m

] � n2mp2 (provided mp2 → 0 as n → ∞). If we take p = 1/(ωnn
√
m),

where ωn denotes hereafter a function that goes to infinity with n, then the expected

number of edges goes to 0 in the limit and with high probability
1
G(n, m, p) is edgeless.

Further, it follows from our results below that, when p = ωn/(n
√
m), then with high

probability G(n, m, p) has edges.

On the other hand, the expected number of non-edges in G(n, m, p) is
(
n
2

)
(1 − p2)m �

n2 exp{−mp2}. Thus, if we take p =
√

2 log n+ωn
m

, then with high probability G(n, m, p) is

a complete graph. Further, when p =
√

(2 log n− ωn)/m, we show below that with high

probability G(n, m, p) is not complete.

Thus we may restrict our attention to values of p in the range between 1/(n
√
m) and√

2 log n/m. As p increases from the former to the latter, we witness the evolution of the

structure of G(n, m, p).

An alternative view of random intersection graph generation is given by its representa-

tion matrix R(n, m, p). This matrix is an n×m matrix whose rows represent the vertices of

G(n, m, p) and whose columns represent the elements of the universal set M = {1, . . . , m}.
The entries in R(n, m, p) are 0s and 1s; each entry is independently 1 with probability

p (and 0 with probability 1 − p). From the random representation matrix R(n, m, p) we

derive the graph G(n, m, p) by deeming two vertices to be adjacent if and only if their

1 As is customary in random graph theory, by with high probability we mean that the probability that

G = G(n, m, p) has the stated property tends to 1 as n→∞.
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corresponding rows have a 1 in a common column (i.e., their dot product is nonzero).

Note that a given graph G may arise from many different representation matrices.

More formally, we let R(n, m, p) denote the sample space of all n×m 0,1-matrices with

the probability of a particular matrix set to pa(1 − p)b, where a is the number of 1s and

b is the number of 0s in the particular matrix. Now we let G(n, m, p) be the sample space

of all graphs on n labelled vertices {1, 2, . . . , n}. The probability of a particular graph G in

G(n, m, p) is the sum of the probabilities of all matrices in R(n, m, p) that represent G.

Thus the random intersection graph G(n, m, p) is an element of the sample space

G(n, m, p).

We have seen how G = G(n, m, p) arises from R = R(n, m, p) by concentrating on the

rows of R. A dual view of G is afforded by examining the columns of R. Consider a given

column of R. The 1s in this column correspond to a collection of pairwise adjacent vertices

in G, that is, a clique
2

of G. This said, we can think of G(n, m, p) as being generated by the

following random process. For j = 1, . . . , m do the following. Let Cj be a random subset

of V (G) = {1, . . . , n} with each i ∈ Cj independently with probability p. Having generated

the sets {C1, C2, . . . , Cm}, we declare vertices u and v to be adjacent exactly when they are

together in a common Cj . In other words, the family C = {C1, C2, . . . , Cm} is a clique cover

of G, that is, a family of cliques of G with the property that every edge of G is induced

in at least one of the Cjs. The concept of clique covers is central to our discussion of

subgraphs of G(n, m, p).

The representation matrix R(n, m, p) has yet another interpretation. In fact it can

be viewed as the adjacency matrix of a random binomial bipartite graph B(n, m, p) in

which edges occur independently between vertices in the two parts N = {1, 2, . . . , n} and

M = {1, 2, . . . , m} with probability p. A random intersection graph with the vertex set N

is recovered from B(n, m, p) as follows. We put an edge between two vertices u and v of

G(n, m, p) if and only if there is a vertex z in the M-part of B(n, m, p) such that both {u, z}
and {v, z} are edges of B(n, m, p). Such an approach provides a useful relationship between

the classical binomial model of a random graph with independent edges and the random

intersection graph G(n, m, p) where the edges are no longer independent.

We are interested in studying the properties of G(n, m, p) for n large. We therefore have

two ‘parameters’ that we can adjust: m and p. As we discuss below, when m is very small

compared to n, the model is not particularly interesting, and when m is exceedingly large

(compared to n) the behavior of G(n, m, p) is essentially the same as for an Erdős–Rényi

random graph. The ‘right’ balance is achieved when we take m = bnαc where α is a positive

constant, and this is the m we shall use. (From now on we drop the b·c.)

1.2. Overview of results and applications

In Erdős–Rényi random graph theory, a basic question concerns the appearance of

subgraphs during the evolution of a random graph. In particular, considering a fixed

graph H , we ask the question: for which values of p is H with high probability an

(induced) subgraph of the random graph? The answer depends on the maximum average

2 A clique is a set of pairwise adjacent vertices. Cliques, for us, are not necessarily maximal cliques.
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degree of H (the maximum of the average degree of all of H ’s subgraphs). For an overview,

see [1, 5, 9].

One way to state the classical result is that a random graph G(n, p) contains H with

high probability exactly when the expected number of copies of H and all its subgraphs

all go to infinity.

This paper studies the analogous problem for random intersection graphs. We show

that for a fixed graph H there are two thresholds, τ1 and τ2. We show that H 6 G(n, m, p)

(we write H 6 G to mean H is an induced subgraph of G) exactly when p is asymptotically

between these thresholds. One of the curious special features of our model is that – in

contradistinction to the Erdős–Rényi model – it is possible that the expected number of

copies of H and all its subgraphs is very large, but the probability that H 6 G(n, m, p) is

very small.

We apply our results on subgraphs to answer the question: when is G(n, m, p) with high

probability an interval graph? In Section 3 we explain the importance of this question.

We believe that this ‘vertex-biased’ approach to random graphs can have important

applications. Often the relationship between two ‘objects’ is not independent of the pair of

objects. Objects that are ‘closer’ might be more likely to be related. For example, physical

proximity is important in the spread of disease; the probability that a disease spreads

from person A to person B is not independent of the two people chosen.

An application scenario well suited to our model of random graphs involves processors

in a distributed setting. These processors ‘compete’ for shared resources (such as disks,

printers, pages of memory, etc.) If each processor is oblivious to the actions of the others,

then a reasonable protocol for the processor to follow is to try to secure its resources by

making random selections. The graph G(n, m, p) nicely models this situation. The n vertices

are the processors, the m elements of the universal set are the resources, and processor i

selects resource j with probability p. The edges of the resulting graph G(n, m, p) represent

the resulting pairwise conflicts that need to be resolved.

Another application of our model is to the gate matrix layout problem, which is

discussed more fully in Section 3.

1.3. Probabilistic lemmas

Our proofs rely on the following probability results.

Lemma 1. Let t be a fixed positive integer and let E denote an experiment with t + 1

mutually exclusive possible outcomes {0, . . . , t}. Let pj denote the probability that we observe

outcome j. We perform n independent (with n → ∞) trials of this experiment and let Nj

denote the number of times we observe outcome j. Furthermore, suppose that for 1 6 j 6 t
we have pj → 0 as n → ∞ (hence p0 → 1). Finally, let a1, a2, . . . , at be fixed, nonnegative

integers. Then

Pr{N1 = a1 ∧N2 = a2 ∧ · · · ∧Nt = at}
Pr{N1 = a1}Pr{N2 = a2} · · ·Pr{Nt = at} → 1 as n→∞.

Note: only the pi are assumed to vary with n; the quantities t and aj (with 1 6 j 6 t) are

fixed.
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Proof. Let a0 = n− a1 − a2 − · · · − at. The ratio in the statement of the lemma equals(
n

a0 ,a1 ,...,at

)
pa0

0 p
a1

1 · · · patt∏t
j=1

[(
n
aj

)
p
aj
j (1− pj)n−aj

] ∼ (1− p1 − p2 − · · · − pt)n−a1−···−at∏t
j=1(1− pj)n−aj

∼ exp {−(p1 + · · ·+ pt)(n− a1 − · · · − at)}∏t
j=1 exp {−pj(n− aj)}

∼ exp {−(p1 + · · ·+ pt)n}∏t
j=1 exp {−pjn}

= 1.

The conclusion of the lemma can be restated: the events Nj = aj (for 1 6 j 6 t) are
asymptotically independent. Furthermore, it follows from the lemma that

Pr{N1 > a1 ∧N2 > a2 ∧ · · · ∧Nt > at}
Pr{N1 > a1}Pr{N2 > a2} · · ·Pr{Nt > at} → 1 as n→∞

as well.
Next we consider asymptotic expressions for Pr{Nj > aj} that are readily derived from

basic properties of the binomial distribution.

Lemma 2. Suppose we perform n (with n→∞) Bernoulli trials of an experiment, and the
probability of success is p with p→ 0 as n→∞. Let N be the number of successes and let
a be a fixed nonnegative integer.

(1) If np→ 0 then Pr{N > a} ∼ Pr{N = a} ∼ (np)a/a!.
(2) If a > 0 and if there is a constant ε > 0 so that ε 6 np 6 1/ε, then there is a constant

δ > 0 so that δ 6 Pr{N > a} 6 1− δ.
(3) If np→∞ then Pr{N > a} → 1.

Proof. In every case we have Pr{N > a} > Pr{N = a}. For (1) we compute:

Pr{N > a} =

n∑
j=a

Pr{N = j} =

n∑
j=a

(
n

j

)
pj(1− p)n−j .

Note that in the latter sum the ratio of the successive terms is(
n
j

)
pj(1− p)n−j(

n
j+1

)
pj+1(1− p)n−j−1

=
(j + 1)(1− p)

(n− j)p >
1

2np
→∞.

Bounding the sum by a geometric series we have

Pr{N = a} 6 Pr{N > a} 6 Pr{N = a}
(

1

1− 2np

)
∼ Pr{N = a}.

For (2) we have Pr{N > a} > Pr{N = a} =
(
n
a

)
pa(1− p)n−a > (n

a

)
(ε/n)a[1− 1/(εn)]n−a ∼

εae−1/ε/a!, which is a positive constant. On the other hand,

Pr{N > a} = 1−
a−1∑
j=0

Pr{N = j} 6 1−
a−1∑
j=0

(
n

j

)( ε
n

)j [
1− 1

εn

]n−j
∼ 1−

a−1∑
j=0

εj

e1/εj!
,

which is strictly less than 1.
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Finally, for (3) we note that for fixed j we have Pr{N = j} =
(
n
j

)
pj(1 − p)n−j 6

(np)je−np → 0 since np→∞. Hence,

Pr{N > a} = 1−
a−1∑
j=0

Pr{N = j} = 1− o(1).

2. Subgraph thresholds

2.1. Thresholds

In this paper we show that for all fixed graphs H there is the ‘birth’ threshold τ1(H)

such that, if p � τ1(H), then with high probability G(n, m, p) does not contain H as a

subgraph, while for p � τ1(H), H is with high probability a subgraph of our random

graph. With induced subgraphs there is more to the story. If H is any fixed graph, then the

‘birth’ threshold for H being an induced subgraph of G(n, m, p) coincides with the ‘birth’

threshold for H as a subgraph. However the property ‘H is an induced subgraph of G’ is

not monotone; hence, when our random graph becomes dense enough, H will disappear

from it. Therefore in this case there are two thresholds, τ1(H) and τ2(H), associated

with H . If p � τ1(H) or p � τ2(H), then with high probability H 66 G. However, if

τ1(H)� p� τ2(H), then with high probability H 6 G.

Let us first introduce basic notions and a notation used in the paper. Let H be any fixed

graph. A clique cover of a graph H is a collection of vertex sets such that each induces a

complete subgraph (clique) of H and, for every edge vw of H , v and w are together in at

least one common member of the collection. In other words, the cliques induced by the

vertex sets exactly cover the edges of H . We say that C is reducible if, for some C ∈ C,

the edges induced by C are contained in the union of the edges induced by C; otherwise

C is irreducible.

If C = {C1, C2, . . . , Ck} is a particular clique cover of H (with |Ci| > 1 for all i =

1, 2, . . . , k) then |C| denotes the number of cliques in C,
∑C the sum of clique sizes in C,

and C′ stands for {C ∈ C : |C| > 1}.
Furthermore, for S ⊂ V (H), define restricted clique covers as follows:

C[S] := {Ci ∪ S : |Ci ∪ S | > 1, i = 1, 2, . . . , k},
that is, the clique cover of S that results from restricting the cliques of C to the vertices

that are in S , and

C′[S] := {Ci ∪ S : |Ci ∪ S | > 2, i = 1, 2, . . . , k},
that is, the clique cover of S that results from restricting the cliques of C to the vertices

that are in S , ignoring all resulting cliques of size 1.

Using these restricted clique covers, let us define:

τ(H,C, S) = 1/
(
n|S |/ΣC[S]m|C[S]|/ΣC[S]

)
,

τ′(H,C, S) = 1/
(
n|S |/ΣC′[S]m|C′[S]|/ΣC′[S]

)
,

τ(H,C) = max
S
{τ(H,C, S), τ′(H,C, S)} ,

τ1(H) = minC τ(H,C),
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where C is a clique cover of H , and S is a non-empty subset of V (H). When C′[S] is

empty, we put the corresponding τ′ term equal to 0.

Furthermore, let d(H) = |E(H)|/|V (H)|, while d∗(H) = maxL6H d(L)

We are now ready to state our main result, which considers three segments of the

random graph evolution: the ‘appearance’ period, the period in which all small subgraphs

have probability 1 of being present as induced subgraphs, and the ‘disappearance’ period.

Theorem 3. Let H be a fixed graph.

(a) Suppose mp2 → 0. Then

lim
n→∞Pr(H 6 G(n, m, p)) =

{
0 if p/τ1(H)→ 0,

1 if p/τ1(H)→∞.

(b) Suppose ε 6 mp2 6 1/ε. Then

lim
n→∞Pr(H 6 G(n, m, p)) = 1.

(c) Suppose p =
√

log n+ωn
d∗(H)m

and mp2 →∞. Then

lim
n→∞Pr(H 6 G(n, m, p)) =

{
1 if ωn → +∞,

0 if ωn → −∞.

Proof. Let X(H) denote the number of copies of H in G = G(n, m, p). Now, if

E(X(H)) → 0 as n → ∞, it follows from Markov’s inequality that Pr{H 6 G} → 0.

Furthermore, if L is an induced subgraph of H , and E(X(L)) → 0 as n → ∞, it also

follows that Pr{H 6 G} → 0. This is the exact same situation as in Erdős–Rényi random

graphs.

On the other hand, suppose E(X(L)) → ∞ for all induced subgraphs L 6 H . In

the Erdős–Rényi model this is sufficient to conclude that H 6 G with high probability.

However, in our model this is not sufficient. Thus the expected number of copies of H in

G is not the full story. Nonetheless, it is the beginning of the story, so we concentrate on

how to compute it.

Let π(H) denote the probability that H is induced on vertices 1 through h in that order,

that is, the identity map is an isomorphism of H onto the first h vertices of G. Thus, the

expected number of copies of H in G is

E(X(H)) =

(
n

h

)
h!

|aut(H)|π(H)

and it only remains to compute π(H).

Let us refine our X(H) notation. Given a clique cover C of H , let X(H,C) denote the

number of copies of H induced in G that are represented by clique cover C. Likewise, let

π(H,C) denote the probability that H is induced on the first h vertices (in order) of G

with clique cover C.
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We have now reduced our problem to computing π(H,C) We shall show first that, if

mp2 → 0 and C is a clique cover of a graph H on h vertices, then

π(H,C)

{∼ m|C|pΣC, mp→ 0, or

� m|C′|pΣC′ , mp > ε > 0.

Hence it follows that

EX(H,C) �
{
nhm|C|pΣC, mp→ 0, or

nhm|C′|pΣC′ , mp > ε > 0.

Let C = {C1, . . . , Ct} be a clique cover of a fixed graph H on h vertices. Consider the

h rows of R(n, m, p) corresponding to H . The columns in these rows must correspond to

cliques in C (or else contain at most one 1). Thus there are t kinds of columns that are

mandatory and, say, s kinds of columns that are forbidden. The probability that a particular

column corresponds to a mandatory clique Ci is p|Ci|(1 − p)h−|Ci| ∼ p|Ci|. Let N1, . . . , Nt

denote the number of columns corresponding to the cliques in C and let Nt+1, . . . , Nt+s

denote the number of columns of the forbidden types. Thus

π(H,C) = Pr {N1 > 0 ∧ · · ·Nt > 0 ∧Nt+1 = 0 ∧ · · · ∧Ns+t = 0} ,
which, by Lemma 1, is asymptotic to

Pr {N1 > 0} · · ·Pr {Nt > 0}Pr {Nt+1 = 0} · · ·Pr {Ns+t = 0} .
Now we apply Lemma 2 to the first t terms. For 1 6 i 6 t we have

Pr {Ni > 0}
{∼ mp|Ci|, |Ci| > 2, or |Ci| = 1 and mp→ 0,

> δ, |Ci| = 1 and mp > ε,

where δ and ε are positive constants.

Next, for t+ 1 6 i 6 t+ s, the kind of column we are forbidding has a > 2 ones. Thus,

Pr {Ni = 0} =
(
1− paqh−a)m ∼ exp

{−mpaqh−a} ∼ 1

since mp2 → 0 (and a > 2).

Combining these results we get either

π(H,C) ∼ m|C|pΣC provided mp→ 0,

or else,

π(H,C) � m|C′|pΣC′ provided mp > ε > 0.

We now claim that reducible clique covers are less likely to occur than irreducible ones.

Suppose mp2 → 0, and C is a reducible clique cover of H . Thus there is a C ∈ C so

that C∗ = C − {C} is also a clique cover of H . Now if C is a 1-clique we clearly have

π(H,C) 6 π(H,C∗) since C is permitted in the C∗ representation, but required in the C
representation. Otherwise, |C| > 2 and we have π(H,C) 6 mp2π(H,C∗)� π(H,C∗) (since

mp2 → 0).

To prove part (a) of our theorem, assume as before that C is an irreducible clique cover

of H and let S be a non-empty subset of V (H). Then the restriction of C to S is the

multiset C[S] = {C ∩ S 6= ∅ : C ∈ C}.
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We then let π(H,C, S) be the probability that a fixed set of |S | rows generates C[S], i.e.,

that for each C ∈ C[S] there is a separate column in the rows corresponding to S with 1s

exactly for the elements of C .

Let X(H,C, S) be the number of subsets of rows of R(n, m, p) that generate C[S]. Thus

EX(H,C, S) � n|S |π(H,C, S). Therefore

EX(H,C, S) �
{
x = n|S |m|C[S]|pΣC[S], mp→ 0, and

x′ = n|S |m|C′[S]|pΣC′[S], mp 6→ 0.

where C′[S] = {C ∩ S : C ∈ C, |C ∩ S | > 1}.
Our next step in deriving a formula for τ1(H) – the appearance threshold for H – is to

show that the following statements hold. First, if for some S ⊆ V (H) we have

n|S |m|C[S]|pΣC[S] → 0 or n|S |m|C′[S]|pΣC′[S] → 0

as n→∞, then we also have Pr{X(H,C) > 0} → 0. Second, if for all S ⊆ V (H) we have

n|S |m|C[S]|pΣC[S] →∞ and n|S |m|C′[S]|pΣC′[S] →∞
as n→∞, then we also have Pr{X(H,C) > 0} → 1.

Since X(H,C, S) = 0 =⇒ X(H,C) = 0, it is enough to show that EX(H,C, S) → 0 for

some S ⊆ V (H). We have four possible cases to consider, depending on whether an x or

x′ tends to 0, and depending on whether or not mp tends to 0.

Observe that x and x′ differ by a power of mp, namely x = (mp)`x′ for some integer

` > 0 (where ` is the number of 1-cliques in C[S]).

Suppose first that mp → 0. If x → 0 (for some S) then, since x � EX(H,C, S), we

are done. Otherwise, if some x′ → 0, then, since x = (mp)`x′ we also have x → 0, and,

again, we are done. On the other hand, suppose mp > ε > 0. If some x′ → 0 then, since

x′ � EX(H,C, S), we are done. Otherwise, if some x→ 0, then since x′ = x/(mp)` 6 x/ε`

we must have x′ → 0, and again we are done. Thus, if any expression of the form

n|S |m|C[S]|pΣC[S] or n|S |m|C′[S]|pΣC′[S] tends to 0, X(H,C) = 0, almost surely.

Now, suppose that for all S we have n|S |m|C[S]|pΣC[S] and n|S |m|C′[S]|pΣC′[S] tending to

infinity. Let µ = EX(H,C) = EX(H,C, V (H)), so µ → ∞. We show that Pr{X(H,C) >

0} → 1 by the second moment method. Write

E[X(H,C)2] =
∑
A

∑
B

E[ZAZB]

where the sums are over all h element subsets of [n] and ZA is 1 when the rows of

R(n, m, p) corresponding to A generate a copy of H with clique cover C and 0 otherwise.

When A ∩ B = ∅, note that ZA and ZB are independent; there are
(
n
h

)(
n−h
h

)
such pairs

(A,B). Thus,

E[X(H,C)2] ∼ µ2 +
∑
A∩B 6=∅

E[ZAZB].

We wish to show that E[X(H,C)2] ∼ µ2, so we need to show that the above summation

is o(µ2). There are O(n2h−s) pairs (A,B) for which |A ∩ B| = s, so it is enough to prove

that when |A ∩ B| = s we have

(n2h−sE[ZAZB])/µ2 → 0. (∗)
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Let CA be the clique cover C in terms of the specific assignment of cliques to labelled

vertex sets as indicated by ZA (since ZA is associated with a particular order for laying

down the clique cover on a set of h vertices). Define CB similarly.

Let C∗ be the cover of G[A ∪ B] generated by taking the union of the collections CA
and CB . By this definition, some edge sets of A ∩ B may get covered more than once, for

example, if they are covered by different cliques in CA and CB . The other sets will get

covered exactly once.

For the purpose of comparing the numerator and denominator of the ratio

(n2h−sE[ZAZB])/µ2,

think of writing the asymptotic expression for µ2 as µAµB (with µA = µB), where the clique

terms in the two products µA and µB are ordered in the same way as the cliques in CA
and CB .

By definition of a union, there is a clique in C∗ for every clique of CA, yielding terms

of the form mp|C| in both the numerator and denominator for each such clique |C|. Thus

the final product of clique probabilities for A in the numerator cancels with the clique

probability part of µA in the denominator.

And what about those terms stemming from cliques in CB? For a clique C in C∗ that

consists only of vertices from B (i.e., C ∩ A = ∅), the numerator and µB will both have

terms of the form mp|C|, which will cancel each other. The only remaining type of clique

probability term in the numerator will be for those cliques of C∗ that contain vertices

of A ∩ B but are not cliques of CA (if they were in CA they would already have been

cancelled out with the cliques of A). Since these are additional cliques of CB , they match

terms in the denominator’s µB , and cancel with them.

The left-over clique probability terms are then all in the µB part of the denominator,

and correspond to cliques on vertices of A ∩ B that are in both covers CA and CB . For

this reason, there was only one copy of the term in the numerator originally, and it was

cancelled out when CA was examined. There was, however, a copy in each of µA and µB ,

and the one in µB remains.

Letting C1, C2, . . . , Cb refer to the cliques of CB generating these remaining terms, the

ratio for (n2h−sE(ZA ∩ AB])/µ2 can be simplified to

n2h−s

n2h
(1)

(
b∏
i=1

1

mp|Ci|

)
=

1

ns
∏b

i=1 mp
|Ci| .

Each Ci here is a clique of CB on S = (A∩B) ⊆ B. So this is a partial set of the cliques in

C[S]. By assumption, nsm|C[S]|pΣC[S] →∞. But this expression can be written as a product

of the current term ns
∏b

i=1 mp
|Ci| with additional terms of the form mpa, each for some

a > 2, and all of which tend to 0. Thus ns
∏b

i=1 mp
|Ci| � nsm|C[S]|pΣC[S] → ∞, and so

1/(ns
∏b

i=1 mp
|Ci|) tends to 0 as n→∞.

We can now derive a formula for the appearance threshold for H . Check that we have

selected τ1(H) so that if p � τ1(H) then for every C there is an S ⊆ V (H) for which

n|S |m|C[S]|pΣC[S] or n|S |m|C′[S]|pΣC′[S] tends to 0. Conversely, if p � τ1(H) then there is a C
so that for all S ⊆ V (H) we have n|S |m|C[S]|pΣC[S] and n|S |m|C′[S]|pΣC′[S] tending to infinity.
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Thus we have shown that if H is a fixed graph and mp2 → 0, then if p/τ1(H) → 0 then

with high probability H is not an induced subgraph of G(n, m, p) while if τ1(H)/p → 0

then with high probability H is an induced subgraph of G(n, m, p).

To prove part (b) of our theorem, that is, to show that when mp2 is bounded away from

0 then the probability that H is an induced subgraph of G(n, m, p) tends to 1 as n → ∞,

let C = E(H), that is, consider the clique cover of H consisting of all pairs of adjacent

vertices in H . Let Ni (for 1 6 i 6 |E(H)|) denote the number of columns corresponding

to the ith edge of H . Ordering all other types of columns that have at least two 1s, let Ni

for i > |E(H)| denote the number of columns of type i. We want to compute

Pr
{
N1 > 0 ∧ · · · ∧N|E(H)| > 0 ∧N|E(H)|+1 = 0 ∧ · · ·} ,

which, by Lemma 1, is asymptotic to

Pr {N1 > 0}Pr {N2 > 0} · · ·Pr
{
N|E(H)| > 0

}
Pr
{
N|E(H)|+1 = 0

}
Pr
{
N|E(H)|+2 = 0

} · · · .
Now, we notice that by Lemma 2 we have, for 1 6 i 6 |E(H)|,

Pr {Ni > 0} ∈ [δ, 1− δ]

for some positive constant δ. For i > |E(H)| we have Pr {Ni = 0} > δ. Thus π(H,C) > δ′,
where δ′ is a positive constant (a fixed power of δ).

We can decompose the n vertices of G(n, m, p) into k = bn/hc pairwise disjoint sets of h

vertices S1, S2, . . . , Sk (plus, perhaps, a few left-overs) and we note that the probability of

having a copy of H induced on any of them is at least δ′ and these events are mutually

independent. Since k →∞, we have H 6 G(n, m, p) with probability tending to 1.

Finally, to prove the last statement (c) of our main theorem, consider the situation when

mp2 →∞. Then notice that the probability ρ that two vertices v and w are not adjacent:

ρ = Pr {vw /∈ E(G)} = (1− p2)m ∼ e−mp2

,

which tends to 0. Thus it is the non-edges that are difficult to form.

Let us see that we may, without any loss of generality, assume that mp3 → 0. Let

Z denote the number of non-edges in G(n, m, p). Thus EZ =
(
n
2

)
ρ ∼ 1

2
n2e−mp2

. Thus if

p =
√

(2 log n+ ωn)/m (where ωn →∞) then EZ → 0 and with high probability G(n, m, p)

is complete. In this case mp3 = (2 log n + ωn)
3/2/
√
m, which tends to 0 (unless ωn is very

large).

As before, let X(H) denote the number of copies of H in G(n, m, p). Let X2(H) =

X(H,E(H)), that is, the number of copies of H appearing in G(n, m, p) with clique cover

consisting of exactly the edges of H . (The subscript ‘2’ refers to the fact that all cliques in

this cover have size 2.)

First, we shall prove that if mp2 →∞, mp3 → 0 and H is a fixed graph, then

EX(H) ∼ EX2(H) ∼
(
n

h

)
ρ|E(H)|

where ρ ∼ e−mp2

. To see this let us first consider the clique cover C = E(H) on a fixed set

of h vertices. Let Ni (with 1 6 i 6 |E(H)|) denote the number of columns corresponding
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to the ith clique (edge) of C. For |E(H)| < i 6
(
h
2

)
, let Ni denote the number of columns

that generate an edge on the respective non-edge pair of vertices of H (columns with 2

ones that are located in particular rows not corresponding to end-points of an edge of

H). For i >
(
h
2

)
, the Ni denote the number of cliques on 3 or more of the h vertices. We

want Ni > 0 for 1 6 i 6 |E(H)| and Ni = 0 for i > |E(H)|.
Applying Lemmas 1 and 2, we have

EX2(H) ∼
(
n

h

)
ρ(h2)−|E(H)| =

(
n

h

)
ρ|E(H)|.

Now if C is any other clique cover of H , then we still have E(H) ∩ C = ∅, but we have

some replacement clique(s) in C. For each one that has 3 or more vertices, a term of the

form mpc (with c > 3) replaces mp2 terms in our expression EX(H,C) and, since mp3 → 0,

we have EX(H,C) � EX2(H). Thus we can restrict our attention to clique covers of H

consisting purely of cliques of size 2, and if EX2(H)→ 0, then with high probability H is

not an induced subgraph of G(n, m, p). Further, if EX2(L)→ 0 for any induced subgraph

of H , then, again, H is with high probability not an induced subgraph.

Now suppose that p =
√

(log n+ ωn)/(d∗(H)m). Let L be such that its complement L

satisfies L 6 H and d(L) = d∗(H), so d∗(H) = E(L)/V (L). Put ` = |V (L)|. Then

EX2(L) � n`ρ|E(L)| ∼ n` exp{−mp2|E(L)|} = n`n−|E(L)|/d∗(H)e−ωnE(L)/d∗(H)

= o(1)n`n−` → 0.

Thus, with high probability H 66 G(n, m, p).

On the other hand, suppose p =
√

(log n− ωn)/(d∗(H)m). In this case EX2(L)→∞ for

all L 6 H . Put µ = EX2(H). To use the second moment method, we compute E[X2(H)2]

and work to show that it is asymptotic to µ2. We can decompose E[X2(H)2] as

E[X2(H)2] =
∑
A,B

E[ZAZB],

where the sum is over all h = |V (H)| element subsets of V (G), and ZA is an indicator

random variable that is 1 exactly when G[A] is a copy of H . When A ∩ B = ∅ then ZA
and ZB are independent. There are

(
n
h

)(
n−h
h

) ∼ (n
h

)2
such terms, so

∑
A,B:|A∩B|=∅ E[ZAZB] ∼(

n
h

)2
E[ZA]2 = µ2. Thus, it remains to show that∑

A,B:|A∩B|=`
E[ZAZB] = o(µ2),

where ` is a fixed integer with 1 6 ` 6 h. There are some n2h−` such pairs of sets A and

B. The probability we have ZAZB = 1 is just ρk , where k is the number of non-edges

in G[A ∪ B]. Note that k = 2|E(H)| − |E(L)| where L = G[A ∩ B]. Thus, comparing to

µ2 � n2hρ2|E(H)| we have

n2h−`ρk

n2hρ2|E(H)| =
1

n`ρ|E(L)| ∼
1

EX2(L)
→ 0,

as we claimed.
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The following result follows from our main theorem.

Corollary 4 (Large α). For a fixed graph H , there is an α∗ > 0 such that

τ1(H) = 1/(n1/2d∗(H)m1/2) for all α > α∗,

where d∗(H) = maxL6H |E(L)|/|V (L)|

Proof. This threshold arises from taking C = E(H) (i.e., letting C be the clique cover

consisting of exactly the edges of H), and letting S be a set of vertices that induces

a subgraph of maximum density in H . What is the asymptotic probability of an edge

between two vertices when p is at this threshold? We have mp2 = m(τ1(H))2 = n−1/d∗(H),

which is exactly the probability threshold for the appearance of H as a subgraph in the

Erdős–Rényi model G(n, p).

The proof of this threshold begins by showing that, for any particular C,

max
S
{τ(H,C, S), τ′(H,C, S)}

may be found by considering only τ′ for each S (not τ), as long as α is large enough. When

C = E(H), maxS{τ′(H,C, S)} occurs when S = V (L) for L 6 H : |E(H)|/|V (H)| = d∗(H),

giving τ′(H,C) = 1/(n1/2d∗(H)m1/2). It can be shown (see [19]) that for any other clique

cover there is some choice of S that gives a value of τ′(H,C, S) that is greater than the

one above when α is large, and so the maximum over S ⊆ V for that clique cover will be

at least that big. The justification that there is some such choice of S for each C̃ 6= E(H)

relies on the definition of τ′ and the fact that, since C̃ 6= E(H), there is at least one S for

which | ˜C[S]|/ΣC̃[S] < 1/2. Thus, minCmaxS{τ(H,C, S), τ′(H,C, S)} = 1/(n1/2d∗(H)m1/2).

Finally, let us notice that statement (a) of Theorem 3 can also be deduced from a

bipartite version of the main result of paper [10]. Indeed, as we pointed out in the

Introduction, the binomial bipartite model has a simple equivalence to the random matrix

model, and can thus generate graphs from G(n, m, p) according to the transformation from

R(n, m, p) to G(n, m, p). This equivalence provides a useful relationship between subgraphs

of B(n, m, p) and clique covers for subgraphs of G(n, m, p). As a result of this relationship

several other results of [10], dealing for example with the distribution of the number of

certain classes of strictly balanced subgraphs, can be applied to the study of subgraphs

of G(n, m, p) (see [19] for details).

2.2. Example

Let H be a fixed graph on h vertices, such as the graph in Figure 1, and let X(H) denote

the number of copies of H induced in G = G(n, m, p).

Now there are a number of possible ways in which H can appear in G. Vertices 1, 2

and 3 form a K3. In the representation of G (i.e., the matrix R) there may be a column in

which vertices 1, 2 and 3 have a common 1, or there may be three columns representing

separate edges between the pairs. Thus the first four rows of R look like one of the
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4

2

31

Figure 1 The graph H .

following:


· · · 1 · · · 0 · · ·
· · · 1 · · · 0 · · ·
· · · 1 · · · 1 · · ·
· · · 0 · · · 1 · · ·

 or


· · · 1 · · · 0 · · · 1 · · · 0 · · ·
· · · 1 · · · 1 · · · 0 · · · 0 · · ·
· · · 0 · · · 1 · · · 1 · · · 1 · · ·
· · · 0 · · · 0 · · · 0 · · · 1 · · ·

 .
These possibilities correspond exactly to two possible clique covers of the example graph

H: C1 =
{{1, 2, 3}, {3, 4}} and C2 =

{{1, 2}, {2, 3}, {1, 3}, {3, 4}}.

Given a clique cover C of H , let X(H,C) denote the number of copies of H induced

in G that are represented by clique cover C. Likewise, let π(H,C) denote the probability

that H is induced on the first h vertices (in order) of G with clique cover C.

Let us first consider the clique cover C1 =
{{1, 2, 3}, {3, 4}}. How could the first four

rows of R fail to create this clique cover? We might

(i) be missing a column of the form [1, 1, 1, 0]T ,

(ii) be missing a column of the form [0, 0, 1, 1]T , or

(iii) have a ‘bad’ column such as [1, 0, 0, 1]T (which would create an unwanted edge

between vertices 1 and 4).

We have

π(H,C) =

i+j6m∑
i,j>0

(
m

i, j, m− i− j
)[
p3q
]i [
p2q2

]j [
q4 + 4pq3

]m−i−j
, (∗∗)

where q = 1 − p. Note that i records the number of columns of type [1, 1, 1, 0]T and j

records the number of columns of type [0, 0, 1, 1]T . The
[
q4 + 4pq3

]m−i−j
term is for the

probability that the remaining m− i− j columns are acceptable, that is, have at most one

1. The right-hand side of (∗∗) simplifies to(
p3q + p2q2 + 4pq3 + q4

)m − (p3q + 4pq3 + q4
)m − (p2q2 + 4pq3 + q4

)m
+
(
4pq3 + q4

)m
which, provided mp2 → 0, is asymptotic to m2p5. By a similar method, one can show that

π(H,C2) ∼ m4p8.

It is important to note that 1-cliques play a special, exceptional role. Neither C1 nor C2

require there to be any 1-cliques, but we allow them to appear in the representation. Thus

we define π(H,C) (respectively, X(H,C)) to allow a 1-clique if it is not listed in C, but to
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require a 1-clique if it is listed in C. For example, if mp→ 0, we find that

π(H,C1) = m2p5,

π(H,C1 ∪ {{1}}) = m3p6.

Note that C1 and C2 are not the only clique covers of H: there are a number of other

possibilities. We might add to either C1 or C2 some singleton cliques (thereby changing

their existence from permitted to required). Or we might add {1, 2} to C1 (changing the

status of the clique {1, 2} from absent to present). Indeed, C1 ∪ C2 is a clique cover as

well. However, C1 and C2 are the only irreducible clique covers of H .

We have

EX(H,C1) � n4m2p5 and EX(H,C2) � n4m4p8.

Thus, if

p� 1/
(
n4/5m2/5

)
and p� 1/

(
n1/2m1/2

)
,

then E[X(H,C1)] and E[X(H,C2)] tend to 0 as n→∞. Thus, if we let

p =
1

ωn
min

{
n−4/5m−2/5, n−1/2m−1/2

}
=

{
1/(ωnn

4/5m2/5) α 6 3,

1/(ωnn
1/2m1/2) α > 3,

then with high probability H 66 G(n, m, p).

Now, if any of H ’s induced subgraphs L has E[X(L)]→ 0, then we may also conclude

that Pr{H 6 G} → 0. The probabilities derived from this, however, do not determine the

threshold for H appearing as an induced subgraph of G.

For example, taking α = 0.2 and p = 1/(n0.6m) � 1/(n4/5m2/5), we have EX(H) >
EX(H,C1) � n4m2p5 = n0.4 → ∞. Likewise, one can check that EX(L) → ∞ for all

L 6 H . However, we claim that Pr{H 6 G} → 0. Why? Consider vertex 3. In its row

there must be at least two 1s: one 1 for the connection to vertex 4, and a second (and

possibly third) 1 for the connection to vertices 1 and 2. Let Y denote the number of

rows of G’s representation matrix with at least two 1s. The expected number of 1s in a

given row is mp, which is, in this case, n−0.6. The probability that there are two (or more)

ones in a given row is asymptotically (mp)2 = n−1.2. Thus EY � n−0.2, and therefore with

high probability there are no such rows in G’s representation. With high probability it is

impossible for H 6 G.

Thus it is not enough that E(X(L)) → ∞ for all L 6 H to ensure H 6 G with high

probability.

What has gone ‘wrong’? If we consider the clique cover C1 or C2 restricted to the one

element set S = {2} we get a restricted clique cover of H induced on S . We denote this by

C1[S] =
{{2}, {2}} (notice that this is a multiset). It is necessary that there be columns in

the representation matrix of G corresponding to these restricted clique covers.

Consider the graph of Figure 1. It has two (irreducible) clique covers:

C1 =
{{1, 2, 3}, {3, 4}} and C2 =

{{1, 2}, {1, 3}, {2, 3}, {3, 4}}.
For each we determine C[S] and C′[S] for all non-empty subsets of S and then compute

τ(H,C, S) and τ′(H,C, S). These calculations are collected in Table 1.

To compute τ(H,C1) (respectively, τ(H,C2)) we need to find the largest entry in the
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Table 1 Computations for τ1(H) for the graph in Figure 1.

S C1[S] τ(H,C1, S) C′1[S] τ′(H,C1, S)

{1, 2, 3, 4} {123, 34} 1/(n4/5m2/5) {123, 34} 1/(n4/5m2/5)

{1, 2, 3} {123, 3} 1/(n3/4m1/2) {123} 1/(nm1/3)

{1, 2, 4} {12, 4} 1/(nm2/3) {12} 1/(n3/2m1/2)

{1, 3, 4} {13, 34} 1/(n3/4m1/2) {13, 34} 1/(n3/4m1/2)

{1, 2} {12} 1/(nm1/2) {12} 1/(nm1/2)

{1, 3} {13, 3} 1/(n2/3m2/3) {13} 1/(nm1/2)

{1, 4} {1, 4} 1/(nm) ∅ —

{3, 4} {3, 34} 1/(n2/3m2/3) {34} 1/(nm1/2)

{1} {1} 1/(nm) ∅ —

{3} {3, 3} 1/(n1/2m) ∅ —

{4} {4} 1/(nm) ∅ —

S C2[S] τ(H,C2, S) C′2[S] τ′(H,C2, S)

{1, 2, 3, 4} {12, 13, 23, 34} 1/(n1/2m1/2) {12, 13, 23, 34} 1/(n1/2m1/2)

{1, 2, 3} {12, 13, 23, 3} 1/(n3/7m4/7) {12, 13, 23} 1/(n1/2m1/2)

{1, 2, 4} {12, 1, 2, 4} 1/(n3/5m4/5) {12} 1/(n3/2m1/2)

{1, 3, 4} {1, 13, 3, 34} 1/(n1/2m2/3) {13, 34} 1/(n3/4m1/2)

{1, 2} {12, 1, 2} 1/(n1/2m3/4) {12} 1/(nm1/2)

{1, 3} {1, 13, 3, 3} 1/(n2/5m4/5) {13} 1/(nm1/2)

{1, 4} {1, 1, 4} 1/(n2/3m) ∅ —

{3, 4} {3, 3, 34} 1/(n1/2m3/4) {34} 1/(nm1/2)

{1} {1, 1} 1/(n1/2m) ∅ —

{3} {3, 3, 3} 1/(n1/3m) ∅ —

{4} {4} 1/(nm) ∅ —

upper (respectively, lower) portion of Table 1. Which is largest depends on α, and we

achieve the following:

τ(H,C1) =


1/
(
n1/2m

)
α 6 1/2,

1/
(
n4/5m2/5

)
1/2 6 α 6 3,

1/
(
nm1/3

)
α > 3,

and τ(H,C2) =


1/
(
n1/3m

)
α 6 2/9,

1/
(
n3/7m4/7

)
2/9 6 α 6 1,

1/
(
n1/2m1/2

)
α > 1.

Check that for α 6 3 we have τ(H,C1) 6 τ(H,C2), but for α > 3 we have τ(H,C1) >
τ(H,C2). Thus,

τ1(H) =


1/
(
n1/2m

)
α 6 1/2,

1/
(
n4/5m2/5

)
1/2 6 α 6 3,

1/
(
n1/2m1/2

)
α > 3.

From our main theorem it easily follows that the ‘death’ threshold for H is

τ2(H) =

√
3 log n+ ωn

2m
.
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2.3. The evolutions: thresholds for specific subgraphs

Let us apply our results to some specific subgraphs such as cycles, trees, complete graphs

and triangle-free graphs of a given order. In this section we shall present ‘birth’ thresholds

and some ‘death’ thresholds for induced subgraphs of specified type. The computations

can be laborious in some cases. The details of the proof for the complete graph case are

provided as an example. For details of the other proofs see [19].

Corollary 5 (Cycles). If h > 3 then τ1(Ch) = 1/
√
nm, while τ2(Ch) =

√
2 ln n

(h−3)m
.

Corollary 6 (Complete graphs). For a complete graph Kh, we have

τ1(Kh) =

{
1/(nm1/h) for α 6 2h/(h− 1), and

1/(n1/(h−1)m1/2) for α > 2h/(h− 1).

The above threshold expressions arise from the expectations under the clique covers

{V (H)} (consisting of a single Kh) and E(H) (the edge cover), respectively. Their validity

is proved by a series of three claims. The proofs sometimes use V to refer to V (H).

Claim 1. For the single-clique cover {V (H)},
max
S

{
τ(Kh, {V (H)}, S), τ′(Kh, {V (H)}, S)

}
= τ(Kh, {V (H)}, V ).

Proof of Claim 1. The right-hand side of this claim is given by τ(Kh, {V (H)}, V ) =

1/(nm1/h).

For S of size 2 6 s 6 (h − 1), restricting the clique cover {V (H)} to S gives a single

s-clique, so

τ(Kh, {V (H)}, S) = 1/(nm1/s) < 1/(nm1/h), and

τ′(Kh, {V (H)}, S) = 1/(nm1/s) < 1/(nm1/h).

For S of size 1,

τ(Kh, {V (H)}, S) = 1/(nm) < 1/(nm1/h), and

τ′(Kh, {V (H)}, S) = 0 < 1(nm1/h).

Claim 2. For the edge clique cover E(H),

max
S

{
τ(Kh, E(H), S), τ′(Kh, E(H), S)

}
= τ(Kh, E(H), V ).

Proof of Claim 2. The right-hand side of the claim is given by τ(Kh, E(H), V ) =

1/(n1/(h−1)m1/2).
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Let S ⊂ V , with s = |S | < h, and consider the restricted clique covers E(H)[S] and

E(H)′[S]. The cover E(H)[S] is the edge cover of Ks plus a 1-clique for each of the (h− s)
external edges for each vertex of Ks, so

τ(Kh, E(H), S) = 1/
(
ns/(s(s−1)+s(h−s))m(s(s−1)/2+s(h−s))/(s(s−1)+s(h−s))

)
= 1/

(
n1/(h−1)m(h−(s+1)/2)/(h−1)

)
6 1/

(
n1/(h−1)m(h−(h/2))/(h−1)

)
, since s 6 (h− 1),

= 1/
(
n1/(h−1)mh/(2(h−1))

)
< 1/(n1/(h−1)m1/2).

The restricted cover E(H)′[S] is just the edge cover of Ks, and hence

τ′(Kh, E(H), S) = 1/(n1/(s−1)m1/2) < 1/(n1/(h−1)m1/2.

Claim 3. For any clique cover C of Kh in which each clique has size at least two, and for

any fixed α,

τ(Kh,C, V ) > τ(Kh, {V (H)}, V ) or τ(Kh,C, V ) > τ(Kh, E(H), V ).

Proof of Claim 3. Let C be any clique cover of Kh in which each clique has size at least

two, and denote the sizes of the cliques in C = {C1, C2, . . . , Ck} by r1, r2, . . . , rk , respectively.

The mechanism of this proof is a comparison of the linear function

h

ΣC +
|C|
ΣCα,

for the exponent in τ(Kh,C, V ), to the functions for the exponents in τ(Kh, {V (H)}, V ) and

τ(Kh, E(H), V ). These latter functions are given by

(∗) 1 + 1
h
α (for {V (H)}), and

(∗∗) 1
h−1

+ 1
2
α (for E(H)).

They are plotted in Figure 2, where x(α) represents the function
(
h/ΣC) +

(|C|/ΣC) α,
with C being whichever clique cover is of interest.

The comparison will be made in two parts: first for α ∈ (0, 2h
h−1

), and then for α > 2h
h−1

.

The border point α = 2h
h−1

is chosen because it is the value of α at which the functions

(∗) and (∗∗) are equal. Here both function values are 1 + 2
h−1

. For all smaller values of

α, the function (∗) is the greater of the two, and for all larger α, (∗∗) is greater than (∗).
Thus it is necessary only to compare h

ΣC + |C|
ΣCα with (∗) for α ∈ (0, 2h

h−1
), and with (∗∗) for

α > 2h
h−1

.

At α = 0, h
ΣC + |C|

ΣCα = h
ΣC , which is less than 1 since each vertex is in at least one of the

cliques of C. (In order to cover all edges, all end-point pairs must be included somewhere

in the cover.)
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α

x(α)

2h
h−1

1
h−1

1 (∗∗) 1
h−1

+ 1
2
α

(
2h
h−1
, 1 + 2

h−1

)
(∗) 1 + 1

h
α

Figure 2 The exponent functions for τ(Kh, {V (H)}, V ) and τ(Kh, E(H), V ).

At α = 2h
h−1

,

h

ΣC +
|C|
ΣCα =

h

ΣC +
|C|
ΣC

(
2h

h− 1

)
6

h

ΣC +

(
h+ 1

2h
− h− 1

2ΣC
)(

2h

h− 1

)
(see justification below)

= 1 +
2

h− 1
.

The substitution used to obtain the second inequality is justified as follows.

Let u be a vertex of V (Kh) that appears in the fewest number of cliques of C, and let t

be the number of cliques in which u appears. Then

ΣC =
∑
{i:Ci⊃u}

ri +
∑
{i:Ci 6⊃u}

ri > [(h− 1) + t] + [2(|C| − t)], (2.1)

where (h− 1) counts all other vertices aside from u since they must each appear in some

clique with u.

For any v ∈ V (Kh),

ΣC+ |{i : Ci ⊃ v}| − (h− 1)

> ΣC+ t− (h− 1) (by definition of t as a minimum)

> [(h− 1) + t] + [2(|C| − t)] + t− (h− 1) (by (2.1))

= 2|C|.
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Taking the sum of both sides of this over all v ∈ V (H) gives

hΣC+ ΣC− h(h− 1) > 2h|C|.
Divided by 2hΣC and rearranged, this yields

|C|
ΣC 6

h+ 1

2h
− h− 1

2ΣC ,
as desired.

Now, since h
ΣC + |C|

ΣCα is less than or equal to (∗) at both α = 0 and α = 2h
h−1

, and

the functions are linear, h
ΣC + |C|

ΣCα is the minimum function throughout the interval

(0, 2h
h−1

).

By the same analysis as above, h
ΣC + |C|

ΣCα is less than or equal to (∗∗) when α = 2h
h−1

. Its

slope is |C|
ΣC . By assumption, this is less than or equal to 1/2, which is the slope of (**).

Thus, for all α > 2h
h−1

, h
ΣC + |C|

ΣCα must be at most the value of (∗∗).

This is now enough information to apply the main subgraph theorems, since, for any

C that is not {V (H)} nor E(H),

max
S
{τ(Kh,C, S), τ′(Kh,C, S)}
> τ(Kh,C, V ) (so assume C is irreducible)

> max{τ(Kh, {V (H)}, V ), τ(Kh, E(H), V )} (by Claim 3)

= max
S
{τ(Kh, {V (H)}, S), τ′(Kh, {V (H)}, S), τ(Kh, E(H), S), τ′(Kh, E(H), S)}
(by Claims 1 and 2).

Hence the minimum maxS{τ(Kh,C, S), τ′(Kh,C, S)} is always achieved by {V (H)} or E(H),

giving

minC max
S
τ(Kh,C, S) = min{τ(Kh, {V (H)}, V ), τ(Kh, E(H), V )}.

This implies that

τKh,1 =

{
1/(nm1/h) for α 6 2h/(h− 1),

1/(n1/(h−1)m1/2) for α > 2h/(h− 1),

as desired.

Corollary 7 (Complete bipartite graphs). For the complete bipartite graph Kh,h, the ap-

pearance threshold (for all α) is

τKh,h,1 = 1/(n1/hm1/2).

For the complete bipartite graph Kh,k with h > k, the threshold is

τKh,k ,1 =

{
1/(n1/hm) for α 6 h−k

hk
,

1/(n(h+k)/(2hk)m1/2) for α > h−k
hk

.

Only the h > k case will be proved here, since the result for h = k follows similarly.
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h−k
hk

1
h

h+k
2hk

α

x(α)

(
h−k
hk
, 1
k

)
h+k
2hk

+ 1
2
α

1
h

+ α

Figure 3 The exponent functions for τV and τHk .

Since complete bipartite graphs are triangle-free, E(H) is the only clique cover to be

considered. The threshold function arises from considering this cover with vertex sets

V (Hk) (or any subset of V (Hk)), where Hk is the part of size k, and V (H).

Let Hh refer to the vertex set of size h and Hk to the part of size k. It is straightforward

to compute that

τV = τ(Kh,k, E(H), V (H)) = 1/
(
n
h+k
2hk m

1
2

)
τHh

:= τ(Kh,k, E(H), V (Hh)) = 1/
(
n

1
k m
)

τHk
:= τ(Kh,k, E(H), V (Hk)) = 1/

(
n

1
h m
)
.

(Note that τ′ need not be considered for these particular sets; for V (H) it is the case that

τ′ = τ, and Hh and Hk have only 1-cliques so τ′ is not applicable.)

The threshold function will be the maximum value of

max{τ(Kh,k, E(H), S), τ′(Kh,k, E(H), S)}
over all vertex subsets of V (Hh,k). Since h > k, the above results imply that τHh

6 τHk

always, and τHh
can never be the maximum. Thus it can be ignored for the remainder of

the proof.

Maximizing τ or τ′ is the same as minimizing the exponent of n in the function

denominator. For convenience, the exponent functions are referred to as x(α) and x′(α)
for τ and τ′ respectively. These exponents are also functions of the particular vertex set

S being considered, and so may sometimes be written as, for instance, x(α, S) to draw

attention to this. Figure 3 shows the x(α) functions for the cases S = V (H) and S = V (Hk)

computed above.

As in the proof of the complete graph threshold, the linearity of the exponent functions
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is used. It will be shown that, at every possible value of α, x(α) and x′(α) for any

S is at least as great as for S = V (H) or S = V (Hk). Thus the minimum is always

min{x(α, V (H)), x(α, V (Hk))}.
Consider any S ⊂ V (Hk). Let s = |S |. Then x(α) = s/(sh) + 1 = (1/h) + 1, so this is the

same as for S = V (Hk) and need not be considered.

Similarly, if S ⊂ V (Hh) then x(α, S) = x(α,Hh), so this case may be ignored.

Hence the only interesting case to be considered is that of a set S that has sh > 0

vertices from part Hh and sh > 0 vertices from part Hk . Clearly, sh 6 h and sk 6 k < h.

These facts are used in the proof.

For this S , the exponent functions are

x(α) =
sh + sk

shk + skh
+

(
1− sksh

shk + skh

)
α

x′(α) =
sh + sk

2shsk
+

1

2
α.

At α = 0,

x =
sh + sk

shk + skh
>

sh + sk

shh+ skh
=

1

h
, and

x′ =
sh + sk

2shsk
=

1

2sk
+

1

2sh
>

1

2h
+

1

2h
=

1

h
,

so both functions are at least as great as the exponent for τHk
.

At α = h−k
hk

, which is the value of α at which the exponent functions of τV and τHk

intersect (see Figure 3),

x =
sh + sk

2shsk
+

(
1− sksh

shk + skh

)(
h− k
hk

)
=

1

k
+
sh(k − sk)(h− k)
(shk + skh)(hk)

>
1

k
, and

x′ =
sh + sk

shk + skh
+

1

2

(
h− k
hk

)
=

1

2sk
+

1

2sh
+

1

2k
− 1

2h
>

1

2k
+

1

2h
+

1

2k
− 1

2h
=

1

k
,

where (1/k) is the value of x(α, V (H)) and x(α, V (Hk)) at α = (h− k)/(hk). Since all of the

functions are linear, S must have x(α) and x′(α) at least as great as x(α, V (Hk)) for the

entire interval (0, (h− k)/hk].
Moreover, x(α) and x′(α) are at least as great as the function x(α, V (H)) at α =

(h− k)/(hk). If it is possible to show that the slopes of x(α) and x′(α) are at least that of

x(α, V (H)), then this will imply that both functions have value at least x(α, V (H)) for all

α > (h− k)/(hk).
The slope condition turns out to be true, since x′(α) has slope (1/2), which is equal to

that of x(α, V (H)), and x(α) has slope(
1− sksh

shk + skh

)
>

(
1− sksh

shsk + sksh

)
=

1

2
.

Thus

τKk,h,1 = max
S
{τ(Kh,k, E(H), S), τ′(Kh,k, E(H), S)} = max{τV , τHk

}.
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Corollary 8 (Triangle-free graphs). If H is a triangle-free graph with h vertices and max-

imum degree ∆, then

τ1(H) =

{
1/(n1/∆m1−(ε(Q)/|Q|∆)) for α sufficiently small,

1/(n1/(2d∗(H))m1/2) for α sufficiently large,

where Q is a subset of V (H) that induces the most edges per vertex with the restriction that

all of its vertices have degree ∆ in H , and d∗(H) = maxL6H |E(L)|/|V (L)|.

Note that finding the vertex set Q described above is equivalent to finding a vertex set

achieving the maximum average degree for the graph induced on those vertices of H that

are of degree ∆.

Corollary 9 (Trees). If T is a tree with h vertices and maximum degree ∆, then

τ1(T ) =

{
1/(n1/∆m1−(r−1)/(r∆)) for α sufficiently small,

1/(nh/(2h−2)m1/2) for α sufficiently large,

where r is the size of a largest subtree induced on vertices all of which have degree ∆

in T .

The proof of the small-α result is an application of the results proved for triangle-free

graphs. It requires showing that a set Q of ∆-degree vertices of T that induces the most

edges per vertex may be taken to be a set of ∆-degree vertices inducing a largest subtree

in T , i.e., that

(number of edges in H[S])/|S | 6 (r − 1)/r

holds for all S containing only vertices of degree ∆, where r is as defined above. The

large-α threshold follows from Corollary 4, since d∗(T ) = h−1
h

.

Now consider the evolution of G(n, m, p) as p is increased through a range of various

functions for which mp2 → 0. In which order are the different subgraph thresholds

reached? Are the cliques the first fixed graphs to arrive or the last? It turns out that the

answer to this question depends on the value of α.

By examining the thresholds given above, one can see that when α = 3 the cycle

threshold is below that for all cliques on at least 4 vertices. However, when α = 1/2 the

clique threshold is below the threshold for cycles. This difference will be addressed more

fully in a later paper.

3. Average case analysis of gate matrix circuit design

In this section we present an application of our theory to the design of integrated circuits

via gate matrix layouts (GML).

A gate matrix layout is a stylized design for VLSI circuits [3, 4, 14]. The layout uses a

grid-like representation, whose information can be encoded into a matrix of zeroes and

ones that is much like the representation matrix introduced in Section 1.

The circuit components to be connected in a GML design are polysilicon lines serving

as transistor gates and/or conductors (‘gates’), and groups of transistor diffusions that
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Table 2 Three ways to lay out the same GML circuit design. On the left is the original design. In the middle,

we permuted columns 2 and 3. This allows us (right) to combine the first two rows.

1 2 3 4

a — a

b — b

c — c c

1 2 3 4

a a

b b

c c — c

1 2 3 4

a a b b

c c — c

associate with each other (‘nets’). The GML grid is formed by laying all of the gate lines

as vertical lines, and then placing horizontal tracks of transistor nets across them. There is

a vertical gate line for each discrete input, and a transistor with that input must be placed

over that gate. Additionally, all transistors associated in the same net must be placed in

a common horizontal track. There may be more than one net in the same track, but only

if the nets do not overlap (i.e., their required inputs must be different, and must permit

ordering such that one net is incident on all of the required gate lines before the next one

in that track begins).

Although a layout that assigns a separate track for each net would be viable, the

resulting circuit would undoubtedly be sparser than necessary. Since a chip with reduced

surface area is cheaper to produce, we check for non-overlapping nets that can share

tracks. We may do this for a given order of gate lines but, in addition, gate lines may

be exchanged, carrying their transistors with them, and a different ordering of gates

may allow for more nets to be placed in some tracks. See Table 2. Hence, the GML

optimization problem is to find a permutation of the order of gates that minimizes the

number of tracks required to lay out the circuit.

This problem may be stated equivalently in terms of matrices. We construct a gate

matrix M by creating a column for each gate, and a row for each net. A ‘1’ in position

(i, j) represents a transistor that is in net i and must be placed on gate j. Roughly, we

wish to find a column permutation of M so that the nets of 1s are packed densely in their

individual rows (consecutive 1s are desirable).

Independent of the order of columns in M, we may use the matrix to construct the

intersection graph G defined by

V = {set of nets},
E = {(vi, vj) : vi, vj are incident on a common gate}.

The GML problem is known to be NP-hard [11] in general, but in the case when G is

an interval graph
3

the problem is equivalent to that of finding a minimum colouring of

G. Moreover, in the interval graph case the minimum colouring problem is easily solvable

[8]. Thus, one might ask how likely it is that a gate matrix layout will have an interval

graph as its associated graph G. We shall return to that question in the next section.

3 Recall that G is called an interval graph provided we can assign to each vertex v of G a real interval Iv so

that vw ∈ E(G) exactly when Iv ∩ Iw 6= ∅.
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Consider a related decision problem known in the literature as the k-GML problem.

Given an m × n gate matrix M and a fixed k, is there a permutation of columns of M

such that the layout is possible in at most k tracks?

It has been recognized by Fellows and Langston (see [7]) that the the gate matrix layout

with parameter k is equivalent to the path-width problem with parameter k− 1, that is, a

graph represents a circuit with a k-track layout if and only if G has a path decomposition

of width at most k − 1.

Although the original GML problem is in general very hard, Fellows and Langston

[6] proved that the k-GML problem is, surprisingly, solvable in polynomial time (with

respect to n). Their argument is based on the results of general theory of graph minors

due to Robertson and Seymour (see [16]).

Suppose that matrix M represents the graph G defined as above. Notice that, if G

corresponds to a matrix that satisfies the k-GML condition, then a corresponding matrix

for any minor
4

of G satisfies k-GML also. This means that the family of graphs satisfying

k-GML is closed under the minor ordering. Thus, according to Robertson–Seymour

theory, the set of obstructions to k-GML, that is, minimal graphs under minor ordering

that do not satisfy k-GML, must be finite. Since for every fixed graph H the problem of

checking if H is a minor of G is solvable in polynomial time, k-GML can be decided in

polynomial time as well. In fact, it can be decided in O(n2) (see [7]). The obstructions

are known explicitly only when k = 1, 2 and 3. It is trivial to notice that for 1-GML an

edge K2 is such an obstruction. For 2-GML there are two such graphs: a triangle K3 and

subdivided star K1,3 given as graph A in Figure 4 in the next subsection. For 3-GML,

Kinnersley and Langston [12] were able to list all 110 obstruction graphs. They pointed

out also that for k = 4 we may expect at least 122 million such graphs.

It is easy to notice, however, that Kk , the complete graph on k vertices, is an obstruction

to (k − 1)-GML for k > 2. Hence, if the gate matrix graph G contains Kk as a subgraph,

then we are able at least to give the following ‘negative’ type result.

For the average case analysis, Corollary 6 implies that in a random gate matrix layout

we shall need, with probability tending to 1 as n → ∞, at least k tracks if the probability

p� 1/(nm1/k) when α 6 2k/(k − 1), or p� 1/(n1/(k−1)m1/2) for α > 2k/(k − 1).

What exactly is meant by an average case? In the GML problem statement, the

appearance of 0s and 1s in the matrix M is not random, but fixed by the interconnection

requirements of the circuit. However, a probabilistic model based on a probability p of

having a 0 in any particular component of the matrix is considered in [3].

3.1. When is G(n,m, p) likely to be an interval graph?

In the interest of finding the probability of easy cases for gate matrix layout analysis,

we first apply our random intersection graph model and subgraph theorem to study the

values of p for which G(n, m, p) will with high probability be an interval graph. This is

accomplished by studying the appearance and disappearance thresholds for the family of

4 Recall that H is a minor of G if a graph isomorphic to H can be obtained from G by a series of two

operations: taking a subgraph and contracting an arbitrary edge. Then we say that H is less than or equal

to a graph G in the minor order.
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A B

v
w

v w

Ch

Th T6 T0
6

Vh V6 V0
6

Figure 4 The graphs A, B, Ch (h > 4), Th (h > 6), and Vh (h > 6) are the minimal non-interval graphs. The

graph T ′6 (resp. V ′6) is an induced subgraph of every Th (h > 7) (resp. Vh (h > 7)).

forbidden subgraphs that characterize the non-interval graphs. These forbidden subgraphs

appear in Figure 4. The graphs A, B, Ch (h > 4), Th (h > 6), and Vh (h > 6) are not

interval graphs, but all of their proper induced subgraphs are interval graphs. Indeed,

these are the only such graphs (see [13]; see also [8]). Since induced subgraphs of interval

graphs are interval, it follows that G is an interval graph if and only if it induces none of

the graphs shown in the main part of Figure 4 as subgraphs.

We are thus interested in the range of p that is below all appearance thresholds for

forbidden subgraphs, and the range that is above all disappearance thresholds for these

subgraphs. The forbidden subgraph family can be partitioned into two individual graphs,

A and B, and three infinite families of subgraphs. For each fixed value of α, the appearance

threshold for forbidden subgraphs is the minimum of the appearance thresholds for all of

the individual forbidden subgraphs. We begin by showing that we need only consider the

smallest member of each infinite family, since its appearance threshold is the minimum

threshold for its family.

The individual graph thresholds given here result from applications of Theorem 3, and

were obtained with the aid of a computer program (to find the maximum and minimum

threshold function values depending on α).

As given in Corollary 5, the appearance threshold for a cycle on h vertices, where h is

greater than or equal to 4, is

τ1(Ch) = 1/
(
n

1
2m

1
2

)
.

So we need only consider C4 for this family, with threshold as above.
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For the family of graphs Th, h > 6, we compare all larger members to T6. Consider

the graph T ′6 in Figure 4. It is an induced subgraph of each member of the Th-family for

which h > 7 (vertices v and w correspond as indicated). One checks that the appearance

threshold for T ′6 is greater than or equal to that of T6, for all α (see [19]). Thus, it suffices

(for the T -family) to consider only T6, whose threshold is

τ1(T6) =


1/
(
n

1
2m

1
2

)
for α 6 1,

1/
(
n

2
3m

1
3

)
for 1 6 α 6 2,

1/
(
n

1
3m

1
2

)
for α > 2.

Now consider the graph V ′6 in Figure 4, noting that it is an induced subgraph of Vh for

all h > 7. Again, one checks that the appearance threshold for V ′6 is always at least that

of V6, so the appearance thresholds of Vh, h > 7 are greater than or equal to that of V6.

It thus suffices (for the V -family) to consider only V6, whose threshold is

τ1(V6) =


1/
(
n

1
2m

2
3

)
for α 6 3

4
,

1/
(
n

2
3m

4
9

)
for 3

4
6 α 6 3,

1/
(
n

1
2m

1
2

)
for α > 3.

For the two individual forbidden subgraphs, A and B, we have

τ1(A) =


1/
(
n

1
3m
)

for α 6 1
3
,

1/
(
n

4
9m

2
3

)
for 1

3
6 α 6 5

6
,

1/
(
n

7
12m

1
2

)
for α > 5

6
,

and

τ1(B) =



1/
(
n

1
3m

5
6

)
for α 6 1

5
,

1/
(
n

3
8m

5
8

)
for 1

5
6 α 6 1

3
,

1/
(
n

5
12m

1
2

)
for 1

3
6 α 6 5

6
,

1/
(
n

5
11m

5
11

)
for 5

6
6 α 6 6

5
,

1/
(
n

1
2m

5
12

)
for 6

5
6 α 6 2,

1/
(
n

1
3m

1
2

)
for α > 2.
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Taking the minimum of all of these thresholds, we find that the appearance threshold

for the forbidden subgraphs is

τ1 (forbidden subgraph set) =


1/
(
n

1
2m

2
3

)
for α 6 3

4
,

1/
(
n

2
3m

4
9

)
for 3

4
6 α 6 3

2
,

1/
(
n

7
12m

1
2

)
for α > 3

2
.

This means that for p = τ/ω, with τ as above, G(n, m, p) is with high probability an

interval graph. If p = ωτ (and mp2 6→ ∞), then G is with high probability not an interval

graph.

When mp2 → ∞ we approach the end of the evolution and we consider the threshold

when none of the forbidden subgraphs appear. This problem is much simpler. Consider

the forbidden subgraph C4. By Theorem 3 we have τ2(C4) =
√

2 log n/m, which is the

same as the threshold for G(n, m, p) becoming a complete graph! Thus, in order to have

probability tending to 1 that G(n, m, p) an interval graph (for ‘large’ p), we need to choose

p large enough that G(n, m, p) is almost surely complete, that is, p =
√

2 log n+ω
m

.
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