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Abstract

In the tape helix slow-wave system, discontinuous dielectrics have great effects on the dispersion characteristics. In this
paper, the tape helix slow-wave system, including an inner and an outer metal shield, tape helix, nylon support and de-
ionized water as filling dielectric, was analyzed. Effects of dielectric discontinuity caused by the support dielectric and
filling dielectric on the dispersion characteristics were studied in detail. The dispersion relations, phase velocities, slow-
wave coefficients and electric lengths of the spatial harmonics in the system were calculated. Results showed that, if
the permittivity of support dielectric was smaller than that of the filling dielectric, frequencies of the spatial harmonics
in the system rose, phase velocities and slow-wave coefficients increased, the slow-wave effect of the system was
weakened so that the previous electric length was shortened. The reverse condition corresponded to the reverse results,
and the electromagnetic simulation also proved it. By use of the helical pulse forming line of accelerator based on the
studied tape helix slow-wave system, the electric lengths of the system were tested as 188.5 ns and 200 ns in
experiment when the thicknesses of nylon support were 6 mm and 3 mm, respectively. The theoretical calculation
results 198 ns and 211 ns basically corresponded to experimental results, which only had relative errors as 5 and 5.5%,
respectively.

Keywords: Accelerator; Dielectric discontinuity; Dispersion relation; Electric length; Pulse forming line; Spatial
harmonics; Tape helix slow-wave structure

INTRODUCTION

As an ideal slow-wave structure with good dispersion charac-
teristics and broad transmission band (Johnson et al., 1956),
the tape helix was first used in the helical-type traveling wave
tubes (TWT) in the late 1940s (Pierce, 1950; Kompfner &
Willanms, 1947). Later, it was also employed in relativistic
backward-wave oscillators for beam-wave interaction to
excite microwave radiation (Kompfner et al., 1953; Tien,
1954; Watkins & Ash, 1954). In the 1980s, the tape helix
was introduced in the field of pulsed power technology to
construct electron accelerator based on helical pulse forming
line (HPFL), so that the pulse duration of accelerator was
scaled up to several hundred ns range while the size of
PFL decreased (Friedman et al., 1988; Shidara et al., 1991;

Korovin et al., 2001; Liu et al., 2006, 2007a, 2007b, 2009;
Cheng et al., 2009).

Usually, the thin tape helix has deformation, and the tape
helix can not be concentric with its metal shields, so that a
strong dielectric support for the tape helix with enough thick-
ness should be introduced (Swift-Hook, 1958; Ghosh et al.,
1997; Agostino et al., 1998; Chernin et al., 1999; Kartikeyan
et al., 1999). In the tape helix slow-wave system, filling di-
electric is also introduced to fill in the space inside the
system for the purpose of good insulation (Swift-Hook,
1958; Ghosh et al., 1997; Agostino et al., 1998; Chernin
et al., 1999; Kartikeyan et al., 1999; Lopes & Motta,
2005). However, the support dielectric and filling dielectric
are completely two different kinds of dielectrics, so that the
discontinuity of dielectrics can cause obvious effects on the
dispersion characteristics. Swift-Hook (1958) studied the dis-
persion characteristics of a thick tape helix in a glass tube,
and different regions with dielectric characteristics were con-
sidered. However, no metal shield condition was considered
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in glass tube. Agostino et al. (1998), Chernin et al. (1999),
and Kartikeyan et al. (1999) analyzed the effects of vane-
loaded and bar-type support dielectrics on the tape helix
system with an outer metal shield, but the vane-loaded
approximation had an obvious error with experimental re-
sults (Kartikeyan et al., 1999). Dialetis et al. (2009), Datta
and Kumar (2009), and Datta et al. (2010) analyzed the ef-
fects of multi-layer dielectrics in radial direction on the dis-
persion characteristics of the tape helix system, which only
had an outer metal shield, and experimental results were in
line with theoretical calculations. Furthermore, in order to
improve the dispersion characteristics and obtain advantages
in geometric size, a concentric inner metal shield should be
introduced inside the tape helix in many situations (Ge
et al., 2010), which causes more complicated boundary con-
ditions. Ge et al. (2010) improved dispersion characteristics
and accomplished a more miniaturized relativistic backward-
wave oscillator in L band, by introducing an air-core inner
metal shield. And the extensively used helical Blumlein
pulse forming line (HBPFL) also has an inner metal shield
(Liu et al., 2006; Chen et al., 2009, 2010). By far, however,
researches which are involved in the effects of radial dielec-
tric discontinuity on the dispersion characteristics of the tape
helix slow-wave system including two metal shields are still
not adequate.
In this paper, the electromagnetic field distribution of the

tape helix slow-wave system of the electron accelerator
with radial dielectric discontinuity and two metal shields
was analyzed by accurate electromagnetic theory. The ef-
fects of dielectric discontinuity on the dispersion character-
istics were studied in detail. Phase velocities, slow-wave
coefficients, and electric lengths were calculated. The
simulation and experimental results attested the theoretical
analyses and many valuable conclusions were obtained for
the first time, which showed great value on further study of
tape helix slow-wave structure in HPFL and long pulse
accelerator.

ELECTROMAGNETIC FIELDS AND DISPERSION
EQUATION OF THE TAPE HELIX SLOW-WAVE
SYSTEM

Figure 1 shows geometric structure of the tape helix slow-
wave system, which consists of an outer shield, tape helix,
an inner shield, air-core cylindrical nylon support dielec-
tric, and filling dielectric. The “infinitesimally thin” tape
helix approximation is adopted in this paper, as it’s accu-
rate if the work frequency is not high enough (Sensiper,
1951, 1955). Cylindrical coordinates (r, θ, z) are estab-
lished along the axial direction (z) as Figure 1a shows
that r and θ represent the radial and azimuthal direction,
and r1, r2, and r3 represent the radii of the inner shield,
tape helix, and the outer shield, respectively. The inner
and outer radii of nylon support are a and r2. ψ is the
pitch angle of tape helix, while the pitch and tape width
are p and δ, respectively. l0 is the length of the infinite

thin tape in the axial direction. As Figure 1b shows the
filling dielectric and the nylon support have different rela-
tive permittivities as εr1 and εr2, dielectric discontinuity
phenomenon in the radial direction occurs.
Considering the different boundary conditions of the slow-

wave system, the inner and outer shields are ideal conductors.
So, only three regions are separated to analyze the electro-
magnetic fields distribution, such as region I (r1 <r <a),
region II (a< r< r2), and region III (r2< r< r3). The per-
mittivity and permeability of free space are ε0 and μ0, respect-
ively. The filling dielectric is the same in regions I and III,
and its permittivity and permeability are ε1 and μ1, while per-
mittivity and permeability of nylon support in region II are ε2
and μ2, respectively. Then εi= εriε0, μi= μriμ0 (I= 1, 2).
The electromagnetic field and its excitation surface current

density J are both in periodical distribution, due to the azi-
muthal periodicity and helical symmetry of the tape helix.
If l0 ≫ r2, the electromagnetic field and J both consist of
their own infinite terms of spatial harmonic components, ac-
cording to the Floquet theorem (Sensiper, 1951). In these
spatial harmonics, the axial phase constant βn of the nth

harmonic has relation with β0 (phase constant of the 0
th har-

monic) as βn= β0+ 2πn/p. By solving the Maxwell
equations, the analytical solutions of electromagnetic field
in the three specified regions are as follows.

Fig. 1. (Color online) The tape helix slow-wave system with a cylindrical
support insulator, filling dielectric and two metal shields. (a) Geometric
structure of the tape helix slow-wave system. (b) Cross section of the slow-
wave system.
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Region I (r1< r< a):

E1z = e−j(β0z−ωt) ∑+∞

n=−∞
[A1nIn(γnr)

+A2nKn(γnr)]e
−jn(2πz/p−θ)

E1r = e−j(β0z−ωt) ∑+∞

n=−∞

[ jβn
γn

(A1nI
′
n(γnr)

+A2nK ′
n(γnr))−

ωμ1n

γ2nr
(A3nIn(γnr)

+A4nKn(γnr))
]
e−jn(2πz/p−θ)

E1θ = e−j(β0z−ωt) ∑+∞

n=−∞

[−nβn
γ2nr

(A1nIn(γnr)

+A2nKn(γnr))−
jωμ1
γn

(A3nI
′
n(γnr)

+A4nK ′
n(γnr))

]
e−jn(2πz/p−θ)

H1z = e−j(β0z−ωt) ∑+∞

n=−∞

[
A3nIn(γnr)+ A4nKn(γnr)

]
e−jn(2πz/p−θ)

H1r = e−j(β0z−ωt) ∑+∞

n=−∞

[ωε1n
γ2nr

(A1nIn(γnr)

+A2nKn(γnr))+
jβn
γn

(A3nI
′
n(γnr)+ A4nK

′
n(γnr))

]
e−jn(2πz/p−θ)

H1θ = e−j(β0z−ωt) ∑+∞

n=−∞

[ jωε1
γn

(A1nI
′
n(γnr)+ A2nK

′
n(γnr))

− βnn

γ2nr
(A3nIn(γnr)+ A4nKn(γnr))

]
e−jn(2πz/p−θ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Region II (a< r< r2):

E2z = e−j(β0z−ωt) ∑+∞

n=−∞

[
G1nIn(γnr)

+G2nKn(γnr)
]
e−jn(2πz/p−θ)

E2r = e−j(β0z−ωt) ∑+∞

n=−∞

[ jβn
γn

(G1nI
′
n(γnr)

+G2nK ′
n(γnr))−

ωμ2n

γ2nr
(G3nIn(γnr)

+G4nKn(γnr))
]
e−jn(2πz/p−θ)

E2θ = e−j(β0z−ωt) ∑+∞

n=−∞

[−nβn
γ2nr

(G1nIn(γnr)

+G2nKn(γnr))−
jωμ2
γn

(G3nI
′
n(γnr)

+G4nK ′
n(γnr))

]
e−jn(2πz/p−θ)

H2z = e−j(β0z−ωt) ∑+∞

n=−∞

[
G3nIn(γnr)

+G4nKn(γnr)
]
e−jn(2πz/p−θ)

H2r = e−j(β0z−ωt) ∑+∞

n=−∞

[ωε2n
γ2nr

(G1nIn(γnr)+ G2nKn(γnr))

+ jβn
γn

(G3nI
′
n(γnr)+ G4nK

′
n(γnr))

]
e−jn(2πz/p−θ)

H2θ = e−j(β0z−ωt) ∑+∞

n=−∞

[ jωε2
γn

(G1nI
′
n(γnr)

+G2nK ′
n(γnr))−

βnn

γ2nr
(G3nIn(γnr)+ G4nKn(γnr))

]
e−jn(2πz/p−θ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Region III 区 (r2< r< r3):

E2z = e−j(β0z−ωt) ∑+∞

n=−∞

[
B1nIn(γnr)

+B2nKn(γnr)
]
e−jn(2πz/p−θ)

E2r = e−j(β0z−ωt) ∑+∞

n=−∞

[ jβn
γn

(B1nI
′
n(γnr)

+B2nK ′
n(γnr))−

ωμ1n

γ2nr
(B3nIn(γnr)

+B4nKn(γnr))
]
e−jn(2πz/p−θ)

E2θ = e−j(β0z−ωt) ∑+∞

n=−∞

[−nβn
γ2nr

(B1nIn(γnr)

+B2nKn(γnr))−
jωμ1
γn

(B3nI
′
n(γnr)

+B4nK ′
n(γnr))

]
e−jn(2πz/p−θ)

H2z = e−j(β0z−ωt) ∑+∞

n=−∞

[
B3nIn(γnr)

+B4nKn(γnr)
]
e−jn(2πz/p−θ)

H2r = e−j(β0z−ωt) ∑+∞

n=−∞

[ωε1n
γ2nr

(B1nIn(γnr)

+B2nKn(γnr))+
jβn
γn

(B3nI
′
n(γnr)

+B4nK ′
n(γnr))

]
e−jn(2πz/p−θ)

H2θ = e−j(β0z−ωt) ∑+∞

n=−∞

[ jωε1
γn

(B1nI
′
n(γnr)

+B2nK ′
n(γnr))−

βnn

γ2nr
(B3nIn(γnr)

+B4nKn(γnr))
]
e−jn(2πz/p−θ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

In Regions I–III, j is unit of imaginary number, n is the order
number of the spatial harmonic, and ω is the angular fre-
quency of the nth harmonic. Usually, condition βn≫ ω is sat-
isfied in the low frequency band, so that the phase constant γn
of the transverse direction in different regions can be con-
sidered as the same. A1n–A4n, G1n–G4n, and B1n–B4n are 12
field coefficients, which need to be calculated. In and Kn

are the modified Bessel functions of the first and second
kind, respectively. ki is the angular wave number (subscript
i= 1, 2, 3), which corresponds to the three specified regions,
and ki

2= ω2 εi μi, γn
2= βn

2
– ki

2.
In Figure 1a, if δ≪ p, the surface current that flows

through the tape helix almost has the same distribution in
the direction along the tape width (Sensiper, 1951, 1955).
As the source of the electromagnetic field, the excitation sur-
face current on the tape helix has many distribution models.
In this paper, the current model in reference (Sensiper, 1951,
1955) is adopted. That is to say, (1) the amplitude of surface
current density (J0) keeps the same on the tape helix; (2) in
the gaps between the tape turns, J0= 0; (3) the phase con-
stant plane of the helical surface current density is normal
to the axial direction; (4) no current flows normal to the he-
lical direction. The surface current density consists of two
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components, of which one is in parallel with the helical direc-
tion (J‖) and the other is normal to the helical direction
(J⊥= 0). Then, J‖ can also be calculated by Floquet theorem
as (Sensiper, 1951)

J∥ = e−j(β0z−ωt) ∑+∞

n=−∞
J∥ne

−jn(2πz/p−θ)

J∥n =
δJ0
p

e j(2πδ/p)
sin(nπδ/p)
nπδ/p

.

⎧⎪⎪⎨
⎪⎪⎩

(4)

If the inner and outer shields are ideal conductors, and the
nylon support and filling dielectric are both ideal dielectrics
(no losses need to be considered), the boundary conditions of
the tape helix slow-wave system are as

E1z = 0, E1θ = 0 (r = r1)
E2z = 0, E2θ = 0 (r = r3)

{

E1z(a) = E2z(a), E1θ(a) = E2θ(a)
H1z(a) = H2z(a), H1θ(a) = H2θ(a)

(r = a)

{

E1θ = E2θ, E1z = E2z

H2z − H1z = −J∥ sin(ψ)
H2θ − H1θ = J∥ cos(ψ)

∫S E
⇀

∥ · J
⇀ ∗

∥dS = 0.

(r = r2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

By use of (1)–(3) and the first 12 conditions in (5), the 12
field coefficients can be calculated as

G1n = jγnJ∥n
ω

[ cos(ψ)− βnn sin(ψ)/(γ
2
nr2)]

(In2Kn3 − In3Kn2)
ε2(I ′n2 + a1K ′

n2)(In2Kn3 − In3Kn2)
−ε1(In2 + a1Kn2)(I ′n2Kn3 − In3K ′

n2)

G3n = J∥n sin(ψ)(I
′
n2K

′
n3 − I ′n3K

′
n2)

(In2 + a2Kn2)(I ′n2K
′
n3 − I ′n3K

′
n2)

− μ2
μ1

(I ′n2 + a2K
′
n2)(In2K

′
n3 − I ′n3Kn2)

G2n = a1G1n, G4n = a2G3n

A1n = G1nIna + G2nKna

Ina − In1Kna/Kn1
,

A3n = μ2
μ1

(G3nI ′na + G4nK ′
na)

(I ′na − I ′n1K ′
na/K

′
n1)

A2n = −A1nIn1/Kn1, A4n = −A3nI ′n1/K
′
n1

B1n = In2 + a1Kn2

In2 − In3Kn2/Kn3
G1n,

B3n = μ2
μ1

(I ′n2 + a2K ′
n2)

(I ′n2 − I ′n3K
′
n2/K

′
n3)

G3n

B2n = − In3
Kn3

B1n, B4n = −I ′n3
K ′
n3

B3n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

In (6), In1, In2, Ina, and In3 are the simplified forms of
In(γn r1), In(γn r2), In(γn a), and In(γn r3), respectively, so
do Kn1, Kn2, Kna, and Kn3. I′n2 represents the derivative of
In(γn r) to γn r when r= r2, so does K′

n2. At last, the trans-
mission slow waves in the slow-wave system are determined
by the electromagnetic fields shown as (1)–(3). In (6), a1 and

a2 are parameters for simplification and their forms are as

a1 =
Ina

Ina − In1Kna/Kn1
− ε2

ε1

I ′na
I ′na − K ′

naIn1/Kn1

ε2
ε1

K ′
na

I ′na − K ′
naIn1/Kn1

− Kna

Ina − In1Kna/Kn1

a2 =
Ina

Ina − KnaI ′n1/K
′
n1
− μ2

μ1

I ′na
I ′na − K ′

naI
′
n1/K

′
n1

μ2
μ1

K ′
na

I ′na − K ′
naI

′
n1/K

′
n1

− Kna

Ina − KnaI ′n1/K
′
n1

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

According to (2) and (5), the dispersion equation of the tape
helix slow-wave system with dielectric discontinuity and two
metal shields can be obtained as

∑+∞

n=−∞

(J∥nJ
∗
∥n)

γn[ cos(ψ)− βnn sin(ψ)/(γ
2
nr2)]

2

ω
ε2(I ′n2 + a1K ′

n2)
In2 + a1Kn2

− ε1(I ′n2Kn3 − In3K ′
n2)

In2Kn3 − In3Kn2

⎧⎪⎪⎨
⎪⎪⎩

−
ωμ2 sin

2(ψ)
γn

In2 + a2Kn2

I ′n2 + a2K ′
n2
− μ2

μ1

In2K ′
n3 − I ′n3Kn2

I ′n2K
′
n3 − I ′n3K

′
n2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 0.

(8)

In (8), J‖nJ∗‖n can be substituted by sin2 (nπδ/p)/(nπδ/p)2

(Sensiper, 1951). The dispersion equation consists of infinite
terms of Bessel functions.

DISPERSION RELATION AND SLOW-WAVE
COEFFICIENT

Usually, the tape helix slow-wave structure is used for pulse
forming. The helical Blumlein PFL has the same structure as
shown in Figure 1, and it is a device that outputs square
(or quasi-square) voltage pulses for the accelerator with
pulse duration ranging from dozens of ns to several hundred
ns. These square pulses correspond to a work band which is
less than 10 MHz. Under this low-frequency condition, the
0th harmonic determines the dispersion characteristics of
the helical Blumlein PFL. Select the 0th term in (8) and
equate it to 0, and the dispersion equation of the 0th spatial
harmonic can be obtained. Two different kinds of indepen-
dent roots are obtained by solving this dispersion equation.
And these roots just correspond to the dispersion relation
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of the 0th harmonic as shown in (9).

ω0(β0p) = ±
β0p
∣∣ ∣∣ cot(ψ)
p

�����
ε2μ2

√ T0(γ0)
0.5,

T0(γ0)≜

I02 + a20K02

I12 − a20K12
+ μ2

μ1

I13K02 + I02K13

I13K12 − I12K13

I12 − a10K12

I02 + a10K02
− ε1

ε2

(I12K03 + I03K12)
I02K03 − I03K02

a10 =
I0a

I0aK01 − I01K0a
− ε2

ε1

I1a
I1aK01 + I01K1a

− ε2
ε1

K1a

I1aK01 + I01K1a
− K0a

I0aK01 − I01K0a

,

a20 = −
I0a

I0aK11 + I11K0a
+ μ2

μ1

I1a
I11K1a − I1aK11

μ2
μ1

K1a

I1aK11 − I11K1a
+ K0a

I0aK11 + I11K0a
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

In (9), a10 and a20 are parameters for simplification, and γ0
2=

β0
2 (γ0 ) – ω0

2 (γ0 )εi μi . If the pitch angle ψ is large enough, the
slow-wave coefficient pli= vph/ci ≪ 1 (ci is the light speed
in different dielectric regions), and βn ≫ k, so that the
approximation γ0

2= β0
2 is accurate. As the periodical slow-

wave structure has periodical dispersion curve, we employ
ω-βp as the coordinates to explain the dispersion curve of
the system. Actually, dispersion relation (9) shows the dis-
persion characteristics of the helical slow-wave system in
the first “Brillouin zone” (−π< β0p< π). Because βn=
β0+ 2πn/p, the periodical dispersion relation of the helical
slow-wave system is as

ω(βp) = ω0(β0p+ 2πn), n = 0, ±1, ±2, ±3, .... (10)

As the dispersion characteristics are almost determined by the
0th harmonic at low frequency band, the parameters of the 0th

spatial harmonic such as phase velocity vph0, slow-wave
coefficient pl0, group velocity vg0 and electric length τ′0, are
shown as (11) according to (9).

vph0(γ0) =
ω0(γ0)
β0(γ0)

= cot(ψ)����
εiμi

√
[ g

T0(γ0)
+ g2 cot(ψ)2

]1/2

vg0(γ0) =
dω0(γ0)
dβ0(γ0)

, τ′0 = l0/vph0(γ0)

pl0(γ0) = vph0(γ0)
����
εiμi

√
, (i = 1, 2, 3).

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(11)

In (11), factor g= εiμi/ε2μ2. Obviously, vph0, pl0, and τ0
are functions to γ0 in the first Brillouin zone of the dispersion
curve, which show the effects of dispersion of helical slow-
wave system on these important parameters. If the dielectric
inside the system is continuous, the homogeneous dielectric
corresponds to g= 1, otherwise, g≠ 1. Factor g shows the
effects of dielectric discontinuity on the phase velocity and
dispersion characteristics of the tape helix slow-wave system.

EFFECTS OF SUPPORT DIELECTRIC ON THE
DISPERSION CHARACTERISTICS OF THE TAPE
HELIX SLOW-WAVE SYSTEM

In order to study the effects of dielectric discontinuity on the
dispersion characteristics, a tape helix slow-wave system was
produced, according to the geometric structure in Figure 1.
The unifilar tape helix and its nylon support are shown as
Figure 2. The Helix was formed by a copper tape (thickness
at 0.2 mm) winding around the cylindrical nylon support.
The geometric parameters of the slow-wave system including
two metal shields are shown in Table 1. De-ionized water
filled in the PFL as filling dielectric, and its relative permit-
tivity and permeability were εr1= 81.5 and μr1= 1, respect-
ively. The relative permittivity and permeability of nylon
were εr2= 4.5 and μr2= 1. The thickness of the support di-
electric d= r2-a.

Dispersion Characteristics of the Spatial Harmonics

The periodical helical Blumlein type slow-wave system has
periodical dispersion curve. Eq. (9) shows the dispersion
relation in the first Brillouin zone when –π< β0p< π. By
periodical displacements of the abscissa β0p, (10) presents
the dispersion relation ω-βp of all the spatial harmonics as
Figure 3 shows. When –π< β0p< π, the dispersion curve
of the 0th harmonic consists of two symmetric lines that
pass through the cross point of the coordinates. When the ab-
scissa βp reaches ± π, ω reaches its upper limit 2.263 × 108

rad/s. So, the pass frequency band of the designed helical
Blumlein PFL is about [0, 36 MHz]. When (2n-1)π< βp<
(2n+ 1)π, the dispersion curve in Figure 3 corresponds to
the nth spatial harmonic, which has the same geometric
characteristics as which of the 0th harmonic.

In order to analyze the effect of the dielectric discontinuity
on the dispersion relation, the dispersion curve ω1-βp when
d= 0 is also presented in Figure 3 for comparison. Geo-
metric structure of the curve ω1-βp is almost the same as
ω-βp. However, the slope of curve ω1-βp is smaller than
which of the curve ω-βp. Pass band of the helical Blumlein
PFL with no support dielectric (d= 0) is about [0,
27.6 MHz]. So, the conclusion is that dielectric discontinuity
increases the frequency of the electromagnetic wave, and the
pass band of the helical Blumlein PFL with dielectric

Fig. 2. (Color online) Helical slow-wave structure based on tape helix.
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discontinuity was also increased by a large extent. The effect
of the dielectric discontinuity on dispersion relation of the
helical Blumlein PFL is too obvious to be neglected.
For a 400 ns range PFL, the work band of ω is about [0,

5π × 106 rad/s]. The upper limit of the work band 2π/τ=
5π × 106 rad/s is plotted in Figure 3 for comparison. Ob-
viously, 2π/τ is much less than the upper limit (36 MHz)
of pass band of the PFL with 6 mm-thickness nylon support.
As curve ω= 2π/τ intersects with the dispersion curve ω-βp
in every Brillouin zone, these spatial harmonics may contrib-
ute to the electromagnetic field in the PFL. However, the
contributions of these harmonics are different from one
another. Field coefficient G1n in (6) can be selected as spatial
harmonic coefficient to measure the proportion of the nth har-
monic in the electromagnetic field. By normalizing G1n to
G10 (coefficient of the 0

th harmonic), the normalized coeffi-
cient of the nth harmonic is defined as ke(n)=G1n/G10.
Especially, ke(0)= 1 corresponds to the 0th harmonic. By
comparison of these normalized coefficients of spatial har-
monics, the largest ones can be selected out for analysis.
Actually, by calculating the normalized coefficient ke(n),

|ke(n)|< 5 × 10−4 ≪ ke(0)= 1 when n≠ 0 in the work
band of the PFL. It shows that the electromagnetic wave
almost only consists of the 0th harmonic. So the conclusion
is that, the dispersion characteristics of the PFL are almost
determined by the 0th harmonic in the first Brillouin zone.
Figure 4 shows the phase velocities of spatial harmonics in

the tape helix slow-wave system when d= 0 and d= 6 mm,
respectively. The phase velocities of the 0th harmonic almost
keep constant when abscissa βp increases in the first Bril-
louin Zone (-π < βp< π). The phase velocities of the
higher order harmonic are far smaller than which of the 0th

harmonic. In the first Brillouin Zone, phase velocity of the
helical Blumlein PFL with 6 mm-thickness nylon support
is much larger than the situation when there is no support di-
electric (d= 0). When the 6 mm-thickness nylon support is

added to the system, phase velocity of the 0th harmonic in-
creases from 5.796 × 106 m/s to 7.573 × 106 m/s (βp= π).
So the conclusions are as follows (1) When the support di-

electric with smaller permittivity (εr2< εr1) is introduced to
the tape helix slow-wave system, the angular frequencies
and phase velocities of spatial harmonics become much
larger than the situation without a support, the “slow” wave
effect of the system is weakened, and the electric length of
the system is cut down. (2) When εr2> εr1, the angular fre-
quencies and phase velocities decrease, the “slow” wave
effect of the system is strengthened, and the electric length
of the system increases.

Effects of Dielectric Discontinuity on the 0th Harmonic

As the dispersion characteristics of the designed tape helix
slow-wave system are completely determined by 0th harmo-
nic at the low frequency band in the first “Brillouin zone,”

Table 1. Geometric parameters of the produced tape helix slow-wave system with nylon support

r1(m) r2(mm) r3(mm) l0(m) ψ(°) p(mm) δ(mm) a(mm)

65 100 152 1.4 80.5 106 100 94

Fig. 3. (Color online) Effects of nylon support on the dispersion relation of the spatial harmonics in the slow-wave system.

Fig. 4. (Color online) Effects of nylon support on the phase velocity of the
spatial harmonics in the slow-wave system.
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the dispersion characteristics of the 0th harmonic should be
analyzed in detail. In order to describe the dispersion charac-
teristics of the 0th harmonic in the first “Brillouin zone”more
conveniently, ω-γ0 coordinates are employed. By use of (9)
and the parameters in Table 1, the dispersion curves of the
0th harmonic are shown in Figure 5 when d ranges from 0
to 6 mm. All of the ω-γ0 curves pass through the cross
point of the coordinates. Obviously, when d increases, the
angular frequency ω and the slope of ω-γ0 curves also in-
crease. It proves that the dispersion characteristics of the 0th

harmonic are sensitive to the thickness of nylon support.
When f< 10 MHz (ω < 62.8 rad/s), γ0 ranges form
-10–10 in Figure 5. And this low frequency band just corre-
sponds to the work band of the square pulse accelerator
(100 ns range) based on tape helix slow-wave system.
Figure 6 shows the vph0-γ0 curves of the 0th harmonic in

the slow-wave system with de-ionized water as filling dielec-
tric. In Figure 6a, vph0 is almost a constant at the low fre-
quency band when γ0 changes. That’s to say, the intrinsic
dispersion of the system determines that vph0 keeps constant
to ω and β0 at low frequency band, which corresponds to
good dispersion characteristics. However, when d changes
form 0 to 6 mm, vph0 changes from 5.8 × 106 m/s to 7.08 ×
106 m/s. Large increments of vph0 shows that vph0 and dis-
persion characteristics of the 0th harmonic are both sensitive
to the thickness of nylon support. The conclusion is that sup-
port dielectric with larger thickness weaken the “slow” wave
effect of the system more effectively.
In the designed tape helix slow-wave system with 6 mm

thickness support, if the relative permittivity εr2 of support di-
electric changes, then factor g in (11) also changes, so that
phase velocity of the 0th harmonic changes. Figure 6b
shows the vph0-γ0 curves when εr2= 1, 2.33, 4.5, 40, 81.5,
and 100 (or g= 80, 35, 18, 2, 1, and 0.8). Though vph0
still almost keeps constant to γ0, it is sensitive to εr2 (or the

support dielectric categories). When εr2< εr1= 81.5, vph0
is far larger than the situation without a support dielectric,
and smaller εr2 corresponds to larger vph0. On the other
hand, vph0 is smaller than the situation without a support di-
electric when εr2> εr1= 81.5. So, the conclusion is that
when the permittivity of support dielectric is smaller than
that of the filling dielectric, phase velocity of the system is
raised, and the “slow” wave effect is weakened. The reverse
condition also corresponds to the reverse results.

Because the light speed ci is different in different dielec-
trics, the slow-wave coefficient pl0 (kl0= vph0/ci) of the 0th

harmonic is also different in the three specified regions of
the system. Figure 7a shows the pl0-γ0 curves in different re-
gions when the thickness of nylon support is 6mm. pl0 also
keeps constant to γ0 at low frequency band, which proves
the dispersion has few effects on pl0. In the de-ionized
water (regions I and III), pl0= 0.215; in nylon support
(region II), pl0= 0.05; and when there is no support dielectric
(d= 0), pl0= 0.174. Figure 7b shows the effects of dielectric
thickness of nylon on pl0. Obviously, pl0 in regions I and III
increases from 0.174 (d= 0) to 0.211(d= 6 mm) when d in-
creases from 0 to 6 mm. The “slow” wave effect can be wea-
kened by a large extent, though the increment of d is only

Fig. 5. (Color online) Dispersion curves of the 0th spatial harmonic when the
thickness of the nylon support changes.

Fig. 6. (Color online) Effects of support dielectric on the phase velocity of
the 0th spatial harmonic in the slow-wave system. (a) vph0 vs. γ0 when the
thickness of the nylon support changes. (b) vph0 vs. γ0 when the factor g
changes (d= 6 mm).
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6 mm. If the category of support dielectric changes, pl0 also
changes obviously as shown in Figure 7c. When εr2= 1,
2.33, 4.5, 40, 81.5, and 100, pl0 in regions I and III decreases

from 0.229 to 0.169. It proves that when εr2> εr1= 81.5, the
“slow” wave effect of the tape helix system can be
strengthened.
According to (14), the electric length of the 0th harmonic

in the system is shown in Figure 8 when d changes. In the
low frequency band, electric lengthτ′0 which also describes
the dispersion of the 0th harmonic almost keeps the same
when γ0 increases. It proves that the intrinsic dispersion of
the 0th harmonic has few effects on τ′0. However, the thick-
ness of nylon support d does this job. τ′0 decreases from
240 ns to about 198 ns when d increases from 0 to 6 mm.
When d= 6 mm, 3 mm, and 0, τ′0= 198 ns, 211 ns, and
240 ns, respectively. For the helical pulse forming line (sev-
eral hundred ns range) based on the tape helix slow-wave
system, its pulse duration τ0= 2τ′0. Then τ0= 396 ns,
422 ns, and 480 ns when d= 6 mm, 3 mm, and 0, respect-
ively. So the conclusion is that, nylon support in the tape
helix system with filling dielectric as de-ionized water can
bring in a similar “pulse shorting” effect to the helical
pulse forming line.

ELECTROMAGNETIC SIMULATION
AND EXPERIMENT

Electromagnetic Wave Simulation

Codes of CST microwave studio suite can be employed to
simulate the electromagnetic waves travelling in the tape
helix slow-wave system. According to the geometric struc-
ture in Figure 1 and parameters in Table 1, electromagnetic
wave simulation model was set up as shown in Figure 9a
to simulate voltage waves transmitting along the tape helix
system. In order to calculate the electric lengths of the vol-
tage waves in regions I and II (r1< r< r2) and in region
III (r2< r< r3) simultaneously, port 1 (r2< r< r3, z= 0)
and port 2 (r1< r< r2, z= 0) were set on one side of the
tape helix system as two voltage input ports as shown in
Figure 9a. On the other side of the system, port 3 (r2< r<

Fig. 7. (Color online) Effects of the support dielectric on the slow-wave
coefficient pl0 of the 0th harmonic. (a) kl0 in different regions of the slow-
wave system when the thickness of nylon support d= 6 mm. (b) kl0 in re-
gions I and III when the thickness of the nylon support changes. (c) kl0 in
regions I and III when the support dielectric changes (d= 6 mm).

Fig. 8. (Color online) Electric length of the slow wave system based on the
0th spatial harmonic when d changes.
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r3, z= l0) and port 4 (r1< r< r2, z= l0) were set as two im-
pedance ports to absorb the electric power. A trapezoid exci-
tation voltage signal with rise time and fall time as 20 ns, flat
top time as 100 ns and amplitude as 300 kV, was set to ports
1 and 2 to simulate the quasi-square pulse voltage wave. The
time when the front edge of the excitation signal began was
set as 0. The impedances of ports 3 and 4 were both set as
16 Ω. The relative permittivity of filling dielectric in the
system (de-ionized water, r1< r< a, r2< r< r3) is 81.5,
and the nylon support thickness d was adjustable. The loss
of conductors and dielectrics were neglected, for the PFL
was short.
The electromagnetic waves excited by the voltage source

in ports 1 and 2 transmitted through the tape helix system
to ports 3 and 4, and then were absorbed completely if the
impedances were matched. By calculating the intervals be-
tween the source voltage signal in ports 1 and 2 and output
voltage signals in ports 3 and 4, the electric lengths of the
pulse voltage waves in regions I and II and region III can
be obtained. Electric length is the crucial parameter, which
expresses the phase velocity and dispersion characteristics
of the slow-wave system. So the theoretical analyses in this
paper can be demonstrated by the demonstration of electric
length.
In simulation, the thickness d of nylon support was set as

6 mm and 3 mm orderly, and the simulation results are

shown in Figure 9b. Curve 1 represents the excitation voltage
signal in ports 1 and 2, curves 2 and 3 represent the output
voltage signals in ports 3 and 4, respectively, when d=
6 mm. By contrast to curve 1, the times when the flat top
started in curves 2 and 3 were about 180 ns and 190 ns
later than the counterpart in curve 1, respectively. That’s to
say the electric lengths of the system were about 180 ns
and 190 ns in region III and regions I and III, respectively.
These results basically corresponded to the theoretical
result 198 ns in Figure 8. When d= 3 mm, the electric
lengths of the system were about 200 ns and 215 ns in
region III and regions I and II, respectively, as shown in
curves 4 and 5 in Figure 9b. These two results were also ba-
sically corresponded to theoretical result 211 ns in Figure 8.

Simulation results proved that thickness of the nylon sup-
port and the dielectric discontinuity do had obvious impacts
on the electric length and dispersion characteristics of the
tape helix slow-wave system.

Experiment

In order to testify the theoretical calculation and simulation
result of the electric length that describes the dispersion
characteristics of the tape helix slow-wave system at low fre-
quency band, the experimental platform system of a pulse ac-
celerator was set up, and its structure is shown in Figure 10a.
The accelerator platform system consisted of a primary
capacitor, a trigger, a pulse transformer, a spark gap, tape-
helix Blumlein PFL, a dummy load and capacitive voltage
dividers. Actually, the tape-helix Blumlein PFL was an elec-
tromagnetic wave transmission line based on the tape helix
slow-wave system, which was very suitable for electric
length tests.

The work principle of the accelerator platform system is as
follows. The primary capacitor and pulse transformer with a
closed amorphous core charged the tape helix slow-wave
system to 10–20 kV, and the charge time was about
10–12 μs. The self-breakdown spark gap with two spherical
electrodes broke down when the charge voltage of the PFL
reached its breakdown voltage. Then, the tape helix slow-
wave system as an electromagnetic wave transmission line
discharged to the dummy load through the spark gap, and
the formed high-voltage quasi-square pulse voltage signal
can be obtained on the dummy load.

In order to study the effects of support dielectric thickness
on the electric length of the tape helix slow-wave system, two
air-core cylindrical nylon supports with thickness of 6 mm
and 3 mm were used in the experiments. When d= 6 mm,
the voltage signal of the 32 Ω dummy load in experiment
is shown in Figure 10b. The amplitude of the formed voltage
pulse was 15 kV, flat top was 180–190 ns, and the pulse
width at half maximum (PWHM) was 377 ns. The front
edge of the formed pulse was long, due to the parasitic induc-
tance and spark inductance in the platform system. Because
the pulse duration of the tape-helix Blumlein PFL is twice
as the electric length of the tape helix slow-wave system,

Fig. 9. (Color online) Microwave simulation model and its results of electric
lengths. (a) Geometric model. (b) Output voltage signal of the two impe-
dance ports.
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the electric length was about 188.5 ns when d= 6 mm.
When d= 3 mm, Figure 10c shows the voltage and current
pulse signals of the 32 Ω dummy load formed by the tape-
helix Blumlein PFL. Waveform of the 0.4 kA current pulse
was in line with the 12 kV voltage pulse. The voltage pulse
duration was about 400 ns (PWHM) in experiment, so the
electric length was 200 ns when d= 3 mm. By Fourier trans-
formation, the spectrum of the quasi-square voltage pulses
shown in Figures 10b and 10c were in the band f< 3 MHz,
which satisfied the low frequency band condition f<
10 MHz adopted in Figures 5–8.
When d= 6 mm and 3 mm, theoretical calculation of elec-

tric lengths of the tape helix slow-wave system was 198 ns
and 211 ns, while the experimental results showed that the
electric lengths were 188.5 ns and 200 ns, respectively. The
theoretical calculation had relative errors as 5% and 5.5%,
respectively.
Generally speaking, according to (11), the electric length

is an important parameter which directly describes phase
velocity and the dispersion characteristics (ω-γ0) of the
tape helix slow-wave system. The correspondence of exper-
imental result and theoretical calculation of electric length
demonstrated that, the dispersion analysis of the effects of

dielectric discontinuity on the slow-wave system was correct
and reasonable. The nylon support in the tape helix slow-
wave system with filling dielectric as de-ionized water did
bring in a similar “pulse shorting” effect to the helical
pulse forming line.

CONCLUSIONS

In this paper, the tape helix slow-wave system, including an
inner and an outer metal shield, tape helix, nylon support and
de-ionized water as filling dielectric, was studied. Effects of
radial dielectric discontinuity caused by the support dielec-
tric and filling dielectric on the dispersion characteristics
were analyzed in detail for the first time. The dispersion
relations, phase velocities, slow-wave coefficients and elec-
tric lengths of the spatial harmonics in the system were calcu-
lated. Results showed that, if the permittivity of support
dielectric was smaller than that of filling dielectric, frequen-
cies of the spatial harmonics in the system rose, phase
velocities and slow-wave coefficients increased, the slow-
wave effect of the system was weakened so that the previous
electric length was shortened. The reverse condition corre-
sponded to the reverse results, and the electromagnetic simu-
lation also proved it. By use of the helical pulse forming line
platform based on the studied tape helix slow-wave system,
the electric lengths of the system were tested as 188.5 ns
and 200 ns in experiment, when the thicknesses of nylon
support were 6 mm and 3 mm, respectively. The theoretical
calculation results 198 ns and 211 ns basically corresponded
to experimental results, which only had relative errors as 5%
and 5.5%. Experimental results demonstrated the similar
“pulse shorting” effect in the tape helix slow-wave system
caused by the dielectric discontinuity.
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