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Standard quasilinear descriptions are based on the constant magnetic field form of the
quasilinear operator so improperly treat the trapped electron modifications associated
with tokamak geometry. Moreover, successive poloidal transits of the Landau resonance
during lower hybrid current drive in a tokamak are well correlated, and these geometrical
details must be properly retained to account for the presence of trapped electrons that
do not contribute to the driven current. The recently derived quasilinear operator in
tokamak geometry accounts for these features and finds that the quasilinear diffusivity
is proportional to a delta function with a transit or bounce averaged argument (rather than
a local Landau resonance condition). The new quasilinear operator is combined with the
Cordey (Nucl. Fusion, vol. 16, 1976, pp. 499–507) eigenfunctions to properly derive a
rather simple and compact analytic expression for the trapped electron modifications to
the driven lower hybrid current and the efficiency of the current drive.
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1. Introduction

The original proposals to use radio frequency waves (rf) (Fisch 1978; Karney & Fisch
1979) and early estimates (Fisch & Boozer 1980; Fisch & Karney 1981) and analytic
evaluations (Antonsen & Chu 1982; Cordey, Edlington & Start 1982; Taguchi 1983) relied
on the constant magnetic field treatment of quasilinear theory (Kennel & Engelmann
1966). Indeed, all subsequent analytic treatments (Karney & Fisch 1985; Yoshioka &
Antonsen 1986; Cohen 1987; Giruzzi 1987; Chiu et al. 1989; Ehst & Karney 1991) of
the amount of parallel electron current that can be driven with lower hybrid waves in a
tokamak continued to employ the Kennel–Engelmann quasilinear (QL) operator. More
recent work, starting in the late 1980s, focused on numerical simulations of lower hybrid
current drive (LHCD) and is the subject of an extensive review by Bonoli (2014). These
treatments work quite well and also lead to sensible estimates of the LHCD efficiency
even though tokamak geometry is not properly retained. Recently, a QL description that
properly accounts for the correlated nature of successive poloidal passes through the
Landau damping resonance in a tokamak has been derived (Catto & Tolman 2021). In this
new formulation the wave–particle resonance condition is a transit or bounce averaged
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resonance condition in velocity space, rather than a resonance at a local poloidal angle
in the torus. This improved QL operator is used herein to discover the changes that arise
because of this subtle difference, and to demonstrate how only minor changes are required
in standard treatments to properly account for toroidal geometry and the presence of
trapped electrons.

In the next section, the collision operators employed are given and the adjoint procedure
of Antonsen & Chu (1982) slightly extended. Section 3 presents a solution of the adjoint
kinetic equation for the electrons by using the Sturm–Liouville eigenfunctions originally
introduced by Cordey (1976) – a procedure that avoids the limitations of employing model
collision operators that only retain pitch angle scattering collisions (Taguchi 1983) or
a Legendre equation approximation to the pitch angle scattering operator when energy
diffusion is retained (Cordey et al. 1982; Karney & Fisch 1985; Cohen 1987). The final
solution is rather simple and compact in form because only a single Cordey eigenfunction
is required. It is used in § 4 to evaluate the parallel current that can be driven by lower
hybrid waves. The resulting expression properly retains for the first time the electron
trapping modifications that reduce the amount of driven current. In § 5 the power needed to
drive the current is used to evaluate the current drive efficiency with these modifications
due to the presence of trapped electrons as well as poloidal and radial mode structure
effects retained. The discussion in § 6 also gives an estimate of the density at which
nonlinear effects are expected to enter as well as a summary.

2. Adjoint method and collision operators

Using Gaussian cgs units, and the drift kinetic variables of spatial location r, total energy
E = v2/2 − e�/me, magnetic momentμ = v2

⊥/2B and gyrophase ϕ, such that the velocity
is

v = v⊥ + v||n = v⊥[e1(r) cosϕ + e2(r) sinϕ] + v||n(r), (2.1)

with v2
|| = v2 − 2μB, the QL equation for the unperturbed electron distribution function f

is

v||n · ∇f = C{f } + Q{f }. (2.2)

In the preceding, Q denotes the QL operator, C is the collision operator, the three
orthonormal spatial unit vectors are related by e1 × e2 = n = B/B, and the unperturbed
magnetic field is

B = Bn = ∇α × ∇ψ = I(ψ)∇ζ + ∇ζ × ∇ψ, (2.3)

where me and e are the mass and magnitude of the charge on an electron, and � is the
electrostatic potential. The spatial variables employed are the poloidal flux function ψ ,
and the poloidal, ϑ , and toroidal, ζ , angles, where q is the safety factor and I = RBt, with
Bt the toroidal magnetic field and R the major radius. The detailed forms of Q and C will
be given as needed.

Linearizing about an electron Maxwellian of density ne and temperature Te,

f0 = f0(ψ,E) = ne(ψ)

[
me

2πTe(ψ)

]3/2

e−mev
2/2Te(ψ) = ne(ψ)

[
me

2πTe(ψ)

]3/2

e−[meE+e�(ψ)]/Te(ψ),

(2.4)
by writing

f = f0 + f1 + · · · , (2.5)
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Lower hybrid current drive in a tokamak 3

and using
C{f } = Cee{f } + Cei{f }, (2.6)

with C{f0} = 0, and Cee and Cei the electron–electron and electron–ion collision operators,
leads to the unperturbed linearized equation to be solved by the adjoint method, namely

v||n · ∇f1 = C{f1} + Q{f0}. (2.7)

The electron–ion collision operator (Hinton & Hazeltine 1976; Helander & Sigmar
2002) is

Cei{f1} = νu

x3
L
{

f1 − me

Te
V||v||f0

}
= νu

x3

[
L{f1} + me

Te
V||v||f0

]
, (2.8)

with x = v/ve and ve = (2Te/me)
1/2 the electron thermal speed. The Lorentz operator L is

self-adjoint and defined here as

L{h} = 1
2
∇v · [(v2I − vv) · ∇vh] = 2B0

B
ξ
∂

∂λ

(
λξ
∂h
∂λ

)
, (2.9)

with L{v‖f0} = −v‖f0, λ = 2μB0/v
2 = B0v

2
⊥/Bv

2, ξ = v‖/v and B0 a normalization
constant to be made explicit shortly. The parallel ion mean velocity is V‖ and the unlike
collision frequency is

νu ≡
√

2πZ2e4ni�nΛ/m1/2
e T3/2

e → 3
√

πνei/4, (2.10)

where νei = 4
√

2πZ2e4ni�nΛ/3m1/2T3/2 = Zνee for a quasineutral plasma with Zni = ne,
νee the electron–electron collision frequency, and Z the ion charge number.

The electron–electron collision operator is self-adjoint. As only a lowest-order solution
is desired, the standard high speed expansion of the electron–electron collision operator in
its self-adjoint form is employed, namely

Cee{h} = ν�

{
1
x3

L{h} + ∇v ·
[

Tef0

mex3
∇v

(
h
f0

)]}

= 2B0ν�ξ

Bx3

∂

∂λ

(
λξ
∂h
∂λ

)
+ ν�Te

mev2

∂

∂v

[
v2f0

x3

∂

∂v

(
h
f0

)]
, (2.11)

where
ν� ≡

√
2πZ4e4ne�nΛ/m1/2

e T3/2
e → 3

√
πνee/4, (2.12)

where νee = 4
√

2πe4ne�nΛ/3m1/2T3/2 and h is a perturbed distribution function. The
preceding like particle collision operator is just the usual non-momentum conserving high
speed expansion of the Rosenbluth potentials for collisions with a Maxwellian (Karney &
Fisch 1979).

The adjoint method provides an explicit means of evaluating the parallel current
provided the adjoint equation is easier to solve than the original kinetic equation. It has
been used for LHCD by Antonsen & Chu (1982), Karney & Fisch (1985) and Cohen
(1987). It has also been used to calculate the bootstrap current in stellarators (Helander,
Geiger & Maaβberg 2011), and in the plateau regime to evaluate the bootstrap current in
a tokamak (Pusztai & Catto 2010).
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4 P.J. Catto

To account for the non-self-adjointness of the electron–ion collision operator it is
necessary to use the modified adjoint equation

v||n · ∇h + C{h} = −
(

B
I

− mνu

Tx3
V||

)
v||f0. (2.13)

Then, defining the flux surface average of any quantity A as

〈A〉 ≡ [
∮

dϑA/B · ∇ϑ]/[
∮

dϑ/B · ∇ϑ], (2.14)

using〈∫
d3vf −1

0 v||(hn · ∇f1 + f1n · ∇h)
〉

=
〈
B · ∇

(
B−1

∫
d3vv||hf1/f0

)〉
= 0, (2.15)

and the self-adjointness of the electron–electron collision operator,〈∫
d3vf −1

0 (f1Cee{h} − hCee{f1})
〉

= 0, (2.16)

and the Lorentz operator 〈∫
d3vf −1

0 x−3
e (f1L{h} − hL{f1})

〉
= 0, (2.17)

yields the desired adjoint relation〈
B
∫

d3vv||f1

〉
= I

〈∫
d3vh

(
f −1
0 Q{f0} − mνu

T x3
e

V||v||

)〉
. (2.18)

Therefore, only the adjoint equation need be solved to evaluate the parallel electron current
driven by the lower hybrid waves. It is convenient to define B2

0 ≡ 〈B2〉.
Based on the direction of the poloidal magnetic field, the Ohmic current is in the positive

toroidal direction. Consequently, the lower hybrid (LH) parallel electron flow is to be
driven in the opposite or negative direction to make

〈
B
∫

d3vv‖f1
〉
< 0.

The parallel ion flow term in (2.18) is normally ignored as

mνu
〈
V||
∫

d3vx−3hv||
〉

T
〈∫

d3vhf −1
0 Q{f0}

〉 ∼ V||νeef0

veQ
∼
(me

M

)1/2ρpi

a
νeef0

Q{f0} � 1, (2.19)

where M is the ion mass, and V‖ ∼ viρpi/a, with vi the ion thermal speed, ρpithe poloidal
ion gyroradius and a the minor radius. Consequently, V‖ can be ignored and only〈

B
∫

d3vv||f1

〉
= I

∫
d3v

v||h
Bf0

〈
B
v||

Q{f0}
〉

= I
(∫

d3v
v||h
Bf0

τf Q{f0}
)
/(

∮
dϑ/B · ∇ϑ),

(2.20)

need be evaluated, where the solution for h is shown in the next section to satisfy ∂h/∂ϑ =
0 to lowest order. The transit average over a full (f ) poloidal circuit is defined using dτ =
dϑ/v‖n · ∇ϑ to be

Ā ≡
∮

f
dτA/(

∮
f
dτ). (2.21)
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3. Eigenfunction solution procedure in tokamak geometry

Rewriting the adjoint equation yields a Spitzer & Härm (1953) equation in toroidal
geometry,

v||n · ∇h + Cee{h} + νux−3L{h} = −I−1Bv||f0. (3.1)

Writing h = h̄ + h̃ + · · · with h̃ � h̄ then to lowest order

v||n · ∇h̄ = 0, (3.2)

giving

h̄ = h̄(ψ, α,E, μ, σ ), (3.3)

where σ = v‖/|v‖| for the passing and σ = 0 for the trapped. Then transit averaging the
next order equation,

v||n · ∇h̃ + Cee{h̄} + νux−3L{h̄} = −I−1Bv||f0, (3.4)

leads to

Cee{h̄} + νux−3L{h̄} = −I−1Bv||f0. (3.5)

Integration over a full bounce for the trapped (t) electrons gives Bv‖ = 0, implying that
the trapped response h̄t vanishes,

h̄t = 0. (3.6)

For the passing electrons

Bv||

∮
f
dτ =

∮
dϑB2/B · ∇ϑ = 〈B2〉

∮
dϑ/B · ∇ϑ. (3.7)

Using the flux surface average to rewrite the passing (p) adjoint equation leads to

I
〈

B
v||

Cee{h̄p}
〉
+ Iνu

x3
e

〈
B
v||

L{h̄p}
〉

= −〈B2〉f0, (3.8)

where 〈
B
v||

L{h̄p}
〉

= 2B0

v

∂

∂λ

(
λ〈ξ〉∂ h̄p

∂λ

)
, (3.9)

and

〈
B
v||

Cee{h̄p}
〉

= 2B0ν�

x3v

∂

∂λ

(
λ〈ξ〉∂ h̄p

∂λ

)
+ ν�Te

mev3

〈
B
ξ

〉
∂

∂v

[
v2f0

x3

∂

∂v

(
h̄p

f0

)]
. (3.10)

The last term of (3.10) proportional to v−3∂ h̄p/∂v is drag and the remainder is energy
scattering.
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In the large aspect ratio limit

〈ξ〉 = 2
√

2εE(k)

π
√
(1 − ε)k2 + 2ε

, (3.11)

and
1
B0

〈
B
ξ

〉
= −2

∂〈ξ〉
∂λ

, (3.12)

with E an elliptic integral of the second kind, k2 = 2ελ/[1 − (1 − ε)λ], and ε = r/R with
r the minor radius. The equation to be solved is first rewritten as

2(Z + 1)
∂

∂λ

[
λ〈ξ〉 ∂

∂λ

(
h̄p

f0

)]
+ Tex3

meB0v2f0

〈
B
ξ

〉
∂

∂v

[
v2f0

x3

∂

∂v

(
h̄p

f0

)]
= −〈B2〉vx3

IB0ν�
.

(3.13)

Only the lowest -order v dependence is required. Inserting

h̄p

f0
= 〈B2〉vx3

IB0ν�
Λ(λ), (3.14)

leads to

2(Z + 1)
∂

∂λ

(
λ〈ξ〉∂Λ

∂λ

)
+ TeΛ

meB0v3f0

〈
B
ξ

〉
∂

∂v

[
v2f0

x3

∂

∂v
(vx3)

]
= −1. (3.15)

Using

Te

mev3f0

∂

∂v

[
v2f0

x3

∂

∂v
(vx3)

]
= 1

2x3e−x2

∂

∂x

(
e−x2

x
∂x4

∂x

)
= 2

x3e−x2

∂

∂x
(x2e−x2

) = −4 + 4
x2
,

(3.16)

then for x � 1 drag dominates over energy scattering and the equation to be solved reduces
to

∂

∂λ

(
λ〈ξ〉∂Λ

∂λ

)
+ 4

Z + 1
∂〈ξ〉
∂λ

Λ = − 1
2(Z + 1)

. (3.17)

The Cordey (1976) eigenfunctions Λj and associated eigenvalues κj of the
Sturm–Liouville differential equation

∂

∂λ

(
λ〈ξ〉∂�j

∂λ

)
= κj

∂〈ξ〉
∂λ

Λj = −κj

2

〈
B

B0ξ

〉
Λj, (3.18)

are used to obtain a solution. Expanding in the eigenfunctions Λj, which satisfy Λj(λ =
0) = 1, Λj(λ = B0/Bmax) = 0 and, for j 
= k, the orthogonality condition∫ B0/Bmax

0
dλΛkΛj

∂〈ξ〉
∂λ

= 0, (3.19)

by inserting

Λ =
∞∑

j=1

AjΛj, (3.20)
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into the differential equation leads to

∞∑
j=1

Aj

(
κj + 4

Z + 1
∂〈ξ〉
∂λ

)
Λj = − 1

2(Z + 1)
. (3.21)

Multiplying by Λk and integrating over λ, yields the coefficients Aj to be given by

2αj[(Z + 1)κj + 4]Aj = βj, (3.22)

where

αj = −
∫ B0/Bmax

0
dλΛ2

j
∂〈ξ〉
∂λ

→
ε→0

1
4j − 1

, (3.23)

and

βj =
∫ B0/Bmax

0
dλΛj →

ε→0

2
3
. (3.24)

Fortunately, aspect ratio expansions of the preceding eigenvalues and coefficients are
available (Hsu, Catto & Sigmar 1990; Xiao, Catto & Molvig 2007; Parker & Catto 2012).
In particular, the lowest eigenvalue is κ1 � 1 + 1.46

√
ε + 1.48ε + 0.13ε3/2 so always

of order unity, with the others increasing in size as for all Sturm–Liouville problems.
Moreover, as ε increases so do all of the κj and the βj/αj. These prior investigations find
that only the leading few eigenfunctions are required, as might be expected from how
quickly the eigenvalues increase. Being more explicit by using results from Hsu et al.
(1990),

κj − (2j2 − j) = 1.46
√
ε

4j − 1
3

[
(2j − 1)!!
(2j − 2)!!

]2

= 1.46
√
ε

⎧⎨
⎩

1 j = 1
21/4 j = 2
825/64 j = 3

, (3.25)

where (2j − 1)!! = 1 · 3 · 5 . . . (2j − 1) and (2j − 2)!! = 2 · 4 · 6 . . . (2j − 2) (and both
equal 1 for j = 1). Consequently, only the first couple of βj and αj are required. For βj

βj =
∫ B0/Bmax

0
dλΛj = 2

3
(1 − ε)

[
aj1 − (−1)j+1 (2j − 1)!!

(2j − 2)!!
ε

]

+ O(ε3/2) → 2
3
(1 − ε)

{
a11 − ε j = 1
a21 + 3ε/2 j = 2

,

(3.26)

where based on appendix B and the fits in table 1 of Hsu et al. (1990)

ajj = 1 −
∑
j
=m

ajm →
j=1

a11 = 1 − 0.62
√
ε + 1.33ε, (3.27)

and

ajm � −(−1)j+m(4m − 1)1.46
√
ε

3[2m2 − m − (2j2 − j)]

[
(2j − 1)!!(2m − 1)!!
(2j − 2)!!(2m − 2)!!

]

+ O(ε) →
j=2
m=1

a21 = −0.44
√
ε − 0.13ε.

(3.28)
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In addition,

αj = −
∫ B0/Bmax

0
dλΛ2

j
∂〈ξ〉
∂λ

=
∞∑

k=1

a2
jk

4k − 1
− 4

3
ε

[
(2j − 1)!!
(2j − 2)!!

]2

+ O(ε3/2) =
{

a2
11/3 + O(ε) j = 1

1/7 + O(ε) j = 2
, (3.29)

giving

β1/α1 � 2/a11 + O(ε) = 2/(1 − 0.62
√
ε)+ O(ε), (3.30)

and

β2/α2 � 14a21/3 + O(ε) = −2.04
√
ε + O(ε). (3.31)

Using the preceding results gives the lowest -order adjoint solution to be

h̄p

f0
= 〈B2〉vx3

2IB0ν�

∞∑
j=1

βjΛj(λ)

[(Z + 1)κj + 4]αj

� vx3

Rν�

{
(1 + 0.62

√
ε)�1(λ)

[(Z + 1)(1 + 1.46
√

2ε)+ 4]
− 1.02

√
ε�2(λ)

[(Z + 1)(7 + 7.66
√

2ε)+ 4]

}
, (3.32)

which will be used to evaluate the lower hybrid driven current. Notice that even the j = 2
term is small and can be ignored. The preceding solution also ignores x−3 � 1 corrections
as small.

As h̄t = 0 only the passing electrons contribute to 2.20, it simplifies to

〈
B
∫

d3vv||f1

〉
� B0I

2πqR

∫
d3v

v||h̄p

Bf0
τpQ{f0}, (3.33)

where large aspect ratio is assumed and the passing transit time for a full poloidal circuit
is

τp =
∮

p
dτ =

∮
p

dϑ/v||n · ∇ϑ � 4qR
√
(1 − ε)k2 + 2εK(k)/v

√
2ε, (3.34)

with ε = r/R, k2 = 2ελ/[1 − (1 − ε)λ], and K an elliptic integral of the first kind. The
parallel current will next be formed by evaluating (3.33).

4. Current in a tokamak for a correlated QL diffusivity

The recently derived form for the correlated diffusivity (Catto & Tolman 2021) for the
electrons in a tokamak is

D̄ = 2π3q2R2e2|em · n|2
m2

ev
2τp

∑
�

δ

(∮
p

dτΛ− 2π�

)
�(v, k), (4.1)

where the argument of the delta function is transit averaged with∮
p

dτΛ � ωτp − 2πσ(qn − m), (4.2)
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allowing aspect ratio modifications to be properly evaluated. The phase integral � is
defined as

� ≡
∣∣∣∣
∮

p

dϑ
2π

e−i
∫ τ
τ0

dτ ′Λ(τ ′)
∣∣∣∣
2

≤ 1, (4.3)

with∫ τ

τ0

dτ ′Λ(τ ′) = ω(τ − τ0)− σ(qn − m)ϑ(τ) = ωqR
∫ ϑ

0
dϑ/v|| − σ(qn − m)ϑ, (4.4)

where ϑ(τ0) = 0 and
dϑ/dτ = v||n · ∇ϑ. (4.5)

For notational simplicity, only the poloidal mode number (m) is shown as a subscript on
the Fourier coefficients of the applied rf parallel electric field em · n. The frequency (ω),
toroidal mode number (n) and radial mode index (s) subscripts are suppressed.

For a Maxwellian the transit averaged QL operator is

Q{f0} =
∑
ω,m
n,s

1
τp

∂

∂E

(
τpv

2D̄
∂f0

∂E

)
=
∑
ω,m
n,S

1
τpv

∂

∂v

∣∣∣∣
μ

(
τpvD̄

∂f0

∂v

)
. (4.6)

with � the bounce harmonic index as sucessive passes are correlated. As only the passing
contribute, the large aspect ratio form of the flow becomes

〈
B
∫

d3vv||f1

〉
� B0I

2πqR

∑
ω,m
n,s

d3v
v||h̄p

Bf0v

∂

∂v

∣∣∣∣
μ

(
vτpD̄

∂f0

∂v

∣∣∣∣
μ

)

= meB0I
2πTeqR

∑
ω,m
n,s

∫
d3v

v||τp

Bv
D̄f0

∂

∂v

∣∣∣∣
μ

(
v2h̄p

f0

)
.

(4.7)

To proceed it is convenient to perform the v integral first by writing

D̄ = v−2τ−1
p

∑
�

d��(v, k)δ(
∮

p
dτΛ− 2π�), (4.8)

with
d� ≡ 2π3q2R2e2m−2

e |em · n|2. (4.9)

Then〈
B
∫

d3vv||f1

〉
= meB0I

2πTeqR

∑
ω,m
n,s,�

d�

∫
d3v

v||f0

Bv3
�(v, k)δ(

∮
p

dτΛ− 2π�)
∂

∂v

∣∣∣∣
μ

(
v2h̄p

f0

)
.

(4.10)
Taylor expanding the argument of the delta function leads to

δ(

∮
p

dτΛ− 2π�) = δ(v − vk)

ω|∂τp/∂v |vk

= v2
kδ(v − vk)

ωvτp
, (4.11)
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with the speed at resonance defined as

vk ≡ ωvτp/2π(�+ |qn − m|). (4.12)

As a result,〈
B
∫

d3vv||f1

〉
= meB0I

2πTeqR

∑
ω,m
n,s,�

d�

∫
d3v

v||f0

Bv
�(v, k)
ωvτp

δ(v − vk)
∂

∂v

∣∣∣∣
μ

(
v2h̄p

f0

)
. (4.13)

Using ∇vv = v/v, ∇vλ = (2B0/Bv2)v⊥ − (2λ/v2)v, and ∇vϕ = v−2
⊥ n × v, gives d3v =

dv dλdϕ/∇vv × ∇vλ · ∇vϕ = dv dλ dϕBv3/2B0v‖. The LH parallel electron flow must
be driven in the negative direction to sustain the poloidal magnetic field, making〈
B
∫

d3vv‖f1
〉
< 0. Hence, a minus sign must be inserted as the velocity space integration

is only over v‖ < 0 electrons with D̄ vanishing for v‖ > 0. Consequently, in the resonance
condition, σ = −1 and m> qn. Therefore, the magnitude of the parallel wave number
|k‖| ≡ |qn − m|/qR, is used as k‖ < 0.

Multiplying the velocity integral by 1/2 and inserting the diffusivity〈
B
∫

d3vv||f1

〉
= −meI

4TeqR

∑
ω,m
n,s,�

d�

∫ B0/Bmax

0
dλ
∫ ∞

0
dv�(v, k)δ(v − vk)

v2f0

ωvτp

∂

∂v

∣∣∣∣
μ

(
v2h̄p

f0

)

= − meI
4TeqR

∑
ω,m
n,s,�

d�

∫ B0/Bmax

0
dλ�(vk, k)

v2d�f0

ωvτp

∂

∂v

∣∣∣∣
μ

(
v2h̄p

f0

)∣∣∣∣
v=vk

.

(4.14)

The preceding equation is a convenient form of the parallel flow and can be used to
evaluate the driven parallel electron current for a more general like particle collision
operator than was considered in the preceding section.

Defining
x2

k = mev
2
k/2Te = me(ωvτp)

2/8π2(�+ |qn − m|)2Te, (4.15)

with x2
k � 1 in f0 ∝ e−x2

k , the vτp ∝ K(k) →
k→1

∞ indicates that the freely passing will

dominate the driven current. Consequently, x2
k � 1 is used to integrate by parts by first

noting
∂f0

∂λ

∣∣∣∣
v

= −f0
∂x2

k

∂λ

∣∣∣∣
v

= −f0
meω

2vτp

4π2Te(�+ |qn − m|)2
∂(vτp)

∂λ

∣∣∣∣
v

. (4.16)

Then ignoring x−2
k � 1 corrections〈

B
∫

d3vv||f1

〉
= −π2I

qR

∑
ω,m
n,s,�

d�(�+ |qn − m|)2f0

ω(ωτp)
2∂(vτp)/∂λ

�(xk, k = 0)

×
[
∂

∂v

∣∣∣∣
λ

(
v2h̄p

f0

)
− 2λv

∂

∂λ

∣∣∣∣
v

(
h̄p

f0

)]∣∣∣∣
v=vk
λ=0=k

+ · · · . (4.17)

Changing to v and λ velocity variables using

∂

∂v

∣∣∣∣
μ

= ∂

∂v

∣∣∣∣
λ

+ ∂λ

∂v

∣∣∣∣
μ

∂

∂λ

∣∣∣∣
v||

= ∂

∂v

∣∣∣∣
λ

− 2λ
v

∂

∂λ

∣∣∣∣
v

, (4.18)
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gives
∂

∂v

∣∣∣∣
μ

(
v2h̄p

f0

)
= ∂

∂v

∣∣∣∣
λ

(
v2h̄p

f0

)
− 2λv

∂

∂λ

∣∣∣∣
v

(
h̄p

f0

)
. (4.19)

Therefore,〈
B
∫

d3vv||f1

〉
= −π2I

qR

∑
ω,m
n,s,�

d�(�+ |qn − m|)2f0

ω(ωτp)
2∂(vτp)/∂λ

�(xk, k = 0)

×
[
∂

∂v

∣∣∣∣
λ

(
v2h̄p

f0

)
− 2λv

∂

∂λ

∣∣∣∣
v

(
h̄p

f0

)]∣∣∣∣
v=vk
λ=0=k

+ · · · . (4.20)

As the pitch angle derivative of h̄p is well behaved at λ = 0 the last term vanishes leading
to a lower hybrid driven current J‖ of

J|| ≡ −eB−1
0

〈
B
∫

d3vv||f1
〉

� −π2e
q

∑
ω,m
n,s,�

d�(�+ |qn − m|)2f0
ω(ωτp)

2∂(vτp)/∂λ
�(xk, k = 0)

∂

∂v

∣∣∣∣
λ

(
v2h̄p

f0

)∣∣∣∣∣ v=vk
λ=0=k

.

(4.21)

To simplify further
(vτp)k=0 = 2πqR, (4.22)

is used along with

1
τp

∂τp

∂λ

∣∣∣∣
λ=0=k

= [(1 − ε)k2 + 2ε]2

4εk2

[
E

(1 − k2)K
− K + (1 − ε)k2

(1 − ε)k2 + 2ε

]∣∣∣∣
k=0

= ε

k2

[
k2

2
+ (1 − ε)k2

2ε

]
� 1

2
. (4.23)

Moreover, only � = 0 contributes as

�(k = 0, xk = xk=0) ≡
∣∣∣∣
∮

p

dϑ
2π

e−i
∫ τ
τ0

dτ ′Λ(τ ′)
∣∣∣∣
2

�
∣∣∣∣
∮

p

dϑ
2π

e−i(ωqR/v−|qn−m|)ϑ
∣∣∣∣
2

�
∣∣∣∣
∮

p

dϑ
2π

e−i�ϑ

∣∣∣∣
2

= δ0�, (4.24)

giving
vk=0 = ω(vτp)k=0/2π|qn − m| = ωqR/|qn − m|. (4.25)

Consequently, the LH current becomes

J|| � π1/2neR
2v3

e

∑
ω,m
n,s

e3|em · n|2
m2

eω
e−ω2/k2

||v
2
e
∂

∂v

∣∣∣∣
λ

(
v2h̄p

f0

)∣∣∣∣ v=vk
λ=0=k

. (4.26)

Keeping only the j = 1 term in h̄p yields the final result for the driven lower hybrid current
in a tokamak to be

J|| � 4ene(1 + 0.62
√
ε)

[(Z + 1)(1 + 2.06
√
ε)+ 4]νee

∑
ω,m
n,s

e2|em · n|2ω4

m2
e|k|| |5v6

e

e−ω2/k2
||v

2
e . (4.27)
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Importantly, the key result in the preceding expression is that it retains the proper leading
order analytic dependence on the electron trapping parameter

√
ε for the first time. Notice

in particular that the aspect ratio dependence of the Z + 1 pitch angle scattering factor
differs from that of the electron-electron energy scattering factor 4. Moreover, the overall
current drive efficiency is reduced somewhat by the inverse aspect ratio dependences as
the increase in the numerator is unable to overcome the decrease from the denominator.
Presumably similar behaviour persists for more general cross sections and will make
off-axis current profile control slightly more difficult in spherical tokamaks. Perhaps
not surprisingly, energy scattering is less affected by toroidal geometry that pitch angle
scattering, which is the reason only the leading Cordey (1976) eigenfunction need be
retained. As the freely passing dominate the electron response, (4.27) reduces to the
standard

√
ε → 0 result. The driven parallel current (4.27) will be used in the next section

to evaluate the current drive efficiency.

5. RF power and current drive efficiency

The rf power required to drive the lower hybrid current, Pcd, is found from

Pcd = me

2

〈∫
d3vv2Q{f0}

〉
= me

2

∑
ω,m
n,S

〈∫
d3vv2 1

τpv

∂

∂v

∣∣∣∣
μ

(
τpvD̄

∂f0

∂v

)〉
. (5.1)

Only the passing electrons contribute as there is no resonance for the trapped since∮
t
dτΛ � ωτt, (5.2)

and

� ∝ |
∮

t
dτv|| e−iω(τ−τ0)|2 → 0. (5.3)

Recalling d3v = dv dλ dϕBv3/2B0v‖, and using
∮

dϑ/n · ∇ϑ � 2πqR

Pcd = B0me

4πqR

∑
ω,m
n,S

∫
d3v

v||v
B

∂

∂v

∣∣∣∣
μ

(
τpvD̄

∂f0

∂v

)
= B0m2

e

πTeqR

∑
ω,m
n,S

∫
d3v

v||
B
τpv

2D̄f0. (5.4)

Multiplying by 1/2 since only v‖ < 0 contribute, the preceding becomes

Pcd = m2
e

2TeqR

∑
ω,m
n,S

∫ B0/Bmin

0
dλ
∫ ∞

0
dvτpv

5D̄f0. (5.5)

Inserting D̄

Pcd = m2
e

2TeqR

∑
ω,m
n,s,�

d�
ω

∫ B0/Bmax

0

dλ
vτp

∫ ∞

0
dvv5f0�(v, k)δ(v − vk)

= m2
e

2TeqR

∑
ω,m
n,s,�

d�
ω

∫ B0/Bmax

0

dλ
vτp

v5f0�(v, k)|v=vk

= −2π2me

qR

∑
ω,m
n,s

d�=0|qn − m|2
ω3

∫ B0/Bmax

0

dλ
(vτp)

2

v5�(v, k)
∂(vτp)/∂λ

∂f0

∂λ

∣∣∣∣
v=vk

.

(5.6)

https://doi.org/10.1017/S0022377821000568 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000568


Lower hybrid current drive in a tokamak 13

Integrating by parts and noting that only � = 0 contributes, the rf power density required
to drive the lower hybrid current J‖ is just

Pcd � 2π2me

qR

∑
ω,m
n,s

d�=0|qn − m|2v5

ω3(vτp)
2∂(vτp)/∂λ

f0|v=vk = π1/2neme

∑
ω,m
n,s

e2|em · n|2ω2 e−ω2/k2
||v

2
e

m2
e|k|||3v3

e

.

(5.7)
The current drive efficiency is defined by forming the ratio J‖/Pcd

J||
Pcd

=
4e(1 + 0.62

√
2ε)

∑
ω,m
n,s

|em · n|2ω4 e−ω2/k2
||v

2
e

|k|||5v6
e

√
πme[(Z + 1)(1 + 2.06

√
ε)+ 4]νee

∑
ω,m
n,s

|em · n|2ω2 e−ω2/k2
||v

2
e

|k|||3v3
e

, (5.8)

or in its normalized form

J||/eneve

Pcd/nemev2
eνee

≡ η =
4(1 + 0.62

√
2ε)

∑
ω,m
n,s

|em · n|2ω4 e−ω2/k2
||v

2
e

|k|||5v5
e

√
π[(Z + 1)(1 + 2.06

√
ε)+ 4]

∑
ω,m
n,s

|em · n|2ω2 e−ω2/k2
||v

2
e

|k|||3v3
e

. (5.9)

Various normalizations of J‖ and Pcd (often because of a
√

2 difference in the definition of
the electron thermal speed), and differing definitions of collision frequency appear in the
LHCD literature, as well as incompletely defined notation.

For a single frequency and single toroidal mode number (5.9) leads to the dimensionless
current drive efficiency with electron trapping retained of

η =
4(1 + 0.62

√
2ε)

∑
m,s

|em · n|2ω5 e−ω2/k2
||v

2
e

|k|||5v5
e

√
π[(Z + 1)(1 + 2.06

√
ε)+ 4]

∑
m,s

|em · n|2ω3 e−ω2/k2
||v

2
e

|k|||3v3
e

→ 4(1 + 0.62
√

2ε)ω2

√
π[(Z + 1)(1 + 2.06

√
ε)+ 4]|k|||2v2

e

, (5.10)

where the sums over poloidal mode number and radial mode structure (either as a Fourier
or eikonal representation) are retained except in the final form.

6. Discussion

The key results derived here are the analytic expressions for the LHCD (4.26) and (4.27)
and the LHCD efficiency (5.9) and (5.10) in tokamak geometry that properly retain the
trapped electron modifications to leading order. The procedure used here can be extended
to include lower speed electrons by using the full Rosenbluth form of the electron–electron
collision operator with a momentum conserving modification. Keeping additional Cordey
(1976) eigenfunctions will only make minor, unimportant changes to the results here.
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However, generalizing the Cordey eigenfunctions to finite aspect ratio in a more realistic
geometry will lead to improved results as the separatrix is approached. Such a treatment
might be valuable as lower hybrid is viewed as an effective means to drive and control
the off axis current profile (Bonoli 2014). Of course, near the separatrix and beyond the
long mean free path limit will become inappropriate and the Cordey eigenfunctions are no
longer useful.

The QL derivation of Catto & Tolman (2021) remains valid as long as the collisional
boundary layer about the resonant electron trajectories defined in (4.11) and (4.12)
remains narrow enough in velocity space to satisfy 1 � (νee/k‖ve)

1/3 ∝ n1/3
e /T7/6

e . The
QL treatment they derive and the results here are expected to fail once the applied
rf amplitude substantially distorts the electron distribution function from Maxwellian
(Catto 2020; Catto & Tolman 2021). This level of distortion is estimated by Catto &
Tolman (2021) to occur once the applied rf becomes sufficiently strong that the nonlinear
term in the linearized Fokker–Planck equation for the electron kinetic response no
longer satisfies e|em · n|/me � ν2/3

ee k1/3
‖ v4/3

e ∝ n2/3
e /T1/3

e and integrating over unperturbed
electron trajectories to obtain the QL operator becomes inappropriate. This estimate may
provide a hint as to why LHCD becomes less efficient at higher densities (Bonoli 2014).
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