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The motion and deformation of a spherical elastic capsule freely suspended in a
simple shear flow is studied numerically, focusing on the effect of the internal-
to-external viscosity ratio. The three-dimensional fluid–structure interactions are
modelled coupling a boundary integral method (for the internal and external fluid
motion) with a finite element method (for the membrane deformation). For low
viscosity ratios, the internal viscosity affect the capsule deformation. Conversely,
for large viscosity ratios, the slowing effect of the internal motion lowers the
overall capsule deformation; the deformation is asymptotically independent of the flow
strength and membrane behaviour. An important result is that increasing the internal
viscosity leads to membrane compression and possibly buckling. Above a critical
value of the viscosity ratio, compression zones are found on the capsule membrane
for all flow strengths. This shows that very viscous capsules tend to buckle easily.

Key words: capsule/cell dynamics, membranes

1. Introduction
A simple capsule consists of a liquid drop enclosed by a thin deformable elastic

membrane. Capsules are ubiquitous particles widely used in the industry to protect
active fragile products or in nature for the same purpose (cells, eggs and seeds). The
mechanics of an initially spherical capsule freely suspended in a linear shear flow has
received much attention over the years. It has been shown in particular that, because
the internal volume is constant, when the capsule deforms, the enclosing membrane
tends to buckle, as evidenced by the presence of negative (i.e. compressive) tensions
in the membrane (Ramanujan & Pozrikidis 1998; Lac et al. 2004; Doddi & Bagchi
2008; Li & Sarkar 2008). This effect has been studied in detail for a viscosity ratio
η =1 between the internal and external liquid. It has been shown in particular that,
for low shear strength, buckling occurs in the equatorial area of the capsule whereas
for high shear strength, compression occurs in the vicinity of the highly elongated
and curved tips of the capsule. The presence of compression is captured well by
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Figure 1. The ellipsoid of inertia of the deformed capsule is used to evaluate the deformation:
L1 and L2 are the two principal semi-diameters, β is the angle of the long axis with the far-field
streamlines and δ defines the position of a point along the surface.

a membrane model devoid of bending resistance, but the post-buckling behaviour
cannot be computed with such a model.

The effect of the viscosity contrast η �= 1 on the deformation of a spherical capsule
has been mostly studied for two values η = 0.2 and η = 5 (Ramanujan & Pozrikidis
1998; Doddi & Bagchi 2008; Li & Sarkar 2008) with the recent addition of η = 10
(Bagchi & Kalluri 2010). However, the effect of η on the elastic tensions in the
membrane and on the tendency towards buckling has never been studied.

It is the objective of this paper to show how the viscosity contrast influences the
motion and deformation of a capsule suspended in a simple shear flow. The elastic
tension distribution in the membrane will also be studied in detail, and we will show
that the retarding effect of the internal liquid motion has a strong influence on the
membrane mechanics. Indeed, for large-enough viscosity contrasts, it appears that the
membrane is undergoing compression over half of its surface area.

In § 2, the problem is briefly outlined. We then present the influence of the viscosity
ratio on the capsule deformation and orientation and show the existence of two
asymptotic regimes for low and high viscosity ratios in § 3. The elastic tension
distribution in the membrane is then computed in § 4 and the tendency towards
buckling is discussed.

2. Problem statement and numerical method
We consider the deformation of a spherical liquid capsule of radius a, suspended

in an unbounded fluid with viscosity µ. The capsule has a very thin membrane,
treated as an isotropic hyperelastic surface S with surface shear modulus Gs and
area dilatation modulus Ks . The bending resistance is assumed to be negligible. The
viscosity of the fluid inside the capsule is ηµ, and its density is equal to that of
the surrounding fluid thus excluding gravity effects. The capsule is subjected to a
simple shear flow with undisturbed flow velocity v∞(x) = γ̇ x2e1, in a reference frame
(O, e1, e2, e3), centred on the capsule’s centre and fixed with respect to the fluid at
infinity. The capsule deforms until it reaches a steady profile while the membrane
rotates around it (tank-treading motion). The deformation is measured by means of
various geometric parameters that are evaluated on the ellipsoid of inertia of the
deformed shape (figure 1):

(i) the Taylor parameter D12 = (L1 − L2)/(L1 + L2) for the overall capsule
deformation, where L1 and L2 are the half lengths of the two principal diameters of
the ellipsoid of inertia in the shear plane;

(ii) the angle β for the inclination of the capsule’s longest axis with respect to e1;

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

11
00

02
80

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112011000280


Influence of capsule internal viscosity 479

(iii) the angle δ for the location of a capsule membrane material point in the shear
plane.

The two important non-dimensional parameters governing the capsule deformation
are the viscosity ratio η and the capillary number Ca = µγ̇ a/Gs , which measures
the relative importance of the viscous and elastic forces and can be considered as a
non-dimensional flow strength for a given capsule.

Assuming very small Reynolds number flows, the internal and external flows are
governed by the Stokes equations. The numerical modelling of the motion of a capsule
in a Stokes flow is now a classical problem (see, e.g. Pozrikidis 1992). Walter et al.
(2010) developed a numerical method to treat this problem that is based on the
coupling of a membrane finite-element method (for the capsule wall mechanics) and
a boundary integral method (for the internal and external flows). This method was
limited to the case when the two fluids had the same viscosity (η = 1). In the present
study, we extend it to cases when η �= 1. We briefly outline the method focusing
mainly on the resolution technique used for the boundary integral equations when
η �=1. More details on the other steps of the procedure may be found in Walter et al.
(2010) and Barthès-Biesel, Walter & Salsac (2010).

The numerical procedure consists of following the position of the material points
of the capsule membrane after the start of flow. At each time step, the position of the
membrane points is thus known. The deformation of the capsule may be computed,
and the elastic tensions τ are obtained from the values of the in-plane stretch ratios λ1

and λ2. We use the law (Sk) proposed by Skalak et al. (1973), for which the principal
tensions are given by

τ1 =
Gs

λ1λ2

[
λ2

1

(
λ2

1 − 1
)

+ C(λ1λ2)
2((λ1λ2)

2 − 1)
]

(likewise for τ2). (2.1)

This law has independent values of Gs and Ks with Ks/Gs = 1 + 2C. Unless otherwise
stated, all the results given in the following sections correspond to the Sk law with
C = 1.

The finite-element method, used to solve the equilibrium of the membrane

∇s · τ + q = 0, (2.2)

provides the value of the load q exerted by the fluids on the membrane.
The boundary integral formulation for the three-dimensional motion of the internal

and external fluids can be written as

v(x) = v∞(x) − 1

8πµ

∫
S

J(r) · q dS( y)

+
1 − η

8π

∫
S

(v( y) − v(x)) · K (r) · n( y) dS( y), (2.3)

where v(x) is the velocity of the membrane point located at x, and r = y − x. The
Green kernels are given by

J(r) =
1

r
I +

r ⊗ r
r3

, K (r) = −6
r ⊗ r ⊗ r

r5
, (2.4)

where r = ‖r‖ and I is the identity tensor. At each time step, the implicit problem
(2.3) is solved for v(x) by successive sub-iterations (denoted by the superscript n). As
the procedure may not converge if η > 1, we use a simple relaxation method

vn+1(x) = ωvn+1
s (x) + (1 − ω)vn(x), (2.5)
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Figure 2. Steady-state value of (a) the Taylor parameter and (b) the inclination angle
as a function of Ca for different values of η. In figure (a), the solid line represents the
small-deformation theory (3.1).

where vn +1
s (x) is the left-hand side of (2.3) obtained by replacing v(x) by vn(x) in the

right-hand side of the equation. With a relaxation factor ω = 2/(1 + η), this method
is equivalent to that described by Pozrikidis (1992), but numerical tests show that
using ω = 1.8/(1 + η) significantly increases the convergence rate. The velocity is then
integrated with an explicit second-order Runge–Kutta method to obtain the new
position of the membrane points at the following time step. With this procedure, we
were able to reproduce within 2 % the values of deformation D12 obtained for capsules
with either an Sk or a neo-Hookean membrane and with η = 0.2, 5, 10 (Ramanujan &
Pozrikidis 1998; Doddi & Bagchi 2008; Bagchi & Kalluri 2010).

3. Effect of the viscosity ratio and capillary number on the capsule deformation
The steady values of the deformation and inclination angle are presented in figure 2

as functions of Ca and η. The deformation D12 increases with Ca but decreases with
η for a given value of Ca . The equilibrium shape of the capsule results from the
balance between the jump in viscous stress across the membrane and the elastic load:
[σ ext − σ int ] · n = q. For η � 1, the contribution of σ int is small, and all the external
stress is used to deform the membrane; thus D12 increases continuously with Ca .
Furthermore, we find that when η < 0.2, the deformation curve is superimposed on
the η =0.2 curve, thus indicating that the internal flow is no longer important and
that a low-viscosity asymptotic state has been reached.

As shown in figure 2(a), the deformation results are in good agreement with the
small-deformation theoretical model of Barthès-Biesel & Rallison (1981), which is
valid for Ca � 1:

D12 =
25

12
Ca + O(Ca2), β =

π

4
+ O(Ca). (3.1)

The range of validity of the first-order prediction decreases when η increases, although
the deformation is smaller at high than at low viscosity ratios. This is due to the fact
that this analysis is valid for η = o(1/Ca), which reduces the capillary number range
of validity when η increases.

For large values of η, the deformation reaches a plateau value when Ca increases
(figure 2a). This result is consistent with the analysis of Barthès-Biesel & Rallison
(1981) who also explored the case where the capsule deformation was limited by a
high viscosity ratio (η � 1). They found that at the leading order, the deformation
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Figure 3. Steady-state value of (a) D12 and (b) βCa as a function of η for different values
of Ca . The points represent the numerical results and the solid lines the small-deformation
theory (3.2). The numerical results converge towards the asymptotic prediction for η > 5 and
Ca > 0.5.

did not depend on Ca and that the orientation angle decreased with both Ca and η:

D12 =
5

4η
+ O

(
1

η2
,

1

Caη2

)
, β =

15

38Caη
+ O

(
1

η2
,

1

Caη2

)
. (3.2)

The deformation is plotted as a function of η in figure 3(a). It appears that when
η > 5 and Ca > 0.5, the asymptotic theory gives a good prediction within 15 % for
the deformation. The accuracy of the prediction (3.2) increases with η as expected.

The inclination angle results from the balance of two competing phenomena: the
straining part of the external flow elongates the capsule in the e1 + e2 direction and
thus sets β to π/4, whereas the vorticity rotates the capsule towards e1 and thus
tends to decrease β to zero. Consequently, β decreases from π/4 as Ca increases. For
low viscosity ratios, the flow inside the capsule does not affect the equilibrium shape
much. This explains why the decrease of β with Ca is moderate (figure 2b). However,
for highly viscous capsules that remain nearly spherical, the deformed shape results
from the equal competition between the straining and rotational parts of the external
simple shear flow in a fashion similar to the one observed for liquid drops (Rallison
1980). This results in a shape almost aligned with the streamlines in the asymptotic
case where η � 1, as predicted by (3.2) and shown in figures 2(b) and 3(b).

4. Effect of the viscosity ratio on the membrane tensions
In order to analyse the effect of η on the membrane tensions, we consider the

maximum value of the principal tensions τmax , which is a good indicator of the risk
of membrane mechanical failure, and the minimum value of the principal tensions
τmin whose sign determines the mechanical stability of the membrane. When τmin is
positive, the membrane is under tension everywhere and therefore stable, whereas
when τmin is negative a part of the membrane is under compression and buckling
occurs in the absence of bending resistance in the wall model.

Figure 4(a) shows the variation of τmax as a function of Ca . As expected, τmax

increases with Ca . For a given capillary number, τmax is also observed to decrease
with the viscosity ratio η. This is a consequence of the decrease of the capsule
deformation with η (figure 2a). The results can be collapsed onto a single curve for
all the values of Ca and η, when one plots τmax as a function of D12 (figure 4b).
This is due to the fact that, for a given membrane-constitutive law, the capsule
elongation (and thus deformation) determines the elastic stress in the membrane. A
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Figure 4. Maximum value of principal tensions as a function of (a) Ca and (b) D12.
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Figure 5. Minimum value of principal tensions as a function of (a) Ca and (b) D12.

small departure from the general curve is found for higher viscosity ratios at large
deformation. This may be due to buckling effects, which are discussed in the next
section.

The values of τmin show the existence of two different types of behaviour
(figure 5a). For low and moderate values of η, there exists a range of capillary
numbers for which τmin > 0: the membrane is under tension and thus mechanically
stable. We denote CaL and CaH as the two critical capillary numbers defined by
τmin(CaL) = τmin(CaH ) = 0, CaL � CaH . Such findings concur with those of Lac et al.
(2004) for η = 1. However, for viscosity ratios above a critical value ηc (ηc ≈ 2.5), we
find that the membrane is always undergoing compression somewhere.

4.1. Low shear compression

When Ca < CaL, the initially spherical capsule is extended by the flow in the β-
direction. The capsule being a closed shape with a constant volume is thus compressed
along the equator and tends to buckle in this area as shown in figure 6(a). As Ca
and the capsule deformation increase, the isotropic part of the tensions in (2.1),
related to the area dilatation modulus Ks , increases too and eventually becomes large
enough to overcome compressive effects for Ca = CaL. This phenomenon depends
only on the capsule extension (and thus D12) and is independent of η. Consequently,
if τmin is plotted as a function of D12, CaL occurs at roughly the same value of the
Taylor parameter (D12)L =0.37 (figure 5b). For Ca � CaL, the minimum tension τmin

is positive so that the membrane is under tension everywhere.
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(a) Ca = 0.25 Ca =1.8 Ca = 5.5(b) (c)

Figure 6. Location of negative tensions for η = 0.2 <ηc . The capsule is shown in the shear
plane (e1, e2). White areas are taut; where negative tensions occur, their intensity is represented
by the grey scale. Arrows show the general direction of compression.
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Figure 7. Stretch ratio λ1 and surface extension ratio λ1λ2 along the capsule profile in the
shear plane at different viscosity ratios for Ca = 1.5.

4.2. High shear compression

As Ca increases further, τmin starts to decrease and eventually becomes negative.
Contrary to the previous case, this decrease is linked to the appearance of a
compression zone now located near the tip of the capsule. In order to explain this
phenomenon, we study the intersection of the capsule surface with the shear plane
(a principal direction of strain in view of the problem symmetry) and measure its
elongation λ1. The second principal elongation λ2 is measured in the direction normal
to the shear plane. The membrane velocity varies along the interface, being maximum
on the short axis and minimum on the long axis (i.e. at the tip) in a fashion analogous
to the surface velocity field proposed by Keller & Skalak (1982). Correspondingly,
the principal membrane elongation λ1 in the shear plane is maximum on the capsule
equator and minimum at the tip (defined by δ = 0), as shown in figure 7, where λ1

is plotted as a function of δ. Values of λ1 < 1 at the tips do not necessarily mean
that the membrane is undergoing compression. Indeed, if the ratio of the deformed
to the underformed surface areas λ1λ2 is large enough, the resistance to area increase
can balance the decrease in λ1 in (2.1) so that no negative tensions appear. This is
illustrated in figure 7 where the variations of λ1 and λ1λ2 along the capsule profile in
the shear plane are plotted for Ca = 1.5 and three different values of η. For η =0.4,
Ca =1.5 falls into the interval [CaL; CaH ]; the membrane is under tension and the
area change at the tip is large enough to compensate the decrease of λ1. For η = 2,
Ca =1.5 is just below CaH , and the area dilatation just balances the decrease in λ1.
Finally, for η = 3, there is no [CaL; CaH ] interval. The area change cannot compensate
the decrease of λ1 at the tips, as it is equal to zero: the membrane is undergoing
compression at these locations.

The fact that CaH decreases with η (figure 5a) is due to the lower deformation,
and correspondingly lower area dilatation of a viscous capsule. However, the global
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Figure 8. Location of negative tensions for η = 2.5 � ηc . Same legend as in figure 6.

(a) (b)Shear plane From above

Figure 9. Location of negative tensions for η =5 and Ca = 0.3. Same legend as in figure 6.

deformed shape of the capsule is not enough to determine the local deformation
distribution. Therefore, CaH does not depend solely on the geometry as CaL did,
which indicates that three-dimensional effects play an essential role in the buckling
phenomena.

The present explanation for the formation of compression zones near the tips of
the capsule differs from the assumption formulated by Lac et al. (2004). They had
interpreted it as a consequence of the twisting couple induced by the flow vorticity
when capsules were highly elongated and showed twisted capsule profiles obtained
for values of Ca well above CaH . But if the torsion of the profile were the only
phenomenon, CaH would have corresponded to a value of D12 independent of η,
which is clearly not the case as shown in figure 5(b).

4.3. High viscosity ratios

The two limits CaL and CaH correspond to two different compression phenomena.
Indeed, when η < ηc, as Ca is increased from zero, the capsule is first under
compression in the equatorial region, then fully stretched everywhere and finally
under compression at the tips as shown in figure 6. This is consistent with the results
obtained for η =1 (Lac et al. 2004; Walter et al. 2010). However, close to ηc, CaL

tends towards CaH , which indicates that both phenomena coexist at high viscosity
ratios and that their effects add up. Figure 8 shows that, for η just above the critical
viscosity ratio ηc, negative tensions never subside as Ca is increased, but migrate
from the equatorial zone to the tips while changing direction. At even higher viscosity
ratios, the two phenomena occur at the same time: negative tensions occur both at
the tips and in the equatorial plane, evolving continuously from an ‘equatorial’ to an
‘axial’ orientation (figure 9).

The interaction with CaH may influence the value of CaL when η is only slightly
below ηc. We note that the given interpretation of the compression phenomenon
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related to CaL should create negative tensions uniformly distributed in the equatorial
zone. However, figure 8 shows that during the migration, the negative tensions are
no longer located in the shear plane. We find that this behaviour is true even
when η � ηc: negative tensions start to migrate but subside before reaching the tip.
Therefore, when η is only slightly below ηc, the compression phenomenon related
to CaH interacts with the equatorial compression related to CaL. This explains why
(D12)L is slightly different in this case from the common value found for lower
viscosity ratios (figure 5b).

5. Conclusion
The internal viscosity of a spherical capsule freely suspended in a simple shear

flow plays an important role on the capsule deformation and on the resulting elastic
tensions in the membrane.

An interesting new result of this study concerns the elastic tensions in the membrane.
We find that increasing the internal viscosity leads to membrane compression and
possible buckling for all shear strengths when η >ηc. We have also shown that
the compression at the capsule tips is due to the slowing down of the membrane
rather than a viscous torsion couple. Highly viscous capsules exhibit large areas with
negative tensions. It must be noted that, while the present model remains stable
enough to determine the location of these areas, a model taking into account the
bending stiffness of the membrane would be more appropriate for such capsules.

All the results in this paper correspond to a membrane following the Sk law with
C = 1. Computations were also conducted with the neo-Hookean law (NH; see, for
example, Barthès-Biesel, Diaz & Dhenin 2002) but are not shown here. When C = 1,
the Sk and NH laws share the same small-deformation behaviour, but the Sk law is
strain-hardening under large deformation, whereas the NH law is strain-softening. As
a consequence, an NH capsule deforms more readily than an Sk capsule: for example,
the deformation of an NH capsule is about 0.69 for Ca = 1 and η =0.2, while it is
about 0.5 for a capsule with an Sk membrane under the same conditions.

Capsules with a membrane obeying either the Sk or the NH law have a qualitatively
similar behaviour with respect to the viscosity ratio. In particular, the deformation
obtained for η = 0.2 also represents a limit for the deformation of any lower viscosity
capsule and is about 12 % higher than the deformation obtained for η = 1. Some
quantitative differences exist between capsules with an NH or Sk membrane. The
value of (D12)L for the NH law is larger than that for the Sk law (0.45 vs. 0.37). This
is due to the nonlinear behaviour of the laws: when undergoing uniaxial traction
with a given stretch ratio, the effective area dilatation modulus is smaller for an NH
membrane than for an Sk membrane. The NH capsule therefore needs to be more
elongated for the negative tensions to subside at the equator. We also find that, for
a given η <ηc, the value of CaH is significantly lower for the NH law, which is
consistent with the findings of Lac et al. (2004) at η = 1. As a consequence, ηc is lower
for the NH law (1.25 vs. 2.5). Thus, the NH law behaves qualitatively like the Sk law
with C = 1, but the shear-thinning behaviour of this law causes negative tensions and
buckling to be much more prevalent.

On the practical side, for experimental or numerical studies of spherical capsules,
the following points are worth mentioning.

(i) For viscosity ratios η � 1, the slowing effect of the internal motion lowers
the overall capsule deformation. An asymptotic state is reached for highly viscous
capsules (η > 5), with a deformation given by D12 = 5/4η irrespective of the flow
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strength and the membrane-constitutive law. Such capsules are expected to exhibit
large compression zones, which would be very interesting to study experimentally.

(ii) A viscosity ratio η =0.2 seems to be representative of all low-viscosity capsules
with η � 1, as regards deformation and orientation. Furthermore, D12 for η � 0.2 is
only approximately 10 % larger than for η = 1, with a difference in orientation of
about 20 %. Consequently, one may reasonably consider using results obtained for
η = 1 to model any lower viscosity ratio.

(iii) The previous point is an important finding for experimental studies of capsules.
Indeed, experiments are generally performed in a very viscous outer fluid so as to
reach large deformations at moderate shear rates. This leads to very small values of
η; for instance, Chang & Olbricht (1993) worked with η ∈ [0.004, 0.08] and Walter,
Rehage & Leonhard (2000) reported results corresponding to η = 0.001.

(iv) These findings are also important for numerical studies because the
computation time increases steeply with |η − 1| as compared to the case η =1.
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