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We consider the problem of formulating perturbative expansions of the conformation
tensor, which is a positive definite tensor representing polymer deformation in
viscoelastic flows. The classical approach does not explicitly take into account that
the perturbed tensor must remain positive definite – a fact that has important physical
implications, e.g. extensions and compressions are represented similarly to within a
negative sign, when physically the former are unbounded and the latter are bounded
from below. Mathematically, the classical approach assumes that the underlying
geometry is Euclidean, and this assumption is not satisfied by the manifold of positive
definite tensors. We provide an alternative formulation that retains the conveniences
of classical perturbation methods used for generating linear and weakly nonlinear
expansions, but also provides a clear physical interpretation and a mathematical
basis for analysis. The approach is based on treating a perturbation as a sequence
of successively smaller deformations of the polymer. Each deformation is modelled
explicitly using geodesics on the manifold of positive definite tensors. Using geodesics,
and associated geodesic distances, is the natural way to model perturbations to positive
definite tensors because it is consistent with the manifold geometry. Approximations of
the geodesics can then be used to reduce the total deformation to a series expansion
in the small perturbation limit. We illustrate our approach using direct numerical
simulations of the nonlinear evolution of Tollmien–Schlichting waves.

Key words: mathematical foundations, non-Newtonian flows, viscoelasticity

1. Introduction

In viscoelastic flows, the conformation tensor is a second-order, positive definite
tensor used to represent the polymer deformation. When analysing such flows, we
are frequently interested in generating small perturbations to a given base-flow
conformation tensor, e.g. for linear stability analysis or for deriving solutions for
a flow that can be cast as a small perturbation of a known flow solution. The
standard approach is a generalization of the one used for the velocity field: the
perturbed conformation tensor is expressed as the sum of the base-flow tensor and
a perturbation tensor. The latter is a symmetric tensor written as a series expansion
in a small parameter. Such an approach, generally referred to as a weakly nonlinear
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expansion, has been used in a myriad of different ways in the literature and has
proved useful for extracting important mechanisms from the governing equations. As
opposed to the velocity field, however, this approach has several important limitations
when applied to the conformation tensor, including: (i) the perturbation tensor does
not describe material deformation, unlike the full conformation tensor, and does
not have a known physical interpretation, (ii) finite-amplitude perturbations are not
possible in general, and (iii) the norm of the perturbation tensor is not an appropriate
metric to quantify the size of the perturbation. These limitations arise because the
conformation tensor belongs to the set of positive definite tensors whose properties
must be taken into account when defining perturbations. In this paper, we tackle
this problem by developing a framework to generate perturbations that are consistent
with the physical interpretation of the conformation tensor. Our framework helps us
reconcile classical linear stability analysis and weakly nonlinear expansions with the
physical interpretation of the conformation tensor and the geometry of the set of
positive definite tensors.

It is important to note that classical perturbation expansions have yielded a number
of important predictions regarding viscoelastic flows that have been confirmed
experimentally. We review some of these studies below. An infinitesimally small
linear perturbation is the simplest form of the perturbation tensor and has been
widely used for linear stability analysis and also for energy amplification. Early
work on linear stability analysis predicted purely elastic two-dimensional instabilities
in flows with curved streamlines (Larson, Shaqfeh & Muller 1990; Joo & Shaqfeh
1992), a result that was later confirmed by Groisman & Steinberg (2000, 2004) in
low Reynolds number experiments. Around the same time, Avgousti & Beris (1993)
used bifurcation analysis in Taylor–Couette flow and demonstrated three-dimensional
instabilities in the presence of elasticity. McKinley, Pakdel & Öztekin (1996) then
developed a dimensionless criterion that predicts the critical conditions required
for the onset of purely elastic instabilities in curved geometries. These important
discoveries increased interest in possible curvature-independent elastic instabilities,
particularly in viscoelastic channel flow. Jovanović & Kumar (2011) and Page &
Zaki (2014) found that linearly stable perturbations to the conformation tensor in this
flow can amplify significantly due to transient growth via purely elastic mechanisms
(see Trefethen & Embree (2005) for an exposition on non-modal amplification
due to operator non-normality). The most amplified non-modal disturbances are
generally three-dimensional (Hoda, Jovanović & Kumar 2008, 2009). The disturbance
amplification, which exists even in the complete absence of inertia (Jovanović
& Kumar 2010), may be sufficient to trigger nonlinear instabilities. A purely
elastic non-modal route to instability was also anticipated by Doering, Eckhardt
& Schumacher (2006). Meulenbroek et al. (2004) used weakly nonlinear expansions
to show that sufficiently large transient growth in a viscoelastic channel flow acting
over a slow time scale appears as a streamline curvature-inducing modification to the
base state, thereby producing the necessary conditions for a fast time scale curved
streamline instability. These theoretical results predicting an elastic instability in
channel flow were experimentally confirmed by Pan et al. (2013) and Qin & Arratia
(2017), who found a turbulent-like state in a channel flow at low Reynolds number.
Perturbation expansions have also been used to revisit other important classical flow
problems in the presence of viscoelasticity. Page & Zaki (2015) predicted the existence
of the reverse Orr mechanism, whereby spanwise vorticity amplifies when aligned
with the shear. More recently, Page & Zaki (2016) considered laminar viscoelastic
channel flow with a wavy wall and used perturbation expansions to derive reduced
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Perturbative expansions of the conformation tensor 379

dynamics in various asymptotic limits. That work revealed the existence of an elastic
critical layer that mediates the dynamics, and the theoretical predictions were partially
reproduced in experiments by Haward et al. (2018).

Despite the success described above, the standard approach to perturbing the
conformation tensor is not fully satisfactory, as outlined below. Since the eigenvalues
of the conformation tensor are the principal stretches of the polymer, the conformation
tensor is a positive definite tensor. Such tensors do not form a vector space. As a
result, several issues arise with the standard approach to perturbations that do not
arise when we perturb a vector space quantity like the velocity field. Firstly, the
perturbation tensor used in the standard approach is not a conformation tensor,
but rather a symmetric tensor that can only be interpreted component-wise. Thus,
quantities that depend on the tensorial nature of the perturbation do not carry the
desired physical interpretation, e.g. the eigenvalues are not necessarily positive and
are no longer representative of the principal stretches of the polymer. Secondly,
the perturbation magnitude may be severely limited because such perturbations are
guaranteed to be valid only in an infinitesimal sense and thus a finite-amplitude
perturbation may violate the positive-definiteness requirement on the conformation
tensor. The amplitude of the perturbation must therefore be constrained or verified
against the positive-definiteness condition. An example of such an issue arises when
generalizing the approach by Stuart (1958) to viscoelastic flows. That approach
uses a base state augmented with the associated linear modes at finite amplitude
to describe a saturated nonlinear flow state. A third issue that arises is that there
is no appropriate functional norm that can be used to quantify the magnitude of
the conformation tensor and the perturbation. For example, in the context of energy
stability Doering et al. (2006) noted that the elastic energy was problematic because
it was not strictly a metric and did not satisfy the triangle inequality. In prior work,
these issues, and others that arise because the conformation tensor is not a vector
space quantity, are frequently concealed because the polymer stress is used instead
of the conformation tensor. While the former does not strictly need to be positive
definite, it is positive definite up to an additive constant for most models of interest.
Furthermore, the dynamics are usually expressed in terms of the conformation tensor
rather than the polymer stress.

In a recent paper, Hameduddin et al. (2018) established a theoretical foundation
to quantify fluctuations of the conformation tensor in fully turbulent viscoelastic
flows; see Graham (2018) for a review of that work. The present study utilizes that
foundation and extends it to formulate a geometrically and physically consistent
approach to generate small perturbations to the conformation tensor, analogous to a
weakly nonlinear expansion of the velocity field. Our approach relies on exploiting the
interpretation of the conformation tensor as the left Cauchy–Green tensor associated
with the polymer deformation and the geometry of the manifold of positive definite
tensors. The perturbation is cast as a sequence of successively smaller deformations
to the base state. When specialized to a single deformation, our approach reduces
to the standard approach used for linear perturbations but now with an explicit
underlying physical interpretation and also an inherent geometric structure derived
from the manifold geometry. Our framework provides new physical insights into
polymer dynamics, and has implications for studies utilizing small perturbations to
the conformation tensor since it resolves the outstanding issues with the standard
approach that were highlighted in this introduction. Namely, the framework generates
perturbation tensors that are physically meaningful as left Cauchy–Green tensors
representing the perturbation polymer deformation. It also provides a way to generate
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finite-amplitude perturbations whose size can be quantified using the geometric
structure of the set of positive definite tensors. In addition, explicit relationships
can be found between the present and standard approaches used for generating
small perturbations, both linear and weakly nonlinear. These relationships enrich our
understanding of the approaches used so far in the literature.

The present paper is organized as follows. The necessary background from
Hameduddin et al. (2018) is provided in §§ 2 and 3.1 for the benefit of the reader,
and in order to ensure that the present development is fully self-contained. In § 2
we introduce the geometry of the set of positive definite tensors, and the geometric
decomposition of the conformation tensor in § 3.1. The main theoretical results are
developed in the remainder of § 3, and the evolution equations for the perturbations
are derived in § 4. Finally, in § 5, we illustrate our approach using direct numerical
simulations of the nonlinear evolution of viscoelastic Tollmien–Schlichting waves
(Lee & Zaki 2017). The conclusions of the paper are offered in § 6.

2. Geometry

The set of second-order positive definite tensors, Pos3, does not form a vector space
because it is not closed under arbitrary linear combinations. The standard zero element
and additive inverses, such as those used in the space of symmetric second-order
tensors, Sym3, are also not part of Pos3. As a result, the Frobenius norm, which is
the Euclidean norm in Sym3, is not a meaningful quantity for the elements of Pos3,
and thus the Euclidean distance between tensors is also not meaningful. Geometrically,
Euclidean paths in Pos3 are not analogous to straight lines in R3 because they cannot
be arbitrarily extended. Namely, for the path

X(r)= (1− r)A+ rB, (2.1)

the tensor X(r) is guaranteed to be in Pos3 for any A, B ∈ Pos3 only if r ∈ [0, 1].
The inability to coherently define magnitudes, distances and shortest paths makes
analysing the dynamics of quantities without an underlying geometric structure a
difficult proposition.

The celebrated success of linear stability theory, which is founded on infinitesimal
additive perturbations to the conformation tensor, is owed to the tangent space
structure of Pos3. An application of Weyl’s theorem can be used to show that Sym3
is the local tangent space everywhere on Pos3. Thus, a sufficiently small additive
perturbation by a symmetric tensor keeps the base-state conformation tensor, C, on
Pos3. By assuming that perturbations are arbitrarily small, linear stability theory
usually ignores the precise sense in which the perturbation, or distance between
C and the perturbed tensor, must be sufficiently small. This distance, which may
be important in comparing the effect of different linear modes or for generating
finite-amplitude perturbations in numerical calculations, cannot be evaluated using
Euclidean distances because Pos3 is non-Euclidean. For example, let C = I and the
conformation tensor, C, be given by

C = C + εI = (1+ ε)I, (2.2)

where ε∈R is a perturbation parameter. The positive-definiteness constraint is satisfied
for all positive ε, but we require |ε| < 1 if ε is negative. However, the Euclidean
distance from C is the same for both positive and negative ε.
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Perturbative expansions of the conformation tensor 381

The asymmetry between positive and negative perturbations arises because the
eigenvalues of the conformation tensor represent the principal stretches of the
polymer normalized by the thermodynamic equilibrium stretch. Thus eigenvalues
greater than 1 represent stretches, and those less than 1 represent compressions. Thus,
the compression converse to the stretch (1+ |ε|)I is given by(

1
1+ |ε|

)
I = (1− |ε| + |ε|2 − |ε|3 + · · ·)I, (2.3)

which means that a negative ε in (2.2) is equivalent to a physical contraction up to
O(ε2), an approximation that may be inadequate. It is not clear how to generalize
the approach used for the simplified example presented here to more general cases.
This discussion highlights the importance of defining a consistent geometry on Pos3
that allows us to measure distances and define shortest paths. In what follows,
we define such a non-Euclidean geometry on Pos3. Although Pos3 does not form
a vector space, it does have a rich geometric structure. In particular, Pos3 is a
Cartan–Hadamard manifold: a simply connected, geodesically complete Riemannian
manifold with seminegative curvature (Lang 2001). By an abuse of notation, we will
refer to both the set of positive definite tensors, as well as the associated Riemannian
manifold, as Pos3. We will describe some important aspects of this geometry below.
We refer the interested reader to Hameduddin et al. (2018) and Lang (2001) for more
complete descriptions.

The set, Pos3, is an open subset of R3×3 and is therefore a manifold. By invoking
the Fréchet derivative, it is easy to show that Sym3 is the tangent space at each point
on the manifold. The Riemannian structure on Pos3 equips the tangent space at each
Y ∈ Pos3 with a scalar product

[A,B]Y = tr (Y−1
·A · Y−1

·B), (2.4)

where A,B ∈ Sym3. The collection of all the scalar products forms the Riemannian
metric on Pos3. The Riemannian metric can be used to define a local distance metric
at each A∈Pos3. The length of a path on Pos3 can be calculated by patching together
the local distance functions.

The manifold, Pos3, is geodesically complete: there is a unique, distance-minimizing
curve on Pos3 between every A, B ∈ Pos3, called the geodesic, which can also be
arbitrarily extended. The geodesic is given by

X(r)= A#rB= A1/2
· (A−1/2

· B · A−1/2)r · A1/2, r ∈ [0, 1]. (2.5)

The curve X(r) remains a geodesic on Pos3 for any r ∈ [a, b] ⊂ R. Geodesically
complete curves on a Riemannian manifold are analogous to straight lines in
Euclidean space.

The minimizing distance between A, B ∈ Pos3, the geodesic distance, is given by

d(A, B)=
√

tr log2(A−1/2 · B · A−1/2), (2.6)

where log here refers to the matrix logarithm. By the Hopf–Rinow theorem, Pos3 is
a complete metric space under the distance function d(· , ·), and thus the geodesic
distance is a natural analogue to the standard 2-norm in a Euclidean space. The
distance has other properties that accord well with our natural geometric intuitions.
We outline some of these below.
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(i) The Euclidean norm in Euclidean space is invariant under translations (affine
invariance). In an analogous manner, the distance metric is invariant under the
action of the general linear group, GL3,

d(A, B)= d(Y · A · Y T, Y · B · Y T), (2.7)

for any Y ∈GL3.
(ii) The distance traversed along the Euclidean path (2.1) is given by |r|‖B − A‖F,

where ‖·‖F is the Frobenius norm and we restrict r ∈ [0, 1] in order to
remain within Pos3. Similarly, the distance along the geodesic (2.5) is given
by |r| d(A, B), but the use of a consistent geometry means we can let r ∈R.

(iii) The Euclidean distance between A and B is the same as the distance between
−A and −B. Similarly, we have for the geodesic distance

d(A, B)= d(A−1, B−1). (2.8)

This property is especially attractive from a physical point of view, since it
means the distance metric treats expansions and compressions on an equal
footing, unlike the Euclidean metric.

The distance metric may be viewed as the Frobenius norm or square root of the
second moment invariant of B≡ log(A−1/2 ·B ·A−1/2)∈ Sym3. This tensor is a tangent
direction on Pos3. It can be shown (Hameduddin et al. 2018) that the first invariant
of this tensor is given by

trB= log(det B/ det A), (2.9)

which means that trB can be related to the ratio of the volumes (determinants) of the
deformation ellipsoids associated with A and B: trB< 0 if the deformation A→B is
compressive and trB> 0 if it is expansive.

In the next section, we exploit the geometric structure of Pos3 introduced in this
section to develop an analogue of the weakly nonlinear expansions of vector space
quantities, and specialize it to the case of linear perturbations.

3. Perturbative expansions of the conformation tensor
3.1. Geometric decomposition

In order to generate perturbative expansions of the conformation tensor C about the
base state C, we first define an appropriate fluctuating conformation. For this, we
follow the approach by Hameduddin et al. (2018), which we outline below. Later, we
will also exploit this approach to generate the perturbative expansion we are seeking.

The conformation tensor, C, is the left Cauchy–Green tensor associated with the
polymer deformation (Rajagopal & Srinivasa 2000; Cioranescu, Girault & Rajagopal
2016)

C = F · F T, (3.1)

where F is the total deformation gradient that describes deformation with respect
to the thermodynamic equilibrium. We decompose this deformation into two: a
deformation about the thermodynamic equilibrium that yields the base state, and a
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deformation about the base state that yields the total deformation. Accordingly, we
decompose the deformation gradient as

F = F · L, (3.2)

where L is the fluctuating deformation gradient, and F is the deformation gradient
associated with C,

F = C
1/2
· R. (3.3)

Here R ∈ SO3 and SO3 is the special orthogonal group. It is readily verified that C =
F · F

T. In practice, we set R = I (for example in § 5). The fluctuating deformation
gradient has the associated tensor G= L · LT , which satisfies the relationship

C = F ·G · F
T
. (3.4)

The tensor G is positive definite and is equivalent to C, but is transformed so that
C = C if and only if G = I . Thus G acts as a conformation tensor representing the
fluctuation of C around C.

The geometry of Pos3 can be used to quantify the fluctuating polymer deformation.
Using (2.6), the geodesic distance between C and C can be written as

d(C, C)= d(I,G)=
√

trG2
, (3.5)

where G ≡ log G, and is a measure of the magnitude of the fluctuation. Similarly, we
can evaluate whether a deformation is compressive or expansive with respect to the
base state by examining the logarithmic volume ratio, trG.

3.2. Weakly nonlinear deformations
A weakly nonlinear expansion up to the Nth power of the velocity field is given by

u= u+ u′ = u+
N∑

k=1

εku(k), (3.6)

where u(k)(x, t) for k∈ [1,N] are velocities. A similar expansion for C is inappropriate
because it is positive definite and there is no a priori guarantee on this property. In
order to obtain an analogous expansion for the conformation tensor, we generalize
the approach we used in the previous subsection by multiplicatively decomposing the
fluctuating deformation gradient into N separate components. The construction of this
fluctuating deformation gradient, denoted Lwnl, through a series of successively smaller
deformations is illustrated in figure 2. Mathematically, we write

Lwnl = Lε(1) · L
ε2

(2) · · · · · L
εN

(N). (3.7)

We further assume that each Lε
k

(k) in (3.7) is rotation-free. By the polar decomposition
and the requirement that det L(k) > 0, this assumption implies that each L(k) is
positive definite. Although each L(k) is rotation-free, the overall fluctuating deformation
gradient Lwnl given by (3.7) is not because the product of positive definite tensors
is not necessarily positive definite. The rotation appears if the principal axes of L(k)
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Equilibrium Base state Perturbed
F · F T = C L · LT= G

F · F T= C

F L

F

FIGURE 1. Schematic of the geometric decomposition, adapted from Hameduddin et al.
(2018).

Base state Perturbed

G(1) G(2) G(N)

LÓ
(1) LÓ

(
2
2) LÓ

(
N
N)

Lwnl

(Lwnl · LT
wnl = G)

FIGURE 2. Schematic of a weakly nonlinear deformation, consisting of a sequence of
successively smaller deformations.

and L(k′), when k 6= k′, are misaligned. The deformation gradient Lwnl is also not
necessarily the same as L defined previously. However, since Lwnl · LT

wnl = L · LT
= G,

the polar decomposition can be used to show that Lwnl = V · L for some rotation
tensor V .

Each deformation gradient Lε
k

(k) in (3.7) has an associated left Cauchy–Green tensor,
Gεk

(k) = Lε
k

(k) · (L
εk

(k))
T, which can be viewed as a geodesic of length |ε|k‖G(k)‖ ∼ |ε|

k on
Pos3 emanating from I and can be expressed conveniently as

Gεk

(k) = eε
kG(k), (3.8)

where eA is the matrix exponential of A, G(k)∈Sym3 are tangents on Pos3, and G(0)=

0. With (3.8), it is easy to show that det Lwnl> 0, which means that Lwnl is a physically
admissible deformation gradient.

The tangents on Pos3, G(k), can be used to physically characterize the perturbation
deformation. The associated deformation gradient is given by Lε

k

(k) = eεkG(k)/2. When
G(k) is diagonal, Lε

k

(k) is diagonal and thus the deformation is a shear-free distortion, or
solely altering the volume ratio. On the other hand, when trG(k)= 0, then det Lε

k

(k)= 1,
and the deformation is purely shearing, or volume-ratio preserving.

Using the square root of (3.8) in (3.7), the left Cauchy–Green tensor G is given by

G = eεG(1)/2 · · · · · eε
N−1G(N−1)/2 · eε

NG(N) · eε
N−1G(N−1)/2 · · · · · eεG(1)/2 (3.9)

= I + εG(1) + ε
2

(
G2
(1)

2
+G(2)

)
+ ε3

(
G3
(1)

6
+ sym (G(1) ·G(2))+G(3)

)
+ · · · .

(3.10)

The second equality made use of the matrix exponential eεkG(k) =
∑
∞

p=0 ε
kpGp

(k)/p!. The
form (3.10) is a series expansion of the conformation tensor that serves as an analogue
to the weakly nonlinear expansion of the velocity in (3.6). In fact, the terms in (3.10)
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I

d ¡ Ó

d ¡
 Ó

2

eÓg(1)

eÓg(1)/2 . eÓ2g(2) . eÓg(1)/2 

FIGURE 3. (Colour online) Illustration of weakly nonlinear deformation when N = 2. In
this case, the deformation corresponds to a piecewise geodesic on Pos3. The thick black
lines represent geodesics and dashed lines are Euclidean paths on Pos3.

can be related to the standard weakly nonlinear expansion of the conformation tensor,
C = C +

∑
∞

k=1 ε
kC(k). The difference between C(k) and G(k) is that the latter can be

related to a polymer perturbation deformation by means of the framework introduced
above. Furthermore, equation (3.10) shows that the C(k) are not independent of
one another, even before the expansion is applied in the governing equations to
examine the dynamics. This behaviour is consistent with the curved geometry of Pos3
because, unlike in Euclidean space, the characteristics of a particular perturbation
depend on the location on the manifold where the perturbation is applied. In this
view of the geometry, the deformation associated with Lε

n

(n) is a perturbation to the
deformation associated with Lε(1) · L

ε2

(2) · · · · · L
εn−1

(n−1) and thus the nth-order term in the
series expansion must depend on all G(k) with k = 1, . . . , n. The behaviour is also
consistent with a physical understanding of successive deformations of the polymer;
a deformation is only sensible with respect to an existing configuration and is thus
dependent on it from the point of view of an independent observer.

One aspect of the relationship between the present approach of decomposing
the total deformation into a series of successive deformations (cf. figure 2) and
the geometry of Pos3 is that the left Cauchy–Green tensor associated with each
deformation is chosen to be a geodesic emanating from I . Another direct connection
between geodesics on Pos3 and the overall deformation represented by G can be made
when N 6 2. When N = 1, G = eεG(1) is simply a geodesic of length ∼ε emanating
from I in the direction G(1). When N = 2, we have

G= eεG(1)/2 · eε
2G(2) · eεG(1)/2, (3.11)

which implies that G is ‘piecewise geodesic’: it consists of a geodesic of length ∼ε
emanating from I in the direction G(1), followed by a geodesic of length ∼ε2 in the
direction G(2), as illustrated in figure 3. Such an interpretation is not generally possible
for N > 2 because then eεG(1)/2 · · · · · eεN−1G(N−1)/2 need not be in Pos3. If we assume
that G(1), . . . ,G(N−1) are commutative with respect to multiplication, then

eεG(1)/2 · · · · · eε
N−1G(N−1)/2 = e

1
2
∑N−1

k=1 ε
kG(k) ∈ Pos3. (3.12)

Thus, in this case, the interpretation of the successive deformations as a piecewise
geodesic on Pos3 holds for arbitrary N. The inability to extend the piecewise geodesic
interpretation to arbitrary N arises because successive deformations are, in general,
physically misaligned and thus, by the polar decomposition, a rotation is imparted to
the deformation gradient that depends on the order in which successive intermediate
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deformations were performed. This order of the intermediate deformations is only
relevant when N > 2. When the deformations are physically aligned, the overall
deformation gradient is positive definite: it has no associated rotation and the order
of the intermediate deformations can be arbitrarily changed.

An alternative to the present approach for generating a series expansion of G is to
expand the tangent vector on Pos3:

G= exp

(
N∑

k=1

εkG(k)

)
= I +

N∑
k=1

εkG(k) +
1
2

(
N∑

k=1

εkG(k)

)2

+ · · · . (3.13)

It is easy to show that our proposed approach (3.10) and the alternative (3.13) are
equivalent if G(1), . . . , G(N) are commutative with respect to multiplication. When
commutativity is not satisfied, the two approaches are still equivalent up to O(ε4). The
drawback with using (3.13) is that the individual terms of the expansion cannot be
associated with a polymer deformation because eA+B

6= eA · eB. The expansion (3.13)
also cannot be related to the geometry of Pos3 in the same way as (3.10).

We developed an approach to generate a perturbation deformation of the polymers
with arbitrarily many deformations. The magnitudes of the deformations are of
successively higher order with respect to the distance metric on the manifold. We
next consider the case of linear perturbations, where a single deformation is involved.

3.3. Linear perturbations

We can generate a small perturbation about C by translating the conformation tensor
along a geodesic emanating from C. This can be accomplished by setting

G= I#εeG(1) = eεG(1), (3.14)

where G(1) is a prescribed tangent on Pos3, ε ∈ R and d(I, eεG(1)) = |ε|‖G(1)‖ ∼ ε.
The parameter ε here represents the amount of volumetric deformation encoded in
the perturbation because the volume of G is given by det G = eεtrG(1) , or equivalently
det C = cε det C for constant c= etrG(1) . The expression (3.14) is valid, in a kinematic
sense, for all ε ∈ R. In the case when ε → 0, we may approximate the matrix
exponential, eεG(1) =

∑
∞

k=0 ε
kGk

(1)/k!, as

G= eεG(1) = I + εG(1) +O(ε2eε), (3.15)

where the truncation error is based on the bounds derived by Suzuki (1976). The result
(3.15) is the same as the weakly nonlinear expansion (3.10) with

G(2) =G(3) = · · · =G(N) = 0. (3.16)

Multiplying (3.15) by F on both sides, we obtain

C = C + εC(1) +O(ε2eε), (3.17)

where C(1) = F · G(1) · F
T, which is similar to the standard approach involving an

additive perturbation to C. However, now the fluctuation, C ′ = εC(1), has a clear
interpretation as a tangent to the manifold at the base point C. Furthermore, the
normalization of C ′ is proportional to the geodesic distance away from C on Pos3.

The geometric structure on Pos3 supplies us with the natural scalar product to be
used in the analysis of linear perturbations. This scalar product, which depends on C,
is induced by the global distance metric on Pos3 and is given in (2.4). If we use the
form of the additive perturbation given in (3.15), the natural scalar product reduces
to the standard Frobenius norm. By taking the base point into account, equation (2.4)
also allows us to compare the norm of tangent vectors at different base points.
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4. Evolution of perturbative deformations

In this section we derive the evolution equations for the first two fluctuating terms in
the weakly nonlinear expansion/deformation of the velocity field/conformation tensor
(coefficients of order ε and ε2). Here we assume the governing equations for the
dimensionless velocity, u, and conformation tensor, C, are given by

∇ · u= 0, (4.1)
Du
Dt
=−∇p+

β

Re
1u+

1− β
Re
∇ · T , (4.2)

∇

C=−T , (4.3)

where D(·)/Dt= ∂t(·)+uk∂k(·) is the convective derivative,
∇

A≡DA/Dt−2 sym (A ·∇u)
is the upper-convected Maxwell derivative of A, sym (A)= (A+AT)/2 is the symmetric
part of A, p is the dimensionless pressure and T =T (C) is the polymer stress. In (4.2),
Re = τviscous/τinertial is the Reynolds number, where τviscous and τinertial are the viscous
and inertial time scales, and β=νsolvent/νtotal, where νsolvent and νtotal are the solvent and
total viscosities. The functional form of T depends on the choice of constitutive model.
The theoretical development will not depend on this choice but we are interested in
models of the form

T (C)=
1

Wi
[ f (tr C)C − f (3)I], (4.4)

where f (s) = [1 − (s/L2
max)]

−1 for the FENE-P model, and Lmax is the maximum
extensibility. By setting Lmax →∞ we retrieve the Oldroyd-B model, where f = 1.
The Weissenberg number is given by Wi = τrelaxation/τinertial, where τrelaxation is the
polymer relaxation time.

We wish to examine the evolution of (u, C) about a given steady solution,
(u, C). The velocity field and pressure (cf. (3.6)), are expressed as weakly nonlinear
expansions

u = u+
N∑

k=1

εku(k), (4.5)

p = p+
N∑

k=1

εkp(k), (4.6)

and the weakly nonlinear deformation of the conformation tensor is the expansion
given in (3.10),

G= I + εG(1) + ε
2

(
G2
(1)

2
+G(2)

)
+ · · · , (4.7)

where we note, by (3.4), that we can rewrite (3.10) as

C = C + εF ·G(1) · F
T
+ ε2F ·

(
G2
(1)

2
+G(2)

)
· F

T
+ · · · . (4.8)
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Substituting (4.5), (4.6), the Taylor series expansion of (4.4), (4.8), all into (4.2),
and equating coefficients of ε yields the evolution equation for u(1):

∂tu(1) + u · ∇u(1) + u(1) · ∇u = −∇p(1) +
β

Re
1u(1) +

1− β
WiRe

∇ · [ f (tr C)F ·G(1) · F
T
]

+
1− β
WiRe

∇ ·

[
f 2(tr C)

L2
max

tr (F T
· F ·G(1))C

]
. (4.9)

Similarly, equating coefficients of ε2 yields the evolution equation for u(2):

∂tu(2) + u · ∇u(2) + u(2) · ∇u+ u(1) · ∇u(1) =−∇p(2) +
β

Re
1u(2)

+
1− β
WiRe

∇ ·

[
F ·

(
G2
(1)

2
+G(2)

)
· F

Tf (tr C)

]

+
1− β
WiRe

∇ ·

{
f 2(tr C)

L2
max

[
tr

(
F

T
· F ·

(
G2
(1)

2
+G(2)

))
C

+
f (tr C)

L2
max

tr 2(F
T
· F ·G(1))C + tr (F T

· F ·G(1))F ·G(1) · F
T

]}
. (4.10)

We next consider the expansion of the conformation-tensor equation (4.3). Rather
than proceed directly with C, we start from the equation for the fluctuating
conformation tensor G provided by Hameduddin et al. (2018). For a time-invariant
base state, we have

∂tG+ u · ∇G= 2 sym (G ·F (u))−M, (4.11)

where

M ≡ F
−1
· T · F

−T (4.12)

and we defined the following tensor valued function:

F (a)= F
T
· ∇a · F−T

− (F
−1
· (a · ∇)F )T. (4.13)

Again substituting (4.5), (4.6), the Taylor series expansion of (4.4), (4.8), all into
(4.11)–(4.13), and equating coefficients of ε yields an equation for the evolution of
G(1):

∂tG(1) + u · ∇G(1) = 2 sym [F (u(1))+G(1) ·F (u)] −
1

Wi
f (tr C)G(1)

−
f 2(tr C)

L2
maxWi

tr (F T
· F ·G(1))I. (4.14)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

77
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.777


Perturbative expansions of the conformation tensor 389

Similarly, (4.5), (4.6), the Taylor series expansion of (4.4), (4.8), all into (4.11)–(4.14),
and equating coefficients of ε2 yields an equation for the evolution of G(2) as

∂tG(2) + u · ∇G(2) = 2 sym [F (u(2))+G(2) ·F (u)] −
f (tr C)

Wi
G(2)

−u(1) · ∇G(1) −G(1) · sym [F (u)] ·G(1)

+G(1) · asym [F (u(1))] − asym [F (u(1))] ·G(1) +
f (tr C)

2Wi
G2
(1)

−
f 2(tr C)

L2
maxWi

[
tr

(
F

T
· F ·

(
G2
(1)

2
+G(2)

))
+

f (tr C)

L2
max

tr 2(F
T
· F ·G(1))

]
I, (4.15)

where asym (A)= (A− AT)/2 is the asymmetric part of the tensor A.
By setting Lmax→∞, we can retrieve the relevant Oldroyd-B equations. Thus, for

the Oldroyd-B model, the equation for u(1) in (4.9) reduces to

∂tu(1) + u · ∇u(1) + u(1) · ∇u = −∇p(1) +
β

Re
1u(1)

+
1− β
WiRe

∇ · [ f (tr C)F ·G(1) · F
T
], (4.16)

the equation for u(2) in (4.10) reduces to

∂tu(2) + u · ∇u(2) + u(2) · ∇u+ u(1) · ∇u(1) =−∇p(2) +
β

Re
1u(2)

+
1− β
WiRe

∇ ·

[
F ·

(
G2
(1)

2
+G(2)

)
· F

Tf (tr C)

]
, (4.17)

the equation for G(1) in (4.14) reduces to

∂tG(1) + u · ∇G(1) = 2 sym [F (u(1))+G(1) ·F (u)] −
1

Wi
G(1), (4.18)

and finally, the equation for G(2) in (4.15) reduces to

∂tG(2) + u · ∇G(2) = 2 sym [F (u(2))+G(2) ·F (u)] −
1

Wi
G(2)

−u(1) · ∇G(1) −G(1) · sym [F (u)] ·G(1)

+G(1) · asym [F (u(1))] − asym [F (u(1))] ·G(1) +
1

2Wi
G2
(1).

(4.19)

The following skew-symmetric term appears in the equations for G(2), equations
(4.15) and (4.19),

G(1) · asym [F (u(1))] − asym [F (u(1))] ·G(1). (4.20)

Since the term is skew-symmetric, it has zero trace and therefore does not contribute
towards the evolution of trG(2) and thus represents a volume-preserving deformation.
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The latter fact can be shown by taking the logarithm of the weakly nonlinear
deformation (3.9) and, without loss of generality, assuming N = 2 to obtain

log det G = det(eεG(1)/2 · eε
2G(2) · eεG(1)/2) (4.21)

= log det eεG(1)/2 + log det eε
2G(2) + log det eεG(1)/2 (4.22)

= εtrG(1) + ε
2trG(2). (4.23)

If trG(2)= 0, the deformation associated with G(2) does not contribute to log det G and
is volume-preserving.

We will be particularly interested in the case of linear perturbations. Here we set

G(k) = 0, k> 1, (4.24)

and thus for this special case we have

u= u+ u′ ≈ u+ εu(1), (4.25)
p= p+ p′ ≈ p+ εp(1), (4.26)

G= eG ≈ I + εG(1). (4.27)

The state variables in the linearized equations, equations (4.9) and (4.14), are
then a velocity field and a tangent to Pos3, unlike in the full governing equations,
equations (4.1)–(4.3), where the state variables are a velocity field and conformation-
tensor field. This is important to note, since tangents to Pos3 have a distinct
interpretation from C and are in Sym3; they are not required to be positive definite.

The tangent to Pos3 in the equations has been expressed using G but, by (3.15),
it can be equivalently expressed using C ′. Such linearized equations in terms of
C ′ have been derived previously by directly applying an additive decomposition to
the governing equations (Zhang et al. 2013; Lee & Zaki 2017). The present work
expresses the perturbation equations in terms of G because then the scalar product
on the local tangent space on Pos3 coincides with the standard Frobenius scalar
product. Such a formulation is important when the scalar product is needed. As an
example, consider the eigenmodes associated with linearized equations, equations (4.9)
and (4.14). These modes are equivalent in both approaches, because the eigenvalue
problem (see e.g. Zhang et al. 2013) does not depend on the scalar product. However,
projection of a flow state on one of the modes depends on the scalar product. It
follows that projections using the function space generalization of the Frobenius
scalar product are most appropriate when we use G, and not C ′, since then the scalar
product is consistent with the global metric on Pos3. We will be considering the
evolution of such modes in the present work. We first derive a simple kinematic
constraint on the linear evolution of the modes, which arises due to the constraint of
positive-definiteness on G.

4.1. Constraint on linear evolution
An initial condition consisting of a small-amplitude unstable mode will initially
amplify exponentially as predicted by linear theory. Eventually, however, nonlinear
effects will become significant because otherwise the conformation tensor will lose
positive-definiteness. It is of interest to determine an estimate of the maximum time
that the evolution of the perturbation can be well approximated by linear theory,
i.e. along Euclidean lines. Such an estimate is a useful guide for selecting initial
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perturbation amplitude, e.g. by ruling out initial perturbations that have unacceptably
small time for which the linear evolution holds.

Consider an initial condition which is a perturbed base flow, u|t=0= u+ εq, C|t=0=

C + εQ with ε� 1, and where (q,Q) is an unstable eigenmode of the linear stability
equations, with growth rate ωi > 0. For the purpose of the current derivation, it is
helpful to rewrite the conformation tensor by pre-multiplying C|t=0 by F

−1 and post-
multiplying by F

−T (see (3.4)). This operation yields G|t=0 = I + εQ, where Q =
F
−1
·Q · F

−T. If we assume that the mode grows according to linear theory for some
time and G evolves along Euclidean lines, then G(t)= I + εQeωit. If any eigenvalue
of Q is negative, I + εQeωit will eventually lose positive-definiteness.

Suppose Q is not zero and is harmonic in a spatial direction, then Q has a
strictly negative eigenvalue somewhere in the domain. For positive-definiteness of
G, we require 1 + εσi(Q)eωit > 0 for each i = 1, 2, 3, where σi(Q) denotes the ith
largest eigenvalue of the tensor Q. Wherever σi(Q) < 0, the dynamics must induce a
curvature on the evolution along Pos3 before a time tmax when the eigenvalue crosses
zero. This tmax is given by

ωitmax =−(log ε+ log max
i
|σi(Q)|), (4.28)

and determines an upper bound on the time for which evolution of G along Euclidean
lines does not violate the positive-definiteness constraint on the conformation tensor.
The condition (4.28) is a guide for selecting the initial perturbation amplitude ε, based
on tmax; reducing ε, one can arbitrarily increase tmax to the desired value.

Instead of evolving along Euclidean lines, if one assumes that the perturbation
evolves along a geodesic, then G = eεG(1) as in equation (3.14). Such an evolution
remains on the manifold of Pos3 for any perturbation amplitude. We would then
formally have the superexponential evolution G = eεQeωi t . Expanding the exponentials
it can be easily shown that such an evolution is equivalent to evolution along
Euclidean lines for sufficiently small ε.

Physically, a perturbation that is harmonic in space leads to regions of the flow
where the polymers are compressed much more, in the sense of a volumetric
change, than the maximum expansion. This is because positive and negative additive
perturbations to C with equal magnitudes are not of equal magnitude with respect to
the natural distance on Pos3.

5. Tollmien–Schlichting waves in viscoelastic channel flow
In this section, we use direct numerical simulations (DNS) to examine the nonlinear

evolution of Tollmien–Schlichting (TS) waves in channel flow of a FENE-P fluid. The
stress relation for a FENE-P fluid was provided in (4.4). The geometry of the channel
flow set-up, along with the laminar base flow, is sketched in figure 4. The base flow is
only a function of the wall-normal coordinate (y), and the Tollmien–Schlichting waves
are independent of the spanwise coordinate (z). In the present viscoelastic case, the
waves are unstable eigenmodes of the linearized equations (4.9) and (4.14).

Results from the DNS will be used to illustrate some of the theoretical developments
described in the previous sections. In § 5.1, we provide the background and motivation
for studying this particular problem. The simulation set-up and the laminar base flow
are described in § 5.2. In § 5.3 we discuss the initial perturbation from the geometric
viewpoint, and the predicted upper bound for the duration of purely linear evolution
along Euclidean lines (see also § 4.1). The development of the Tollmien–Schlichting
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x

y

u(y)

y = 1

y = -1 z

C(y)

FIGURE 4. (Colour online) Schematic of viscoelastic channel flow and the laminar base
flow. The base flow is uniform in x and z. The Tollmien–Schlichting waves are uniform
in the z direction.

wave is considered in detail in § 5.4 and, finally, we utilize the weakly nonlinear
deformation framework (see § 3.2) to study how the Tollmien–Schlichting waves first
deviate from exponential growth.

5.1. Background
The growth and saturation of Tollmien–Schlichting waves in the channel flow
considered here were simulated previously by Lee & Zaki (2017). That study
motivates the present focus on TS waves and, for this reason, its main relevant
findings are outlined.

Lee & Zaki (2017) performed linear stability analyses of channel flow of FENE-P
fluid, with β = 0.90 and Lmax = 100. They reported the growth rates of the
instability waves in (Re, Wi)-space, and identified the neutral curve which exhibited
non-monotonic behaviour: The critical Re initially decreased and subsequently
increased with increasing Wi. At Re = 4667, they examined the two-dimensional
mode which is most unstable in the Newtonian configuration, and showed that its
growth rate increased with Weissenberg number up to a maximum at Wi ≈ 1.83.
Further increasing Wi to 4.50 decreased the maximum growth rate to the Newtonian
value, and even lower for Wi> 4.50. The authors simulated the nonlinear evolution of
Tollmien–Schlichting waves at Re= 4667 for Newtonian fluid and viscoelastic fluids
at Wi ∈ {1.83, 4.50, 6.67}, i.e. cases with modal growth rates below, at and above the
Newtonian value.

Lee & Zaki (2017) examined the evolution of the modes using the (spatially
averaged) perturbation kinetic energy and found, for all cases, that it initially grew
at a rate consistent with predictions from linear theory. In all but the cases with
Wi = 4.50, the kinetic energy eventually saturated; our focus is on conditions where
an equilibrium solution is possible, and hence Wi = 4.50 is not discussed further.
The Wi= 1.83 and Wi= 6.67 will hereafter be referred to as W1.83 and W6.67. The
saturation energy for the Newtonian case and W1.83 coincided, while W6.67 saturated
at a much lower energy. Superficially, the saturation appeared to be similar, but Lee
& Zaki (2017) found that the behaviour of the flow before and after saturation was
distinctly different in W1.83 compared to W6.67.

Just prior to saturation, Lee & Zaki (2017) reported that the growth rate of
the average kinetic energy in W1.83 increases substantially beyond the linear rate
– qualitatively similar to behaviour in the Newtonian case. Qualitative similarity
was also reported for the mean-velocity distortion as well as the term-by-term
breakdown of the perturbation kinetic-energy budget in the saturated state. The flow
behaviour for W6.67 was markedly different: there was no increase in the growth
rate of average kinetic energy prior to saturation; the mean-velocity distortion in
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Eigenvalue, ωr + iωi Domain size Grid size
Case Wi β Lmax Re kx ωr ωi Lx × Ly × Lz Nx ×Ny ×Nz

W1.83 1.83 0.90 100 4667 1.00 0.3792 3.489× 10−3 2π× 2× 0.1 160× 2048× 16
W6.67 6.67 0.90 100 4667 1.00 0.3799 1.571× 10−3 2π× 2× 0.1 160× 2048× 16

TABLE 1. Parameters of the simulation set-up and the viscoelastic Tollmien–Schlichting
wave. The characteristic length and velocity are the channel half-height and bulk flow
speed.

the saturated state was astonishingly small; the term-by-term breakdown of the
perturbation kinetic-energy budget in the saturated state bore more resemblance to the
linear growth stage, such as predominance of the critical-layer peak in the production
term, rather than to the saturated states for W1.83 and the Newtonian case. We refer
the reader to the original paper (Lee & Zaki 2017) for detailed figures documenting
these distinctions. In the present work, we will leverage our new framework to shed
more light on the differences between the polymer deformation in the two cases
W1.83 and W6.67 as they saturate, as opposed to focusing on the velocity field and
its modification by the polymer, which was the focus of Lee & Zaki (2017).

5.2. Simulation set-up
The set-up of the direct numerical simulations performed herein is identical to the
one described by Lee & Zaki (2017). The flow in the channel is maintained at a
constant mass rate with bulk Reynolds number Re≡ hUb/ν = 4667, where Ub is the
bulk velocity, h is the channel half height and ν is the total kinematic viscosity of
the fluid. The two conditions simulated correspond to Wi≡ τrelaxationUb/h∈ {1.83, 6.67},
both with β = 0.9 and Lmax = 100. The flow is composed of a laminar base state at
these parameters, plus a small-amplitude two-dimensional Tollmien–Schlichting wave.

The domain and grid sizes are listed in table 1. The simulations assume all fields are
periodic in the streamwise x and spanwise z directions, and imposes no-slip condition
on the velocity field at the two walls (y = ±1). There are no boundary conditions
on the conformation tensor. The numerical scheme used in the present simulations
is similar to that used by Lee & Zaki (2017), except that here we use second-order
Runge–Kutta time stepping for the conformation tensor and a variant of the slope-
limiting approach developed by Vaithianathan et al. (2006) for the conformation tensor
advection. The latter is designed to ensure positive-definiteness of the conformation
tensor (see § 2.2 of Lee & Zaki (2017) and appendix B of Hameduddin et al. (2018)).
The algorithm has been extensively validated by comparing exponential growth rates
of instability waves to predictions from linear theory (Lee & Zaki 2017, and present
study) and non-modal amplification of disturbances (Agarwal, Brandt & Zaki 2014).

The laminar base state can be derived from the governing equations by assuming
that the flow is fully developed, so that the state variables are only functions of y.
The x, y and z components of the laminar velocity field, respectively, are given by

u(y)=
1
2

Re
β

dp
dx
(y2
− 1)−

1− β
β

∫ y

−1
T xy(s) ds, v = 0, w= 0 (5.1)

and the laminar pressure gradient dp/dx is a fixed constant chosen so that the bulk
velocity is unity, (1/2)

∫ 1
−1 u(y) dy = 1. The laminar velocity profiles for Re = 4667,
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FIGURE 5. Laminar streamwise velocity profile for W1.83 (black line with symbols,
) and W6.67 (grey line with symbols, ).

β = 0.90, Lmax = 100 and Wi ∈ {1.83, 6.67} are shown in figure 5. The two curves
are indistinguishable, and are as similar to the Newtonian profile as they are to one
another.

The polymer stress component T xy is a solution to the following cubic equation:

1
L2

max

T
3
xy +

f (3)
2Wi2

(
1+

2f (3)+ 1
L2

max

+
1− β
β

f (3)
)

T xy −
Re f 2(3)
2βWi2

dp
dx

y= 0. (5.2)

The discriminant of (5.2) is negative and thus there is only one real root, which can
be obtained using standard methods such as the analytical approach by Cardano &
Witmer (1993). The remaining components of the stress are

T xx =
2Wi
f (3)

T
2
xy, T yy = T zz = T xz = T yz = 0, (5.3a,b)

and the associated conformation tensor can be calculated using the stress relation
(4.4). Figure 6 shows the non-zero components of the laminar base-state conformation
tensor, normalized so their magnitudes are comparable. The normalized profiles are
very similar but their absolute magnitudes are dramatically different, highlighting
the importance of correctly ascertaining the relative size of a perturbation to these
profiles.

The two-dimensional initial perturbation is evaluated separately by solving the
eigenvalue problem associated with the stability of the laminar base flow. The
streamwise wavenumber is prescribed, kx = 1, and the eigenmode with the highest
growth rate is selected at each flow condition. The modal complex frequencies,
ωr + iωr, are listed in table 1. The temporal growth rate is given by the complex part
of the eigenvalue, ωi, and the phase velocity is given by ωr/kx.

5.3. Initial perturbation
The initial condition is constructed from the superposition of the base state and the
instability mode,

u|t=0 = u+Re{û′|t=0eikxx
}, C|t=0 = C +Re{Ĉ ′|t=0eikxx

}, (5.4a,b)

where (u,C) is the laminar flow, (u′,C ′) is the (additive) perturbation and hats denote
quantities that are Fourier transformed in the x direction – only the kx = 1 Fourier
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FIGURE 6. Components of the laminar base-flow conformation tensor C, each normalized
by its value at the bottom wall (y=−1). Black lines are for W1.83 and grey lines are
for W6.67. (a) Cxx ( , ) and Cyy ( , ); (b) Cxy ( , ). For
W1.83, Cxx|y=−1=60.15, Cyy|y=−1=0.99 and Cxy|y=−1=5.42. For W6.67, Cxx|y=−1=656.48,
Cyy|y=−1 = 0.93 and Cxy|y=−1 = 17.50.

component is non-zero for the initial perturbation. The initial perturbation magnitude
is fixed at 0.01 % of the bulk velocity. The non-zero components of Ĉ ′|t=0 are shown
in figures 7 and 8. The figures also show the non-zero components of Ĝ|t=0 which is
evaluated by pre- and post-multiplying the second equation in (5.4) with F

−1
= F

−T,
and is the perturbation tangent along Pos3,

G|t=0 = I +Re{Ĝ|t=0eikxx
}. (5.5)

The correct form of the tangent on Pos3, Ĝ|t=0, reveals details about the perturbation
that are not apparent from Ĉ ′|t=0. We describe the most salient of these points below.

We first consider W1.83. The perturbation streamwise normal stretch Ĉ ′xx|t=0 is
shown in figure 7(a), and suggests that the polymer perturbation rapidly tapers off
above the critical layer (the location where the instability phase speed equals the
local mean velocity). Figure 7(e), however, shows that |(Ĝxx|t=0)| remains relatively
constant from the critical layer up to 0.84 channel half-heights away from the wall.
Since tr Ĝ|t=0 ≈ Ĝxx|t=0, the large values of Ĝxx|t=0 imply that the change in the
volume ratio induced by the perturbation, relative to the mean, is similar deep in
the channel and at the critical layer. This is a reflection of the fact that the mean
volume is smaller closer to the centreline and therefore deformations with respect
to it appear, in general, larger than those with respect to the near-wall configuration.
This accurate account of the perturbation magnitude is only feasible by examining it
in the correct form along the tangent to Pos3, i.e. G, and also highlights the drawback
of an additive, or vector space, view.

While the maximum |(Ĉ ′yy|t=0)| is located at the critical layer, the largest y-direction
normal stretch actually occurs at the wall as shown by |(Ĝyy|t=0)|. Thus, examining the
perturbation in its correct form, G, dispels possible confusion regarding the dominance
of the perturbation at the critical layer. The component Ĝxy|t=0 captures the shearing
deformation induced by perturbation on the mean configuration (see the discussion in
§ 3.2). A peak in |(Ĝxy|t=0)| appears below the critical layer, which demonstrates that
the perturbation induces the most shearing of the mean configuration at that location.
This effect is missing from |(Ĉ ′xy|t=0)|.
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FIGURE 7. (Colour online) Wi = 1.83. Components of the initial perturbation tensor
Fourier mode: (a–d) in the native form, Ĉ ′|t=0, and (e–h) in the form of a tangent on
Pos3, Ĝ|t=0. In all panels, solid black lines are the absolute magnitudes of the modes,
solid grey lines are the phase angles θ . The horizontal red dashed line is the location of
the critical layer, and the vertical thin black dotted line marks zero phase angle. Note: as
indicated in the axes labels, the perturbation values are normalized to optimize the clarity
of the plots.

Unlike W1.83, at the higher Weissenberg number (W6.67), figure 8(a–e) shows that
both Ĉ ′xx|t=0 and |(Ĝxx|t=0)| taper off above the critical layer. In this case, the peak
|(Ĝxx|t=0)| is no longer at the wall, but at the critical layer. On the other hand, while
the maximum of |(Ĉ ′yy|t=0)| is located at the critical layer, the maximum of |(Ĝyy|t=0)|
is slightly below.

In the classical approach, C ′ does not explain the changes in the volume ratio
of the perturbed to the base conformation or the shearing deformation, because the
principal axes of C ′ and C are not necessarily aligned. Thus, the geometry and
relevant interpretations laid out in this paper must be kept in mind when studying
perturbations to the conformation tensor.

The longest time, tmax, for which the conformation tensor can evolve along a
Euclidean path on Pos3 was derived (4.28). This time was evaluated from the initial
condition at each wall-normal plane in the channel, and is shown in figure 9. The
minimum value of tmax represents the upper bound on the duration of linear evolution
for the entire domain. As per (4.28), choosing a larger initial perturbation magnitude
ε decreases tmax. For W1.83 the minimum tmax is located at the wall, while for
W6.67 it is located at the critical layer, which suggests that the critical layer plays
an important role in the latter case. This result is consistent with figures 7 and 8:
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FIGURE 8. (Colour online) Wi = 6.67. Components of the initial perturbation tensor
Fourier mode: (a–d) in the native form, Ĉ ′|t=0, and (e–h) in the form of a tangent on
Pos3, Ĝ|t=0. In all panels, solid black lines are the absolute magnitudes of the modes,
solid grey lines are the phase angles θ . The horizontal red dashed line is the location of
the critical layer, and the vertical thin black dotted line marks zero phase angle. Note: as
indicated in the axes labels, the perturbation values are normalized to optimize the clarity
of the plots.

The dominant perturbation for W1.83 is at the wall, while that for W6.67 is closer
to the critical layer.

5.4. Time evolution of instability waves
In order to track the nonlinear temporal evolution of the unstable modes, we consider
the following scalar quantities,

E≡
1

LxLyLz

∫
|u′|2 dx dy dz, J ≡

1
LxLyLz

∫
d2(C, C) dx dy dz, (5.6a,b)

where d2(C, C) = d2(I, G) = trG2 and G = log G. The quantity E is the volume-
averaged perturbation kinetic energy, or the Euclidean norm associated with u′, and
was used by Lee & Zaki (2017) to characterize viscoelastic Tollmien–Schlichting
waves. While their fluctuation was defined with respect to the instantaneous mean
flow, here the reference laminar state is used. We propose the quantity J to evaluate
the evolution of the polymer deformation, which is the volume-averaged squared
geodesic distance of C away from C (Hameduddin et al. 2018). The geodesic distance
is the natural way to measure the size of the fluctuating deformation in C because

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

77
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.777


398 I. Hameduddin, D. F. Gayme and T. A. Zaki

6 7 8

0

-0.2

-0.4

-0.6

-0.8

-1.0

y

tmax*

FIGURE 9. (Colour online) Upper bound, for each wall-normal plane, on the time for
which evolution of G along Euclidean lines remains positive definite, as defined in (4.28).
The time is normalized by the growth rate, tmax∗ = ωitmax. The black line is W1.83 and
the grey line is W6.67. The solid red circle markers (u) indicate the lowest tmax∗ for each
curve: tmax∗ = 6.48 for Wi = 1.83, and tmax∗ = 5.63 for Wi = 6.67. The location of the
critical layer for W6.67, which is approximately the same for W1.83, is shown as a red
dashed line.

we cannot define a norm on Pos3 due to the lack of a vector space structure. In the
classical approach, one would perhaps use the Frobenius norm of C ′ to quantify the
fluctuating polymer deformation, which would lead to a wide variety of difficulties,
e.g. the Frobenius norm would predict that regions of negative C ′ are equivalent to
regions of positive C ′. However, this is manifestly not the case (cf. discussion in § 2):
regions of positive (negative) C ′ represent polymer expansion (compression) and while
expansions may be arbitrarily large, compressions cannot be. The difficulties cited
above arise when Euclidean concepts are foisted upon a non-Euclidean manifold and
can be completely eliminated by adopting the mathematically consistent viewpoint
that treats Pos3 as a Riemannian manifold. The quantity J is proposed in such a spirit.

The time evolutions of E and J for both cases are shown in figure 10(a) as a
function of the normalized time t∗ = ωit. For W1.83, the evolution of E matches the
prediction by linear theory for t∗. 5, then shows super-exponential growth and finally
saturates at t∗ ≈ 10. For W6.67, the evolution agrees with linear theory for t∗ . 4,
shows no super-exponential growth and saturates at t∗ ≈ 8. The different behaviours
when the curves deviate from linear theory suggest that different physical mechanisms
are at play at the two Weissenberg numbers. The evolutions of normalized J closely
match those of normalized E. They are also consistent with an assumption that G
initially evolves along a linear approximation of the geodesic on Pos3 emanating from
I because for t∗ . 5,

d2(C, C)= tr log2 G ≈ tr log2(I +G)≈ trG2
∼ ε2e2ωit, (5.7)

where we used the matrix Mercator series (Higham 2008), and assumed ‖G‖∼ ε� 1.
As the Tollmien–Schlichting waves evolve in time, nonlinear effects become

appreciable. For the velocity field, the role of nonlinearity can be quantified using
the Euclidean norm of the deviation of the velocity field from the prediction by
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FIGURE 10. (Colour online) (a) Evolution of E and J, as defined in (5.6), normalized
by the initial values. For W1.83, E(0)= 2.05× 10−9 and J(0)= 1.53× 10−7; for W6.67,
E(0) = 1.97 × 10−9 and J(0) = 2.03 × 10−6. Solid lines (——, ) are J(t)/J(0)
while dotted lines (- - - - - -, ) are E(t)/E(0). The red dash-dot line (– - – -) is an
extrapolation based on the growth rate predicted by linear theory. (b) Deviation from
linear theory: solid lines (——, ) are the deviations defined by (5.8) and dotted lines
(- - - - - -, ) are the deviations defined by (5.9). In both (a) and (b), black lines are
W1.83, grey lines are W6.67, thin dashed red lines (– – –) mark t∗= 4 and t∗= 5, and the
solid red circle markers (u) indicate the minimum tmax∗ = tmaxωi as defined in (4.28) and
also marked in figure 9 (tmax∗ = 6.48 for W1.83 and tmax∗ = 5.63 for W6.67).

linear theory. The question then becomes: how do we quantify the deviation of the
conformation tensor obtained using direct numerical simulations from the prediction
by linear theory? In the spirit of geometric consistency, we evaluate the squared
geodesic distance between the two,

1
LxLyLz

∫
d2(G, I +Re{Ĝ|t=0ei(kxx+ωt)

}) dx dy dz, (5.8)

which is plotted in figure 10(b). The deviation in (5.8) is a measure of the importance
of nonlinear effects. Predictably, the deviation from linear theory is only valid as
long as the linear approximation I + Re{Ĝ|t=0ei(kxx+ωt)

} remains positive definite, and
hence t < tmax. The upper bounds on that time, calculated using (4.28), were shown
in figure 9 and are also indicated as solid red circle markers in figure 10. For longer
times, we can instead evaluate

1
LxLyLz

∫
d2(G, eRe{Ĝ|t=0ei(kxx+ωt)

}) dx dy dz. (5.9)

The quantity (5.9) is also shown in figure 10. The evolution of (5.8) is virtually
indistinguishable from (5.9) because the difference between them is O(ε2eε). As
illustrated in the figure, however, the latter can be extended indefinitely since we
are evaluating the deviation away from a perturbation along a geodesic, which is
guaranteed to remain on the manifold.

For W1.83, the deviation between DNS and linear theory increases at a relatively
slow rate up to t∗ ≈ 5, when it begins to grow faster until t∗ ≈ 6.5. The initial
growth in the deviation is associated with part of the region matching linear theory
in the evolution of J, 0 . t∗ . 5, while the later growth may be associated with
super-exponential growth in E and J that appears before saturation. As discussed
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earlier, at even longer times than t∗ ≈ 6.5, the linear approximation does not remain
positive definite everywhere in the domain and thus the deviation cannot be calculated
further. For W6.67, we see a similar slow initial growth in the deviation from linear
theory until t∗ ≈ 4, where the growth abruptly becomes faster.

The above discussion emphasizes the importance and value of the geometry of Pos3.
It allowed us to formulate measures of the deviation away from linear theory in (5.8)
and (5.9). It also enabled the interpretation of a perturbation as an excursion along a
geodesic, and furnished us with a measure of the deviation (5.9) that remains valid at
large times.

Nonlinear effects eventually lead to the saturated state shown in figure 10. It is
instructive to compare the differences in polymer deformation between the initial
linear stage and the saturated condition. We quantify this difference using the
logarithmic volume ratio (2.9), here abbreviated as LVR, and the geodesic distance
from the laminar base flow (2.6), which we will refer to here simply as the geodesic
distance. The LVR is the ratio of the volume of C to the volume of C and describes
whether a deformation is volumetrically expansive or compressive, and by how much
relative to the reference state. The geodesic distance is analogous to the norm of the
velocity, but for the conformation tensor. These two measures together allow for a
succinct, yet rich picture of the deformation. For example, a volume-preserving purely
shearing deformation can be detected since it will lead to zero LVR but non-zero
geodesic distance.

The isocontours of the LVR for W1.83 differ significantly between the initial
condition and the saturated state (figure 11a). For the initial condition, the most
significant variations occur near the wall below the critical layer, with only very weak
volume-ratio changes elsewhere. On the other hand, the main activity in the saturated
state is focused away from the wall: a thin, elongated region of large volume-ratio
expansion is centred at y≈−0.5, and a large region of volume-ratio expansion is near
y≈−0.1 and is connected to the wall via a filament of expansive stretch. The geodesic
distance shown in figure 11(b) is consistent with these volumetric changes. However,
the geodesic distance peaks at x≈ 0.3π in the critical layer, even though this region
only shows relatively small LVR in figure 11(a). These results imply that the polymer
is undergoing a shearing deformation at the this location. The significant differences
between the flow structures in the linear and saturated stages demonstrate that the
mechanism for the initial growth of the Tollmien–Schlichting wave is disrupted in
the latter stage. Only at saturation do we observe large volume-ratio changes near
the centreline, and the localized largely shearing deformation near the critical layer.

The isocontours of the LVR for W6.67, shown in figure 12(a), are strikingly similar
at the initial and saturated states. The main volume-ratio change is near the critical
layer, and remains so in the saturated state. The geodesic distance in figure 12(b)
confirms this finding, with little shearing deformation evident. Both measures also
show that there is a spreading of the stretched/compressed region from the critical
layer towards the centreline. Both the initial condition and the saturated state are
dominated by the kx = 1 mode, suggesting that the nonlinear terms in the governing
equations do not significantly alter the perturbation spectra.

5.5. Weakly nonlinear deformation
In order to examine the initial deviation from linear theory, we adapt the approach
that was used by Benney & Lin (1960) to study secondary instabilities in Newtonian
parallel shear flows. For sufficiently small deviations from linear evolution, we assume
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FIGURE 11. (Colour online) Case W1.83 at t∗ ∈ {0, 17}. Isocontours of (a) logarithmic
volume ratio, trG, (b) geodesic distance from the laminar,

√
trG2. In both panels, the

top half (y ∈ (0, 1]) of the channel is at t∗ = 0 and the bottom half (y ∈ [−1, 0)) of the
channel is at t∗ = 17. The solid black line is the channel centreline and the dashed red
lines are the locations of the critical layers.

that G can be expressed as a polynomial expansion, here as the weakly nonlinear
deformation in (3.10), because then we can endow the terms in the expansion with
physical meaning. The growth rate and phase speed predicted by linear theory can be
used to directly calculate the first variable G(1) in the series (3.10),

εG(1) =Re{Ĝ|t=0ei(kxx−ωt)
}, (5.10)

where ω is the eigenvalue listed in table 1. Once G(1) is available, it is straightforward
to rearrange (3.10) and obtain an approximation to the second variable G(2):

ε2G(2) =G− (I + εG(1) +
1
2ε

2G2
(1))+O(ε3). (5.11)

For both Weissenberg numbers, we will perform the analysis at t∗ = 4, since the
deviation from linear theory at that time is still relatively small but not negligible (see
figure 10). The xx, yy and xy components of εG(1) and ε2G(2) are reported in figure 13,
for W1.83. The xx components of both G(1) and G(2) in figure 13(a) show similarly
shaped isocontours, but are out of phase with each other. Recall from the discussion
in § 3.2 and (4.23) that the LVR is the sum of the trace of the terms of the weakly
nonlinear deformation. For both εG(1) and ε2G(2), the xx component contributes more
to LVR than any other component. The ability to tease out the volume-ratio change
by simply examining the terms in the expansion highlights a major benefit of using
a weakly nonlinear deformation expansion, rooted in physical notions.

The isocontours of the xy component of εG(1) and ε2G(2) are shown in figure 13(c).
This component represents the shearing deformation (see the discussion in § 3.2). For
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FIGURE 12. (Colour online) Case W6.67 at t∗ ∈ {0, 8}. Isocontours of (a) normalized
logarithmic volume ratio, trG, (b) normalized geodesic distance from the laminar,

√
trG2.

In both panels, the top half (y ∈ (0, 1]) of the channel is at t∗ = 0 and the bottom half
(y∈ [−1, 0)) of the channel is at t∗= 8. The solid black line is the channel centreline and
the dashed red lines are the locations of the critical layers.

the prediction by linear theory, εG(1), the perturbations are most strongly shearing
above the critical layer at y ≈ −0.75, whereas for the nonlinear correction, ε2G(2),
the shearing is focused closer to the critical and localized in x. This nonlinear
correction with significant localized shear explains the observation previously noted
regarding figure 11: there is a region, localized in x and close to the critical layer,
that shows the most significant geodesic deviation but locally only weakly changes
the LVR. These two factors indicate a shearing deformation, which is consistent
with a large xy component of the higher-order correction, ε2G(2). The ease with
which the localized shearing deformation, whose effects appear prominently in the
saturated state, was deduced simply from a consideration of a slight deviation from
linear theory demonstrates the effectiveness of using physically relevant polynomial
expansions.

Figure 14 shows εG(1) and ε2G(2) for W6.67. The isocontours of both quantities
similarly show that regions of expansion/compression are concentrated near the
critical layer and are dominated by the kx = 1 Fourier mode. This behaviour
echoes the findings in figure 12. Moreover, in that figure we noted the spreading
of stretched/compressed regions near the critical layer towards the centreline. The
source of this spreading is clear in figure 14: the regions of largest stretch and
compression are located right above the critical layer.

6. Conclusions
Perturbing the conformation tensor, while maintaining physical and geometric

consistency, is a more complicated proposition than perturbing a Euclidean object
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FIGURE 13. (Colour online) Components of εkGk with k ∈ {1, 2} for W1.83 at t∗= 4, i.e.
the tangents on Pos3 that appear in the weakly nonlinear deformation expansion (3.10).
(a) εkGkxx , (b) εkGkyy , (c) εkGkxy . In all panels, the top half (y ∈ (0, 1]) of the channel is
k = 1 and the bottom half (y ∈ [−1, 0)) of the channel is k = 2. The solid black line is
the channel centreline and the dashed red lines are the locations of the critical layers.

like the velocity field. In this paper, we have developed methods to perturb the
conformation tensor in a linear (3.15) as well as weakly nonlinear manner (3.10) that
maintain this consistency. Our approach provides a way to relate a perturbation to
geometric behaviour on the manifold Pos3, as well as to the polymer deformation.
The latter allowed us to study the deformation of the polymer during the nonlinear
evolution of viscoelastic TS waves.

The geometric viewpoint of perturbations and the proposed weakly nonlinear
deformation approach are natural and have several benefits. (i) The set of positive
definite tensors is not a Euclidean space and, as a result, Euclidean notions of
distance and size are not meaningful. The geometric viewpoint provides a rigorous
alternative to formulating quantitative measures of the polymer deformation. This
approach was adopted to measure the magnitude of the polymer deformation in TS
waves in channel flow, using the spatially averaged geodesic distance. (ii) The
weakly nonlinear deformation expansion, as opposed to a standard polynomial
expansion, has an explicit and powerful physical interpretation. For example, the
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FIGURE 14. (Colour online) Components of εkGk with k ∈ {1, 2} for W6.67 at t∗= 4, i.e.
the tangents on Pos3 that appear in the weakly nonlinear deformation expansion (3.10).
(a) εkGkxx , (b) εkGkyy , (c) εkGkxy . In all panels, the top half (y ∈ (0, 1]) of the channel is
k = 1 and the bottom half (y ∈ [−1, 0)) of the channel is k = 2. The solid black line is
the channel centreline and the dashed red lines are the locations of the critical layers.

diagonal components of each term contribute additively to the volume ratio, and the
off-diagonal components represent volume ratio-preserving deformation. We leveraged
this physical interpretation to explain how the evolution of TS waves in channel flow
deviates from linear theory, e.g. we found that strong localized shearing appears near
the critical layer for the Wi= 1.83 case; a prominent signature of this initial shearing
appeared in the saturated state. (iii) We can formulate a perturbation to the base-flow
conformation tensor that is a geodesic emanating from the base point on the manifold,
i.e. weakly nonlinear deformation with a single non-zero tangent. While a classical
polynomial expansion would not guarantee, in general, positive-definiteness for any
perturbation amplitude, this geodesic is always guaranteed to remain on the manifold.
We thus have a way of generating arbitrarily large initial perturbations. (iv) The
classical linear theory representation was shown to be a local approximation of the
geodesic. This new insight bridges classical linear theory with the mathematically
powerful Riemannian framework which is natural for positive definite tensors, and
has physically meaningful interpretations (see (ii) above). Applying this relation to TS
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waves, we deduced the relative magnitudes of perturbations and determined the action
on the laminar base flow. (v) The geometry leads to a constraint on the evolution of
unstable modes: an upper bound on the maximum time an unstable mode can evolve
along Euclidean lines. This upper bound, which is determined without reference to the
nonlinear dynamics, was found to be surprisingly relevant to the nonlinear evolution
of TS waves: it provided a good estimate of the actual time when the nonlinear
effects become significant, and correctly predicted the importance of the critical layer
in the saturation process at high Wi.

An interesting implication of the present work, which is not considered here,
concerns linear non-modal stability analysis. In the present work, we showed that
the appropriate inner product vis-à-vis perturbations to the conformation tensor is the
one induced locally at the base conformation, by the global metric on the manifold
of positive definite tensors. This scalar product is not the Frobenius inner product,
and thus affects the results of non-modal stability analyses which depend critically
on the form of the inner product and associated induced norm. For instance, one
may seek the unit-norm initial perturbation to the conformation tensor that maximizes
kinetic energy growth at a later time. This optimal will vary depending on the norm
used to constrain the initial condition and, as a result, will be different for our
present formulation compared to the classical one. In a similar vein, the present
approach also provides a sensible way to measure, and thus optimize, the growth in
the conformation tensor using the local geodesic distance.
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