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Effect of surfactants on the long-wave stability of
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The stability of the two-layer film flow driven by an oscillatory plate under long-wave
disturbances is studied. The influence of key factors, such as thickness ratio (n), viscosity
ratio (m), density ratio (r), oscillatory frequency (β) and insoluble surfactants on the
stability behaviours is studied systematically. Four special Floquet patterns are identified,
and the corresponding growth rates are obtained by solving the eigenvalue problem of
the fourth-order matrix. A small viscosity ratio (m ≤ 1) may stabilize the flow but it
depends on the thickness ratio. If the viscosity ratio is not very small (m > 0.1), in the
(β, n)-plane, stable and unstable curved stripes appear alternately. In other words, under
the circumstances, if the two-layer film flow is unstable, slightly adjusting the thickness
of the upper film may make it stable. In particular, if the upper film is thin enough, even
under high-frequency oscillation, the flow is always stable. The influence of density ratio
is similar, i.e.there are curved stable and unstable stripes in the (β, r)-planes. Surface
surfactants generally stabilize the flow of the two-layer oscillatory membrane, while
interfacial surfactants may stabilize or destabilize the flow but the effect is mild. It is
also found that gravity can generally stabilize the flow because it narrows the bandwidth
of unstable frequencies.

Key words: interfacial flows (free surface), instability

1. Introduction

In many industrial applications, such as coatings, crystal growth and material processing,
the stability of the flow of the film adjacent to the wall is very important. However,
instability usually occurs and can not be ignored. Some relevant research topics, such as
the stability of a single-layer fluid driven by an oscillatory plate, the stability of a steady
two-layer fluid system, and the stability of a stable membrane flow with surfactants, have
been studied. They are briefly reviewed below.
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Yih (1968) first studied the stability of single-layer flow caused by oscillatory plates.
Under the long-wave approximation, a mode related to surface deformation is found.
The growth rate of this mode depends only on the Froude number F and the Womersley
number β (it can also be understood as a non-dimensional oscillation frequency). If the
influence of gravity is not considered, the growth rate of the long-wave disturbance does
not depend on the oscillatory amplitude of the plate. As β increases, the stable and
unstable situations appear alternately. In the presence of gravity, long-wave instability
occurs only when the amplitude exceeds a certain critical value, and as β increases, the
critical value increases rapidly. Or (1997) extended the long-wave stability analysis of Yih
(1968) to arbitrary wavenumbers. Based on Floquet theory, through numerically solving
the governing equations under general conditions, Or (1997) found that when the Reynolds
number R exceeds a certain critical value, finite-wavelength instability would also occur.
In the (R, β)-plane the neutral stability curves for the long-wave instability is U-shaped,
and a slanted curve is branched at a certain position, corresponding to the critical R of
the finite-wavelength disturbance. Actually, long-wave instability and finite-wavelength
instability may occur simultaneously, but which one is dominant depends on the specific
flow parameters, especially the oscillation frequency of the plate. In addition, Samanta
(2017) studied the linear stability of viscoelastic liquid on an oscillatory plate for arbitrary
wavenumber disturbances, and found that the dominant mode of long-wave instability
would increase in the presence of viscoelasticity, and in some cases, even if the long-wave
instability does not occur within a particular frequency range, the finite-wavelength
instability may appear. Furthermore, for the two-layer unsteady system, the flat interface
between two fluids in a vertically vibrating vessel may be parametrically excited, leading
to the generation of standing waves (Kumar & Tuckerman 1994).

The stability of steady membrane flows in the presence of surfactants has been
extensively studied. Insoluble surfactants may stabilize or destabilize the flow. When the
liquid loaded with a large amount of surfactant flows downward, Whitaker & Jones (1966)
and Lin (1970) found that the critical Reynolds number associated with the Yih mode
for long-wave instability increases with the elasticity of the surfactant, indicating the
stabilizing effect of the surfactant. In the Stokes flow, Pozrikidis (2003) found another
Marangoni mode due to the presence of surfactants. Even considering the inertial effect,
the mode is always suppressed (Blyth & Pozrikidis 2004a). When interfacial shear is
applied, surfactants may destabilize the two-layer flow system (Frenkel & Halpern 2002;
Halpern & Frenkel 2003; Blyth & Pozrikidis 2004b; Wei 2005a; Gao & Lu 2007). Wei
(2005b) proposed a unified view on the mechanism of the Marangoni effect.

For unsteady film flows in the presence of surfactants, Gao & Lu (2006) studied the
flow stability of a monolayer film driven by an oscillatory plate under the long-wave
disturbance. They found that surfactants can stabilize the flow of the oscillatory membrane
and improve the quality of the membrane. Gao & Lu (2008b) extended the stability
analysis of long wave to that of arbitrary wavenumbers. It is shown that surfactants can
inhibit long-wave instability, and the finite-wavelength instability depends on specific flow
parameters. Besides the flow driven by the oscillatory wall, Wei, Halpern & Grotberg
(2005) extended the stability analysis to the flows driven by an oscillatory pressure
gradient.

For the steady two-layer fluid system, Gao & Lu (2008a) studied the mechanism of
the long-wave non-inertial instability by investigating the influence of deformations of
free surface and interface on the disturbance velocity field. It gives an intuitive physical
explanation of the growth or decay of the disturbance. Samanta (2013) studied the
influence of insoluble surfactants on the interfacial waves of two-layer channel flows
at low and medium Reynolds numbers. Based on the linear stability analysis of the
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Long-wave stability of two-layer oscillatory film flow
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Figure 1. Schematic of the flow configuration.

Orr–Sommerfeld boundary value problem, the interfacial mode and the surfactant mode
were determined. He found that the surfactant inhibits and promotes the instability at a
high and low viscosity ratio, respectively. The instability threshold is determined according
to the Marangoni number, and a long-wave model is developed to predict the families of
nonlinear waves in the neighbourhood of the threshold of instability. Besides, Mohammadi
& Smits (2017) studied the stability of the two-layer Couette flow under the influence of
viscosity ratio, thickness ratio, interfacial tension and density ratio.

However, as far as we know, little work has been done on the effect of insoluble
surfactants on the stability of unstable oscillatory two-layer flows. The main purpose
of this paper is to study the long-wave stability of the two-layer film flow driven by
an oscillatory plate under the influence of several key parameters, such as the viscosity
ratio, thickness ratio, density ratio and insoluble surfactant. Although we recognize the
limitations of the long-wave stability analysis (Or 1997; Gao & Lu 2008b), we nevertheless
feel that the analysis is still helpful to reveal complicated stability characteristics.

2. Flow configuration and the stability problem

The problem of two layers of incompressible Newtonian fluid on an infinite plate is shown
in figure 1. The upper and lower fluids have densities ρ1, ρ2, viscosities μ1, μ2, and
thicknesses d1, d2, respectively. The plate at y∗ = −d2 oscillates in the x∗ direction with
the speed U0 cosωt∗ (the superscript ∗ represents a dimensional parameter), where ω is the
oscillatory frequency and U0 is the amplitude. Let u∗

j and v∗
j be the velocity components

in the horizontal and vertical directions, respectively, p∗
j is the pressure, and the subscript

j = 1, 2 represents the upper and lower fluid layers, respectively. The governing equations
of the flow are the continuity equation and the Navier–Stokes equation

∂u∗
j

∂x∗ +
∂v∗

j

∂y∗ = 0, (2.1a)

∂u∗
j

∂t∗
+ u∗

j

∂u∗
j

∂x∗ + v∗
j

∂u∗
j

∂y∗ = − 1
ρj

∂p∗
j

∂x∗ + μj

ρj

(
∂2u∗

j

∂x∗2 +
∂2u∗

j

∂y∗2

)
, (2.1b)

∂v∗
j

∂t∗
+ u∗

j

∂v∗
j

∂x∗ + v∗
j

∂v∗
j

∂y∗ = − 1
ρj

∂p∗
j

∂y∗ + μj

ρj

(
∂2v∗

j

∂x∗2 +
∂2v∗

j

∂y∗2

)
− g, (2.1c)

where g is the acceleration of gravity.
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The surface position is described by y∗ = η∗
1(x

∗, t∗), and the interface position of
the two films is described by y∗ = η∗

2(x
∗, t∗), both of which are covered by a single

layer of insoluble surfactant. As described by Halpern & Frenkel (2003), the surfactant
concentration Γ ∗

j (x
∗, t∗) obeys the transport equation

∂

∂t∗
(

HjΓ
∗

j

)
+ ∂

∂x∗
(

HjΓ
∗

j u∗
j

)
= Dsj

∂

∂x∗

(
1
Hj

∂Γ ∗
j

∂x∗

)
, (2.2)

where Hj =
√

1 + (∂η∗
j /∂x∗)2, Dsj is the surfactant diffusion rate, which is usually

negligible and discarded below. For the linear stability problem considered, the surface
tension γ ∗

j is approximately a linear function of the surfactant concentration Γ ∗
j , i.e.γ ∗

j =
γj0 − Ej(Γ

∗
j − Γj0), where Ej is the surface elasticity coefficient, Γj0 is the basic value of

the surfactant concentration and γj0 is the corresponding uniform surface tension.
At the surface y∗ = d1 + η∗

1, the pressure condition is

p∗
1 = p∗

a, (2.3)

where p∗
a is the atmospheric pressure. The dynamic conditions require a balance between

hydrodynamic traction, surface tension and Marangoni traction (Halpern & Frenkel 2003;
Pozrikidis 2003; Blyth & Pozrikidis 2004a), written as(

σ ∗
1 − p∗

aI
) · n1 + γ ∗

1
(∇∗ · n1

)
n1 − 1

H1

∂γ ∗
1

∂x∗ t1 = 0, (2.4)

where

nj = 1
Hj

(
−
∂η∗

j

∂x∗ , 1

)T

, tj = 1
Hj

(
1,
∂η∗

j

∂x∗

)T

. (2.5a,b)

At the interface y∗ = η∗
2, the velocity continuity conditions are

u∗
1 = u∗

2, v∗
1 = v∗

2 , (2.6a,b)

the dynamic boundary condition is(
σ ∗

2 − σ ∗
1
) · n2 + γ ∗

2
(∇∗ · n2

)
n2 − 1

H2

∂γ ∗
2

∂x∗ t2 = 0. (2.7)

On the wall y∗ = −d2, the boundary conditions of no-slip and no-penetration are

u∗
2 = U0 cosωt∗, v∗

2 = 0. (2.8)

At the surface and interface, the kinematic boundary conditions are

∂η∗
j

∂t∗
= v∗

j − u∗
j

∂η∗
j

∂x∗ . (2.9)

We choose U0, d2, ω−1 and ρ2U2
0 as the characteristic scales for velocity, length, time

and pressure, respectively. Surfactant concentration and surface tension are normalized
by Γj0 and γj0, respectively. The thickness ratio of the upper and lower fluid films is
n = d1/d2, the viscosity ratio is m = μ1/μ2 and the density ratio is r = ρ1/ρ2. In the
base state, the surface and the interface are both flat, i.e.ηj = 0 (remove the superscript
∗ to indicate a dimensionless parameter), and the surfactant concentration and surface
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Long-wave stability of two-layer oscillatory film flow

tension are uniform, i.e.Γj = γj = 1. Solving the dimensionless governing equations with
the boundary conditions, the basic velocity field is obtained as

U1 (y, t) = Re
[

cosh A (y − n)
D

eit
]
, 0 ≤ y ≤ n, (2.10a)

U2 (y, t) = Re
[

cosh An cosh By − √
rm sinh An sinh By

D
eit
]
, −1 ≤ y ≤ 0, (2.10b)

V1 = V2 = 0, (2.10c)

where D = cosh An cosh B + √
rm sinh An sinh B,A = √

rmr/mB,B = (1 + i)β, Womers-

ley number β =
√
ρ2ωd2

2/(2μ2) is the ratio of the mean thickness of the underlayer film
to the thickness of the Stokes layer caused by wall oscillations. Here Re[C] denotes the
real part of the complex number C. The basic pressure field is

P1 (y) = −rF−2 (y − n)+ pa, 0 ≤ y ≤ n, (2.11a)

P2 (y) = −F−2 (y − rn)+ pa, −1 ≤ y ≤ 0, (2.11b)

where the Froude number F = U0/
√

gd2 and pa is the dimensionless atmospheric
pressure.

For the linear stability analysis in this study, it is proved that the three-dimensional
and two-dimensional perturbations are equivalent. The corresponding proof process is
given in Appendix A. Hence, for this particular flow, the consideration of two-dimensional
perturbation is enough. We introduce a disturbance streamfunction ϕ′

j(x, y, t), related to the
velocity disturbance (u′, v′) by u′

j = ∂ϕ′
j/∂y, v′

j = −∂ϕ′
j/∂x. The surfactant concentration

Γj(x, t) is supposed to be disturbed as Γj(x, t) = 1 + Γ ′
j (x, t). Since the base state is

independent of x, it can be assumed that the disturbances ϕ′
j , Γ

′
j and η′

j have the forms

[ϕ′
j(x, y, t), Γ ′

j (x, t), η′
j(x, t)] = εRe{[φj(y, t), ξj(t), hj(t)]eikx}, (2.12)

where |ε| � 1 and ε represents an infinitesimal disturbance, k is real and denotes the
streamwise wavenumber. Substituting (2.12) into the governing equation (dimensionless
(2.1)) and linearizing, we have the time-dependent Orr–Sommerfeld equation(

2β2 ∂

∂t
+ ikRUj

)(
∂2

∂y2 − k2
)
φj − ikR

∂2Uj

∂y2 φj = lj

(
∂2

∂y2 − k2
)2

φj, (2.13)

where R = ρ2U0d2/μ2 is the Reynolds number, l1 = m/r, l2 = 1. The linearized
conditions for tangential and normal stresses at y = n are

∂2U1

∂y2 h1 + ∂2φ1

∂y2 + k2φ1 + ik
Ma1

Ca1
ξ1 = 0, (2.14a)

2β2 r
m
∂2φ1

∂t∂y
−
(
∂2

∂y2 − 3k2 − ikR
r
m

U1

)
∂φ1

∂y
+ ik

(
R

r
m

F−2 + k2

Ca1

)
h1 = 0, (2.14b)

where the Marangoni number Maj = EjΓj0/γj0 and the capillary number Caj = μjU0/γj0.
Equation (2.14b) is obtained by using the normal stress conditions of (2.4) and (2.1b)
(j = 1 and the dimensionless equation), and the following (2.15d) is obtained similarly.
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The purpose of the procedure is to eliminate the pressure term. At y = 0, the velocity
continuous conditions and the linearized conditions for tangential and normal stresses are

∂U1

∂y
h2 + ∂φ1

∂y
= ∂U2

∂y
h2 + ∂φ2

∂y
, (2.15a)

φ1 = φ2, (2.15b)(
∂2U2

∂y2 h2 + ∂2φ2

∂y2 + k2φ2

)
− m

(
∂2U1

∂y2 h2 + ∂2φ1

∂y2 + k2φ1

)
+ ik

Ma2

Ca2
ξ2 = 0, (2.15c)

2β2 ∂
2 (φ2 − rφ1)

∂t∂y
−
(
∂2

∂y2 − 3k2
)
∂ (φ2 − mφ1)

∂y
+ ikRU1

∂ (φ2 − rφ1)

∂y

−ikR
(
∂U2

∂y
φ2 − r

∂U1

∂y
φ1

)
+ ik

(
R (r − 1)F−2 + k2

Ca2

)
h2 = 0, (2.15d)

respectively. The boundary conditions at the wall y = −1 satisfy

φ2 = ∂φ2

∂y
= 0. (2.16)

The linearized kinematic boundary conditions and the transport equations for surfactant
are expressed as

2β2 dhj

dt
+ ikRUjhj + ikRφj = 0, (2.17a)

2β2 dξj

dt
+ ikRUjξj + ikR

∂φj

∂y
+ ikR

∂Uj

∂y
hj = 0, (2.17b)

where φ1, ∂φ1/∂y, U1 and ∂U1/∂y are evaluated at y = n, and φ2, ∂φ2/∂y, U2 and ∂U2/∂y
are evaluated at y = 0. In particular, it is noticed that (∂U1/∂y)(n, t) = 0.

The Floquet system (2.13) to (2.17) governs the linear stability problem. For
finite-wavelength instabilities, the differential system has to be solved numerically, while
the long-wavelength solutions can be analytically obtained by a series expansion in k, and
will be discussed in the following.

3. Long-wavelength stability analysis

Considering the limit of long waves, i.e.0 < k � 1, the disturbances are assumed as

φj (y, t) = eμt
[
φj0 (y, t)+ kφj1 (y, t)+ k2φj2 (y, t)+ · · ·

]
, (3.1a)

hj (t) = eμt
[
hj0 (t)+ khj1 (t)+ k2hj2 (t)+ · · ·

]
, (3.1b)

ξj (t) = eμt
[
ξj0 (t)+ kξj1 (t)+ k2ξj2 (t)+ · · ·

]
, (3.1c)

μ = μ0 + kμ1 + k2μ2 + · · · , (3.1d)

where φjm(y, t), hjm(t), ξjm(t) (m = 0, 1, 2, . . .) are 2π-periodic in time t. Floquet
exponent μ = μr + iμi, its real part μr represents the perturbed growth rate, and the
imaginary part μi would cause the quasi-periodic movement of the perturbed mode. For
arbitrary integer Z, μr + i(μi + Z) must also be a Floquet exponent. For clarity, μi can
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Long-wave stability of two-layer oscillatory film flow

be limited to (−1/2, 1/2]. Substituting (3.1) into (2.13) to (2.17), we obtain a sequence
of problems at each order of k. The purpose of this procedure is to find the first μm that
satisfies Re(μm) /= 0, the real part of such μm indicates exponential growth or decay of
the disturbance.

At the leading order O(1), from (2.17) we have the kinematic boundary conditions and
the transport equations for surfactant

2β2 d
dt

(
eμ0thj0

) = 0, 2β2 d
dt

(
eμ0tξj0

) = 0. (3.2a,b)

Here hj0(t) and ξj0(t) are 2π-periodic in time, and μ0i ∈ (−1/2, 1/2] in μ0 = μ0r + iμ0i,
we get μ0r = 0 and μ0i = 0, furthermore,

μ0 = 0, hj0 = αj, ξj0 = ζj, (3.3a–c)

where αj, ζj(j = 1, 2) are four arbitrary complex constants. Another possibility is μ0 /= 0.
However, as was shown by Yih (1968), this turns out to correspond to a damped mode
and it is not of interest here. Assuming that (3.3a–c) holds, from (2.13) we have the
leading-order system for φj0(y, t),

2β2 ∂
3φj0

∂t∂y2 = lj
∂4φj0

∂y4 , (3.4)

and the boundary conditions obtained from (2.14) to (2.16) are

∂2U1

∂y2 (n, t) h10 + ∂2φ10

∂y2 (n, t) = 0, (3.5a)

2β2 r
m
∂2φ10

∂t∂y
(n, t)− ∂3φ10

∂y3 (n, t) = 0, (3.5b)

∂U1

∂y
(0, t) h20 + ∂φ10

∂y
(0, t) = ∂U2

∂y
(0, t) h20 + ∂φ20

∂y
(0, t) , (3.5c)

φ10 (0, t) = φ20 (0, t) , (3.5d)(
∂2U2

∂y2 (0, t) h20 + ∂2φ20

∂y2 (0, t)
)

− m
(
∂2U1

∂y2 (0, t) h20 + ∂2φ10

∂y2 (0, t)
)

= 0, (3.5e)

2β2 ∂
2 (φ20 − rφ10)

∂t∂y
(0, t)− ∂3 (φ20 − mφ10)

∂y3 (0, t) = 0, (3.5f )

φ20 (−1, t) = ∂φ20

∂y
(−1, t) = 0. (3.5g)

The periodic solution of this system ((3.4) and (3.5)) is

φ10 (y, t) =
2∑

j=1

hj0Re
[(

k j
11 cosh Ay + k j

12 sinh Ay + k j
13y + k j

14

)
eit
]
, (3.6a)

φ20 (y, t) =
2∑

j=1

hj0Re
[(

k j
21 cosh By + k j

22 sinh By + k j
23y + k j

24

)
eit
]
, (3.6b)
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where the expressions of k j
pq (j, p = 1, 2; q = 1, 2, 3, 4) are given in Appendix B. This

solution is consistent with Gao & Lu (2006) and Yih (1968) when it is degenerated to a
single-layer film (n = 0,m = 1, r = 1). It can be seen from (3.6) that the surfactants have
no effect on the leading-order flow field.

Secondly, considering the O(k) order system, from (2.17) we have the kinematic
boundary conditions and the surfactant transport equations

2β2
(

dhj1

dt
+ μ1hj0

)
+ iRUjhj0 + iRφj0 = 0, (3.7a)

2β2
(

dξj1

dt
+ μ1ξj0

)
+ iRUjξj0 + iR

∂φj0

∂y
+ iR

∂Uj

∂y
hj0 = 0, (3.7b)

where φ10, ∂φ10/∂y, U1 and ∂U1/∂y are evaluated at y = n, and φ20, ∂φ20/∂y, U2 and
∂U2/∂y are evaluated at y = 0. When (3.7a) and (3.7b) are integrated on time t to solve
hj1(t) and ξj1(t), since they are 2π-periodic in time, the second terms in (3.7a) and (3.7b)
will generate linear growth in time unless

μ1 = 0. (3.8)

Since Uj and φj0 are time periodic with a zero average, from (3.7) we have

h11 (t) = −iR
2∑

j=1

hj0Re
[

1
B2 k j

14eit
]
, (3.9a)

ξ11 (t) = −iRξ10Re
[

1
B2D

eit
]

− iR
2∑

j=1

hj0Re
[

A
B2

(
k j

11 sinh An + k j
12 cosh An

)
eit
]
,

(3.9b)

h21 (t) = −iR
2∑

j=1

hj0Re
[

1
B2

(
k j

21 + k j
24

)
eit
]

− iRh20Re
[

cosh An
B2D

eit
]
, (3.9c)

ξ21 (t) = −iRξ20Re
[

cosh An
B2D

eit
]

− iR
2∑

j=1

hj0Re
[

1
B

k j
22eit

]
+ iRh20Re

[√
rm sinh An

BD
eit
]
.

(3.9d)

From the O(k) order equation of (2.13), the φj1(y, t) differential system contains
non-homogeneous terms. These terms are the product of time-dependent functions given
by e±it, this leads to φj1(y, t) = φ

(S)
j1 (y)+ φ

(1)
j1 (y)e

2it + φ
(2)
j1 (y)e

−2it, where the superscript

(S) represents the steady part. As described later, obtaining φ(S)j1 (y) is sufficient to get μ2 to

determine the stability of the flow. From (2.13) we have the governing equation for φ(S)j1 (y)
differential system

d4φ
(S)
11

dy4 = iR
r
m

2∑
j=1

{
hj0Re

[
A2

2D̄
cos A (y − n)

(
2k j

11 cosh Ay + 2k j
12 sinh Ay + k j

14

)]}
,

(3.10a)
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Long-wave stability of two-layer oscillatory film flow

d4φ
(S)
21

dy4 = iR
2∑

j=1

{
hj0Re

[
B2

2D̄
(cos An cos By + √

rm sin An sin By)

(2k j
21 cosh By + 2k j

22 sinh By + k j
24)

]}
, (3.10b)

and from (2.14) to (2.16) we have the boundary conditions(
∂2U1

∂y2 (n, t) h11 (t)
)(S)

+ d2φ
(S)
11

dy2 (n) = −i
Ma1

Ca1
ξ10, (3.11a)

−d3φ
(S)
11

dy3 (n) = −iR
r
m

[(
U1 (n, t)

∂φ10

∂y
(n, t)

)(S)
+ F−2h10

]
, (3.11b)

(
∂U1

∂y
(0, t) h21 (t)

)(S)
+ dφ(S)11

dy
(0) =

(
∂U2

∂y
(0, t) h21 (t)

)(S)
+ dφ(S)21

dy
(0) , (3.11c)

φ
(S)
11 (0) = φ

(S)
21 (0) , (3.11d)[(

∂2U2

∂y2 (0, t) h21 (t)
)(S)

+ d2φ
(S)
21

dy2 (0)

]

− m

[(
∂2U1

∂y2 (0, t) h21 (t)
)(S)

+ d2φ
(S)
11

dy2 (0)

]
= −i

Ma2

Ca2
ξ20, (3.11e)

d3
(
φ
(S)
21 − mφ(S)11

)
dy3 (0) = −iR

(
U1 (0, t)

∂ (φ20 − mφ10)

∂y
(0, t)

)(S)
+ iR

((
∂U2

∂y
φ20 − r

∂U1

∂y
φ10

)
(0, t)

)(S)
− iR (r − 1)F−2h20, (3.11f )

φ
(S)
21 (−1) = dφ(S)21

dy
(−1) = 0, (3.11g)

where (Re[ϕ1(y)eit] · Re[ϕ2(y)eit])(S) = 1
2 Re[ϕ̄1(y) · ϕ2(y)] = 1

2 Re[ϕ1(y) · ϕ̄2(y)], D̄
denotes the conjugate complex number of D. The solution to this system ((3.10) and (3.11))
is represented by

φ
(S)
11 (y) = A0 + A1y + A2y2 + A3y3

+ iR
2∑

j=1

{
hj0Re

[
1

4B2D̄
cos A (y − n)

(
−k j

11 cosh Ay − k j
12 sinh Ay + 2k j

14

)]}
,

(3.12a)

φ
(S)
21 (y) = B0 + B1y + B2y2 + B3y3

+ iR
2∑

j=1

{
hj0Re

[
1

4B2D̄
(cos An cos By + √

rm sin An sin By)
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(−k j
21 cosh By − k j

22 sinh By + 2k j
24)

]}
, (3.12b)

where the expressions of Ai and Bi (i = 0, 1, 2, 3) are given in Appendix C.
Furthermore, considering the O(k2) order system, from (2.17) we have the kinematic

boundary conditions and surfactant transport equations

2β2
(

dhj2

dt
+ μ2hj0

)
+ iRUjhj1 + iRφj1 = 0, (3.13a)

2β2
(

dξj2

dt
+ μ2ξj0

)
+ iRUjξj1 + iR

∂φj1

∂y
+ iR

∂Uj

∂y
hj1 = 0, (3.13b)

where φ11, ∂φ11/∂y, U1 and ∂U1/∂y are evaluated at y = n, and φ21, ∂φ21/∂y, U2 and
∂U2/∂y are evaluated at y = 0. Here hj2(t) and ξj2(t) are 2π-periodic in time, from (3.13)
we have

2β2μ2hj0 = −iR
(
Ujhj1 + φj1

)(S)
, (3.14a)

2β2μ2ξj0 = −iR
(

Ujξj1 + ∂φj1

∂y
+ ∂Uj

∂y
hj1

)(S)
. (3.14b)

From (2.10), (3.9) and (3.12), we have

(U1h11 + φ11)
(S)

= −iRF−2
[(

1
3

+ n + n2 + n3

3 m

)
rh10 −

(
1
3

+ n
2

)
(r − 1) h20

]
− iR

[(
m
2

+ nm + n2

2

)
M1ξ10 +

(
1
2

+ n
)

M2ξ20

]
+ iR (I11h10 + I12h20) ,

(3.15a)(
U1ξ11 + ∂φ11

∂y

)(S)
= −iRF−2

[(
1
2

+ n + n2

2 m

)
rh10 − 1

2
(r − 1) h20

]
− iR [(m + n)M1ξ10 + M2ξ20] + iR (I21h10 + I22h20) , (3.15b)

(U2h21 + φ21)
(S)

= −iRF−2
[(

1
3

+ n
2

)
rh10 − 1

3
(r − 1) h20

]
− 1

2
iR (mM1ξ10 + M2ξ20)+ iR (I31h10 + I32h20) , (3.15c)(

U2ξ21 + ∂φ21

∂y
+ ∂U2

∂y
h21

)(S)
= −iRF−2

[(
1
2

+ n
)

rh10 − 1
2
(r − 1) h20

]
− iR (mM1ξ10 + M2ξ20)+ iR (I41h10 + I42h20) , (3.15d)
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Long-wave stability of two-layer oscillatory film flow

where Mj = Maj/(RCaj). Substituting (3.15) into (3.14), we get four equations related to
μ2, written in matrix form as

NX = θX , (3.16)

where

N = (
aij
)

4×4, X =

⎛⎜⎝ h10
ξ10
h20
ξ20

⎞⎟⎠ , θ = 2β2

R2 μ2, (3.17a–c)

the expressions of Ipj and apq (j = 1, 2; p, q = 1, 2, 3, 4) are given in Appendix D. The
stability of the flow is determined by the eigenvalues θ = θ(n,m, r, β,M1,M2,F). This
result is consistent with Gao & Lu (2006) when it degenerates to the case of single-layer
film flow (n = 0,m = 1, r = 1). To capture the situation with a sufficiently small positive
real part of the Floquet exponent at high frequency, e.g.β > 5, the multiprecision
computing toolbox for Matlab is used.

4. Results and discussion

4.1. Without effects of surfactants and gravity (Mj = 0,F−2 = 0)
When the effects of surfactants and gravity are not considered, (3.16) linear system can be
simplified to [

I11 I12
I31 I32

] [
h10
h20

]
= θ

[
h10
h20

]
. (4.1)

Solving the equation, we have θ1,2 = 1
2(I11 + I32 ±

√
(I11 − I32)

2 + 4I12I31). Therefore,
whether the flow is stable depends on the sign of max(θ1r, θ2r), where the subscript r
represents the real part of the complex number.

First, the phase diagram in the (β, n)-plane for three typical values of m is shown in
figure 2. The stable and unstable regions are denoted by blue and yellow bands. From
figure 2(a), it is seen that when m = 1, in the (β, n)-plane, stable and unstable curved
stripes appear alternately. As β and n increase, the bandwidth of these stripes gradually
shrinks. When 0.1 < m < 1, e.g.m = 0.5, the phase diagram (see figure 2b) looks similar
to that of m = 1 except for the following two differences. One is some minor fluctuations
in the neutral curves (the borders between the stable and unstable regions), the other is
that except for the first unstable region from the bottom, the rest of the unstable regions
no longer intersect with n = 0. For the cases of 0 < m < 0.1, e.g.m = 0.05, the phase
diagram is shown in figure 2(c). When 0 < β < 0.73, the stable and unstable stripes still
appear alternatively, but the bandwidth becomes narrower. When β > 0.73, the unstable
region is absolutely dominated, except for a small stripe close to the β-axis. Hence, if
β is high, e.g.β > 2, and n is small enough, e.g.n < 0.01, the flow stability is enhanced
for m < 1. It is noted that when m > 1, the flow is always unstable within the parameter
ranges in this study.

Next, we would like to explain briefly why the above three values of m are typical and
why in the above classification, m ≈ 0.1 is a critical value. The phase diagram in the
(β,

√
m)-plane for cases n = 1 and r = 1 is shown in figure 3(a). On the whole, the stable

(blue) stripes mainly appear in the upper region where
√

m > 0.32, i.e.approximately m >

0.1. When 0 < m < 0.1 and β > 0.8, the flow is always unstable. The reason for this
situation may be that m is too small. When m is small and β is large, the lower fluid is
sluggish by the plate vibration. Then the interface between the two fluids would vibrate
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Figure 2. Phase diagram in the (β, n)-plane for r = 1: (a) m = 1; (b) m = 0.5; (c) m = 0.05. Stable and
unstable regions are denoted by blue and yellow, respectively.

with a small value of β. Therefore, the effective vibration frequency of the upper fluid is
small. In other words, the entire flow system is equivalent to a single layer of fluid being
vibrated by a plate at small β. For the single-layer cases, from our figure 2(a) (n = 0) or
according to Gao & Lu (2006), we can see that when β is small, e.g.β ∈ (0, 2.63), the
flow is indeed unstable.

Lastly, we would also like to see the density-ratio effect. The phase diagram for cases of
n = 1, m = 0.5 in the (β,

√
r)-plane is shown in figure 3(b). It is seen that there are also

many inclined curved stripes and stable and unstable stripes appear alternately. Comparing
figures 3(b) and 2(b), we found that the thickness-ratio effect and the density-ratio effect
on the flow stability look similar except that the stripes in figure 3(b) are not so dense.

4.2. Effect of surfactants (Mj /= 0,F−2 = 0)
In this section we discuss the effect of surfactants. The surfactants include surface
surfactant M1 and interfacial surfactant M2. Here, in all cases, thickness ratio, viscosity
ratio and density ratio are fixed to be n = 1, m = 0.5, r = 0.5, respectively, but the
oscillation frequency β is a variable parameter.

First, the neutral stability curves in the (β,M1)-plane are shown in figure 4(a). These
curves divide the plane into three discontinuous unstable regions and a connected stable
region, denoted by U and S, respectively. For the cases of the clean surface (M1 = 0),
the disturbance mode is unstable in the β interval of max{θ1r(β), θ2r(β)} > 0, and the
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Figure 3. (a) Stability limits in the (β,
√

m)-plane for n = 1, r = 1. (b) Stability limits in the (β,
√

r)-plane
for n = 1,m = 0.5. Stable and unstable regions are denoted by blue and yellow bands, respectively.

0 2 4

lo
g

1
0
M

2

6 8 10
–20

–16

–12

–8

–4

0

β

0 2 4

lo
g

1
0
M

1

6 8 10
–20

–16

–12

–8

–4

0

β

U

S

S
U

U

U SU SU

(a) (b)

Figure 4. (a) Stability limits in the (β,M1)-plane at M2 = 0. (b) Stability limits in the (β,M2)-plane at
M1 = 0. Stable and unstable regions are denoted by S and U, respectively.

motion form of the disturbance mode is a standing wave (see Appendix E). It is seen that
as M1 increases from 0, the interval of β for the unstable region may decrease significantly,
e.g.β ∈ (0, 2.63] at M1 = 10−6 while β ∈ (0, 2] at M1 = 10−4, indicating a stabilizing
effect of surface surfactant. There are a total of three Floquet exponents. The Floquet
exponents corresponding to the neutral curve are two pure imaginary numbers that are
conjugate to each other. It means that the first two perturbation modes are travelling waves,
and the movement directions of these two modes are opposite. The third Floquet exponent
is always negative. For the left-most neutral curve, when M1 continues to increase to a
critical value related to β, the neutral curve becomes a straight line and is independent
of M1. Its corresponding Floquet exponent is zero, indicating that the perturbed mode
becomes a standing wave again.

Next, the neutral stability curves in the (β,M2)-plane are shown in figure 4(b). It
is seen that these curves divide the plane into alternating unstable and stable regions,
which is significantly different from figure 4(a). It seems that the unstable regions do
not significantly depend on M2. Therefore, the interfacial surfactant does not play an
important role in stabilizing the flow. The possible reason is that interfacial surfactant
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introduces another disturbance mode (it is defined as the interfacial surfactant mode), but
the surface mode, i.e.the deformation of the surface, is dominant. On the other hand, even
the interface is slightly contaminated (e.g.M2 = 10−20), the situation may noticeably differ
from the clean case (M2 = 0). For example, the unstable β intervals for the clean and
contaminated interfaces are (4.24, 5.72) and (3.97, 5.72), respectively. Another example
is that for the clean and contaminated interfaces, β ∈ (7.44, 8.83) and β ∈ (7.16, 8.83),
respectively. The unstable intervals β ∈ (4.24, 5.72) and β ∈ (7.44, 8.83) can be obtained
from figure 3(b). In figure 3(b) all cases are M2 = 0. When m = 0.5, the horizontal line
of

√
m = √

0.5 ≈ 0.707 would intersect with the unstable domains, and then the unstable
intervals can be read. Similarly, the unstable intervals (3.97, 5.72) and (7.16, 8.83) can be
seen from figure 4(b) (M2 = 10−20). Hence, the presence of interfacial surfactants expands
the unstable regions. In general, the interfacial surfactant may enhance or suppress flow
instability. A similar phenomenon occurs in a steady two-layer flow system (Gao & Lu
2007).

To investigate the behaviour of the growth rates of the four Floquet modes (surface
and interface modes, surface and interfacial surfactant modes), we plot the real part of
θ , i.e.θr, as a function of β for typical cases, such as (M1 = 0, M2 = 0), (M1 = 10−2,
M2 = 0) and (M1 = 0, M2 = 10−2) in figure 5, which are denoted by red, black and blue
lines. If the real part sizes of the four eigenvalues of (3.16) are arranged in order, we have
four Floquet modes, i.e. Re(θ1) ≥ Re(θ2) ≥ Re(θ3) ≥ Re(θ4). It is noticed that the two
interface modes and the two surfactant modes are not one-to-one correspondence to the
four Floquet modes. We would like to discuss the first mode (θ1). From figure 5, it is seen
that the black solid line is always below the red dashed line, indicating that the surface
surfactant would reduce the maximum perturbation growth rate and, therefore, enhances
the flow stability. It is also seen that the blue solid line may be above or below the red
dashed line. Hence, the interfacial surfactant may destabilize or stabilize the flow, which
depends on β. In the three insets, the blue solid line is always slightly below the red dashed
line, indicating the interfacial surfactant stabilizes the flow mildly. The β range in each
inset corresponds to that of each unstable region’s right-side neutral curve in figure 4(b).

For the cases of clean surface and interface (M1 = 0, M2 = 0), only the first two Floquet
modes are left, which are the surface and interface modes. From figure 5 we can see that
the Floquet exponents of surface and interface modes are real, and the interface mode is
always stable, so the flow stability depends on the surface mode.

In the presence of surface surfactants (M1 = 10−2, M2 = 0), there are only the first
three Floquet modes, i.e.the surface mode, the surface surfactant mode and the interface
mode. The interface mode is still stable, while the other two disturbance modes may be
unstable, e.g.at β ≈ 1.1. In most parameter ranges the three Floquet exponents are all
real, corresponding to standing wave modes. However, when 1.04 < β < 1.62, two of the
eigenvalues are conjugate complex, which is associated with travelling wave disturbances,
one of which propagates to the right with a phase velocity of O(k) and the other one to
the left. The maximum growth rate of the disturbance occurs at β ≈ 0.64, where the flow
is the most unstable to the long-wave disturbance. For high frequencies, especially β > 2,
the interface mode is dominated, and the corresponding eigenvalue tends to be zero (see
details in the insets of figure 5). When β > 4, the other two eigenvalues almost no longer
depend on β, and these three eigenvalues are always negative.

In the presence of interfacial surfactants (M1 = 0, M2 = 10−2), there are only the
first three Floquet modes, i.e.the surface mode, the interface mode and the interfacial
surfactant mode. All three disturbance modes may be unstable, e.g.at β ≈ 0.4. In most
parameter ranges, the three eigenvalues are all real, corresponding to standing wave modes.
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Figure 5. The real part of θ , i.e.θr, as a function of β for M1 = 10−2,M2 = 0 (black solid lines),
M1 = 0,M2 = 10−2 (blue solid lines) and M1 = 0,M2 = 0 (red dashed lines). Insets show the first mode.

However, when 0 < β < 1.44, two of the eigenvalues are conjugate complex numbers,
and these two disturbance modes are travelling wave disturbances and have an identical
growth rate. The maximum growth rate of disturbance also occurs at β ≈ 0.64. For high
frequencies, especially when β > 2, as shown in figure 3, the surface mode is dominated,
the corresponding eigenvalue tends to zero. When β > 4, the other two eigenvalues almost
no longer depend on β, and are always negative. Although the surface mode may be
unstable, its growth rate is exponentially small and the instability is mild.

4.3. Effects of surfactants and gravity (Mj /= 0,F−2 /= 0)
Generally speaking, gravity would always hinder the deformation of the fluid surface and
stabilize flows. The flow may be unstable only when the gravity is small enough or the
Froude number is large enough. When there is gravity, it is convenient to plot neutral
stability curves in the (β,F)-plane (see figure 6). Cases of M1 /= 0 and M2 = 0 are shown
in figure 4(a–c), while cases of M1 = 0 and M2 /= 0 are shown in figure 6(d–f ). In this
section the other key parameters are n = 1,m = 0.5, r = 0.5. In figure 3(b) the line of√

r = √
0.5 ≈ 0.707 crosses three unstable regimes when 0 < β ≤ 10, so there are three

families of U-shaped neutral curves in figure 6. In each family, the neutral curves are
slightly different as M1 or M2 takes different values. The region above each neutral curve
is unstable to the long-wavelength disturbances, while the region underneath each curve is
stable to long-wavelength disturbances.

For cases of M1 /= 0 and M2 = 0, the neutral curves of the first family are shown in
figure 6(a). When M1 > 9.44 × 10−2, the neutral curves are identical, which is represented
by the thick line. Under the circumstances, the neutral curves are independent on M1. If
M1 slightly decreases, e.g.M1 = 9 × 10−2, a dip occurs at the bottom of the thick curve
at β ≈ 0.7. This part of the neutral curve depends on M1. As M1 decreases gradually,
the neutral curves branch off the thick curve and the unstable region expands. As M1 → 0,
the neutral curve eventually tends to the clean-surface curve (dashed line). Hence, again
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Figure 6. The (a) first, (b) second and (c) third family of the neutral stability curves for the long-wavelength
instability in the (β,F)-plane for different M1 (see the labels); the (d) first, (e) second and ( f ) third family
of the neutral stability curves for the long-wavelength instability in the (β,F)-plane for different M2 (see the
labels). The region above (below) each curve is unstable (stable) to long-wavelength disturbances. Results are
shown for (a) M1 × 102; (b) M1 × 109; (c) M1 × 1015; (d) M2 × 105; (e) M2 × 1011; ( f ) M2 × 1017.

we see that the surface surfactant can reduce the unstable region and increase the critical
Froude number, indicating a stabilizing effect of surface surfactants. For the second family
(see figure 6b), the features look similar to those in the first family. However, there are
also two significant differences. One is that when M1 > 4.447 × 10−9, the neutral curve
disappears and the flow tends to be stable. The other is that when 0 < M1 < 4.447 × 10−9,
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Long-wave stability of two-layer oscillatory film flow

the neutral curves in figure 6(b) do not overlap, which differ from figure 6(a). They all
depend on M1, so each entire neutral curve corresponds to the travelling wave mode. For
the third family (see figure 6c), its characteristics are identical to that of the second family
except for larger critical Froude numbers. A larger critical Froude number is induced by
the high oscillation frequency in the third family curves because the Stokes layer caused
by the oscillation is only confined to the vicinity of the wall, and the instability caused
by the oscillation is very weak. Therefore, only a small amount of gravity is required to
suppress the flow instability.

For cases of M1 = 0 and M2 /= 0, the first family of the neutral stability curves in
figure 6(d) is basically similar to figure 6(a) and the unstable region is very limited. For
the second family (see figure 6e), the β range of the second family is relatively higher and
the family’s basic characteristics are similar to those of the first family except that the left
side of the curves is always constant and independent of M2. The characteristics of the
third family (see figure 6f ) are similar to those of the second family except for a larger
critical Froude number.

4.4. Instability mechanism
The instability of oscillatory film flow can be explained straightforwardly through the
effects of the disturbance flow field. First, the disturbance velocity causes the volume
flow rate unevenly distributed in time and space, which is related to the disturbance
streamfunction. The volume flow rates of the upper and lower film are

Qv1 (x, t) =
∫ n+η′

1

η′
2

u1 (x, y, t) dy +
∫ η′

2

−1
u2 (x, y, t) dy =

∫ n

0
U1 (y, t) dy

+
∫ 0

−1
U2 (y, t) dy + U1 (n, t) η′

1 + ψ ′
1 (x, n, t)+ O(ε2), (4.2a)

Qv2 (x, t) =
∫ n+η′

1

η′
2

u1 (x, y, t) dy =
∫ n

0
U1 (y, t) dy

+ [U1 (n, t) η′
1 + ψ ′

1 (x, n, t)] − [U1 (0, t) η′
2 + ψ ′

1 (x, 0, t)] + O(ε2),
(4.2b)

respectively. Furthermore, the two disturbed volume flow rates can be defined as

Q′
v1 (x, t) = U1 (n, t) η′

1 + ψ ′
1 (x, n, t) , (4.3a)

Q′
v2 (x, t) = [

U1 (n, t) η′
1 + ψ ′

1 (x, n, t)
]− [

U1 (0, t) η′
2 + ψ ′

1 (x, 0, t)
]
, (4.3b)

respectively. In order to satisfy local conservation of volume, the presence of disturbance
of volume flow rate induces spatial and temporal changes of the surface and interface,
e.g.increase of surface and interface. Second, the disturbance velocity would rearrange the
velocity distribution and cause local concentration or dilution of surfactants. Therefore,
we introduced the expressions of surface surfactant flux and interfacial surfactant flux

Qs1 (x, t) = u1
(
x, n + η′

1, t
)
Γ1 (x, t)

= U1 (n, t)+ U1 (n, t) Γ ′
1 (x, t)+ ∂ψ ′

1
∂y

(x, n, t)+ O(ε2), (4.4a)
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Qs2 (x, t) = u1
(
x, n + η′

1, t
)
Γ1 (x, t)− u2

(
x, η′

2, t
)
Γ2 (x, t)

= U1 (n, t)− U2 (0, t)+
[

U1 (n, t) Γ ′
1 (x, t)+ ∂ψ ′

1
∂y

(x, n, t)
]

−
[

U2 (0, t) Γ ′
2 (x, t)+ ∂ψ ′

2
∂y

(x, 0, t)+ ∂U2

∂y
(0, t) η′

2

]
+ O(ε2). (4.4b)

Furthermore, the two disturbed surfactant fluxes can be defined as

Q′
s1 (x, t) = U1 (n, t) Γ ′

1 (x, t)+ ∂ψ ′
1

∂y
(x, n, t) , (4.5a)

Q′
s2 (x, t) =

[
U1 (n, t) Γ ′

1 (x, t)+ ∂ψ ′
1

∂y
(x, n, t)

]
−
[

U2 (0, t) Γ ′
2 (x, t)+ ∂ψ ′

2
∂y

(x, 0, t)+ ∂U2

∂y
(0, t) η′

2

]
. (4.5b)

Flow instability is reflected in the exponential growth of the amplitude of the interface
(including surface and interface) waves and the amplitude of the surfactant concentration
waves. The former depends on the phase difference ΔQ′

vj−η′
j

between the disturbance
volume flow rates and the interface waves, and the latter depends on the phase difference
ΔQ′

sj−Γ ′
j

between the surfactant fluxes and the surfactant concentration waves, where
superscript ′ denotes the corresponding order of O(ε). According to Gao & Lu (2006),
if ΔQ′

vj−η′
j

and ΔQ′
sj−Γ ′

j
are defined on the interval (−π,π], the situation when ΔQ′

vj−η′
j

and ΔQ′
sj−Γ ′

j
take negative values is shown in figure 7. Consider the control body between

the two vertical lines in figure 7(a), the volume flow rate out of the control body Q
′OUT
v1

is greater than the volume flow rate into the control body Q
′IN
v1 , the peak position moves

downward, so the amplitude of the surface wave would attenuate. Similarly, we can explain
the change of the surface surfactant concentration wave, as shown in figure 7(b). Consider
a control body between the two vertical lines, since the mass of surfactant out of the
control body Q

′OUT
s1 is greater than the mass of surfactant into the control body Q

′IN
s1 , the

amplitude of the surfactant concentration wave would attenuate. Therefore, the surfactant
tends to be evenly distributed. Similarly, we can explain the change of the interface wave
and the interfacial surfactant concentration wave, but the control body here is the upper
film, as shown in figure 7(c,d). In summary, when ΔQ′

vj−η′
j

and ΔQ′
sj−Γ ′

j
are negative, the

flow is stable to the long-wave disturbance; otherwise, it is unstable.
Since we only care about the mean growth of the flow, here we focus on the steady

part of the disturbance, and the instantaneous contribution of the unsteady part is zero in
the time-average sense (the integral of the unsteady part of the disturbance in a period is
zero). Based on (4.3a) and (4.5a), the contributions of the steady part of the disturbances
are described as (3.15a) and (3.15b), respectively. Based on (4.3b) and (4.5b), from (3.15)
we have

(U1h11 + φ11)
(S) − (U2h21 + φ21)

(S)

= −iRF−2
[(

n
2

+ n2 + n3

3 m

)
rh10 − n

2
(r − 1) h20

]
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OUTT

Q ′
s2

Q ′
s1

Q ′
s2

OUTQ ′
s1

OUTQ ′
v2

OUTQ ′
v1

INQ ′
v2

INQ ′
s2

INQ ′
s1

INQ ′
v1

Q ′
v2

Q ′
v1

Γ2
′

Γ1
′

η2
′

η1
′

(b)(a)

(c) (d )

Figure 7. Sketch for the instability mechanism: (a,c) ΔQ′
vj−η′

j
< 0 suppress the interfacial deflection; (b,d)

ΔQ′
sj−Γ ′

j
< 0 smoothes the surfactant distribution. The large arrows represent the downward motion of the

crest. The disturb surfactant concentration Γ ′
j is denoted by the width of the grey area and the large arrows

represent the decrease of the surfactant concentration.

− iR
[(

nm + n2

2

)
M1ξ10 + nM2ξ20

]
+ iR [(I11 − I31) h10 + (I12 − I32) h20] ,

(4.6a)(
U1ξ11 + ∂φ11

∂y

)(S)
−
(

U2ξ21 + ∂φ21

∂y
+ ∂U2

∂y
h21

)(S)
= −iRF−2 n2

2 m
rh10 − iRnM1ξ10 + iR [(I21 − I41) h10 + (I22 − I42) h20] . (4.6b)

The complex amplitudes of the steady part of the disturbance are represented by (3.15a),
(3.15b), (4.6a) and (4.6b), three terms of which represent the contributions of gravity,
Marangoni stress and fluid inertia, respectively. From (3.15a), it can be seen that the phase
difference between the disturbed volume flow rate caused by gravity and the surface wave
is −π/2 (see Appendix F). Similarly, in (4.6a) the phase difference between the disturbed
volume flow rate caused by gravity and the interface wave is also −π/2. Therefore, gravity
always enhances stability. For the surface wave, it can be seen from (3.15a) that the
contribution of the inertial effect depends on the signs of I11, when I11 > 0 (< 0), the
phase difference between the disturbed volume flow rate caused by inertia and the surface
wave is π/2(−π/2). Similarly, for the interface wave, it is seen from (4.6a) that when
I12 − I32 > 0 (< 0), the phase difference between the disturbed volume flow rate caused
by inertia and the interface wave is π/2(−π/2). For phase difference π/2 and −π/2, the
effect of inertia would weaken and enhance the flow stability, respectively. For the surface
surfactant, it can be seen from (3.15b) that the phase difference between the disturbed

928 A19-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

83
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.833


C.-C. Wang, H. Huang, P. Gao and X.-Y. Lu

surface surfactant flux and the surface wave caused by Marangoni stress is −π/2, so the
surface surfactant always enhances the flow stability. For the interfacial surfactant, (4.6b)
shows that the disturbed interfacial surfactant flux is not directly affected by the interfacial
surfactant. Hence, the interfacial surfactant may enhance or suppress flow instability. This
is in contrast to the surface surfactant, which always enhances flow stability.

5. Concluding remarks

The stability of a two-layer film flow, which includes insoluble surfactants and driven by
an oscillatory plate, has been analysed in the limit of long-wavelength perturbations. The
eigenvalue problem is derived through the asymptotic expansion of the differential system
governing the stability of the flow, and four Floquet modes are reported. Three situations
are considered to evaluate the effects of key parameters. First, without considering the
surfactant and gravity, the effects of m, n, r and β are investigated. For the effect of m, when
m > 1, the flow is almost always unstable. A small viscosity ratio (m ≤ 1) may stabilize
the flow but it depends on the thickness ratio. when m < 1, even under high-frequency
oscillation (2 < β ≤ 10), if the upper film is thin enough, the flow is always stable. For
the influence of thickness, in the (β, n)-plane (m ≤ 1), stable and unstable curved stripes
appear alternately. The influence of density ratio r is similar, i.e.there are curved stable
and unstable stripes in the (β, r)-plane. Second, in presence of surfactants, the surface
surfactant always suppresses the flow instability while the effect of interfacial surfactant
is mild and may enhance or suppress the instability. Third, besides the effects of the above
factors, gravity can generally narrow the bandwidth of unstable frequencies, i.e.it always
stabilizes the flow. Finally, the related instability mechanism is explained according to the
disturbance flow.

In order to verify the rationality of the long-wave theoretical analysis (k � 1), we also
performed a finite-wavelength analysis, i.e.solving the Floquet (2.13) to (2.17) numerically,
for a specific case and made a comparison between the results of the long-wave and
finite-wavelength analyses. For k � 1, the eigenvalue dominating the stability of the flow
can be approximated as (3.17a–c), i.e.μ ≈ θR2k2/(2β2), where θ satisfies (3.16) and
is the largest eigenvalue of the real part among the four eigenvalues. Figure 8 shows
the Floquet exponent corresponding to the most unstable mode as a function of the
disturbance wavenumber k. The solid and dashed lines denote the long-wave theoretical
result (3.17a–c), and the finite-wavelength result. In the specific case, n = 1, m = 0.5,
r = 0.5, β = 1, F−2 = 0, M1 = 10−3, M2 = 0, R = 200. It can be seen from the figure
that in the long-wave range, especially when k < 10−2, our long-wave theoretical result
agrees well with that of the finite-wavelength analysis. In other words, when the wave
number k is larger than 0.01, a finite-wavelength instability may become significant.
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Figure 8. Comparison of the long-wave analytical result (solid line) with the numerical result (dashed line)
for arbitrary wavenumbers at n = 1, m = 0.5, r = 0.5, β = 1, F−2 = 0, M1 = 10−3, M2 = 0, R = 200.

Appendix A. Proof of equivalence of three-dimensional and two-dimensional
perturbations

For the flow in our study, the three-dimensional and two-dimensional perturbations are
proved equivalent in the following. Hence, for the particular flow, the consideration of
two-dimensional perturbation is enough.

In the three-dimensional case the surfactant concentration obeys the transport equation
(Stone 1990)

∂Γ ∗
j

∂t∗
+ ∇∗

sj · (Γ ∗
j u∗

sj)+ Γ ∗
j (∇∗

sj · nj)(u∗
j · nj) = Dsj∇∗2

sj Γ
∗

j , (A1)

where j = 1, 2, ∇∗
sj = (I − njnj) · ∇∗

j , u∗
sj = (I − njnj) · u∗

j , Dsj = 0.
In the three-dimensional case the linear stability analysis of the differential system

is performed, and the flow field is decomposed into the sum of the basic field and the
disturbance field, i.e.(

uj, vj,wj, pj, ηj, Γj
) = (

Uj, 0, 0,Pj, 0, 1
)+ (u′

j, v
′
j,w′

j, p′
j, η

′
j, Γ

′
j ). (A2)

Substituting (A2) into the dimensionless continuity equation, Navier–Stokes equation and
surfactant transport equation (A1), ignoring the second order and above small quantities,
we have the equations for the disturbance field,

∂u′
j

∂x
+
∂v′

j

∂y
+
∂w′

j

∂z
= 0, (A3a)

2β2
∂u′

j

∂t
+ RUj

∂u′
j

∂x
+ R

∂Uj

∂y
v′

j = −Rrj
∂p′

j

∂x
+ RF−2

∂η′
j

∂x
+ lj∇2u′

j, (A3b)

2β2
∂v′

j

∂t
+ RUj

∂v′
j

∂x
= −Rrj

∂p′
j

∂y
+ lj∇2v′

j, (A3c)
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2β2
∂w′

j

∂t
+ RUj

∂w′
j

∂x
= −Rrj

∂p′
j

∂z
+ RF−2

∂η′
j

∂z
+ lj∇2w′

j, (A3d)

2β2
∂Γ ′

j

∂t
+ RUj

∂Γ ′
j

∂x
+ R

(
∂u′

j

∂x
+
∂w′

j

∂z

)
+ R

∂Uj

∂y

∂η′
j

∂x
= 0, (A3e)

where the Reynolds number R = ρ2U0d2/μ2, Froude number F = U0/
√

gd2, r1 = 1/r,
r2 = 1, l1 = m/r, l2 = 1. For the boundary conditions of the disturbance field, at y =
n + η′

1, the kinematic boundary condition is

2β2 ∂η
′
1

∂t
= R

(
v′

1 − U1
∂η′

1
∂x

)
. (A4a)

The tangential, normal and torsion components of the dynamic boundary conditions are

∂2U1

∂y2 η
′
1 + ∂u′

1
∂y

+ ∂v′
1

∂x
+ Ma1

Ca1

∂Γ ′
1

∂x
= 0, (A4b)

− R
m

(
p′

1 − rF−2η′
1

)
+ 2

∂v′
1

∂y
= 1

Ca1

(
∂2η′

1
∂x2 + ∂2η′

1
∂z2

)
, (A4c)

∂w′
1

∂y
+ ∂v′

1
∂z

+ Ma1

Ca1

∂Γ ′
1

∂z
= 0, (A4d)

respectively. At y = η′
2, the velocity continuity conditions are

∂U1

∂y
η′

2 + u′
1 = ∂U2

∂y
η′

2 + u′
2, (A5a)

v′
1 = v′

2, (A5b)

w′
1 = w′

2, (A5c)

respectively. The kinematic boundary condition is

2β2 ∂η
′
2

∂t
= R

(
v′

2 − U2
∂η′

2
∂x

)
. (A5d)

The tangential, normal and torsion components of the dynamic boundary conditions are(
∂2U2

∂y2 η
′
2 + ∂u′

2
∂y

+ ∂v′
2

∂x

)
− m

(
∂2U1

∂y2 η
′
2 + ∂u′

1
∂y

+ ∂v′
1

∂x

)
+ Ma2

Ca2

∂Γ ′
2

∂x
= 0, (A5e)

−R
(

p′
2 − p′

1 + (r − 1)F−2η′
2

)
+ 2

(
∂v′

2
∂y

− m
∂v′

1
∂y

)
= 1

Ca2

(
∂2η′

2
∂x2 + ∂2η′

2
∂z2

)
, (A5f )

(
∂w′

2
∂y

+ ∂v′
2

∂z

)
− m

(
∂w′

1
∂y

+ ∂v′
1

∂z

)
+ Ma2

Ca2

∂Γ ′
2

∂z
= 0, (A5g)
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respectively. At y = −1, the velocity condition is

u′
2 = v′

2 = w′
2 = 0. (A6)

The base state has nothing to do with x and z. Therefore, the following form of
disturbance can be considered:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u′
j (x, y, z, t)

v′
j (x, y, z, t)

w′
j (x, y, z, t)

p′
j (x, y, z, t)

η′
j (x, y, z, t)

Γ ′
j (x, y, z, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= εRe

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ûj (y, t)
v̂j (y, t)
ŵj (y, t)
p̂j (y, t)
η̂j (y, t)

Γ̂ j (y, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
ei(ax+bz)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (A7)

Here |ε| � 1 and ε represents an infinitesimal disturbance, the real numbers a and b
are the wavenumbers of the disturbance wave along the x and z directions, respectively.
Substituting (A7) into (A3), we have the governing equations

∂v̂j

∂y
+ iaûj + ibŵj = 0, (A8a)

2β2 ∂ ûj

∂t
+ iaRUjûj + R

∂Uj

∂y
v̂j = −iaRrjp̂j + iaRF−2η̂j + lj

(
∂2

∂y2 − a2 − b2
)

ûj, (A8b)

2β2 ∂v̂j

∂t
+ iaRUjv̂j = −Rrj

∂ p̂j

∂y
+ lj

(
∂2

∂y2 − a2 − b2
)
v̂j, (A8c)

2β2 ∂ŵj

∂t
+ iaRUjŵj = −ibRrjp̂j + ibRF−2η̂j + lj

(
∂2

∂y2 − a2 − b2
)

ŵj, (A8d)

2β2 ∂Γ̂ j

∂t
+ iaRUjΓ̂j − R

∂v̂j

∂y
+ iaR

∂Uj

∂y
η̂j = 0, (A8e)

where (A8e) is simplified by (A8a). Substituting (A7) into (A4) to (A6), we can obtain the
boundary conditions, i.e.at y = n + η′

1,

2β2 ∂η̂1

∂t
= R

(
v̂1 − iaU1η̂1

)
, (A9a)

2β2 r
m
∂ û1

∂t
+ iaR

r
m

U1û1 −
(
∂2

∂y2 − a2 − b2
)

û1

+ 2ia
∂v̂1

∂y
+ ia

(
R

r
m

F−2 + 1
Ca1

(
a2 + b2

))
η̂1 = 0, (A.9b)

∂2U1

∂y2 η̂1 + ∂ û1

∂y
+ iav̂1 + ia

Ma1

Ca1
Γ̂1 = 0, (A9c)

∂ŵ1

∂y
+ ibv̂1 + ib

Ma1

Ca1
Γ̂1 = 0. (A9d)

At y = η′
2, we have

∂U1

∂y
η̂2 + û1 = ∂U2

∂y
η̂2 + û2, (A10a)
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v̂1 = v̂2, (A10b)

ŵ1 = ŵ2, (A10c)

2β2 ∂η̂2

∂t
= R

(
v̂2 − iaU2η̂2

)
, (A10d)

2β2 ∂
(
û2 − rû1

)
∂t

+ iaRU1
(
û2 − rû1

)
−
(
∂2

∂y2 − a2 − b2
) (

û2 − mû1
)+ 2ia

∂
(
v̂2 − mv̂1

)
∂y

+ R
(
∂U2

∂y
v̂2 − r

∂U1

∂y
v̂1

)
+ 2ia

∂
(
v̂2 − mv̂1

)
∂y

+ ia
(
(r − 1)RF−2 + 1

Ca2

(
a2 + b2

))
η̂2 = 0, (A.10e)

(
∂2U2

∂y2 η̂2 + ∂ û2

∂y
+ iav̂2

)
− m

(
∂2U1

∂y2 η̂2 + ∂ û1

∂y
+ iav̂1

)
+ ia

Ma2

Ca2
Γ̂2 = 0, (A10f )

(
∂ŵ2

∂y
+ ibv̂2

)
− m

(
∂ŵ1

∂y
+ ibv̂1

)
+ ib

Ma2

Ca2
Γ̂2 = 0. (A10g)

At y = −1, we have
û2 = v̂2 = ŵ2 = 0. (A11)

Adopting transformations

ã2 = a2 + b2, ãũj = aûj + bŵj, ṽj = v̂j, p̃j/ã = p̂j/a, ãR̃ = aR, (A12a)

ãF̃ = aF, ãη̃j = aη̂j, ãΓ̃j = aΓ̂j, ãC̃aj = aCaj, M̃aj = Maj, (A12b)

and using (A12), (A8a), (A8c) and (A8e) can be written as

∂ṽj

∂y
+ iãũj = 0, (A13a)

2β2 ∂ṽj

∂t
+ iãR̃Ujṽj = −R̃rj

∂ p̃j

∂y
+ lj

(
∂2

∂y2 − ã2
)
ṽj, (A13b)

2β2 ∂Γ̃ j

∂t
+ iãR̃UjΓ̃j − R̃

∂ṽj

∂y
+ iãR̃

∂Uj

∂y
η̃j = 0. (A13c)

Multiplying (A8b) by a, (A8d) by b, adding the above two formulae and adopting the
transformation relationship of (A12), we have

2β2 ∂ ũj

∂t
+ iãR̃Ujũj + R̃

∂Uj

∂y
ṽj = −iãR̃rjp̃j + iãR̃F̃−2η̃j + lj

(
∂2

∂y2 − ã2
)

ũj. (A13d)
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Performing the similar operations as above, we can rewrite (A9) as

2β2 ∂η̃1

∂t
= R̃

(
ṽ1 − iãU1η̃1

)
, (A14a)

− R̃
m

(
p̃1 − rF̃

−2
η̃1

)
+ 2

∂ṽ1

∂y
+ ã2

C̃a1
η̃1 = 0, (A14b)

∂2U1

∂y2 η̃1 + ∂ ũ1

∂y
+ iãṽ1 + iã

M̃a1

C̃a1
Γ̃1 = 0. (A14c)

Equation (A10) can be written as

∂U1

∂y
η̃2 + ũ1 = ∂U2

∂y
η̃2 + ũ2, (A15a)

ṽ1 = ṽ2, (A15b)

2β2 ∂η̃2

∂t
= R̃

(
ṽ2 − iãU2η̃2

)
, (A15c)

−R̃
(

p̃2 − p̃1 + (r − 1) F̃
−2
η̃2

)
+ 2

(
∂ṽ2

∂y
− m

∂ṽ1

∂y

)
+ ã2

C̃a2
η̃2 = 0, (A15d)(

∂2U2

∂y2 η̃2 + ∂ ũ2

∂y
+ iãṽ2

)
− m

(
∂2U1

∂y2 η̃2 + ∂ ũ1

∂y
+ iãṽ1

)
+ iã

M̃a2

C̃a2
Γ̃2 = 0. (A15e)

Equation (A11) can be written as

ũ2 = ṽ2 = 0. (A16)

Here Uj = Uj(y, t;β, n,m, r), r1 = 1/r, r2 = 1, l1 = m/r, l2 = 1, the transformation
of (A12) would not change Uj, rj and lj. Therefore, the mathematical form of the
differential system (A13) to (A16) and the differential system (A8) to (A11) are exactly
the same. Actually, there is one-to-one correspondence between the three-dimensional
and two-dimensional disturbance modes. For the cases with fixed β, n, m, r, if a
three-dimensional mode is unstable at Reynolds number R then there must be a
two-dimensional unstable mode at Reynolds number R̃ (see (A12)). Therefore, in this
study, only two-dimensional disturbances have to be considered.

Appendix B. Definition of parameters in (3.6)

Expressions in (3.6) are defined as

k1
11 = −cosh B

D2 , k2
11 = E sinh An

D2 , k1
12 = −

√
rm sinh B

D2 , k2
12 = −E cosh An

D2 , (B1)

k1
13 = k2

13 = 0, k1
14 = r − (r − 1) cosh B

D2 , k2
14 = −G (1 − cosh B)+ E sinh An

D2 , (B2)

k1
21 = −r cosh B

D2 , k2
21 = G cosh B

D2 , k1
22 = −r sinh B

D2 , k2
22 = G sinh B

D2 , (B3)

k1
23 = k2

23 = 0, k1
24 = r

D2 , k2
24 = − G

D2 , (B4)
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where

E = (m − 1) sinh An cosh B −
√

m/r (r − 1) cosh An sinh B, (B5)

G = (r − 1)+ (rm − 1) sinh2An. (B6)

Appendix C. Definition of parameters in (3.12)

Expressions in (3.12) are defined as

A0 = −iRF−2
[(

1
3

+ n
2

)
rh10 − 1

3
(r − 1) h20

]
− 1

2
iR (mM1ξ10 + M2ξ20)

+iR
2∑

j=1

{
hj0Re

(
C4j + C5j

3
+ C7j + C8j

)}
, (C1)

A1 = −iRF−2
[(

1
2

+ n
)

rh10 − 1
2
(r − 1) h20

]
F−2 − iR (mM1ξ10 + M2ξ20)

+iR
2∑

j=1

{
hj0Re

(
C3j + C5j

2
+ C8j

)}
, (C2)

A2 = −iR
n
2

r
m

F−2h10 − 1
2

iRM1ξ10,A3 = iR
1
6

r
m

F−2h10, (C3)

B0 = −iRF−2
[(

1
3

+ n
2

)
rh10 − 1

3
(r − 1) h20

]
− 1

2
iR (mM1ξ10 + M2ξ20)

+iR
2∑

j=1

{
hj0Re

(
C5j

3
+ C7j + C8j

)}
, (C4)

B1 = −iRF−2
[(

1
2

+ n
)

rh10 − 1
2
(r − 1) h20

]
− iR (mM1ξ10 + M2ξ20)

+iR
2∑

j=1

{
hj0Re

(
C5j

2
+ C8j

)}
, (C5)

B2 = −iR
n
2

rF−2h10 − 1
2

iR (mM1ξ10 + M2ξ20) , (C6)

B3 = 1
6

iRF−2 [rh10 − (r − 1) h20] − iR
2∑

j=1

{
hj0Re

(
C5j

6

)}
, (C7)

where

C31 = 3 (rm − 1)
4AD2D̄

r
m

cosh B sin An,C32 = −3 (rm − 1)
4AD2D̄

r
m

S sin An, (C8)

C41 = 3 (r − 1)
4B2D2D̄

cosh B cos An,C42 = −3 (r − 1)
4B2D2D̄

S cos An, (C9)

C51 = A
2D2D̄

[
2 (r − m) r (1 − cosh B) sin An + (m + r − 2)

√
rm sinh B cos An

]
,

(C10)
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C52 = A
2D2D̄

[ −2 (r − m)G (1 − cosh B) sin An
+ ((m + r)E cosh An + 2

√
m/rG sinh B

)
cos An

]
, (C11)

C71 = −3r
4B2D2 ,C72 = 3G

4B2D2 ,C81 = −3rT
4BD2D̄

,C82 = 3GT
4BD2D̄

, (C12)

S = cosh B +
√

m/r sinh An
(
cosh An sinh B + √

rm sinh An cosh B
)
, (C13)

T = cos An sin B + √
rm sin An cos B,Mj = Maj/

(
RCaj

)
. (C14)

Appendix D. Definition of parameters in (3.15) and (3.16)

Expressions in (3.15) are defined as

I1j = Re
[
nC3j + C4j + (1/3 + n/2)C5j + C7j + (1 + n)C8j

]
, (D1)

I21 = Re[C31 + C51/2 + C81 + 3A
(
sinh An cosh B + √

rm cosh An sinh B
)
/(4B2D2D̄)],

(D2)
I22 = Re[C32 + C52/2 + C82 + 3AE/(4B2D2D̄)], (D3)

I31 = Re
[
C51/3 + C71 + C81 + 3rP

]
, I32 = Re

[
C52/3 + C72 + C82 − 3GP

]
, (D4)

I41 = Re
[
C51/2 + C81 + rQ

]
, I42 = Re

[
C52/2 + C82 − GQ

]
, (D5)

P = cos An cosh B/(4B2D2D̄), (D6)

Q = ((
2 + √

rm (5 cosh B − 4)
)

sin An + 3 sinh B cos An
)
/(4BD2D̄). (D7)

Expressions in (3.16) are defined as

a11 = −(1/3 + n + n2 + n3/(3m))rF−2 + I11, a12 = −(m/2 + nm + n2/2)M1, (D8)

a13 = (1/3 + n/2) (r − 1)F−2 + I12, a14 = − (1/2 + n)M2, (D9)

a21 = −
(

1/2 + n + n2/(2m)
)

rF−2 + I21, a22 = − (m + n)M1, (D10)

a23 = (r − 1)F−2/2 + I22, a24 = −M2, (D11)

a31 = − (1/3 + n/2) rF−2 + I31, a32 = −mM1/2,

a33 = (r − 1)F−2/3 + I32, a34 = −M2/2, (D12)

a41 = − (1/2 + n) rF−2 + I41, a42 = −mM1, a43 = (r − 1)F−2/2 + I42, a44 = −M2.
(D13)

Appendix E. Standing wave and travelling wave

According to the function forms in (3.1), suppose that z = eμtφ( y, t), where φ( y, t) is
2π-periodic in time t, we have the following conclusions. If μ is real, the motion form of
the disturbance mode is a standing wave; if μ is complex instead of real, it represents a
travelling wave.
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Appendix F. Explanation of the phase difference

For example, Q′
v1 = iCη′

1, where C is a positive real number, Q′
v1 is the surface disturbed

volume flow rate, η′
1 represents the surface wave amplitude, iC = Cei π

2 , means that the
phase is ahead of π/2, the phase difference is π/2. Similarly, −iC = Ce−i π

2 means that
the phase is lagging by π/2, and the phase difference is −π/2.
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