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Significant insights in computational fluid dynamics have been obtained in recent
years by adopting the data assimilation methods developed in the meteorology
community. We apply the four-dimensional variational method to reconstruct the
small scales of three-dimensional turbulent velocity fields with a moderate Reynolds
number, given a time sequence of measurement data on a coarse set of grid points.
The problem presents new challenges because the evolution of the flow is dominated
by the nonlinear vortex stretching and the energy cascade process, which are absent
from two-dimensional flows. The results show that, reconstruction is successful when
the resolution of the measurement data, given in terms of the wavenumber, is of the
order of the threshold value kc= 0.2η−1

K , where ηK is the Kolmogorov length scale of
the flow. When the data are available over a period of one large eddy turnover time
scale, the filtered enstrophy and other small-scale quantities are reconstructed with a
30 % or smaller normalized pointwise error, and a 90 % pointwise correlation. The
spectral correlation between the reconstructed and target fields is higher than 80 %
for all wavenumbers. Minimum volume enclosing ellipsoids (MVEEs) and MVEE
trees are introduced to quantitatively compare the geometry of non-local structures.
Results show that, for the majority samples, errors in the locations and the sizes
of the reconstructed structures are within 15 %, and those in the orientations are
within 15◦. Overall, for this flow, satisfactory reconstruction of the scales two or
more octaves smaller is possible if data at large scales are available for at least one
large eddy turnover time. In comparison, a direct substitution scheme results in three
times bigger pointwise discrepancy in enstrophy. The spectral difference between the
reconstructed and target velocity fields is more than ten times higher than what is
obtained with the four-dimensional variational method. The results show that further
investigation is warranted to verify the efficacy of the method in flows with higher
Reynolds numbers.
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1. Introduction
Data assimilation (DA) uses available experimental or observational data to improve

computational model predictions. It has had a long history in meteorology, in
particular numerical weather prediction (NWP) research (see, e.g. Courtier et al.
(1993) and Kalnay (2003) for reviews). Many DA methods have been developed.
Four-dimensional variational (4DVAR) methods and the ensemble Kalman filter
(EnKF) are among the most popular methods (Kalman 1960; Kalnay 2003; Evensen
2009). The 4DVAR methods are based on optimal control (Lions 1971), where
a constrained optimization problem is solved. Spatial as well as temporal data are
assimilated into the model by minimizing the difference between the model prediction
and the data. In recent applications, time sequences of three-dimensional spatial data
have been assimilated, hence the name 4DVAR. EnKF is a sequential method where
the error of the prediction is estimated when the prediction (known as the a priori
estimate (Brown & Hwang 2012) or the background (Kalnay 2003)) is made. The
observational data are assimilated by combining the a priori estimate with the
measurement data, resulting in an updated prediction called the a posteriori estimate
or the analysis. The weight for the measurement is chosen to minimize the error of
the a posteriori estimate.

In recent years, these two methods have been applied to fluid dynamic problems
(Hayase 2015). Gronskis, Heitz & Memin (2013) apply the variational method to
reconstruct the inflow and initial conditions for two-dimensional (2-D) mixing layers
and wake flows behind a cylinder. Mons et al. (2016) consider 2-D wake flows,
where a comprehensive comparison between different DA schemes is presented. Kato
& Obayashi (2013), Kato et al. (2015) and Li et al. (2017) use the EnKF method
to improve Reynolds-averaged Navier–Stokes based prediction of turbulent flows.
Meldi & Poux (2017) applies EnKF to large eddy simulations and detached eddy
simulation. Similar problems are also investigated with variational methods (Foures
et al. 2014). In D’adamo et al. (2007), Artana et al. (2012) and Protas, Noack & Osth
(2015), variational methods are coupled with reduced-order models based on Galerkin
truncation. Variational methods are also used in state estimation in the context of flow
control (Bewley & Protas 2004; Chevalier et al. 2006; Colburn, Cessna & Bewley
2011), to extrapolate experimental data in a dynamically consistent way (Heitz,
Memin & Schnorr 2010; Combes et al. 2015) and to obtain optimal sensor placements
(Mons, Chassaing & Sagaut 2017). Mons et al. (2014) apply a variational method
to investigate decaying isotropic turbulence, where the eddy-damped quasi-normal
Markovian model is used.

The aforementioned research has demonstrated the potential of DA in turbulent
simulations as well as in understanding the physics of turbulent flows. As having
been demonstrated in NWP research, DA is unique in its ability to improve our
modelling or prediction of instantaneous flow fields, in addition to their statistics.
However, few studies have explored this aspect in the simulation of 3-D turbulent
fields (see, e.g. the list of recent works on DA tabulated in Mons et al. (2017)). In
Yoshida, Yamaguchi & Kaneda (2005), the ability of a DA scheme to recover the
instantaneous small scales in a 3-D isotropic turbulent field is investigated. In this
study, the data, given as Fourier modes, directly replace model predictions given
by the Navier–Stokes equations at every time step. It is found that the small-scale
instantaneous velocity field can be asymptotically recovered exactly when Fourier
modes with wavenumber up to a threshold value approximately equal kc ≡ 0.2η−1

K
are provided, where ηK is the Kolmogorov length scale. When the amount of data
decreases towards the threshold, the time needed to recover the small scales tends to
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infinity (hence an infinitely long time sequence of measurement data is needed). The
problem is investigated in Lalescu, Meneveau & Eyink (2013) from the perspective
of chaos synchronization and a similar conclusion is reached. The DA method used
in these works can be termed ‘direct substitution’ (DS). As far as we know, the
ability of 4DVAR or EnKF to reconstruct the small scales has not been investigated.
In this paper, we present an analysis based on the 4DVAR method. We consider
a Kolmogorov flow in a 3-D periodic box. It is assumed that a time sequence of
velocity data is given on a set of grid points. The 4DVAR method is employed to
reconstruct the initial velocity field such that the velocity at later times matches given
measurement data. The time sequence of velocity fields computed from the initial
field are compared with the ‘true’ velocity fields (the target fields). The objective is to
ascertain how well the instantaneous small-scale velocity fields can be reconstructed
with 4DVAR for a given set of parameters. The 3-D turbulence in a periodic box
is the simplest turbulent flow where the nonlinear inter-scale interaction plays the
dominant role in the dynamics. The vortex stretching process, e.g. is absent in 2-D
flows. Therefore, although the mathematics is similar for 2-D and 3-D problems, the
latter does present significant new challenges.

Using the 4DVAR method to reconstruct a 3-D fully developed (i.e. statistically
stationary) turbulent field is the first contribution of this investigation. To evaluate
the reconstruction, it is important to quantify the instantaneous difference between
the reconstructed and the target velocity fields. Much information can be learned
from pointwise correlations and/or the statistics of pointwise difference. However,
these statistics are not best suited to capturing the geometry of non-local structures
populating the small scales of turbulent fields (such as the vortex filaments). This
deficiency becomes a significant obstacle when the distribution of the non-local
structures becomes one of our main interests.

The morphology of non-local structures has long been described in qualitative
terms, assisted by visualization. Great efforts have been made in recent years to
develop methods for quantitative description. Bermejo-Moreno & Pullin (2008) use
the probability density function (PDF) of the curvatures on the surface of a structure
as its signature. Yang & Pullin (2011) describe the structures in a channel flow in
terms of curvelets and angular spectra. Indices, named shapefinders, defined in terms
of the Minkowski functionals, are used in Leung, Swaminathan & Davidson (2012) to
classify the structures. These methods provide very detailed quantitative descriptions
of the structures. However, they focus on the intrinsic geometry; the information about
locations, orientations and sizes of the structures sometimes is missing, which happens
to be important when we compare the geometry in two different fields. Therefore,
as the second contribution of this investigation, we propose to use minimum volume
enclosing ellipsoids (MVEEs) to describe the geometry of a non-local structure, and
use MVEE trees where the structures are highly non-convex. MVEE is used widely
in areas such as statistical estimate, cluster analysis and image processing (Todds
2016). Its application in turbulence research, however, has not been reported. The
results demonstrate that MVEEs and MVEE trees are useful tool for the analysis of
the non-local geometry in turbulence.

The paper is organized as follows. In § 2, the 4DVAR formulation of the problem
is introduced; the description of the small scales of homogeneous turbulence is
reviewed, and then the calculation of MVEEs and the MVEE tree is explained. In
§ 3, the simulations and the results are presented and analysed. The conclusions are
summarized in § 4.
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2. The governing equations and the description of small scales of turbulent
velocity fields

2.1. The problem set-up and the optimality system

Let B denote the three-dimensional periodic box [0, 2π]3, and v(x, t) be a time
sequence of velocity fields in B for t ∈ [0, T] with T > 0; T is called the optimization
horizon hereafter. It is assumed that only part of v(x, t) is known from measurement,
and this part is denoted by Fv, where F is a filter to be defined later; F plays
the same role as the measurement operator used in the meteorology community. The
question is, from given Fv(x, t), how do we reconstruct the full field v(x, t) for
t ∈ [0, T]?

To do so, an underlying ‘model’ for the data v(x, t) has to be assumed. We assume
v(x, t) is the solution of the Navier–Stokes equations (NSEs), from some unknown
initial condition (IC). Let u(x, t) be a solution of the NSEs in B. If one finds a velocity
field ϕ(x) such that, if u(x, 0)= ϕ(x) then u(x, t) agrees with v(x, t) for (x, t)∈ B×
[0, T], then u(x, t) is a reconstruction of v(x, t). It is unlikely to find ϕ(x) such that
u(x, t)= v(x, t) exactly. In 4DVAR, one attempts to approximate ϕ(x) by the solution
of a constrained optimization problem. The detail is described in what follows.

We define the inner product between two scalar or vector fields a(x, t) and b(x, t)
as

〈a, b〉 ≡
1

(2π)3

∫
x∈B

a · b dx. (2.1)

The cost function J for the optimization problem is defined as

J =
1
2

∫ T

0
〈Fu−Fv,Fu−Fv〉 dt. (2.2)

Qualitatively speaking, J is the total difference between the measurements based on
u and v over the space–time domain B × [0, T]. The objective of the optimization
problem is to find ϕ(x) such that J is minimized while u(x, t) satisfies

N(u,p)≡−∂tu−u ·∇u−∇p+ ν∇2u+ f =0, ∇ ·u=0, u(x,0)=ϕ(x), (2.3a−c)

where p is the pressure, ν is the kinematic viscosity and f (x, t) is the forcing term.
The flow has been assumed to be incompressible.

The optimal solution for the problem will be found with the adjoint method. We
introduce the Lagrangian functional,

L(u, ξ , σ , λ, ϕ)= J(u)−
∫ T

0
〈ξ ,N〉 dt−

∫ T

0
〈σ ,∇ · u〉 dt− 〈λ, u(x, 0)− ϕ(x)〉, (2.4)

where ξ(x, t), σ(x, t) and λ(x) are the adjoint variables corresponding to the NSEs,
the continuity equation and the IC; ξ and σ are also called the adjoint velocity and
the adjoint pressure. The minima of J are found at the stationary points for the
Lagrangian, where the functional derivatives of L with respect to u, ξ , σ , λ and ϕ
are zero. These conditions give rise to equations for the adjoint variables (i.e. the
adjoint equations) in addition to (2.3). The equations for ξ read,

−∂tξ − u · ∇ξ +∇u · ξ +∇σ − ν∇2ξ −F= 0, ∇ · ξ = 0, (2.5a,b)

with the endpoint condition
ξ(x, T)= 0. (2.6)
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The forcing term F in (2.5) is given by

F(x, t)≡−
∂J
∂u
=−F+F [u(x, t)− v(x, t)], (2.7)

where F+ is the adjoint operator of F . The forcing term f (x, t) in (2.3) has been
assumed to be independent of u and, as a consequence, does not have a counterpart
in the adjoint equations. When u, p, ξ and σ satisfy (2.3) and (2.5)–(2.7), the gradient
of J with respect to ϕ, denoted by DJ/Dϕ, is given by

DJ
Dϕ
=
∂L
∂ϕ
=−ξ(x, 0). (2.8)

Equations (2.3), (2.5)–(2.7) and the condition DJ/Dϕ = 0 constitute the optimality
system of the optimization problem. The solution of the optimization problem is a
solution of the optimality system.

The solution method of the optimality system will be explained later. The optimal
solution for ϕ(x) will be denoted as ϕu(x). The solution u(x, t) of (2.3) with ϕ(x)=
ϕu(x) is the reconstruction of v(x, t) from Fv(x, t). In this investigation, a sequence
of known fully developed turbulent velocity fields in the 3-D periodic box B is used
as v(x, t); F is chosen as a cutoff filter in the Fourier space with a cutoff wavenumber
km, such that only the low wavenumber Fourier modes are used in the optimization
problem; km is an indicator of the spatial resolution of the measurement data. As a
result, the cost function J can be written as

J =
1
2

∫ T

0

∫
k6km

(û(k, t)− v̂(k, t)) · (û∗(k, t)− v̂
∗
(k, t)) dk, (2.9)

where k= |k|, and v̂(k, t) and û(k, t) denote the Fourier modes of v(x, t) and u(x, t),
respectively. Letting F̂(k, t) be the Fourier transform of F(x, t), we obtain

F̂(k, t)=

{
−[û(k, t)− v̂(k, t)] for k 6 km,

0 otherwise.
(2.10)

2.2. The questions to be answered
We call u(x, t) and v(x, t) the ‘reconstructed’ and the ‘target’ fields, respectively. The
target field at t = 0, v(x, 0), will also be denoted by notation ϕv(x), corresponding
to its reconstruction u(x, 0) ≡ ϕu(x). Since u(x, t) is the solution of the NSEs with
ϕu(x) as the IC, it is expected û(k, t)≈ v̂(k, t) when k 6 km. The interesting question
is how closely û(k, t) matches v̂(k, t) when k > km; in other words, to what extent
small scales in v(x, t) can be reconstructed.

As u(x, t) and v(x, t) are both solutions of the forced NSEs, one expects their
statistics to be the same for t→ T when u has fully developed. Therefore, for t→ T ,
we are interested in the pointwise, instantaneous difference or correlation between u
and v. However, good reconstruction at t→ T is possible only when the IC ϕu(x)
captures, to some extent, the features of real turbulence. Therefore, we will also
examine selected statistics of ϕu(x). The statistics provide information on how much
can be reconstructed at t = 0 given the measurement data Fv(x, t), hence are also
relevant to the observability of the system. Nevertheless, the full discussion of this
aspect is left for the future.
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The efficacy of 4DVAR can be assessed by comparison with other methods. As we
will show later, the straightforward Lagrangian interpolation fails badly. In Yoshida
et al. (2005), an assimilation scheme we call ‘direct substitution’ is used. The authors
integrated the NSEs starting from a Gaussian random field. The low wavenumber
modes with k 6 km in the solution u(x, t) are replaced by those in the target field
v(x, t) at every time step. Yoshida et al. (2005) show that, if km > 0.2η−1

K , the small
scales in u(x, t) approach those in v(x, t) asymptotically as t→∞ (see also Lalescu
et al. (2013)). In most cases we are investigating, the resolution km is slightly below
this threshold (cf. the parameters in § 3.1), and the measurement data are available
only for t ∈ [0, T] where T is of the order of one large eddy turnover time scale.
As a consequence, the DS scheme will only achieve partial reconstruction. The DS
scheme will be compared with the 4DVAR method, to demonstrate the improvement
provided by the latter.

2.3. Description of the small scales of turbulent velocity fields
To compare the small scales of the reconstructed field u and the target field v, the
filtering approach is used to separate different scales and the analysis is conducted
mainly in the physical space. The filtered velocity field is defined by

ũ(x, t)=
∫

G∆(x− y)u(y, t) dy, (2.11)

where ũ denotes the filtered velocity and G∆(x) is a filter with length scale ∆;
G∆ separates u into ũ and the subgrid-scale (SGS) velocity. The parameters used
to describe the structures of ũ and their interactions with the SGS scales are now
summarized. In the analysis of the velocity field u, we always use the Gaussian filter
(Pope 2000).

The local structures of ũ are described by the filtered velocity gradient Ãij ≡ ∂jũi,
the filtered strain rate tensor s̃ij ≡ (Ãij + Ãji)/2 and the filtered vorticity ω̃i ≡ εijkÃkj.
For Ãij, much insight has been gained from its tensor invariants

Q≡− 1
2 ÃijÃji, R≡− 1

3 ÃijÃjkÃki. (2.12a,b)

One of the key features of turbulence is that the joint PDF of R and Q displays a
skewed teardrop shape, which captures the prevalence of straining motion in turbulent
flows; see, e.g. Cantwell (1992).

The eigenvectors of s̃ij are denoted by es
α, es

β and es
γ , with corresponding eigenvalues

λs
α > λ

s
β > λ

s
γ ; λs

α + λ
s
β + λ

s
γ = 0 due to the incompressibility of the filtered velocity

field. The enstrophy of the resolved velocity field, defined by ω̃2
≡ ω̃iω̃i, is a measure

of the magnitude of the resolved vorticity. The main source of growth for ω̃2 is the
vortex stretching term Pω ≡ s̃ijω̃iω̃j. Evidently,

Pω = ω̃2(λs
α cos2 θ s

α + λ
s
β cos2 θ s

β + λ
s
γ cos2 θ s

γ ), (2.13)

where θ s
α is the angle between ω̃ and es

α with θ s
β and θ s

γ defined in a similar way.
Equation (2.13) shows that Pω are determined by the eigenvalues of s̃ij as well as
the alignment between ω̃i and the eigenvectors of s̃ij. The eigenvectors of s̃ij form
an orthogonal coordinate frame. The orientation of ω̃i can be described by the polar
and azimuthal angles relative to es

α in this frame, and they are denoted by θωsp and φωsp.
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FIGURE 1. Definitions of the polar and azimuthal angles used to describe the orientation
of ω̃i in the eigenframe of s̃ij. Angles defined in a similar way for other vectors and
eigenframes are also used in the paper.

Figure 1 gives an illustration of the angles. In turbulence, by examining the joint PDF
of cos θωsp and φωsp or the PDFs of θ s

i (i= α, β, γ ), it has been shown that ω̃i prefers
to align with es

β .
The dynamics of ũi is governed by the filtered NSEs, which is unclosed due to the

SGS stress tensor τij = ũiuj − ũiũj (see, e.g. Meneveau & Katz (2000)). The tensor
τij represents the nonlinear interactions between the resolved and the SGS scales. An
important parameter related to τij is the SGS energy dissipation rate

Π∆ =−τ
d
ij s̃ij, (2.14)

where τ d
ij ≡ τij − δijτkk/3 is the deviatoric part of τij; Π∆ is the turbulent kinetic

energy flux cascading from resolved scales to the SGS scales. Correctly reproducing
the statistics of Π∆ is one of the main objectives in SGS modelling. As a consequence,
the statistics of τ d

ij and Π∆ and their correlations with s̃ij, ω̃i, Pω and Ãij have been
extensively documented; see, e.g. Meneveau & Katz (2000) and Sagaut (2002) for
reviews on SGS modelling and large eddy simulations.

The value of Π∆ is determined by the relative alignment between the eigenvectors
of τ d

ij and s̃ij as well as their eigenvalues. Specific preferential alignment has also been
observed in turbulent flows (Tao, Katz & Meneveau 2002). The eigenvectors of −τ d

ij
are denoted by eτα, eτβ and eτγ , with corresponding eigenvalues λτα > λ

τ
β > λτγ where

λτα + λ
τ
β + λ

τ
γ = 0 by definition. The vorticity ω̃i also displays preferential alignment

with −τ d
ij (Horiuti 2003); specifically ω̃i tends to be perpendicular to eτγ while aligned

with eτα or eτβ .

2.4. Description of the non-local structures

The filtered velocity gradient Ãij and related quantities describe the local structure
of the filtered velocity field in an infinitesimal neighbourhood of a spatial location.
Non-local structures of finite sizes are also of great interest. The most well-known
example of such structures is that of the vortex filaments that are characterized
by strong enstrophy. The ability of the reconstructed velocity field to capture the
locations, the dimensions and the orientations of these structures is not always clear
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FIGURE 2. Instantaneous distributions of ω̃≡ (ω̃iω̃i)
1/2 on a plane perpendicular to the z

axis. (a) From a target field; (b) from the corresponding reconstructed field. X and Y are
the labels of the grid points in the x and y directions, respectively.

from the pointwise statistics. To illustrate this point, figure 2 plots selected contours
of ω̃≡ (ω̃iω̃i)

1/2 in one target field and the corresponding reconstructed field. Detailed
comparison is given later. However, it is already clear that the locations, orientations
and sizes of the contours display remarkable similarity, especially in high ω̃ regions.
Usual statistics, including joint correlations between multiple points, do not always
capture this similarity. Additional diagnostics are needed.

Note that, although an intuitive description of the structures visualized by the
contours is straightforward, the precise description of their shapes, sizes and even
locations is difficult, and actually there are no unique definitions for these concepts
(also see discussions in, e.g. Bermejo-Moreno & Pullin (2008), Yang & Pullin (2011)
and Leung et al. (2012)). As explained in § 1, we use the MVEEs of a structure to
define and describe its geometry. By definition, of all the ellipsoids that contain a
structure, the MVEE is the one with the smallest volume. The location, dimensions
and orientation of an MVEE are well defined, and are given by its centre, lengths
of the three axes and the orientations of the axes. We thus define the location,
dimensions and orientation of a structure using those of its MVEE. The structures in
the reconstructed and the target fields are compared on this basis. The comparison
includes four steps of calculations, which are explained below and illustrated in
figure 3 using a 2-D slice.

In the first step, the set P of the grid points where a certain threshold condition
is satisfied are extracted; P usually consists of a number of disjoint regions.
The ‘structures’ we will be discussing refer to this type of region; each structure
corresponds to a disjoint region (cf. figure 3b).

In the second step, individual structures in P are extracted and distinguished from
others. The programmatic realization of this task is non-trivial despite its innocuous
appearance. It is accomplished by recasting it as a clustering problem, and using a
density based clustering algorithm called DBSCAN (Ester et al. 1996; Schubert et al.
2017). In this algorithm, the ‘neighbours’ of a point p in P are first identified, where
a neighbour is defined as a point whose distance to p is less than a given value εc.
A point with fewer than nc neighbours is considered ‘noise’. A cluster is defined
according to the following rule: the neighbours of a non-noise point p are in the
same cluster to which point p belongs. Algorithmically, the points in the cluster are
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FIGURE 3. The calculation of the MVEEs. (a) The contour plot of ω̃ on a 2-D slice (same
as figure 2b). (b) The 17 structures with ω̃> 2〈ω̃iω̃i〉

1/2 shown with the grid points, which
are identified by the DBSCAN algorithm (see text for details). The 5 largest structures are
highlighted with black, red, blue, green and magenta, respectively. (c) The MVEEs for the
5 largest structures. X and Y are the labels of the grid points in the x and y directions,
respectively.

identified by recursively applying this rule until all the points identified are noise.
The same process is repeated for other non-noise points if they do not belong to any
clusters that have been found.

For more details of the DBSCAN algorithm, the readers are referred to Ester et al.
(1996). The outcome of applying the algorithm is that all the points in a structure are
found and stored separately from those in other structures, as illustrated in figure 3(b).
We normalize the distance in such a way that the distance between two consecutive
grid points is 1. As a consequence, εc=D1/2 and nc=D+ 1 are used, where D is the
dimension of the embedding space (i.e. D= 2 for structures on a 2-D slice whereas
D= 3 for those in the 3-D space).

In the third step, the MVEE for each structure is calculated. An ellipsoid is defined
by a symmetric positive definite matrix E , which specifies the orientations and lengths
of the axes, and a vector c, which specifies its centre. Its volume is proportional to
the determinant of E1/2, det E1/2. Let P be the set of points pi (i= 1, . . . , N) in the
structure. The MVEE is given by the optimal E and c that minimize det E1/2, subject
to the constraints

(pT
i − cT)E−1(pi − c)6 1, ∀pi ∈ P. (2.15)

The constraints ensure pi is inside the ellipsoid. This minimization problem can
be solved by the Khachiyan algorithm (Khachiyan 1996; Todds 2016). We use the
MATLAB implementation by Moshtagh (2009).

In the fourth (and last) step, the correspondence between a structure in the target
field and its reconstruction in the reconstructed field is established. The above three
steps are applied to both the reconstructed and the target fields. If the reconstructed
field mimics the target field perfectly, one would then obtain two groups of MVEEs,
with a one-to-one correspondence between the members. The correspondence can be
trivially established. In reality, however, this naive method breaks down because the
difference between the two fields sometimes is big enough to destroy the trivial one-to-
one correspondence. The following procedure thus has been used, where, in essence,
the structures are identified by their locations and sizes. The structures in the target
field are first arranged into a list in the descending order according to their sizes,
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FIGURE 4. Calculation of sub-MVEEs and the MVEE tree. (a) One of the vortical
structures shown in figure 3, which is enclosed by the level 0 sub-MVEE and is split
into two groups along the dotted line. The red dots are the grid points in the structure.
(b) The level 1 sub-MVEE for the upper half. (c) The level 1 sub-MVEE for the lower
half. X and Y are the labels of the grid points in the x and y directions, respectively.

where the size of a structure is defined as the number of grid points in the structure.
Let ST be a structure in the list. The structure in the reconstructed field whose distance
to ST is the minimum is then identified, where the distance between two structures
is defined as the shortest distance from one to the other. Let SO be this structure.
If SO is not unique, the one with the largest size is chosen. This SO is taken as
the reconstruction of ST ; ST and SO are called the matching structures. The above
procedure is repeated for each structure in the target field, starting from the one largest
in size, until all matching structures are identified.

The matching structures and corresponding MVEEs obtained after these four
steps are then compared and statistics are calculated, including relative displacement,
alignment and relative sizes, among others. The analysis is applied to several different
physical quantities, including high strain rate structures for which the magnitude of
s̃ij is large, vortical structures with strong ω̃ and structures with high SGS energy
dissipation rate Π∆ or negative Π∆. In all cases, the analysis is performed directly
on 3-D structures.

MVEEs provide a good description of the enclosed structure when the latter
is convex. A more complete description is desirable, however, if the structure is
non-convex, such as the second structure from the top in figure 3(c). In this case,
we propose to use what we call the MVEE trees. The construction of MVEE trees
is illustrated with figure 4. It is supposed that the MVEE for the structure has been
found. In the context of MVEE trees, this MVEE is called the level 0 (L0) MVEE.
The L0 MVEE allows one to split the grid points in the structure into two groups,
using the symmetric plane of the MVEE perpendicular to its major axis (see of
figure 4a). The MVEEs for the two parts can then be found. These are called the L1
sub-MVEEs. The splitting can be repeated for each structure in this level, and those
in each new level. The procedure thus forms a tree-like hierarchy of MVEEs, hence
the name MVEE trees.

The MVEE trees are used to analyse strongly non-convex structures. For this
purpose, the degree of non-convexity of a structure is defined as the ratio of the
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volume of the structure to the volume of its convex hull (Boyd & Vandenberghe
2004). The ratio is denoted by RV . Smaller RV indicates stronger non-convexity. Only
structures with small RV are selected when MVEE trees are calculated.

Moment of inertia ellipsoids (MoIEs) have also been used in the past to characterize
non-local structures. However, MoIEs do not capture the extremal points in a structure,
and hence tend to miss the details of highly non-convex structures. In comparison,
MVEE and MVEE trees are better in this regard.

3. Simulations and results
3.1. Parameters and the computation of the target flow fields

The target fields v(x, t) are obtained by numerically integrating the NSEs with a fully
dealiased pseudo-spectral code in a [0, 2π]3 box with periodic boundary conditions.
A second-order explicit improved Euler method based on the trapezoidal rule is used
in time stepping; v(x, t) is made statistically stationary by a constant forcing term f ,
where

f = (0, fa cos(kf x1), 0), (3.1)

with fa = 0.15 and kf = 1 (these and the following parameters are all given in code
units). Therefore, the flow is a 3-D Kolmogorov flow with a sinusoidal mean velocity
profile (Borue & Orszag 1996; Kang & Meneveau 2005). The Kolmogorov flow has
been chosen because the forcing term for this flow is particularly simple.

In all cases 1283 grid points have been used. The viscosity is ν = 0.006. Time
step is δt = 0.00575. The time and length scales of v are estimated from fa, kf , ν
and the root-mean-square (r.m.s.) velocity vrms which is found numerically to be
approximately 0.65. The large eddy turnover time scale is thus τL ≡ vrms/fa ≈ 4.35.
The energy dissipation rate ε is calculated numerically from the energy spectrum and
ν, which gives ε ≈ 0.08. The Kolmogorov time scale is τK ≡ (ν/ε)

1/2
≈ 0.28. The

Kolmogorov length scale is ηK ≡ (ν
3/ε)1/4 ≈ 0.04. Therefore, δx/ηK ≈ 1.25, where

δx is the grid size of the simulations. The Reynolds number based on the Taylor
micro-scale is Reλ ≈ 75, whereas the Reynolds number based on the forcing length
scale is Ref ≈ 340.

3.2. The solution of the optimality system
The optimality system ((2.3) and (2.5)–(2.8)) is solved iteratively. Given an initial
guess for ϕ, the NSEs (2.3) are numerically integrated from t = 0 to t = T to find
u(x, t). The cost J is calculated from u. Unless J is already smaller than a given
tolerance, ϕ has to be updated to reduce J. To do so, equation (2.5) is integrated
backward in time from t = T to t = 0, starting from the endpoint condition given
by (2.6). The time sequence of the forward solution u(x, t) is used in the backward
integration. The solution for ξ provides DJ/Dϕ according to (2.8), which is then used
to update ϕ. The updating step uses the nonlinear conjugate gradient method using the
Polak–Ribière formula (Nocedal & Wright 1999). Brent’s method in Numerical Recipe
(Press et al. 1992) is used in the line search step.

The above several steps constitute the main loop of the solution algorithm. Due to
the chaotic nature of the solution of the NSEs, our experience is that the iterations
may become difficult to converge when T is large. We thus solve the optimality
system first with a small T , using the iterations outlined above. The optimal ϕ
for this problem is used as the initial guess for the problem with a larger T . The
procedure is repeated until the intended optimization horizon is reached. As the
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computational time is usually very long on the computer we used (see below for
more information), we save the optimal solutions for the intermediate T values on
the hard disk, which safeguards against unexpected interruptions of the computation.
Therefore, this implementation is also useful from a practical point of view. The
choices for the initial small T and the increment in T are mostly based on trial and
error. An initial T = 0.25τL ≈ 4τK with an increment equal 0.025τL ≈ 0.4τK has been
used in most cases, but we expect other similar choices will also work.

We now explain briefly the solution of the individual equations in the main loop;
u(x, t) is solved from the NSEs using the same numerical methods and parameters as
those for v(x, t). The initial guess for u(x,0)≡ϕ is usually a divergence free Gaussian
random velocity field, with the Fourier modes with k 6 km replaced by those in the
target data ϕv(x) ≡ v(x, 0) (cf. § 2.1). Our tests show that the initial guess has no
effects on the statistics of optimal solutions. It is possible to use an initial guess with
an energy spectrum matching the initial target field. However, our tests showed that
it did not improve the results nor speed up convergence. A possible reason is that
matching the energy spectra imposes only a weak constraint on the control ϕ since
the latter has a very large number (3× 1283) of components.

As will be explained below, we run several related cases with different parameters.
Sometimes the optimal solution ϕu for a solved case is then used as the initial guess
for ϕ in a related case. For example, the optimal solution obtained with a larger
tolerance has been used as the initial guess for a case with a smaller tolerance; the
one with a smaller T used as the initial guess for a case with a larger T .

The adjoint equations (2.5) are solved with the same numerical schemes used
for v and u. The divergence free condition for ξ is used to eliminate the adjoint
pressure σ , in the same way as p is eliminated from the NSEs when they are solved
numerically. However, equation (2.5) has to be integrated backwards in time, as it
is supplemented with the endpoint condition in (2.6). The time sequence of u(x, t)
(t ∈ [0, T]) is needed for the solution of ξ . Therefore, u(x, t) has to be saved in the
forward integration of the NSEs. In our computation, typically the available RAM
is not large enough to hold the whole time sequence. We thus use checkpointing,
where u(x, t) is saved on the hard disk at selected t values (the checkpoints) in the
forward integration. The sequence of u(x, t) between two checkpoints, which will be
short enough to store in the RAM, are computed (using the data on a checkpoint as
the initial condition) when the backward integration of ξ reaches the time interval
between the two checkpoints. Checkpointing thus incurs several passes of forward
integrations in one single backward integration. But it avoids having to read data at
every time step from the hard disk, which typically is a time consuming operation.
The technique can be optimized by choosing the checkpoints judiciously, although
we do not attempt to do so in this investigation. More details about checkpointing
can be found in, e.g. Wang, Moin & Iaccarino (2009).

3.3. The choices of computational parameters
We assume that the data Fv are available continuously, so that the forcing term in
(2.7) is applied at each time step. We assume the optimal solution is found when
J/J(u = 0) is less than a tolerance etot, where, according to (2.2), J(u = 0) is the
total kinetic energy of the measurement data Fv(x, t) (06 t 6 T). Due to our limited
computational resources, this investigation has used only 1283 grid points. However,
several values of T , km and etot are examined, and up to five realizations are run for
each set of parameters. The target data v(x, t) in different realizations are different
segments of the same time series of DNS data.
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FIGURE 5. The value of J/J(u= 0) as a function of iterations in one of the runs. Inset: a
zoom-in between the 20th and the 120th iterations. The jumps occur at the points where
the iterations have converged and T is extended.

Case T/τL km 104etot NR Case T/τL km 104etot NR

C1 1 4 2 5 C7 0.5 4 1 2
C2 1 4 1.5 2 C8 0.5 4 0.5 2
C3 0.5 2 2 2 C9 0.5 8 2 2
C4 0.5 2 1 2 C10 0.5 8 1 2
C5 0.5 2 0.5 2 C11 0.5 8 0.5 2
C6 0.5 4 2 5 — — — — —

TABLE 1. The parameters for the cases being investigated. NR is the number of
realizations. Case C1 is the baseline case with the parameters highlighted in bold.

The parameters are summarized in table 1. We consider T up to one large eddy
turnover time scale τL and resolutions of km = 2, 4 and 8. However, for T = τL, only
cases with km = 4 are reported for the following reasons. Firstly, for (T, km)= (τL, 2),
we failed to find convergent results (see the discussion of the results below for further
comments). Secondly, for (T, km)= (τL, 8), it turns out that the optimal solutions are
the same as those with (T, km)= (0.5τL, 8) with etot= 0.5× 10−4 (i.e. the cases with a
shorter T but more stringent tolerances). Therefore, the results for these two km values
have been omitted.

For (T, km) = (τL, 4), optimal solutions are found for etot = 2 × 10−4 in five
realizations (case C1). In each of these realizations, it took around 15 days to find
the optimal solution, using up to 48 G RAM and 4 cores on an Intel Ivybridge or
Westmere based CPU, with the optimal solutions from case C6 as the initial guess.
In two of the realizations, the optimal solutions are further improved by additional
iterations to reduce J/J(u= 0) below 1.5× 10−4 (case C2). The improvement required
approximately 15 more days of computer time. Given the significant computational
cost, we did not attempt to reduce the cost function further. On the other hand, for
T = 0.5τL, optimal solutions were obtained for etot = 10−4 and 0.5 × 10−4 in two
realizations for all three km values. The cost decreases rapidly initially, but further
improvement becomes very slow. Figure 5 plots the change of J/J(u = 0) in the
iterations for a run in case C6, which depicts this behaviour. The inset zooms into
the curve to show the change at later iterations. Abrupt jumps in J are observed
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FIGURE 6. The energy spectra for ϕu(x) (solid symbols) and ϕv(x) (empty symbols of
same shapes). (a) With different optimization horizons T (the dashed line shows the energy
spectrum of the initial guess for ϕu(x) in one of the realizations); (b) with different
tolerances etot; (c) with different measurement resolutions km; (d) with different tolerances
for km = 8.

when T is extended. In this run, the optimal solution for T = 0.5τL is found after
124 iterations. In each iteration, around 5 forward integrations are performed in
order to find the conjugate gradient direction. Taking backward integration into
account, 700–800 passes of integration are used, although we note that part of these
integrations are over shorter optimization horizons.

We consider case C1 (shown in bold in table 1) the baseline case. The comparison
between this and other cases will illustrate the effects of the resolution of the
measurement data km, the optimization horizon T and the tolerance etot. However,
the majority of results are presented only for the baseline case. The statistics are
averaged over all the realizations in each case.

3.4. The energy spectra and spectral correlation for different computational
parameters

The spectral distributions of u and v obtained with different computational parameters
are compared in this subsection. The purpose is to give an overview of the quality of
the reconstruction. More detailed investigation, focusing on the baseline case, will be
presented later. Symbols u and v in the subscripts or superscripts are used to denote
results from u (the reconstruction) and v (the target), respectively.

Figure 6 shows the energy spectra for ϕu and ϕv, which are plotted with solid and
empty symbols, respectively. The figure shows that a perfect match between ϕu and
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ϕv is obtained for k 6 km, as expected. Figures 6(a) and 6(b) show that, for km = 4,
ϕu under-predicts the spectrum for intermediate k and over-predicts it for large k.
Nevertheless, the spectra of ϕu broadly follow those of ϕv. The agreement does not
change much with T and etot for the ranges of the parameters we are considering.
Note that it is non-trivial to observe the fairly good agreement. The dashed line in
figure 6(a) plots the energy spectrum for the initial guess for ϕu(x), which shows
that the small scales in ϕu are not present in the initial guess and are generated by
the data assimilation process.

The resolution of the measurement data km has significant effects on Eu(k), as is
demonstrated in figure 6(c); Eu(k) for km= 2 essentially fails to capture the features of
Ev(k). On the other hand, the spectrum for km= 8 shows a similar level of discrepancy
as for km=4 at the high wavenumber end, which is somewhat surprising. Reducing the
tolerance to etot= 0.5× 10−4 does not improve the agreement, as shown in figure 6(d).

Since both u(x, t) and v(x, t) are solutions of the forced NSEs, their statistics
are expected to be the same for t→ T . It is interesting, however, to investigate the
instantaneous pointwise difference between u(x, t) and v(x, t) at a later time t for
t ∈ [0, T]. Two quantities are used to quantify the difference. The first one is the
energy spectrum for the velocity difference δu(x, t) = u(x, t) − v(x, t), denoted by
ED(k), and called the spectral difference. Obviously, a smaller ED(k) indicates better
match between u(x, t) and v(x, t), hence a better reconstruction. The second one is
the spectral correlation (i.e. normalized co-spectrum) between u and v, defined by

ρ̂uv(k)≡

∮
〈û∗(k, t) · v̂(k, t)〉 dSk

2
√

Eu(k)Ev(k)
. (3.2)

The pointed brackets in the numerator denote ensemble average whereas the integral
is a surface integral over the sphere |k|= k. By definition, 06 ρ̂uv 6 1, and a larger ρ̂uv

indicates better pointwise agreement between u and v. Note that ED(k) and ρ̂uv(k) both
depend on time t, although the dependence is not given explicitly in the expressions.

Figure 7 compares ED(k) and ρ̂uv(k) from different cases in various ways. Figures
7(a) and 7(b) show that, in cases C1 and C2, the pointwise agreement between u and
v improves over time within the optimization horizon; ρ̂uv reaches 0.8 or higher at
t= τL for all wavenumbers, whereas ED(k)/Ev(k) can be reduced down to 30 % even
for k= 40. Note that the measurement data contain approximately 83/2= 256 Fourier
modes, constituting less than 0.1 % of the Fourier modes in the whole flow field.

Figures 7(a) and 7(b) also show that imposing a smaller tolerance etot can lead to
significantly better agreement at later times, even if it is only marginally smaller (i.e.
1.5× 10−4 versus 2× 10−4). On the other hand, the effect is quite limited at earlier
times (e.g. at t = 0), where significant discrepancy between u and v is observed for
both etot. This observation is interesting, suggesting that the improvements at later
times are due to effects that are not completely revealed by ED(k) and ρ̂uv at earlier
times.

The effects of the optimization horizon T are investigated in figure 7(c), where
ρ̂uv for T = 0.5τL and T = τL is shown with empty and filled symbols, respectively.
The results for T = 0.5τL are shown for t = 0.25τL (squares) and 0.5τL (triangles).
Those for T = τL are shown for the same times and t = τL too. It is observed that
larger T improves the pointwise agreement, and the improvement increases over time.
The agreement, again, can be improved by imposing a smaller tolerance. Figure 7(d)
compares ρ̂uv at t = T for three etot values. For etot = 0.5 × 10−4, the correlation
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FIGURE 7. (a,b) Values of ED(k)/Ev(k) and ρ̂uv(k) at different times t for case C1 (solid
symbols) and case C2 (empty symbols), with (T, km)= (τL, 4) and etot= 2× 10−4 or 1.5×
10−4. (c) Value of ρ̂uv(k) for case C1 where T = τL (solid symbols) and case C6 where
T = 0.5τL (empty symbols). (d) Value of ρ̂uv(k) for different etot (cases C6, C7, C8; empty
symbols) at t = 0.5τL. Solid symbols: the result for case C1 as a comparison. (e) Value
of ρ̂uv(k) at t = 0.5τL for different km (cases C3, C6, C9). ( f ) Value of ED(k)/Ev(k) at
t= τL obtained from 4DVAR (case C1; triangles), from DS (squares) and from fifth-order
Lagrange interpolation (circles).

can be improved to approximately the same level obtained with a longer horizon
T = τL. Nevertheless, in order to obtain satisfactory agreement over the whole range
of wavenumbers, even smaller etot or T > 0.5τL is needed.

The parameter km affects the results strongly. Figure 7(e) plots ρ̂uv at t = T for
T= 0.5τL with km= 2, 4, 8. When km= 2, u shows little correlation with v. For km= 8,
almost perfect correlation is obtained. To understand these results, it is instructive to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

96
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.960


Reconstructing 3-D turbulence by 4DVAR 885 A9-17

compare the 4DVAR method with the DS method (Yoshida et al. 2005; Lalescu et al.
2013) (cf. § 1), which is shown in figure 7( f ). In Yoshida et al. (2005), the authors
integrate the NSEs with a Gaussian random field as the IC. The low wavenumber
modes with k 6 km in the solution u(x, t) are replaced by those in the target field
v(x, t) at each time step. They show that, if km > kc ≡ 0.2η−1

K , the small scales
in u(x, t) approach those in v(x, t) asymptotically as t→∞, assuming an infinite
sequence of data is available. In our investigation, the threshold wavenumber is
kc= 5 so km= 4 is slightly below kc, and the measurement data are available only for
t ∈ [0, T]. As a consequence, the DS scheme will only achieve partial reconstruction.
The reconstruction at t = τL using the DS scheme with km = 4 is compared with
the 4DVAR method in figure 7( f ). It shows that the 4DVAR method improves
the reconstruction significantly. A more simplistic reconstruction, obtained with a
fifth-order Lagrange interpolation, is also examined in figure 7( f ). The reconstruction
has essentially no correlation with the target field for k> km.

Figures 7(e) and 7( f ) together thus show that, for km approximately equal to or
greater than kc, 4DVAR can exploit a short time sequence of data to obtain better
(for km= 4) or almost perfect (for km= 8) reconstruction. For km much smaller than kc

(e.g. for km = 2), 4DVAR will fail. These results suggest that the threshold kc found
with the DS method is also valid for 4DVAR. Nevertheless, a more comprehensive
investigation is needed to confirm this preliminary observation. Simulations with other
km values around kc, as well as other Reynolds numbers, are needed. We leave this
investigation for the future.

3.5. Statistics of the reconstructed fields at t= 0
In this subsection, we examine other dynamically important statistics of the
reconstructed initial fields (i.e. ϕu(x)). We consider the cases with km = 4 only
and focus mostly on the baseline case C1 where T = τL, km = 4 and etot = 2× 10−4.
We conduct the analysis in the physical space, using the filtering approach where
necessary (cf. § 2.3). The Gaussian filter is used, and the filter scale ∆ is usually
taken as ∆m/2 or ∆m/4, where ∆m ≡ π/km is the equivalent filter scale associated
with km.

The joint PDFs of normalized Q and R are plotted in figure 8. The contours from
the target fields depict the well-known skewed teardrop shape with the Vieillefosse
tail extended in the fourth quadrant (Vieillefosse 1984; Cantwell 1992). Events in
the second and the fourth quadrants occur with higher probabilities. These features
are qualitatively reproduced by the contours of the reconstructed fields (dashed lines).
However, the Vieillefosse tail is shorter, and the probabilities for large excursions are
lower by a rather significant amount. The lowest contours for the reconstructions with
larger T and smaller etot ((a,b) and (c,d)) are closer to those for the target, although
the improvement is very small. Panel (b,d, f ) shows that the discrepancy is bigger
when the filter scale is smaller.

The mean strain rate, enstrophy and vortex stretching term, normalized by the
Kolmogorov time scale τK , are given in figure 9 as functions of the filter scale.
Not surprisingly, the differences between the results in the two fields are larger for
smaller filter scales. For 〈s̃ijs̃ij〉 and 〈ω̃iω̃i〉 the discrepancy is below 20 % for all filter
scales. The discrepancy for the stretching term however is much bigger. The latter
can be partially explained by the misalignment between ω̃i and s̃ij in ϕu, which is
shown in figure 10 with the PDFs for the cosines of the angles between ω̃i and the
eigenvectors of s̃ij. The results for ϕu display qualitatively correct features, i.e. a
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FIGURE 8. The joint PDF of Q∗ ≡ Q/〈ÃijÃij〉 and R∗ ≡ R/〈ÃijÃij〉
3/2: (a,c,e) ∆ = ∆m/2;

(b,d, f ) ∆=∆m/4. (a,b) Case C1; (c,d) case C2; (e, f ) case C6. Grey scales: from ϕv(x);
dashed lines: from ϕu(x).
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functions of filter scale ∆ from case C1. Filled and empty symbols: from ϕv(x) and ϕu(x),
respectively. The vertical line marks the scale where ∆=∆m.
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FIGURE 10. PDFs of |cosθ s
i | with θ s

i being the angle between ω̃ and es
α (diamonds), es

β

(squares) and es
γ (circles). Filled symbols: ϕv(x); empty symbols: ϕu(x). From case C1

and ∆=∆m/2.

preferred alignment between ω̃i and es
β , and the tendency for ω̃i to be perpendicular

to es
γ . However, the peaks of the PDFs are lower to a significant degree. Therefore,

the preferable alignment in ϕu is weaker, and this misalignment contributes to the
observed discrepancy in the vortex stretching term.

The mean SGS energy dissipation 〈Π∆〉 is shown in figure 11(a). The results
from ϕu display the same trends as those from ϕv. This result is a direct evidence
that the nonlinear interactions between different scales are partially reconstructed. At
∆ = ∆m/2 (∆/ηK ≈ 10), the value calculated from ϕu is smaller by approximately
25 %. The results for the two different T values show only very slight differences.
The PDFs for the normalized Π∆ are shown in figure 11(b). The well-known
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FIGURE 11. (a) The mean SGS energy dissipation 〈Π∆〉/ε as a function of ∆/ηK for
ϕv(x) (circles) and ϕu(x) from cases C1 (diamonds) and C6 (squares). The vertical line
corresponds to the ∆ = ∆m. (b) PDF of normalized Π∆ for ∆ = ∆m/2 (filled symbols)
and ∆=∆m/4 (empty symbols), from ϕv (circles) and ϕu (diamonds) for case C1.

positive skewness is captured by ϕu(x). The agreement on the positive tail is very
good, although the negative tail is under-predicted, meaning the reconstructed fields
under-predict the probability for instantaneous energy backscattering. Only the PDFs
for T = τL are shown, as the results with different T values have no discernible
differences.

The conditionally averaged SGS energy dissipation 〈Π∆|Q∗, R∗〉 has also been
calculated, where Q∗ ≡ Q/〈ÃijÃij〉 and R∗ ≡ R/〈ÃijÃij〉

3/2. Shown in figure 12 is
〈Π∆|Q∗, R∗〉 weighted by the joint PDF P(R∗, Q∗) and normalized by the mean
energy dissipation rate ε. The results from ϕv (a,d) show that higher SGS dissipation
is observed around the Vieillefosse tail where high straining motion happens. The
behaviour is reproduced qualitatively by ϕu, shown in (b,e) and in (c, f ) for T = τL
and 0.5τL, respectively. Negative SGS dissipation, representing energy backscattering,
is found mainly in the first quadrant, a feature also captured by ϕu. However, overall,
ϕu tends to underestimate the magnitude of the weighted SGS energy dissipation.
The results at ∆ = ∆m/2 are closer than those at ∆ = ∆m/4. There are some small
improvements with T = τL compared with T = 0.5τL.

To summarize, the results in this subsection demonstrate that ϕu(x) captures
the main statistical features of real turbulence with reasonable agreement. This is
the basis for the reconstruction of the instantaneous velocity fields at later times.
The discrepancy between ϕv(x) and ϕu(x), manifested by the several statistics we
considered, can be reduced slightly by extending the optimization horizon from
T = 0.5τL to T = τL or by using a smaller etot. Given the chaotic nature of the flow,
these small differences might be the explanation for the significant improvement
found at later time t→ T , as shown in § 3.4. This conjecture may be quantified by
calculating the sensitivities of the statistics although this is beyond the scope of this
paper.

3.6. Reconstruction of the instantaneous local structures for t→ T
For the reconstructed field u(x, t) at later times, it is expected that its statistics would
agree well with those in the target field v(x, t), for the simple reason that both are the
stationary solutions of the NSEs. However, there is no a priori reason to assert that
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FIGURE 12. The normalized weighted conditional average of the SGS energy dissipation
ε−1P(R∗,Q∗)〈Π∆|R∗,Q∗〉. (a,d) from ϕv; (b,e) from ϕu in case C1; (c, f ) from ϕu in case
C6. (a–c) ∆=∆m/2; (d–f ) ∆=∆m/4.

the u(x, t) would have pointwise agreement with v(x, t). The pointwise differences
have been examined briefly using ED(k) and ρ̂uv(k) in § 3.4 to demonstrate the effects
of the choices of computational parameters. In this subsection, the baseline case C1
(cf. table 1) is examined in further detail. Note that time t is now another parameter.
We usually choose t = T . However, when comparing results with different T values,
other values of t are also used.

3.6.1. Geometry of the local structures
The instantaneous difference in the geometrical structures of the reconstructed fields

u and the target fields v is first investigated. The first quantity we examine is the
‘cross-alignment’ between the vorticity in v (ω̃v

i ) and the eigenvectors of the strain
rate tensor in u (s̃u

ij). The alignment is measured by the joint PDF of cos θωsp and φωsp,
where the angles define the orientation of ω̃v

i in the eigenframe of s̃u
ij (cf. figure 1).

The joint PDF is shown with grey scale contours in figure 13. The joint PDF for the
usual alignment between ω̃v

i and s̃v

ij, both from v, is plotted with dashed lines as a
comparison. Figure 13(a,d) shows that the joint PDF for ω̃v

i and s̃u
ij is very close to

the one for ω̃v
i and s̃v

ij for both ∆=∆m/2 and ∆m/4. Both joint PDFs display a high
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FIGURE 13. The joint PDFs of (cos θωsp, φ
ω
sp) for angles between ω̃v

i and s̃u
ij (grey scales)

and those between ω̃v
i and s̃v

ij (dashed lines). (a–c) ∆=∆m/2; (d–f ) ∆=∆m/4. (a,d) t=T
for case C1; (b,e) t= 0.5T for case C1; (c, f ) t= T for case C6.

peak around (0, 0), which shows the well-known preferred alignment of the vorticity
vector with es

β in turbulence. The peak probability density for the cross-alignment is
only slightly lower. However, the fact that replacing s̃v

ij by s̃u
ij still yields a close joint

PDF proves that the instantaneous orientations of the eigenvectors of s̃u
i and s̃v

ij are
very close to each other. Same behaviours are observed for the results in (b,e), where
the results at an earlier time t= T/2 for the same T = τL are shown. The joint PDFs
display only slightly larger discrepancy. The result obtained with a shorter horizon
T = 0.5τL, given in (c, f ), shows much larger discrepancy, as the highest level contour
is much smaller even though the location of the peak is correctly found at (0, 0).

Figure 14 considers the cross-alignment between ω̃v
i and the eigenvectors of −τ d,u

ij .
The dashed lines show the joint PDF for the usual alignment in v. The two peaks of
the joint PDF depict the known feature in turbulence, where ω̃i tends to align with
eτα and eτβ . The cross-alignment between ω̃v

i and −τ d,u
ij qualitatively reproduces these

features. The results at ∆=∆m/2 show excellent quantitative agreement, although the
discrepancy becomes larger for ∆=∆m/4. The comparison at t= 0.5τL for T = 0.5τL
and τL is not shown, because it simply confirms our expectation that the results with
a smaller optimization horizon T display larger discrepancy.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

96
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.960


Reconstructing 3-D turbulence by 4DVAR 885 A9-23

ƒø
sp

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6

cos œø
sp

0.8

2.5

2.0

1.5

1.0

0.5

0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6

cos œø
sp

0.8

2.5

2.0

1.5

1.0

0.5

0

(a) (b)

FIGURE 14. The joint PDFs of (cos θωsp, φ
ω
sp) for angles between ω̃v

i and −τ d,u
ij (grey scales)

and those between ω̃v
i and −τ d,v

ij (dashed lines), for ∆=∆m/2 (a) and ∆m/4 (b) with t=T
in case C1.

0.3

0.3

0.3

3

3

30

0.
3

0.3

3
3 30

0.3
0.

33

0.3
0.3

0.3

3

3

30

0.
3

0.3

3
3 30

0.3

0.
3330

0.3
0.3

0.3

0.3

3

3

0.
3

0.3

0.3

3
3

0.3

0.
33

ƒs,i
sp

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
cosœs,i

sp cosœs,i
spcosœs,i

sp

(a) (b) (c)

FIGURE 15. The joint PDF of (cos θ s,i
sp , φ

s,i
sp ) for angles made by es,u

i in the eigenframe
of s̃v

ij. (a) ∆ = ∆m/2 and t = T from case C1; (b) ∆ = ∆m/4 and t = T from case C1;
(c) ∆=∆m/2 and t= T for case C6. Solid lines: i= α; dashed lines: i= β; dotted lines:
i= γ . The contour levels are 0.3, 3 and 30.

The tensorial structures of s̃u
ij and s̃v

ij are compared using the orientation of the
eigenvectors of the former in the eigenframe of the latter. The alignment is given in
figure 15(a) for ∆ = ∆m/2 and T = τL, in term of the joint PDFs of (cos θ s,i

sp , φ
s,i
sp ),

where θ s,i
sp and φs,i

sp are the angles made by es,u
i in the eigenframe of s̃v

ij (cf. figure 1).
According to the definitions of the angles, perfect alignment between es,v

α and es,u
α

corresponds to cos θ s,α
sp = 1 and an undetermined φs,α

sp . The solid lines in figure 15
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FIGURE 16. The joint PDF of (cos θ τ ,isp , φ
τ ,i
sp ) for angles made by eτ ,ui in the eigenframe

of −τ d,v
ij . (a) ∆=∆m/2 and t= T from case C1; (b) ∆=∆m/4 and t= T from case C1;

(c) ∆=∆m/2 and t= T from case C6. Solid lines: i=α; dashed lines: i=β; dotted lines:
i= γ . The contour levels are 1, 4 and 16.

show a sharp ridge of peak values at cos θ s,i
sp = 1, which indicates that es,v

α and es,u
α

are strongly aligned. Perfect alignment between es,v
β and es,u

β corresponds to a peak at
(0, 0), whereas the perfect alignment between es,v

γ and es,u
γ corresponds to a peak at

(0, π/2). The joint PDFs in these two cases (shown with dashed and dotted lines,
respectively) indeed display high peak probabilities around these points. Therefore,
these joint PDFs demonstrate excellent agreement between the orientations of s̃u

ij and
s̃v

ij. The results at ∆=∆m/4 given in (b) show that strong alignment persists to smaller
filter scales. The joint PDFs obtained with T = 0.5τL, shown in (c), have much weaker
peaks, indicating a larger discrepancy in the orientation of the two tensors.

Figure 16 plots the same statistics as those in figure 15, but for the SGS stress
tensors −τ d,v

ij and −τ d,u
ij . The observations made from figure 15 are also observed in

figure 16, except that the alignment shown in the latter is in general somewhat weaker.

3.6.2. Correlations
We will look into the covariance and the correlation coefficients in this subsection.

For two random variables X and Y , they are denoted by C(X, Y) and ρ(X, Y),
respectively. By standard definitions,

C(X, Y)≡ 〈(X − 〈X〉)(Y − 〈Y〉)〉, ρ(X, Y)≡
C(X, Y)
σXσY

, (3.3a,b)

where σX≡
√

C(X, X) is the r.m.s. value of X and σY is defined similarly. The physical
quantities in u(x, t) and v(x, t) will be denoted with superscripts u and v, respectively.
The difference in X is quantified by the r.m.s. value of Xu

− Xv, σXu−Xv , which will
be normalized by the r.m.s. value of X in the target fields σXv .

Figure 17(a) shows ρ(Xu, Xv), where X ≡ s̃ijs̃ij. The correlation deteriorates with
decreasing filter scale, but improves with t/T for t within the optimization horizon.
Excellent correlation across all scales is achieved at t/T = 1 for T = τL. The difference
in X = s̃ijs̃ij is also examined in the right panel in terms of the r.m.s. value of
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FIGURE 17. The correlation coefficient ρ(Xu, Xv) (a) and the normalized r.m.s. value of
Xu
− Xv (b) as a function of ∆/ηK , where X = s̃ijs̃ij. Solid symbols: from case C1; open

symbols: from case C6. Circles: t= 0; upright triangles: t= 0.5τL; left-pointing triangles:
t= τL (for case C1 only). Right-pointing solid triangles: from the DS method at t= τL for
km = 4. The vertical line marks the scale ∆=∆m.
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FIGURE 18. (a) The normalized r.m.s. values of the differences Xu
− Xv from case C1,

where X ≡ s̃ijs̃ij (circles), ω̃iω̃i (squares), Pω(≡ s̃ijω̃iω̃j) (diamonds) and Π∆ (triangles),
respectively. (b) The correlation coefficients ρ(Xu, Xv) from case C1. The vertical line
marks the scale ∆=∆m.

Xu
− Xv normalized by the r.m.s. value of Xv. For t = T = τL, the value can be

reduced to approximately 27 % at the Kolmogorov scale where ∆/ηK ≈ 1. For
results from the DS method (right-pointing solid triangles), the correlation ρ at the
smallest ∆/ηK is approximately 70 % and the r.m.s. difference is approximately 80 %,
indicating significantly higher discrepancy. This contrast is consistently observed in
other statistics. Therefore, we will not present more results from the DS method.

The values of σXu−Xv/σXv and ρ(Xu, Xv) for X = ω̃iω̃i, Pω and Π∆ are plotted in
figure 18, where the results for s̃ijs̃ij are also given as comparison. For all quantities,
almost perfect correlation is observed. The r.m.s. difference for ω̃iω̃i is similar to s̃ijs̃ij,
both reaching approximately 27 % at the Kolmogorov scale where ∆/ηK ≈ 1. The
discrepancy for Π∆ and Pω is somewhat larger with the normalized r.m.s. difference
found at approximately 35 % at the smallest filter scale.
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FIGURE 19. The cumulative distribution functions for the normalized differences |Xu
−Xv
|

from case C1, where X = s̃ijs̃ij (circles), ω̃iω̃i (squares), Pω ≡ s̃ijω̃iω̃j (diamonds) and Π∆

(triangles). Filled symbols: ∆=∆m/2; empty symbols: ∆=∆m/4. The vertical line marks
the 20 % threshold.

3.6.3. Joint PDFs and conditional statistics
To examine the large fluctuations in the differences between the target and

reconstructed parameters, we look into the joint PDFs and conditional statistics in this
subsection. Figure 19 plots the cumulative distribution functions for the normalized
differences. The results for both ∆ = ∆m/2 and ∆m/4 are given. The vertical line
indicates an arbitrarily chosen 20 % threshold. The probabilities at ∆ = ∆m/4 are
slightly lower than those at ∆m/2, and those for s̃ijs̃ij are slightly lower than those
for the other quantities. The probability of observing a less than 20 % difference
ranges from 75 % to 90 % for different quantities.

The conditional and joint statistics, e.g. the average of Xu conditioned on Xv and the
joint PDF of the two, are presented next. Figure 20(a) shows the results for X ≡Π∆

with ∆=∆m/4. For a perfectly reconstructed field, the conditional average will fall on
the diagonal (dotted line). Therefore, the figure shows that Πu

∆ slightly underestimates
the magnitude of Π v

∆, and the underestimate increases slightly with the magnitude of
Π v
∆. Nevertheless, the agreement is very good. The joint PDF does concentrate around

the diagonal, although there is significant scattering. The scattering is indicated by the
error bars, which represent ±σΠu

∆|Π
v
∆
/〈Π v

∆〉 with σΠu
∆|Π

v
∆
≡ [〈(Πu

∆)
2
|Π v

∆〉− 〈Π
u
∆|Π

v
∆〉

2
]

1/2

being the conditional r.m.s. value of Πu
∆. The error bar increases mildly with the

magnitude of Π v
∆. Figure 20(b) plots the same results for Pω≡ s̃ijω̃iω̃j. The results for

enstrophy and strain rate are shown in figure 21. Good agreement is also observed for
these quantities. The error bars are slightly larger for Pu

ω and ω̃u
i ω̃

u
i , compared with

the other two quantities.

3.7. Reconstruction of non-local structures
Figure 2 has shown that the shapes, orientations and locations of the strong vortices
in the reconstructed field can be remarkably similar to those in the target field. We
quantify the similarity of the vortical and other structures using MVEEs and MVEE
trees in this subsection.
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FIGURE 20. (a) The averaged Π∆ in u(x, t) conditioned on Π∆ in v(x, t) (circles) and
the joint PDF of the two (contours). The error bars are the conditional r.m.s. values of
Πu
∆/〈Π

v
∆〉. (b) The same for Pω. For case C1 with ∆=∆m/4 and t= T .
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FIGURE 21. Same as figure 20 but for s̃ijs̃ij (a) and ω̃iω̃i (b).

3.7.1. Vortical structures
The calculation of MVEEs have been explained in § 2.4. Let the directions of the

axes of an MVEE be denoted by ei (i= α, β, γ ), and the length of axis i be denoted
by `i. The indices α, β and γ denote the major, intermediate and the minor axes,
respectively, so that `α > `β > `γ . As before, the parameters in the target fields are
indicated by superscript/subscript v and those in the reconstructed fields by u.

We now consider strong vortical structures where ω̃ > 3〈ω̃iω̃i〉
1/2 with filter scale

∆ = ∆m/2 and ∆m/4. As it turns out, the number of isolated structures in a field
may be too large to process. If this happens, only the largest Ns ≡ 10 structures in
the target v and their matching structures in u are used. Only the data in the five
realizations of case C1 are analysed. There are thus in total Ne ≡ 5Ns = 50 pairs of
matching MVEEs at each time step. As the number of samples is modest, medians
instead of means are used to delineate the average behaviours, because the former is
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FIGURE 22. The median R of the ratio between the numbers of grid points in two
matching structures (circles with thick line). The green thin lines show the medians in
different size groups. (a) ∆=∆m/2; (b) ∆=∆m/4. From case C1.
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FIGURE 23. The normalized histograms of `u
i /`

v
i for i = α (a,d), i = β (b,e) and i = γ

(c, f ), with ∆=∆m/2 (a–c) and ∆=∆m/4 (d–f ). From case C1 with t= T .

less sensitive to extraneous fluctuations. Additional details are given by percentiles and
histograms.

Figure 22 compares the sizes of the vortical structures in u and v in terms of
R, which is the median of the ratio between the numbers of grid points in the two
matching vortices. There are Ns = 10 groups of vortices of different sizes. The thick
line with filled circles shows R calculated over all Ns = 10 groups, whereas the thin
lines with empty circles show R in each group separately. The figure shows that the
vortices in u tend to be smaller initially, the median ratio being only approximately
10 %. However, it increases quickly, reaching 90 % at t/T ≈ 0.5 and approximately
1 at the end of the optimization horizon. The same behaviour is observed at two
filter scales. The thin lines show that there is significant statistical variation between
different groups.

The sizes can also be measured with the lengths of the axes of the MVEEs.
Figure 23 plots the histograms of the ratios of the axes in u to those in v at t/T = 1
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FIGURE 24. The medians (empty symbols) and the 80th percentiles (solid symbols) of
|`u

i − `
v
i |/`

v
i (i = α, β, γ ) for the MVEEs of matching vortices. Circles: i = α; squares:

i= β; diamonds: i= γ . (a) ∆=∆m/2; (b) ∆=∆m/4. From case C1.

for case C1. The results are consistent with figure 22. The peaks of the histograms
show that 80 % of the axes of the MVEEs in u fall within ±10 % of those in v.

The median and 80th percentile for |`u
i − `

v
i |/`

v
i (i.e. the relative error in the lengths

of the axes) are shown in figure 24 for two filter scales. Both values decrease over
time. At t/T = 1, the median is reduced down to somewhere between 5 % and 10 %,
i.e. for approximately half of the MVEEs, the relative error in the length of the axes
is less than 5 %–10 %. The result for the 80th percentile shows that, for 80 % of the
MVEEs the relative error is below 10 %–15 %. The difference between different axes
is very small.

The alignment between ev
i and eu

i is examined in figure 25, where the histograms
of |cos(ev

i , eu
i )| are plotted (t/T = 0, 1/2, 1 from left to right, respectively). The ith

axes of the matching MVEEs would align perfectly if |cos(ev
i , eu

i )| = 1. Initially, the
correct alignment between the axes is visible, but the peaks are not strong. Perfect
alignment develops quickly. The histograms at t/T = 1/2 and 1 basically concentrate
around 1. In figure 26, the medians and the 20th percentiles of the cosines are plotted
for two filter scales. In both cases, |cos(ev

i , eu
i )|> 0.95 is observed at t/T = 1 for the

20th percentiles for all axes, which corresponds to angles smaller than 18◦. Therefore,
only 20 % of samples have a misalignment angle bigger than 18◦.

Figures 27 and 28 compare the locations of the MVEEs. The quantity being
examined is dc,i/`

v
i (i = α, β, γ ), where dc,i ≡ |(cv

− cu) · ev
i | is the displacement

between the centres of the MVEEs in the direction of ev
i . Thus, dc,i/`

v
i is the

displacement relative to the lengths of the axes of the MVEE in v. The median and
the 80th percentile of dc,i/`

v
i are given in figure 27. The 80th percentile is quite large

initially, but decreases quickly over time. For ∆=∆m/2, the relative displacement at
t/T = 1 is less than 10 % for the 80th percentiles, and less than 5 % for the medians.
For ∆=∆m/4, the displacement is slightly larger, but is still less than 15 % for the
80th percentile.

3.7.2. Straining structures and SGS energy dissipation structures
The MVEEs are used in this subsection to investigate the strain rate and the SGS

energy dissipation rate. As the results show behaviours similar to those for the vortical
structures, only selected results are presented. For the strain rate, the structures with
(s̃ijs̃ij)

1/2 > 2.5〈s̃ijs̃ij〉
1/2 are considered. For Π∆, we examine both structures with large
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FIGURE 25. The histograms of |cos(ev
i , eu

i )| for i= α (a–c), i= β (d–f ) and i= γ (g–i),
at t/T = 0 (a,d,g), 1/2 (b,e,h), and 1 (c, f,i). From case C1 with ∆=∆m/2.
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FIGURE 26. The medians (empty symbols) and the 20th percentiles (solid symbols) of
|cos(ev

i , eu
i )| (i = α, β, γ ) for the MVEEs of matching vortices. Circles: i = α; squares:

i= β; diamonds: i= γ . (a) ∆=∆m/2; (b) ∆=∆m/4. From case C1.

positive values and those with large negative values. The latter represent the regions
where backscattering happens. These structures are defined by Π∆>10〈Π∆〉 and Π∆6
−2.5〈Π∆〉, and are referred to as P+ and P− structures, respectively.
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FIGURE 27. The medians (empty symbols) and the 80th percentiles (solid symbols) for
dc,i/`

v
i (i = α, β, γ ) for the MVEEs of matching vortices. Circles: i = α; squares: i = β;

diamonds: i= γ . (a) ∆=∆m/2; (b) ∆=∆m/4. From case C1.
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FIGURE 28. The normalized histograms of dc,i/`
v
i for i= α (a), i= β (b) and i= γ (c),

from case C1 with t/T = 1 and ∆=∆m/2.
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FIGURE 29. The median R of the ratio between the numbers of grid points in two
matching structures (circles with thick line). The green thin lines show the medians in
different size groups. (a) For straining structures; (b) for structures with large positive
Π∆; (c) for structures with large negative Π∆. From case C1 with ∆=∆m/4.

Figure 29 shows the sizes of the reconstructed structures using the median ratio
R. The reconstructed structures tend to be quite small initially, but the discrepancy
decreases over time quickly, similar to the results for vortical structures in figure 22.
At t/T = 1, all curves level off at approximately 1. The sizes for the P− structures
need a longer time to improve.
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FIGURE 30. The medians (empty symbols) and the 20th percentiles (solid symbols) of
|cos(ev

i , eu
i )| for straining structures (a), structures with large positive Π∆ (b) and structures

with large negative Π∆ (c). Circles: i= α; squares: i= β; diamonds: i= γ . From case C1
with ∆=∆m/4.
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FIGURE 31. The medians (empty symbols) and the 80th percentiles (solid symbols) of
|`v

i − `
u
i |/`

v
i for straining structures (a), structures with large positive Π∆ (b) and structures

with large negative Π∆ (c). Circles: i= α; squares: i= β; diamonds: i= γ . From case C1
with ∆=∆m/4.
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FIGURE 32. Same as figure 31, but for the relative displacement dc,i/`
v
i .

The medians and selected percentiles for alignment cosine |cos(ev, eu)|, relative
difference in axis length |`u

− `v
|/`v and relative displacement dc/`

v are plotted in
figures 30–32. For both straining and P+ structures, excellent alignment is observed at
t/T = 1, with the medians and the 20th percentile being mostly above 0.9 (figure 30).
The medians and 80th percentiles for |`u

− `v
|/`v and dc/`

v are found to be
around 5 % and 15 %, respectively, at t/T = 1, similar to those for the vortical
structures (figures 31 and 32). For P− structures, however, the results show stronger
discrepancies between v and u. For the alignment at t/T = 1, the medians still
reach above 0.9. However, the 20th percentile result for the intermediate axis is only
approximately 0.7 (cf. figure 30). The medians and 80th percentiles for |`u

− `v
|/`v
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FIGURE 33. (a) Median of RV , the ratio of the volume of a structure to the volume of
its convex hull at different levels. Circle: for u; squares: for v. (b) The median of `α/`γ
(solid symbols) and `α/`β (empty symbols) at different levels. Circle: for u; squares: for v.
For strongly non-convex vortical structures only. For case C1 with t/T = 1 and ∆=∆m/2.

and dc/`
v are found at 10 % and 20 %, respectively. These values are slightly higher

than those for the other two structures (see figures 31 and 32).

3.7.3. MVEE trees for vortical structures
The analyses so far have examined the overall sizes, orientations and locations

of the non-local structures as defined by their MVEEs. For strongly non-convex
structures, the MVEEs do not provide full descriptions. These structures are further
examined with the MVEE trees in this sub-section (cf. § 2.4). Note that, if two
MVEEs are significantly different (e.g. seriously misaligned), the difference between
their sub-MVEEs will only be bigger. Therefore, this analysis is meaningful mainly
for matching structures whose MVEEs are in good agreement; it provides a more
detailed comparison for these structures. We will limit our discussion to vortical
structures, as the results for other structures are similar, and only the structures
at t = T for the baseline case C1 are investigated. The analysis is applied to the
non-convex vortical structures with RV 6 0.8, where RV is the ratio of the volume of
a structure to the volume of its convex hull (cf. § 2.4). Five pairs of matching vortical
structures are found in each realization, and 25 pairs in total from 5 realizations. Two
splittings are used to find the sub-MVEEs (cf. § 2.4) so that 3 levels of sub-MVEEs
are calculated: levels 0, 1 and 2, which will be referred to as the L0, L1 and L2
sub-MVEEs; L0 sub-MVEEs are the same as the MVEEs already presented.

The geometries of the sub-structures at different levels are different. Figure 33
displays the difference in two aspects. The median of RV (panel a) shows that RV

is larger at higher levels. Therefore, the sub-structures at higher levels are closer to
their convex hulls. Panel (b) shows the median of the ratio of the lengths of the axes
for the sub-MVEEs. The ratio is smaller for a higher level. The implication is that
the sub-structures are rounder than their parent structures.

The alignment results for the sub-MVEEs are given in figure 34. The five curves in
the figure (the spaces between the curves are filled with different shades of grey) are
the 10th, 20th, 30th, 40th and 50th percentiles. The values for the L0 sub-MVEEs
are close to those in figure 26, although they are not exactly the same since, here,
only strongly non-convex structures are considered. For the major axes (shown in (a)),
the alignment becomes weaker at higher levels, since a given percentile decreases
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FIGURE 34. The percentiles for |cos(ev
i , eu

i )| (i=α,β, γ ) for MVEEs of matching vortices
and their sub-MVEEs. From bottom: the 10th, 20th, 30th, 40th and 50th percentiles. The
dashed lines highlight the 20th and 50th percentiles. From case C1 with t/T = 1 and
∆=∆m/2.

as the level number increases. For example, the 20th percentile is nearly 1 at L0
and approximately 0.85 at L2. This means that 80 % matching L0 sub-MVEEs align
almost perfectly, while we are only able to say the major axes of 80 % matching
L2 sub-MVEEs are aligned to within 32◦, corresponding to |cos(eu

α, ev
α)|> 0.85. The

50th percentile for L2 is also nearly 1, indicating a near perfect alignment is still
observed for more than a half of matching sub-MVEEs. On the other hand, the 10th
percentile drops quite significantly at L2. This shows that, although the MVEEs for
these matching structures indicate very good agreement in their overall shapes, the
compositional parts of these structures do differ quite substantially. This happens for
approximately 10 % of the matching structures. For the intermediate (panel b) and
minor axes (panel c), similar behaviours can be observed, although the variation with
respect to the levels is somewhat more complicated. However, even at the highest
level (L2), the 20th percentile is still almost 1 for the minor axes, and 0.8 for the
intermediate axes. Thus, very good alignment is observed for more than 80 % of
samples.

There are several competing factors that affect the alignment of the sub-MVEEs.
The higher level sub-structures are smaller and are closer to being convex (cf.
figure 33a). As such, the orientations of the sub-MVEEs are less sensitive to the
details of the shapes, so that it is easier to obtain better alignment. On the other
hand, the misalignment has a cumulative effect. That is, the misalignment between the
sub-MVEEs at a lower level naturally affects the alignment between those at higher
levels. Furthermore, higher level structures tend to be rounder (cf. figure 33b). This
too increases the chance of misalignment at higher levels, because small perturbations
to a sphere could lead to ellipsoids with very different axis directions. The competition
of these mechanisms may lead to the observed non-monotonic behaviour. For the
same reason, misalignment between the MVEEs does not necessarily imply a large
deviation in the shapes of the structures.

The relative displacement of the sub-MVEEs is presented in figure 35, which
shows higher percentiles increase quicker with the level numbers (see, e.g. the 80th
percentiles). This is likely due to the cumulative effect of displacement. The curves
for smaller percentiles (which correspond to cases with small relative displacements)
are rather flat. Therefore, if the matching MVEEs are located close to each other,
so are their sub-MVEEs. Quantitatively, the 50th percentiles at L2 are approximately
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FIGURE 35. The percentiles for dc,i/`
v
i (i=α, β, γ ) for MVEEs of matching vortices and

their sub-MVEEs. From bottom: the 10th to 100th percentiles with increments of 10 %.
The dashed lines highlight the 50th and 80th percentiles. For case C1 with t/T = 1 and
∆=∆m/2.
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FIGURE 36. Same as figure 35 but for the percentiles of |`v
i − `

u
i |/`

v
i (i= α, β, γ ).

0.08, 0.07 and 0.06 for the major, intermediate and minor axes, respectively. Thus, in
approximately 50 % of cases, the relative displacement is less than 8 %, 7 % and 6 %
in the major, intermediate and minor axis directions, respectively. Figure 36 plots the
relative difference in the lengths of the axes. For this quantity, the relative differences
at L2 and L0 are not much different; the median value is found to be approximately
5 %. It is probably not surprising since there is no cumulative effect for the lengths
of the axes.

To summarize, we observe that, if the matching MVEEs are already close to each
other, their sub-MVEEs also show good agreement in orientations, sizes and locations.
Therefore, the description provided by the MVEEs might already be enough in some
applications.

4. Discussion and conclusions
The four-dimensional variational method has been used to reconstruct the small

scales of a sequence of 3-D Kolmogorov turbulent velocity fields with a moderate
Reynolds number. Velocity on a coarse grid from a time sequence of direct numerical
simulation velocity fields is used as the measurement data. We focus on the
reconstruction of instantaneous distributions of the small scales, and present detailed
assessment at scales one and two octaves smaller than the measurement grid. In
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terms of Fourier modes, the number of modes contained down to these scales are
eight and sixty-four times of those in the measurement grid, respectively. The filtered
vorticity ω̃i, filtered strain rate tensor s̃ij, the vortex stretching term s̃ijω̃iω̃j and the
subgrid-scale energy dissipation P∆=−τijs̃ij are used to characterize the small scales.
In order to quantitatively assess the reconstruction of non-local structures, minimum
volume enclosing ellipsoids and MVEE trees are introduced. A method to apply these
objects in the analysis is proposed and applied to the 4DVAR data.

Different parameters are tested, including the resolution of the measurement data
km, the tolerance for the convergence test etot and the optimization horizon T; km has
the most significant effects on the reconstruction. In reference to the threshold value
kc = 0.2η−1

K found previously in the literature with a direct substitution method, the
reconstruction failed when km is significantly smaller than kc. Accurate reconstruction
is found for km slightly smaller than kc. Although more research is needed to
prove that the threshold value is the same in 4DVAR, these results demonstrate that
reconstruction from a finite time sequence of data using 4DVAR can be accomplished
for km at or above the threshold value kc.

The reconstructions at the initial time t = 0 and at the end of the optimization
horizon t= T are examined separately for the successful cases. Larger T and smaller
etot improve the reconstruction at t = T . For T equal to the large eddy turnover
time scale, accurate reconstruction at scales at least two octaves smaller than the
measurement grids is obtained for a range of quantities. The main findings are
summarized as follows, where approximate numbers are quoted to give an estimate
of the efficacy of the method:

(i) The reconstruction achieves higher than 95 % pointwise correlation for the filtered
enstrophy and the other parameters. The spectral correlation for velocity is higher
than 80 % across the spectrum. The normalized r.m.s. pointwise difference and
the normalized spectral difference increase towards the small scales, and reaches
approximately 30 % at the Kolmogorov scale.

(ii) The non-local structures are reconstructed accurately. For most quantities, the
misalignment is less than 15◦ for the majority of the samples, the sizes differing
within ±10 %, and the locations displaced by less than 15 % of the lengths of
the axes. The structures with strong negative SGS energy dissipation have slightly
larger errors.

(iii) A direct substitution scheme provides much poorer reconstruction, where the
r.m.s. pointwise difference is approximately three times as big for the filtered
enstrophy, and is almost ten times as big in terms of the spectral difference of
the velocity fields. Meanwhile, Lagrangian interpolation is simply not feasible.

The reconstruction at t = 0 can capture the qualitative features of the small scales
in turbulence, including a qualitatively correct energy spectrum and mean SGS energy
dissipation. However, significant discrepancy exists and the agreement is improved
very little by tuning the optimization horizon or the tolerance. A plausible explanation
is that our optimal solutions have not truly converged. Due to the high computational
costs, we have not been able to further improve the solution by using even smaller
etot. Given the chaotic nature of the flow, it is challenging to obtain convergent results
if T is significantly larger or etot is much smaller.

This study confirms the efficacy of the 4DVAR scheme, and demonstrates that
MVEEs and MVEE trees can provide useful information about non-local structures for
computational fluid dynamic simulations with data assimilation when the prediction of
the instantaneous velocity field is one of the main interests. As the application of data
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assimilation to computational fluid dynamics is still in an early stage, many questions
remain open. Most importantly, the Reynolds number for the flow considered here
is relatively low. The natural next step is to investigate the quality of reconstruction
when coarse-grained models (such as large eddy simulations) are used to model the
data. This will allow us to investigate flows with higher Reynolds numbers. To obtain
better converged results, a better understanding of the behaviour of the adjoint fields
is useful. These questions are the focus of our ongoing research.
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