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A numerical investigation is conducted on the flow around and vibration response
of an elastic square cylinder (side width D) in the wake of a stationary cylinder at
Reynolds numbers of Re= 100 and 200 based on D and the free-stream velocity. The
downstream cylinder, referred to as the wake cylinder, is allowed to vibrate in the
transverse direction only. The reduced velocity Ur is varied from 1 to 30. Cylinder
centre-to-centre spacing ratios of L∗(=L/D)= 2 and 6 are considered. Simulations are
also conducted for a single isolated cylinder, and the results are compared with those
for the wake cylinder. The focus is given to vibration response, frequency response,
fluctuating lift force, phase relationship between the lift and displacement, work
done and the flow structure modification during the cylinder vibration. The results
reveal that the dependence of the Strouhal number St on Ur can distinguish different
branches more appropriately than that of the vibration amplitude on Ur. The vibration
response of the single cylinder at Re= 100 is characterized by the initial, lower and
desynchronization branches. On the other hand, that at Re = 200 undergoes initial,
lower and galloping branches. The galloping involves the characteristics of both
the initial and the lower branches or the initial and the desynchronization branches
depending on Ur. For the wake cylinder, the gap flow has a significant impact on
the vibration response, leading to (i) the absence of galloping at either Re and L∗,
(ii) the presence of an upper branch at Re = 200, L∗ = 6 and (iii) an initial branch
of different characteristics at Re= 100, L∗ = 6. The different facets are discussed in
terms of wake structures, work done and phase lag between lift and displacement.

Key words: flow–structure interactions, vortex shedding, wakes

1. Introduction
Square-sectioned structures are common in many engineering applications such as

bridges, offshore platforms, high-rise buildings, and so on. The study of flow-induced
vibrations (FIV) of these structures has great importance, especially in assessing the
stability of the structures. Alternating vortex shedding and associated fluid–structure
interactions generate periodic fluctuating forces on the surfaces of structures, resulting

† Email addresses for correspondence: alam@hit.edu.cn, alamm28@yahoo.com

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

57
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0001-7937-8556
mailto:alam@hit.edu.cn
mailto:alamm28@yahoo.com
https://doi.org/10.1017/jfm.2018.573


302 R. Bhatt and Md. M. Alam

in self-excited vibrations. Vortex-induced vibration (VIV) and galloping are the
most common self-excited vibration phenomena. Vortex-induced vibration occurs
when the shedding frequency locks in to the structural natural frequency, while
galloping vibration, in general, takes place with the shedding frequency higher or
lower (Nakamura & Matsukawa 1987; Nakamura & Hirata 1991) than the structural
natural frequency. Flow-induced vibrations have attracted widespread attention in the
past decades, involving many independent parameters, e.g. mass ratio m∗, damping
ratio ζ , natural frequency fn, Reynolds number Re, reduced velocity Ur, structure
shape, turbulent intensity, etc. In most previous studies on flow-induced vibrations
of cylinders, Ur is treated as an independent parameter (Singh & Mittal 2005; Zhao,
Cheng & Zhou 2013), while in some other studies, Ur is regarded as a function
of Re (Singh & Biswas 2013; Sen & Mittal 2015). The Reynolds number involves
the flow velocity, fluid properties and structure dimension. On the other hand, Ur
integrates the flow velocity, structure dimension and structure elasticity. The Reynolds
number and Ur are, therefore, functions of each other. As such, given the same Ur
ranges, the vibration response characteristics may be different in different Re ranges
(e.g. Barrero-Gil, Sanz-Andres & Roura 2009; Kumar, Sing & Sen 2018).

In order to understand the relationship between the flow structure, structural
vibration amplitude and vibration frequency, forced vibration tests of a cylinder
(square/rectangular) were conducted by, e.g., Nakamura & Mizota (1975), Bearman &
Obasaju (1982) and Singh et al. (2009). Nakamura & Mizota (1975) experimentally
examined the lift and wake of a square cylinder given forced vibration in the
transverse direction. When the vibration frequency coincides with the shedding
frequency, the phase lag between the lift and the wake velocity shows an abrupt
change, which was identified to be a key point for solving VIV problems. Singh et al.
(2009) studied the forced vibrations of a square cylinder for an excitation-to-natural
shedding frequency ratio fe/fv of 0.5–3.0 at a constant amplitude ratio A∗ (= A/D)
of 0.2 at Re = 100 and 150, where D is the cylinder width. Lock-in occurred for
fe/fv = 0.95–1.2 and 0.8–1.3 at Re = 100 and 150 respectively, where the fv was
modified and synchronized with the fe.

Free vibrations of a two-dimensional square cylinder with one and two degrees of
freedom were experimentally and numerically conducted by Su et al. (2007), Sen
& Mittal (2011, 2015), He, Zhou & Bao (2012), Singh & Biswas (2013), Cui et al.
(2015) and Zhao (2015). To understand the VIV mechanism of a square cylinder at
subcritical Re, Singh & Biswas (2013) varied m∗, Re and the reduced velocity Ur
(= U/fnD, where U is the free-stream velocity). They reported that the phase lag φ

between the lift force and the transverse displacement depends on Re, m∗ and Ur.
Cui et al. (2015) investigated the flow-induced vibration of square and rectangular
cylinders for incident angles of α = 0◦–90◦. At α = 0◦, the response of the cylinder
is dominated by galloping with φ ≈ 0◦. Sen & Mittal (2015) studied the effect of
m∗ and Re (or Ur) on in-line and transverse free vibrations of a square cylinder. For
a low mass ratio m∗ = 1, the cylinder response is characterized by initial and lower
branches; no galloping is observed. Galloping, however, occurs for m∗ > 5. They
identified three vortex shedding modes, i.e. 2S, C(2S) and (2P+ 2S). Modes 2S and
C(2S) are involved in VIV, whereas the galloping vibration features the 2S mode for
A∗ < 0.7 and the 2P+ 2S mode for A∗ > 0.7.

The literature has improved our understanding of the FIV of a single structure. Most
structures on the land and in the ocean, however, appear in a group. The physics
of the flow around a group of structures, involving complex mutual interactions
between the structures, cannot be directly extrapolated from the knowledge on
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a single structure. The flow around two structures, however, provides an excellent
model to understand the mutual interactions between the structures in a group.
As such, Sakamoto, Haniu & Obata (1987) examined the dependence on the
centre-to-centre spacing ratio L∗ (= L/D= 1.5–41) of the flow around two stationary
square cylinders in tandem arrangements. They observed two major flow regimes
depending on L∗, i.e. the reattachment flow regime (L∗ < 4) and the coshedding flow
regime (L∗ > 4). In the former regime, the shear layers separating from the upstream
cylinder reattach on the downstream cylinder, and vortex shedding occurs only from
the downstream cylinder. On the other hand, in the latter regime, the shear layers
roll up and form a vortex street in the gap between the cylinders, the two cylinders
shedding vortices individually. Their shedding frequencies are identical at 4< L∗< 28
and different at L∗ > 28, smaller for the downstream cylinder. The arrival of the
upstream-cylinder-generated vortices triggers the vortex shedding from the downstream
cylinder for the former L∗ range and cannot for the latter L∗ range. Sohankar (2012)
performed two-dimensional and three-dimensional unsteady simulations to study the
flow over two tandem stationary square cylinders with L∗ = 1.3–13 at Re = 130,
150 and 500. Depending on L∗, three major flow regimes were distinguished: the
single-body regime (L∗ < 1.5), the reattachment regime (L∗ < 5) and the coshedding
regime (L∗ > 5).

When an elastically mounted cylinder is placed in the wake of an upstream
stationary cylinder, the flow around the former cylinder becomes more complex
compared with its stationary counterpart. Mithun & Tiwari (2014) numerically
examined the wake characteristics of two tandem square cylinders at Re = 100
that were given an inphase forced vibration at the same fe and A∗ (= 0.4). The
vibrations of the cylinders drastically altered the wake from the corresponding
stationary counterpart. When fe was increased, φ jumped from 0◦ to 180◦ in the
lock-in regime. More et al. (2015) experimentally investigated the flow around two
square cylinders in tandem arrangements for L∗ = 1.5–5. The upstream cylinder
with A∗ = 0.1 oscillated at higher harmonics of the vortex shedding frequency of
a stationary cylinder when the downstream cylinder was kept fixed. They observed
a strong effect of L∗ on the vortex shedding process and flow structure. Jaiman,
Pillalamarri & Guan (2016) examined, at Re= 200, the free vibration response of a
downstream square cylinder at a fixed L∗ = 4 and m∗ = 5 when an upstream square
cylinder was kept stationary. They identified initial and lower branches in the lock-in
regime, and desynchronization and galloping branches beyond the lock-in regime.
They found φ ≈ 0◦ in the initial branch whereas φ ≈ 180◦ in the desynchronization
and galloping branches.

Barrero-Gil et al. (2009) reported that the critical Re for the onset of galloping of a
square cylinder is Re= 159, i.e. galloping does not occur for Re< 159. Joly, Etienne
& Pelletier (2012) found the same at Re = 140 for m∗ 6 20. Sen & Mittal (2015)
identified a decrease in the critical Re from 186 to 169 with m∗ increasing from
5 to 20. While a number of studies have been conducted so far on free vibrations
of a square cylinder, investigations on the free vibration of two square cylinders in
tandem are scarce. A few questions then arise. Could we extrapolate the knowledge
of the single-cylinder response for the two cylinders? How does the response for two
tandem cylinders behave in the two ranges of Re? How does the vibration response
feature in the reattachment and coshedding flow regimes? The aim of this work is
to investigate the free vibration response of a cylinder placed in the wake of a fixed
cylinder. The distance between the cylinders is chosen as L∗ = 2 and 6, lying in
the reattachment and coshedding flow regimes respectively. Reynolds numbers of
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FIGURE 1. A schematic of the flow configuration and computational domain.

Re = 100 and 200 are chosen, which are respectively smaller and higher than the
critical Re. The vibration and frequency responses, fluctuating lift (C′L), phase lag
between lift force and displacement, vortex shedding process, work done, wake
structures and relationship between work done and flow structures are presented and
discussed.

2. Problem description
Two cylinders of the same size are placed in a tandem arrangement in a rectangular

computational domain. A schematic of the cylinder configuration is shown in figure 1.
The upstream cylinder is stationary, while the downstream cylinder is spring mounted
and allowed to oscillate in the transverse direction only. The stiffness of the spring is
represented by k. All length quantities in the figure are presented in the scale of the
cylinder width D. The Cartesian coordinate system is fixed in the domain, with the
origin at the nominal centre of the upstream cylinder. The inlet boundary is 15D away
from the upstream cylinder centre and the outlet is 30D away from the downstream
cylinder centre. The upper and lower boundaries are symmetrically placed each 15D
away from the centreline, giving a blockage ratio of 3.3 % (Zheng & Alam 2017). In
order to encourage high-amplitude oscillation of the cylinder, the structural damping
ratio ζ is set to zero (Sen & Mittal 2015). The mass ratio of the vibrating cylinder is
m∗= 3. The values of Re are 100 and 200 based on D and the free-stream velocity U.
At a given Re, the reduced velocity Ur=U/( fnD) is varied from 1 to 30 by changing
the natural frequency fn of the cylinder. Values of L∗= 2 and 6, corresponding to the
reattachment and coshedding regimes respectively, are investigated.

2.1. Governing equations and numerical methods
The governing equations to simulate the flow field are the continuity and Navier–
Stokes equations which can be written in non-dimensional form as

∇ · u= 0 (2.1)
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and
∂u
∂t
+ (u · ∇)u=−∇p+

1
Re
∇

2u, (2.2)

where u= (u, v) is the velocity field, p is the static pressure and t is the time. The
D and U are considered as the reference length and velocity scales respectively for
normalization.

The flow at the inlet is set uniform, u=U and v=0. Neumann conditions ∂u/∂x=0
and ∂v/∂x= 0 are applied at the outlet. Free-slip boundary conditions (∂u/∂y= 0 and
v = 0) are employed for the lateral boundaries, while no-slip conditions are imposed
at the cylinder surfaces, u= 0, v = 0 for the stationary cylinder and u= 0, v = Ẏ for
the vibrating cylinder.

The governing equations (2.1) and (2.2) are solved for the unsteady and incompressi-
ble flow using the finite-volume-method-based software ANSYS-Fluent 15. The
second-order upwind scheme is used to discretize the convective components and the
central differencing scheme for diffusion terms. A first-order implicit formulation is
adopted for the time discretization due to its unconditional stability (Manson, Pender
& Wallis 1996) and compatibility with the dynamic mesh (Shaaban & Mohany 2018).
The pressure-correction-based iterative algorithm SIMPLE (semi-implicit method for
pressure linked equations) proposed by Patankar (1980) is employed for the coupling
between the velocity and pressure fields.

The transverse dynamic response of the cylinder is governed by the following
second-order ordinary differential equation in dimensionless form:

Ÿ + 4πFnζ Ẏ + (2πFn)
2Y =CL/2m∗, (2.3)

where Ÿ , Ẏ and Y are the instantaneous cross-flow acceleration, velocity and
displacement of the cylinder respectively, with the Y measured from y = 0. Time
is normalized by U and D. Here, CL is the instantaneous lift coefficient of the
cylinder and Fn (= fnD/U) is the normalized natural frequency of the cylinder. The
cylinder mass ratio is defined as m∗=m/ρD2, where m is the mass of the cylinder per
unit length and ρ is the density of the fluid. This second-order differential equation
is solved using the fourth-order Runge–Kutta method for every time step.

A dynamic mesh scheme is utilized in the present study. The dynamic mesh model
uses the ANSYS-Fluent 15 solver to move boundaries and/or objects and to adjust the
mesh accordingly. The oscillating cylinder is surrounded by a grid box of size 2D×
2D (figure 2a). The grid box moves with the vibrating cylinder, while the remaining
grids in the domain are stationary. The interface is created by two parallel lines which
separate the moving and stationary parts of the domain (figure 2b). The user defined
function is incorporated into the solver for calculating the motion of the oscillating
cylinder. At each time step, (i) the deformation of the domain is taken care of by the
dynamic meshing tool in ANSYS-Fluent 15 and the mesh is updated using the Laplace
smoothing method and (ii) equations (2.1) and (2.2) are solved and the lift force on
the cylinder is obtained. The force is used to obtain the response of the oscillating
cylinder using (2.3).

Structured grids are generated for the whole computational domain using the
grid-generating software Gambit. Figure 2 displays the distribution of grids, with a
total of 132 542 nodes for L∗ = 2. The vibrating cylinder is positioned in a square
region (2D × 2D) enclosed by four interfacing lines that separate the moving and
stationary regions. The square region moves with the vibrating cylinder and is given
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(a)

(b)

Moving zone

FIGURE 2. (Colour online) (a) Global view of the meshes around two cylinders at L∗= 2.
(b) Zoomed-in view of the meshes around the cylinders.

a greater mesh density. The first level of the grid spacing near the cylinder wall is
set at 0.008D away from the cylinder for an adequate resolution of the boundary
layer. The grid spacing is then increased with an expansion rate of 1.05 in the normal
direction. Following the same expansion factor in the same computation domain, the
number of nodes for L∗ = 6 is increased to 163 568.

Before conducting extensive simulations, grid and time-step independence tests
were carried out for a single square cylinder. Following Sen & Mittal (2011), five
different meshes in the range of 22 490–100 6152 were tested with 1t = 0.01, 0.008
and 0.005. Table 1 summarizes the Strouhal number St, time-mean drag coefficient C̄D

and fluctuating root-mean-square (r.m.s.) lift coefficient C′L for the different meshes
and time steps used. The percentage deviation with increasing number of nodes is
indicated in brackets. The node number 50 350 is approximately half of the finest grid
100 612 considered here. The results are converged at mesh 50 350 and 1t= 0.008.
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Time step Number of nodes St C′L C̄D

0.01 22 490 0.154 0.263 1.486
45 900 0.155 (0.65 %) 0.272 (3.30 %) 1.438 (3.22 %)
50 350 0.157 (1.27 %) 0.263 (3.42 %) 1.466 (1.91 %)
55 000 0.1565 (0.32 %) 0.265 (0.75 %) 1.46 (0.41 %)

100 612 0.156 (0.31 %) 0.2646 (0.15 %) 1.457 (0.21)

0.008 22 490 0.153 0.256 1.493
45 900 0.157 (2.54 %) 0.252 (1.56 %) 1.474 (1.27 %)
50 350 0.159 (1.25 %) 0.247 (1.98 %) 1.45 (1.62 %)
55 000 0.158 (0.63 %) 0.243 (1.61 %) 1.461 (0.75 %)

100 612 0.157 (0.63 %) 0.246 (1.21 %) 1.452 (0.62 %)

0.005 22 490 0.157 0.258 1.504
45 900 0.155 (1.27 %) 0.267 (3.37 %) 1.475 (1.92 %)
50 350 0.158 (1.89 %) 0.254 (4.86 %) 1.469 (0.41 %)
55 000 0.157 (0.63 %) 0.253 (0.39 %) 1.463 (0.41 %)

100 612 0.156 (0.63 %) 0.252 (0.39 %) 1.459 (0.27 %)

TABLE 1. Grid- and time-step-independent study; Re= 150.

C̄D C′L St

Present 1.498 0.168 0.145
Sohankar, Norberg & Davidson (1997) 1.477 0.156 0.146

Robichaux, Balachandar & Vanka (1999) 1.530 — 0.1540
Re= 100 Darekar & Sherwin (2001) 1.486 0.186 0.146

Sharma & Eswaran (2004) 1.493 0.192 0.149
Singh et al. (2009) 1.510 0.160 0.147

Sahu, Chhabra & Eswaran (2009) 1.488 — 0.149

Present 1.479 0.351 0.172
Saha, Biswas & Muralidhar (2003) 1.487 — 0.169

Re= 200 Luo, Chew & Ng (2003) 1.451 — 0.165
Sohankar, Norberg & Davidson (1999) 1.47 0.331 0.168

De & Dalal (2006) 1.41 0.342 0.170

TABLE 2. Comparison of the results for a fixed single cylinder at Re= 100 and 200.

3. Result validation

Validation of the computational approach is provided here along with some
benchmark results for a single and two cylinders. The simulated time-mean drag
coefficient C̄D, fluctuating (r.m.s.) lift coefficient C′L and Strouhal number St results
for a single fixed cylinder at Re = 100 and 200 are compared with those in the
literature in table 2. The comparison displays a good agreement.

Figure 3 displays a comparison of C̄D acting on a pair of fixed cylinders at various
values of L∗ with results from Inoue, Iwakami & Hatakeyama (2006) and Sohankar
(2012). While the present results accord well with those from Sohankar (2012), Inoue
et al.’s (2006) results are underestimated, particularly for the upstream cylinder. A
sudden jump in C̄D for both cylinders is observed at 4.5< L∗ < 5, distinguishing the
reattachment (figure 3c) and coshedding (figure 3d) regimes.
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FIGURE 3. (Colour online) Comparison of time-mean drag coefficients for two cylinders
at different values of L∗ for Re= 150. (a) Upstream cylinder and (b) downstream cylinder.
(c,d) Representative vorticity (ω∗z ) structures in the reattachment (shaded) and coshedding
regimes respectively.

4. Single vibrating cylinder

The vibration response results for a single cylinder are presented in figures 4(a)
and 5(a), showing the dependence of A∗ on Ur at Re= 100 and 200. The A∗ for the
cylinder displacement Y is obtained by multiplying the r.m.s. value of Y by

√
2, i.e.

A∗= Yrms×
√

2, which provides the average amplitude of the cylinder oscillation. The
data of Zhao et al. (2013) for the same Re, m∗ and ζ are also included in figure 4(a).
The two curves have the same trend, validating our computations for the vibrating
cylinder. The maximum amplitude is observed at Ur≈5 for either curve. Figure 4(b–e)
displays vorticity structures at different values of Ur. In order to compare the timing
of vortex shedding with respect to the cylinder displacement at different values of Ur,
the vorticity structures are given for the cylinder at maximum displacement (Y =Ymax).
As seen in figure 4(a), A∗ is contingent on Ur. The cylinder response is divided
into three regimes, namely the initial branch (IB), the lower branch (LB) and the
desynchronization branch (DB), at Re= 100 (figure 4a). The different branches in the
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FIGURE 4. (Colour online) (a) Dependence on the reduced velocity Ur of the vibration
amplitude A∗ of a single cylinder. (b–e) Typical vorticity (ω∗z ) structures in different
vibration regimes. ( f ) Dependence of the Strouhal number St on Ur. Here, Re= 100.

vibration response can be explored through the dependence of St on Ur (figure 4f ).
The Strouhal number was estimated from the power spectral density functions of the
fluctuating lift forces. Given the fixed cylinder Strouhal number St0 (figure 4f ), it is
observed that St< St0 in the IB and St> St0 in the LB, while St≈ St0 in the DB. The
initial branch occurring at Ur < 4.5 corresponds to A∗ increasing with Ur. A drastic
jump in A∗ between Ur=4.5 and 5.0 borders the IB and the LB, distinguished by a 2S
vortex pattern before the jump (figure 4b) and a C(2S) vortex pattern after the jump
(figure 4c). With the snapshots given for Y = Ymax, the growing shear layer appears
over the upper surface of the cylinder in figure 4(b) and over the lower surface in
figure 4(c) (Alam 2016). The timing of vortex shedding in the vorticity structures
thus reflects that the phase lag between lift and displacement shifts from 0◦ to 180◦
between the IB and the LB (figure 4b,c). The phase lag was also confirmed from the
results of cross-correlation between the lift and displacement. In the LB, A∗ drops with
increasing Ur, and the vorticity structure changes from C(2S) to 2S with the phase lag
unchanged (figure 4c,d). The LB is followed by the DB, where A∗ decays and reaches
an asymptotic value. The streamwise separation between the vortices thus increases
due to the desynchronization (figure 4e).

At Re= 200 (figure 5), a vortex excitation (VE) regime (including the IB and the
LB) appears at Ur 6 12, while the galloping branch (GB) crops up at Ur > 12. It will
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FIGURE 5. (Colour online) (a) Dependence on the reduced velocity Ur of the vibration
amplitude A∗ of a single cylinder. (b) Dependence of the Strouhal number St on Ur. Here,
Re= 200.

be shown later that the vibration response at 12<Ur < 24 involves the characteristics
of both the IB and the LB, and that at Ur > 24 the characteristics of both the IB
and the DB. While the response characteristics at Ur 6 12 in the VE regime are akin
to those at Re = 100, the DB is postponed at Ur > 24 for Re = 200. There are two
values of A∗ as well as St at Ur = 5. It is a transition between the IB and the LB
where the two flow modes corresponding to the IB and the LB appear intermittently.
More information about the transition will be provided later. Again, St< St0 at Ur < 5,
indicating the IB. On the other hand, at 5<Ur < 24, St> St0, which is an indication
of the LB. The Strouhal number St ≈ St0 at Ur > 24, suggesting the DB. Therefore,
the vortex shedding frequency characteristics conspicuously distinguish the IB and
the LB. The value of A∗ in the GB increases rather rapidly at 12 < Ur < 24, and
St decreases with Ur, reaching the asymptotic value at Ur > 24. Figure 6 presents
the instantaneous vorticity contours along with the time histories of CL and Y for
Ur = 3, 4, 5, 9 and 20. Again, the vorticity snapshots are given for the same phase
(Y = Ymax). The CL and Y signals are in phase in the IB (figure 6a1), and a 2S type
vortex street materializes in the wake (figure 6a2). For a value of Ur near the boundary
between the IB and the LB, irregularity may occur in both signals (Navrose & Mittal
2017). At Ur = 4, the vortex shedding occurs in the 2S mode but the streamwise
separation between two consecutive vortices differs (figure 6b3). As such, a beat in the
CL and Y histories is discernible (figure 6b1,b2); the CL as well as the Y amplitude is
not constant, becoming large and small alternately following a period. Interestingly, a
large peak corresponds to CL leading Y (figure 6b2), whereas CL lags Y for a small
peak. When CL leads Y , positive work is done on the cylinder, which, gaining energy
from the flow, can reach a large amplitude. On the contrary, when CL lags Y , the
gained energy of the cylinder is released into the flow (negative work); hence, the
amplitude gets smaller. For Ur = 5, the CL and Y signals comprise two intermittent
modes (figure 6c). Between the two modes, the maximum amplitude of Y varies from
0.175 to 0.35 and that of CL from 0.01 to 2.2. The high- and low-amplitude modes
correspond to a low and a high oscillation frequency respectively (figure 6c1). The
flow mode associated with the high amplitude (figure 6c1,c2) is similar to the flow
mode at Ur = 4 (figure 6b3). For the small-amplitude mode (figure 6c3), a double-row
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FIGURE 6. For caption see next page.

vortex street in the C(2S) mode characterizes the wake. The phase lag between CL

and Y is almost ≈ 0◦ and 180◦ in the large- and small-amplitude modes respectively.
At Ur > 5, the phase lag is 180◦ (figure 6d).

Galloping is a structural instability phenomenon associated with a large amplitude
and a low vibration frequency, prevailing for the non-circular cross-section (Blevins
1990). Presently, the galloping vibration occurs at Ur > 12 (figure 5a). Let us
pay attention to the response and CL signals at Ur = 20 (figure 6e) in the GB.
Evidently, the predominant period of the cylinder oscillation is longer than the
vortex shedding period (figure 6e1), the oscillation frequency being smaller than
the shedding frequency. Both the lift and the displacement signals are composed
of low- and high-frequency components (figure 6e1). These low- and high-frequency
components were decomposed using the FFT-filter tool in the origin pro software. The
cutoff frequency for the decomposition was chosen as the average of the high and
low frequencies. The decomposed signals are presented in figure 6(e2,e3). Govardhan
& Williamson (2000) and Ludlam, Gil & Velazquez (2017) decomposed the lift force
into potential and vortex forces. The potential force is the inertia force due to the
potential added mass. They obtained the potential force as the minus acceleration
times the mass of the fluid displaced by the cylinder. The phase lag between the
potential force and the displacement is thus 0◦ (inphase), and the frequency in the
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FIGURE 6. (cntd). (Colour online) Time histories of the lift force coefficient CL (black
lines) and the displacement Y (red lines), and representative vorticity (ω∗z ) structures for
Ur = (a) 3, (b) 4, (c) 5, (d) 9 and (e) 20. Here, Re= 200.

potential force is the same as that in the displacement signal. On the other hand,
the frequency in the vortex force follows the vortex formation frequency. They
used phase information on the forces to classify the different branches in the VE
regime where the cylinder vibrates at one frequency. In the galloping regime of
our study, the cylinder oscillates at two frequencies, corresponding to the cylinder
natural frequency and the vortex shedding frequency. In order to get a clear phase
relationship between the lift and the displacement, the signals of the lift and the
displacement should have one identical frequency. Therefore, we decomposed the
low- and high-frequency components of the lift and displacement signals in order
to find the phase relationships between the lift and the displacement at low- and
high-frequency components of oscillations separately.

Interestingly, the low- and high-pass-filtered CL and Y signals (figure 6e2,e3)
show that the low-frequency Y is dominant and in phase with the low-frequency
CL, the amplitude of which is very small. On the other hand, the high-frequency Y
is small and antiphase with the corresponding CL, having a high amplitude. That
is, the high-frequency oscillation and shedding have characteristics similar to those
in the LB, given St > St0 (figure 5b) and the phase lag 180◦ between CL and Y .
The large-amplitude vibration associated with the low frequency is essentially the
galloping vibration, bearing similar characteristics to those of the IB, given that
St < St0 and the phase lag is 0◦ between CL and Y (figure 6e2). The galloping
vibration in 12 < Ur < 24 is thus a combination of the IB and the LB, albeit A∗ is
predominantly associated with the former. At Ur > 24, the low-frequency CL and Y do

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

57
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.573


Vibrations of a square cylinder submerged in a wake 313

–4
–2

0
2
4

–2 0 2 4 6 8 10 12 14 16 18 20 22
–4
–2

0
2
4

–2 0 2 4 6 8 10 12 14 16 18 20 22

–4
–2

0
2
4

–2 0 2 4 6 8 10 12 14 16 18 20 22
–4
–2

0
2
4

–2 0 2 4 6 8 10 12 14 16 18 20 22

–4
–2

0
2
4

–2 0 2 4 6 8 10 12 14 16 18 20 22
–4
–2

0
2
4

–2 0 2 4 6 8 10 12 14 16 18 20 22

–4
–2

0
2
4

–2 0 2 4 6 8 10 12 14 16 18 20 22
–4
–2

0
2
4

–2 0 2 4 6 8 10 12 14 16 18 20 22

A

B

C

C

C

D

D

D

A

A

A

B

B

B

C

H

A

B

C

D

E

E

E

F

F

F

G

GI

AA

B

A

B

C

D

–3

–2

–1

0

1

2

3

(i)(c)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

420 430 440 450 460

0.3

–0.3
–0.6

0

0.6
0.4

–0.4
–0.8

0

0.8
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

0.2

0.4

0.6

0 0.1

0.019 0.172

0.2 0.3

St

(a) (b)

FIGURE 7. (Colour online) (a) Time histories of Y (red line) and CL (black line).
(b) Corresponding spectra. (c) Instantaneous vorticity (ω∗z ) contours at the timings marked
at the top of (a). Here, Ur = 30 and Re= 200.

not differ from those at 12<Ur < 24, but the high-frequency CL and Y correspond to
St≈ St0 (figure 5b). Thus, the galloping at Ur > 24 is a combination of the IB and the
DB. Yet, the wake resembles 2S vortex streets (figure 7). It should be noted that the
low-frequency CL stems from the low-frequency wave (dashed line, figure 6e4) of the
vortex street following the cylinder oscillation. In summary, the galloping vibration
resembles the IB in the sense that the predominant vibration amplitude grows with
Ur, both following the same Y–CL phase relationship.

Figure 7 shows the time histories of CL and Y (figure 7a), the power spectra ECL

and EY for CL and Y respectively (figure 7b), and the vortex structures (figure 7c)
for a half cylinder-oscillation cycle for Ur = 30. The corresponding timing of each
snapshot in figure 7(c) is marked by a vertical dashed line in figure 7(a). The CL and
Y histories each consist of a low and a high frequency. The low and high frequencies
are dominant in Y and CL respectively, as further evidenced by the power spectra in
figure 7(b). The values of the dominant Strouhal numbers are 0.172 and 0.019 for CL

and Y respectively, suggesting that the vortex shedding occurs at St= 0.172 while the
cylinder oscillation dominantly succeeds at St= 0.019. The vortex shedding and wake
structures in figure 7(c) reveal that, as the cylinder moves from its bottom position to
the top (instants (i–viii)), a total of nine vortices (marked as ‘A’–‘I’) are formed (four
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FIGURE 8. (Colour online) Variation in the vibration amplitude A∗ with the reduced
velocity Ur at (a) Re= 100 and (b) Re= 200. Here, L∗ = 2.

from the upper side and five from the lower side) in a half cylinder-oscillation cycle.
Similarly, when cylinder moves from the top to the bottom, another nine vortices come
into being (not shown here). Therefore, the total number of shed vortices during an
oscillation cycle is 18. This indicates that the vortex shedding mode is N(2S) (e.g.
9(2S) here), with the wake appearing similar to the 2S shedding mode.

5. Tandem cylinders
Here, results for the tandem cylinder case are presented at L∗=2 and 6 for Re=100

and 200, where the upstream cylinder is fixed and the downstream cylinder is free to
vibrate.

5.1. Reattachment regime (L∗ = 2)
5.1.1. Vibration response

Figure 8 shows the dependence of A∗ on Ur at Re = 100 and 200. The single-
cylinder response included in the figure distinguishes how the presence of the
fixed upstream cylinder influences the response of the downstream cylinder. The
downstream cylinder hereafter will be referred to as the wake cylinder. The vibration
classifications given at the top of and in the figure are for the single and wake
cylinders respectively. At Re = 100 (figure 8a), the IB is delayed for the wake
cylinder compared with the single-cylinder counterpart. The delay is attributed to the
shear-layer reattachment (figure 3c), which results in a smaller St for tandem fixed
cylinders (Alam et al. 2002; Zheng & Alam 2018). A higher Ur is thus required
to make fv = fn. The increase in A∗ in the IB for the wake cylinder is very small
compared with that for the single cylinder. The A∗, which is maximum at Ur = 6.5,
reduces with an increase in Ur. The fashion of the reduction after the maximum A∗
for the wake cylinder is, however, different from that for the single cylinder. The
reduction for the single cylinder is rapid at Ur = 5–10 (LB regime) but slow at
Ur > 10 (DB regime). The rapid reduction is, on the other hand, absent for the wake
cylinder, the amplitude waning monotonically in a longer LB regime compared with
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FIGURE 9. (Colour online) Instantaneous vorticity (ω∗z ) structures at various values of Ur.
The instant of the snapshots corresponds to Y = Ymax. Here, L∗ = 2 and Re= 100.

the single-cylinder counterpart. In the DB regime as well, A∗ remains higher for the
wake cylinder.

As Re is increased from 100 to 200 (figure 8b), the vibration response characteristics
of the wake cylinder in the IB remain unchanged. The LB of the wake cylinder
exhibits a rather more rapid decrease in A∗ for Re = 200 than Re = 100. The Ur

corresponding to the initiation (maximum A∗) of the LB decreases from Ur = 6.5 to
5.5 as Re is increased from 100 to 200. A further increase in Ur from the LB to the
DB results in a gradual decay of A∗ to be more or less constant at 0.07 at Ur > 20.
For the single cylinder, the A∗ drop is relatively sharp in the early stage of the LB,
followed by A∗ increasing in the GB regime (Ur > 12). Interestingly, although the
single cylinder experiences galloping, the wake cylinder does not. That is, when the
single cylinder at Re= 200 exhibits IB, LB and GB responses (figure 5a), the wake
cylinder undergoes IB, LB and DB responses. The GB is absent for the latter. In
addition, the Ur ranges of the different branches differ between the single and wake
cylinders. These observations show that the knowledge on the single cylinder cannot
be extrapolated for two cylinders. In the reattachment regime, the wake cylinder is
encapsulated by the shear layers from the upstream cylinder. Due to the insufficient
spacing between the cylinders and the shear layers largely reattaching on the side
surfaces, the flow in the gap is small. The reattached shear layer may restrict the
motion of the cylinder.

5.1.2. Wake structures
Figure 9 shows the instantaneous vorticity contours at different values of Ur for

Re = 100. The vorticity structures correspond to the instant Y = Ymax. For the IB
(figure 9a,b), the two shear layers separating from the upstream cylinder reattach
almost steadily on the wake cylinder, forming a quasisteady flow region in the gap
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between the cylinders. Vortices shed only from the wake cylinder. With an increase
in Ur from 2 to 6, the roll-up of the vortices shifts upstream, indicating that the
formation length shrinks. The wake cylinder is encapsulated by the shear layers from
the upstream cylinder. Due to this encapsulation, the fluctuating lift force on the
wake cylinder is reduced compared with that on the single cylinder, leading to a
small value of A∗ in the IB regime for the wake cylinder (figure 8a). Comparing
the fluctuating lift and the maximum amplitude of the downstream cylinder, Alam
& Kim (2009) and Kim et al. (2009), for two circular cylinders, concluded that the
maximum amplitude of the downstream cylinder follows the fluctuating lift measured
on the stationary downstream cylinder. Qin, Alam & Zhou (2017), for two tandem
circular cylinders of different diameters, found that an increase in A∗ results from an
increased fluctuating lift when the phase lag between Y and CL does not change much,
or when the inertia force is small due to small amplitude and frequency (Govardhan
& Williamson 2000). The phase lag between the lift and the displacement is 0◦,
as can be seen from the timing of vortex shedding at Y = Ymax (figure 9a,b). With
an increase in Ur from the IB to the LB (figure 9c), the flow in the gap becomes
unsteady, as the two upstream-cylinder-generated shear layers reattach alternately on
the upper and lower side surfaces of the wake cylinder. The phase lag becomes 180◦.
The longitudinal spacing between two consecutive vortices becomes small. The small
spacing between two consecutive vortices can be ascribed to the increased St from
the IB to the LB (figure 4f ). An increased St means that a vortex has a shorter time
to convect downstream before the next vortex coming into the street and vice versa.
As A∗ decays from Ur = 6.5 to 20 (figure 8a), the shear-layer rolling is postponed
and the streamwise separation between the vortices is elongated (figure 9c–e). Again,
the elongated separation between the vortices is linked to the decrease in St with
Ur (figure 4f ). In the DB regime, where A∗ is small, a further postponement in the
shear-layer rolling takes place (figure 9f ).

Figure 10 shows the instantaneous vorticity contours at Re = 200. A similar
observation is made for the IB (figure 10a,b) as made for Re = 100 (figure 9a,b).
The vortex shedding, however, occurs closer to the cylinder at Re = 200 than at
Re = 100. The wake is characterized by the 2S mode. A C(2S) mode appears at
Ur = 5.5 (figure 10c) where A∗ is maximum in the LB. However, as Ur is increased,
the wake turns into a 2S mode (figure 10d,e). In the DB, the vortex formation length
and streamwise separation between vortices are both elongated (figure 10f ).

5.1.3. Frequency response
Figure 11 presents variations in the vibration frequency ratio f ∗ (= f0/fn), where f0 is

the cylinder-oscillation frequency extracted from the power spectral density function of
Y . The values f0 were taken as the frequencies corresponding to the dominant peaks in
the power spectral density function. Let us first compare the f ∗ of the wake cylinder
with that of the single cylinder at Re=100. The f ∗ in the IB is slightly smaller for the
wake cylinder than for the single cylinder. In the IB and LB regimes, the relationship
between f ∗ and Ur is nonlinear, different from an St = St0 or St = St0w relationship
(figure 11a), where St0 and St0w are the Strouhal numbers of the fixed single and fixed
wake cylinders respectively. The Strouhal numbers in both regimes thus differ from St0
(figure 4f ) or St0w, albeit the difference is very small for the wake cylinder in the IB
as A∗ is small. Modifying from the natural vortex shedding frequency (fixed cylinder),
the vortex shedding frequency of the oscillating cylinder locks in with the oscillation
frequency. Khalak & Williamson (1999) suggested that f ∗ may be much higher or
smaller than unity for a smaller m∗; therefore, the lock-in may be defined based on the
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FIGURE 10. (Colour online) Instantaneous vorticity (ω∗z ) structures at different values
of Ur. The instant of the snapshots corresponds to Y = Ymax. Here, L∗ = 2 and Re= 200.
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FIGURE 11. (Colour online) Variation in the oscillation frequency ratio f ∗ (= f0/fn) with
the reduced velocity Ur at (a) Re= 100 and (b) Re= 200. Here, St0 and St0w represent
the Strouhal numbers of the fixed single and wake cylinders respectively and L∗ = 2.

synchronization of the vortex shedding frequency with the vibration frequency. In the
DB regime, the f ∗–Ur relationship is linear, following St= St0 for the single cylinder
and St= St0w for the wake cylinder.

A significant change takes place when Re is increased to 200 (figure 11b). For the
single cylinder at Ur = 5, there are two f ∗ values, f ∗ = 0.58 and 1.01, corresponding
to the IB (2S) and LB (C(2S)) modes respectively. For 5 < Ur 6 12, a single value
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FIGURE 12. (Colour online) Variation in the fluctuating (r.m.s.) lift coefficient C′L with
reduced velocity Ur at (a) Re= 100 and (b) Re= 200. Here, L∗ = 2.

of f ∗ is seen, where the oscillation and shedding frequencies are the same. On the
other hand, there are two values of f ∗ for Ur > 12 (GB) where the cylinder oscillation
has two frequencies (figure 6e), corresponding to the shedding frequency (close to the
St = St0 line) and a modified natural frequency ( f ∗ < 1.0). The value of f ∗(<1.0)
increases very slightly from 0.60 to 0.67 in the range Ur = 12–30 examined. The
vibration amplitude at the shedding frequency is much smaller compared with that at
f ∗< 1.0 (figure 6e). The set of f ∗< 1.0 is predominant, at which the cylinder vibrates
predominantly. This justifies the presence of the LB and the DB in the GB. For the
wake cylinder, the high-frequency f ∗–Ur relationship differs from St= St0w in the IB
and the LB, but coincides in the DB.

5.1.4. Fluctuating lift force
Figure 12(a) shows C′L for both the single and the wake cylinders at Re= 100. The

C′L of the single cylinder in the IB rises exponentially with Ur, attaining a peak at
Ur = 5 where A∗ is maximum (figures 12a, 4a). The C′L in the LB plunges between
Ur=5 and 6.5 where A∗ rapidly decays. The plunge is attributed to f ∗ approaching 1.0
(figure 11a). On the other hand, C′L grows slowly for Ur > 6.5 where the decay in A∗

occurs at a very small rate and f ∗ departs from f ∗=1.0. The change in C′L is relatively
small in the DB regime. For the wake cylinder, the C′L is more or less constant in the
IB (following A∗ in figure 8a), while it increases rapidly from Ur = 6.5 to 12 in the
LB and decreases for Ur > 12. Again, a small drop in C′L between Ur = 6.0 and 6.5
is attributed to the f ∗ becoming 1.0 (figure 11a). The C′L variations of the single and
wake cylinders are opposite to each other for Ur > 10, although A∗ for the two cases
follows similar trends.

The variation in C′Lin the IB and the LB at Re=200 (figure 12b) is similar to that at
Re= 100. For Ur > 12 where galloping vibration occurs for the single cylinder, the C′L
of the single cylinder surpasses that of the wake cylinder. With increasing Ur (> 20),
the wake cylinder C′L approaches a constant value (C′L = 0.16) that is 52 % smaller
than that of the single cylinder C′L (= 0.34).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

57
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.573


Vibrations of a square cylinder submerged in a wake 319

0 5 10 15 20 25 30 0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
IB LB DB IB LBUB DB

Wake cylinder
Single cylinder

(a) (b)

FIGURE 13. (Colour online) Variation in the amplitude A∗ with the reduced velocity Ur
at (a) Re= 100 and (b) Re= 200. Here, L∗ = 6.

5.2. Coshedding regime (L∗ = 6.0)
5.2.1. Vibration and frequency responses

The dependence on Ur of the wake cylinder A∗ at L∗= 6.0 is shown in figure 13 for
Re= 100 and 200. The response regimes are marked only for the wake cylinder. The
boundaries between different branches are identified based on St, f ∗ and the phase lag
between Y and CL. All follow the same relationships between themselves and branches
as stated for the single cylinder. At Re = 100, the A∗ of the wake cylinder is much
higher in all three branches compared with that of the single cylinder. Furthermore,
the variation in A∗ is different from that at L∗ = 2.0 (figure 8). The A∗ increases
exponentially with Ur, reaching a peak (A∗ = 0.67) at Ur = 5.5, the peak value being
approximately two times greater than the single cylinder A∗ at Ur = 5 (figure 13a).
Another peak forms in the LB regime at Ur = 8. The enhancement in A∗ of the wake
cylinder compared with the single cylinder can be ascribed to the interaction of the
upstream-cylinder-generated gap vortices with the wake cylinder. The A∗ in the DB is
approximately 12 times that of the single cylinder and three times that of the wake
cylinder at L∗ = 2.0. The transition from the IB to the LB is accompanied by a shift
in the phase lag from 0◦ to 180◦ (to be shown later) and by a change in St from
St< Stw to St> Stw (figure 14a). On the other hand, St> Stw and St= Stw distinguish
the LB and DB at Ur = 20.

At Re = 200 (figure 13b), the response amplitude is very similar to the single-
cylinder case for Ur < 5.0 (IB). The A∗, increasing with Ur, reaches a value of 1.25 at
Ur= 6, followed by a sudden drop at Ur= 6.5. As will be shown later, 5.0<Ur < 6.5
represents the upper branch (UB) which is followed by the LB (6.5< Ur < 14) and
then the DB (Ur > 14). The phase lag between CL and Y is approximately 0◦ in the
IB and the UB, and suddenly switches to 180◦ in the LB. At Re = 200, the UB
and IB have the same characteristics in terms of the phase lag between CL and Y
and of the relationship between St and Stw (figure 14b). The vortex shedding mode,
however, changes from a 2S at the IB to a (P+S)-like vortex arrangement at the UB,
which will be shown later in § 5.4. Interestingly, no galloping vibration is observed for
the wake cylinder at this Re, although it is observed for the single cylinder at Ur >

12. It is quite different from a circular cylinder. A single circular cylinder generally
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FIGURE 14. (Colour online) Variation in the oscillation frequency ratio f ∗(= f0/fn) with
the reduced velocity Ur at (a) Re= 100 and (b) Re= 200. Here, St0 and St0w represent
the Strouhal numbers of the fixed single and wake cylinders respectively and L∗ = 6.

does not experience galloping vibration, but a wake circular cylinder does (Kim et al.
2009; Assi, Bearman & Meneghini 2010; Alam & Meyer 2013; Qin et al. 2017).
The opposite is true for square cylinders: galloping occurs for the single cylinder but
not for the wake cylinder for the values of L∗ examined. It is expected that, for a
sufficiently large value of L∗, the wake cylinder will behave like an isolated cylinder,
and galloping may come into being for the wake cylinder.

Recently, VIV of cylinders has received more attention because of its use as a
source of energy harvesting. Mehmood et al. (2013), at 96 6 Re 6 118, investigated
the concept of harvesting energy from VIV of a circular cylinder by attaching
a piezoelectric transducer. They reported that the load resistance influences the
oscillation amplitude, lift coefficient and harvested power. An increase in the load
resistance widens the synchronization regime. Maruai et al. (2018) numerically
examined the transverse vibration of a square cylinder at Re = 3.6–12.5 × 103 for
m∗ζ = 2.48. They introduced a downstream flat plate in the wake of a cylinder with
gap spacing ratios of 0.1–3 and observed a large-amplitude vibration at a gap ratio
of 0.1 where the power harvested was maximum. Presently, it is observed that the
vibration amplitude of the wake cylinder is mainly dominated by the interaction
between the gap vortices and the wake cylinder. The gap vortex may play an
essential role in the energy transfer from the fluid to the cylinder, sustaining the
high-amplitude vibration at L∗ = 6. The vibration amplitude at L∗ = 6 is remarkably
enhanced compared with the cases of L∗= 2 (figures 8 and 13) and a single cylinder
(figure 13) except for Ur > 18 at Re = 200 (figure 13b). Interestingly, the wake
cylinder at L∗= 6 can be of a source of energy harvesting where the flow velocity is
low.

5.2.2. Wake structure
In the previous section, quite a few interesting observations were made, for example

the formation of two peaks in A∗ at Re= 100 and the presence of an UB at Re= 200.
We can gain insight into these phenomena through vorticity structures, vortex shedding
process and work done on the cylinder by the fluid.
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5.3. Wake structure at different branches of vibration at Re= 100
5.3.1. Wake structure and phase relationship between CL and Y

Figure 15 shows vorticity structures and time histories of CL and Y at different
values of Ur. Each snapshot corresponds to the instant at which the wake cylinder is at
the bottom position (Y =−Ymax). The wakes at Ur = 1.0 and 4.0 feature the 2S mode
while that at Ur = 5.5 is characterized by the C(2S) mode where A∗ is maximum in
the IB. The gap vortices vigorously interact with and impinge on the wake cylinder.
Both the CL and Y amplitudes grow with increasing Ur from 1.0 to 5.5. Between
Ur = 5.5 and 6 where A∗ drops, CL declines, and the C(2S) wake transmutes to the
2S wake (figure 15c,d). The impinging vortex A on the lower surface (figure 15c)
dictates the shedding and CL, and its timing leads to an increase in CL at Ur= 1.0–5.5
and a drop at Ur = 5.5–7.0. The upper gap vortex B gets closer to the upper leading
edge with increasing Ur from 5.5 to 7.0, which is another reason why CL is reduced.
At Ur = 7.0, the gap vortex B impinging on the leading edge enhances the growth
of the shear layer on the upper surface under an impulse (see the zoomed-in view).
The mechanics enhances the upward lift force; the vortex B impinging on the upper
surface of the wake cylinder at Ur = 8 makes the CL positive and the phase lag 180◦
between CL and Y . One can see in the zoomed-in views that two small shear layers
form very close to the upper and lower surfaces respectively (figure 15f, zoomed-
in view). They have a greater impact on CL as they are close to the cylinder. The
vortex B also impinges on the upper surface. Therefore, the shear layers and vortex
impingement result in a modification in CL. The shear-layer shedding and associated
lift are connected to the motion of the cylinder, in phase and antiphase with Y in the
IB and LB regimes respectively, while the impingement-induced lift is contingent on
Ur, as can be confirmed from the CL and Y histories. The shear-layer-induced vortex
and impingement vortex form a binary vortex behind the cylinder, which results in
a 2S wake. One question may arise as to why A∗ increases and CL decays with Ur
increasing from 5.5 to 8. The point is that there is a phase lag between the upper
shear-layer growth and the impinging vortex B (figure 15c–f ). As such, vortex B leads
the shear layer at Ur= 6, is in phase with the shear layer at Ur= 8 and lags the shear
layer at Ur = 10. This explains why A∗ increases between Ur = 6 and 8, but declines
for Ur > 8.

5.3.2. Vortex shedding process and work done
Here, we will explain the vortex shedding process at Ur = 8 where A∗ is maximum

in the LB. Figure 16 presents the mechanism of the vortex shedding process in
one oscillation period. The (i), (ii), (iii), etc., given at the upper-left corners of the
snapshots, represent the timings marked at the top of the time histories of Y and CL
in figure 17(a1). Obviously, CL and Y are almost antiphase (figure 17a1). At instant
(i), the cylinder is at its bottom position. A negative-vorticity shear layer separating
from the upper leading edge of the wake cylinder reattaches on the trailing edge,
forming a separation bubble and generating a vortex C1 (figure 16(i)). The shear-layer
separation, reattachment and bubble formation can be clearly viewed in figure 16(i).
The gap vortex B1 lies on the upper side surface of the wake cylinder. While the
separation bubble, causing a highly negative pressure on the upper surface, results in
the upward directed lift maximum, the impinging B1 weakens the growth of the shear
layer and reduces the lift, forming a kink (figure 17a1) in CL around instant (i). When
the cylinder moves upward (instants ii, iii), vortices B1 and C1 form a binary vortex
B1 + C1 that gets saturated at instant (iii) and completes its shedding at instant (iv)
where the lower shear layer forms a separation bubble. Vortex B2 impinges on the
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FIGURE 15. (Colour online) Instantaneous vorticity (ω∗z ) structures and time histories of
the lift force CL (black lines) and displacement Y (red lines) at various values of Ur. The
instant of the snapshots corresponds to Y =−Ymax. Here, L∗ = 6 and Re= 100.

lower corner at instant (iii) and restricts the growth of the shear layer at instant (iv),
forming another kink in CL (figure 17a1). Between instants (iv) and (vi), the cylinder
moves downward and the binary vortex B2 + C2 forming from B2 and C2 completes
its shedding (figure 16iv–vi). This observation confirms a 2S mode. It is thus clear
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FIGURE 16. (Colour online) Instantaneous vorticity (ω∗z ) structures in one period of
oscillation. The instants marked at the top left corners of the snapshots correspond to the
timings marked at the top of figure 17(a1). Here, Ur = 8, L∗ = 6 and Re= 100.

that, in one period of the vortex shedding, two impinging vortices form two kinks in
the CL history, having a frequency of twice the oscillation frequency.

The vortex shedding from the upper and lower sides of the cylinder (figure 16(i,iv))
leads to a variation in CL following the vortex shedding frequency. On the other hand,
the gap-vortex impingement occurs twice in one vortex shedding cycle, leading to
a variation in CL at a frequency of twice the shedding frequency. The CL thus
constitutes a low frequency (shedding frequency) and a high frequency (impinging
frequency), the former being the same as the oscillation frequency. In order to see
the CL amplitude corresponding to the cylinder-oscillation frequency and vortex
impingement frequency, low- and high-pass-filtered CL histories are presented in
figure 17(a2). The cutoff frequency was 1.5 times the cylinder-oscillation frequency.
Obviously, the CL amplitude induced by the impingement is smaller than that by the
vortex shedding from the cylinder. The vortex-shedding-induced CL is positive and
negative (instants (i, iv), figure 17a2) when the vortex shedding occurs from the upper
and lower sides respectively (figure 16(i,iv)). Interestingly, when the gap vortex B1
impinges near the leading edge of the cylinder (figure 16(i)), the associated CL (i.e.
high pass) is negative (figure 17a2). As it passes over the trailing edge (figure 16(ii)),
the associated CL becomes positive (instant (ii) in figure 17a2). The CL associated
with the shedding is antiphase with Y while that associated with the impingement
is almost in phase with Y , considering the peak-to-peak phase. The latter is thus
responsible for the large A∗.

It is worth seeing the work done by the vortex shedding and impingement.
Figure 17(b) shows time histories of work done W (=CL dY) by the vortex-shedding-
induced CL (low pass), impingement-induced CL (high pass) and the total CL. The
work done fluctuates from positive to negative and vice versa for all three cases. This
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FIGURE 17. (Colour online) (a) Time histories of Y , CL and filtered CL. (b) Temporal
variation of total work done and filtered work done. (c,d) Sketch for the signs of the work
done by vortex shedding and vortex impingement respectively in one cycle of the cylinder
oscillation. The instants marked at the top of figure 17(a1) correspond to the snapshots in
figure 16. Here, Ur = 8, L∗ = 6 and Re= 100.

means that the cylinder gains energy from the flow when the work done is positive,
and, in the opposite case, the cylinder releases energy to the flow when the work
done is negative. Apparently, the transfer of energy between the cylinder and the
flow predominantly occurs due to the shedding (low pass), following the total work
done. The shedding-induced work done is positive when the cylinder moves from the
bottom (instant (i)) to the mid (Y = 0) position (figure 17c), where CL is induced by
the growth of the shear layer on the upper side (figure 16(i,ii)). On the other hand,
the work is negative when the cylinder departing from the midposition reaches the
top position, where the shear layer completes its vortex shedding (figure 16(iii,iv)).
The same happens when the cylinder moves from the top to the bottom (figure 17c).
The impingement-induced work done, however, behaves differently (figure 17b,d). As
the cylinder moves up from the bottom, the impingement of the vortex on the side
surface (figure 16(i)) produces negative work done first (figure 17b,d). When near
the trailing edge (figure 16(ii)), the impinging vortex renders positive work done, the
cylinder lying close to the midposition (figure 17d). Its shedding (figure 16(iii,iv)
causes again negative work done (figure 17b,d) where the cylinder is away from the
midposition. In other words, the work done is positive when the cylinder is around
the midposition and negative when the cylinder is near the top or bottom position.
Indeed, the positive work done around Y = 0 is useful to enhance the vibration
amplitude.

Figure 18 shows the instantaneous vorticity contours for Ur = 6 in one vibration
period. The influence of the gap vortices on the wake vortex formation is very similar
to that in figure 16 for Ur = 8 in the LB. In each vibration period, two vortices are
found to shed in the 2S mode. When the cylinder is at its bottom position, the gap
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FIGURE 18. (Colour online) (a) Time histories of Y and CL. (b) Instantaneous vorticity
(ω∗z ) contours at the timings marked at the top of (a). Here, Ur = 6, L∗= 6 and Re= 100.

vortex approaches the leading edge of the cylinder (figure 18b(i,vi)) while it impinges
on the upper surface for Ur = 8 (figure 16(i,vi)). Here, the low- and high-pass-filtered
CL display that the CL induced by the shedding and impingement both are almost in
phase with Y (not shown).

5.4. Wake structure at different branches of vibration at Re= 200
The dependence of the wake structure on Ur at Re= 200 is shown in figure 19. The
wake is characterized by the 2S mode at Ur= 1, the C(2S) mode at Ur= 4, the P+ S
mode at Ur = 5–6 and the 2S mode for Ur > 6. The presence of the P+ S mode at
Ur= 5–6 confirms the UB. The phase of vortex shedding from the wake cylinder does
not change for Ur 6 6 (IB and UB), but changes from 0◦ to 180◦ between Ur= 6 (UB)
and 6.5 (LB) where A∗ is slashed. The wake features a 2S mode and a phase of lag
180◦ beyond Ur > 6.5 (figure 19e, f ).

Figure 20 illustrates the timing and process of vortex shedding at Ur = 6 in one
vibration period. The instants of the snapshots are marked in the time histories of
CL and Y in figure 20(a). Here, CL and Y are almost in phase, indicating that the
shear layers and impinging vortices contribute to the lift at the same phase. The CL
amplitude is thus enhanced, leading to a high A∗ at this Ur.
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FIGURE 19. (Colour online) Instantaneous vorticity (ω∗z ) contours of upstream stationary
and downstream vibrating square cylinders at various values of Ur, L∗ = 6 and Re= 200.

At instant (i), the cylinder is at its top position, and vortices A–E lie around the
wake cylinder. As the cylinder moves downward from instants (i)–(iv), vortex D sheds
from the upper side of the cylinder and vortex E grows on the lower side, leading to a
decrease in CL (figure 20a). Similarly, vortex E sheds from the lower side and another
vortex F grows on the upper side when the cylinder moves from the bottom to the top
(instants (iv–vi)). The CL thus increases in this half-period. In one cylinder-oscillation
period, two vortices D and E shed from the two sides respectively. It is clear from
figure 20(b) that the flow around the cylinder at instant (iv) is the mirror image of
the flow at instant (i). The alternating vortex shedding thus occurs in the 2S mode,
which leads to almost zero mean lift (C̄L=−0.0022) and zero mean displacement (Y=
−0.0021). However, the vortices shedding in the 2S mode arrange in a (P + S)-like
mode in the wake as they evolve downstream, as marked on the snapshot at instant
(vi). Since the arrangement of vortices in the (P + S)-like mode occurs downstream
(x∗ > 14), it has an insignificant impact on C̄L and Y .

6. Discussion
Table 3 outlines the major features of the vibration responses at different values

of Re and L∗. The IB and LB appear for all of the cases, while the UB and GB
materialize for the wake cylinder (L∗ = 6.0) and single cylinder respectively, both at
Re= 200. The DB is absent for the single cylinder at Re= 200. The IB, LB and DB
are all delayed for the wake cylinder compared with the single cylinder. While the
LB for L∗= 2.0 is much wider than that for the single cylinder regardless of Re, that
for L∗= 6.0 is less wide. Both the LB and the DB are characterized by A∗ decreasing
with Ur. While in the literature the initial branch is known as the A∗ increasing with
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FIGURE 20. (Colour online) (a) Time histories of Y and CL. (b) Instantaneous vorticity
(ω∗z ) contours at the timings marked at the top of (a). Here, Ur = 6, L∗= 6 and Re= 200.

Ur, this is not the case for the wake cylinder at L∗ = 6.0, Re = 100, where A∗ first
grows with Ur, followed by a decline and then another augmentation.

In the reattachment regime (L∗ = 2), the vibration amplitude response of the wake
cylinder has a similar trend to that of the single cylinder (figure 8a). The magnitude
of A∗ for the wake cylinder is, however, smaller in the IB and larger in the LB and
the DB compared with its single-cylinder counterpart. The complexity of the response
of the wake cylinder significantly increases at L∗ = 6 (figure 13). Both gap-vortex
impingement and wake-cylinder shedding play a role in the vibration response.
Because of the impingement, the A∗ of the wake cylinder is greater than that of the
single cylinder for all of the regimes, except in the GB. The UB appearing for the
wake cylinder at L∗= 6, Re= 200 is characterized by A∗ as high as 1.2, approximately
three times the maximum A∗ of the single cylinder.

7. Conclusions
A numerical study at Re = 100 and 200 has been conducted on the flow-induced

vibration of a square cylinder placed in the wake of an identical cylinder at spacing
ratios of L∗ = 2 and 6, corresponding to the reattachment and coshedding flow
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regimes. A single cylinder was examined first to gain insight into the vibration
response and corresponding flow physics. The reduced velocity Ur was varied from 1
to 30. The vibration responses, frequency responses, vortex structures and work done
on the cylinder were presented and connected to the vortex shedding process. The
investigation led to the following conclusions.

The single isolated cylinder experiences the IB, the LB and the DB at Re = 100.
On the other hand, at Re= 200, the cylinder undergoes the IB, the LB and the GB.
The vibration amplitude in the GB increases with Ur (> 12). Insight into the vibration
response in the GB is imparted. At the initial stage (12<Ur < 24) of the GB where
the vibration amplitude rapidly grows with Ur, the galloping vibration bears combined
features of the IB and the LB. The vibration amplitude is predominantly contributed
by the flow features associated with the IB. On the other hand, at the late stage (Ur >

24) of the GB where the growth of the vibration amplitude is small, a combination
of features associated with the IB and the DB prevails. Different branches can be
distinguished based on the St–St0 relationship. The IB, LB and DB follow St < St0,
St> St0 and St≈ St0 relationships respectively. In the IB, both the CL and Y histories
undergo a beat where the amplitudes of CL and Y are not constant, but become large
and small alternately. The beat results from a change in the sign of the phase lag
between CL and Y . A large amplitude corresponds to CL leading Y , which provides
positive work done on the cylinder. On the other hand, a small amplitude stems from
CL lagging Y , the cylinder releasing energy to the flow (negative work).

When the cylinder is placed in the wake of another cylinder with a separation
(L∗= 2) corresponding to the reattachment flow regime, the IB is delayed and the LB
is elongated for either Re. The vibration amplitudes in the IB and the LB are smaller
and higher respectively for the wake cylinder than for the isolated cylinder. In the
IB, a quasisteady reattachment of the upstream-cylinder-generated shear layers occurs
on the wake cylinder, which results in a smaller amplitude for the wake cylinder
than the isolated cylinder. The reattachment of the shear layers becomes alternating
in the LB regime, causing the amplitude to be higher for the wake cylinder. The
galloping vibration appearing for the isolated cylinder at Re = 200 is absent for the
wake cylinder.

The vibration response of the wake cylinder at L∗ = 6 is different from that at
L∗=2.0. While the IB, LB and DB are identified at Re=100, an UB emerges between
the IB and the LB at Re= 200. Again, the GB is not observed at either Re. However,
the vibration amplitude is greater than that of the single cylinder for all regimes,
except for the GB. The enhancement in amplitude is attributed to the interaction of the
gap vortices with the wake cylinder. The vibration amplitude in the IB of the single
cylinder increases with increasing Ur, which is the general characteristic of the IB,
known in the literature. For the wake cylinder at Re= 100, the vibration amplitude in
the IB first increases with increasing Ur up to Ur = 5.5, drastically declines between
Ur = 5.5 and 6.0, and then increases again. This observed facet is different from
that known in the literature for a single square or circular cylinder. The phase lag
between the impinging vortex and the vortex shedding from the wake cylinder changes
with increasing Ur, which is ascribed to such variation in the vibration amplitude.
In other words, the phase lag between the impingement-induced lift and the cylinder
displacement dictates the growth and decay of the vibration amplitude in the IB. The
vibration amplitude becomes maximum when the impingement-induced lift is in phase
with the cylinder displacement, producing the positive work done around Y= 0, which
is useful to enhance the vibration amplitude.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

57
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.573


330 R. Bhatt and Md. M. Alam

Acknowledgement
Md.M.A. wishes to acknowledge the support given by the National Natural Science

Foundation of China through grants 11672096 and 91752112 and by the Research
Grant Council of the Shenzhen Government through grant JCYJ20170811152808282.

REFERENCES

ALAM, M. M. 2016 Lift forces induced by the phase lag between the vortex sheddings from two
tandem bluff bodies. J. Fluids Struct. 65, 217–237.

ALAM, M. M. & KIM, S. 2009 Free vibration of two identical circular cylinders in staggered
arrangement. Fluid Dyn. Res. 41, 035507.

ALAM, M. M. & MEYER, J. P. 2013 Global aerodynamic instability of twin cylinders in cross flow.
J. Fluids Struct. 41, 135–145.

ALAM, M. M., MORIYA, M., TAKAI, K. & SAKAMOTO, H. 2002 Suppression of fluid forces acting
on two square prisms in a tandem arrangement by passive control of flow. J. Fluids Struct.
16 (8), 1073–1092.

ASSI, G. R. S., BEARMAN, P. W. & MENEGHINI, J. R. 2010 On the wake-induced vibration of
tandem circular cylinders: the vortex interaction excitation mechanism. J. Fluid Mech. 661,
365–401.

BARRERO-GIL, A., SANZ-ANDRES, A. & ROURA, M. 2009 Transverse galloping at low Reynolds
numbers. J. Fluids Struct. 25, 1236–1242.

BEARMAN, P. W. & OBASAJU, E. D. 1982 An experimental study of pressure fluctuations on fixed
and oscillating square-section cylinders. J. Fluid Mech. 119, 297–321.

BLEVINS, R. D. 1990 Flow Induced Vibration. Van Nostrand Reinhold.
CUI, Z., ZHAO, M., TENG, B. & CHENG, L. 2015 Two-dimensional numerical study of vortex-induced

vibration and galloping of square and rectangular cylinders in steady flow. Ocean Engng 106,
189–206.

DAREKAR, R. M. & SHERWIN, S. J. 2001 Flow past a square-section cylinder with a wavy stagnation
face. J. Fluid Mech. 426, 263–295.

DE, A. K. & DALAL, A. 2006 Numerical simulation of unconfined flow past a triangular cylinder.
Intl J. Numer. Meth. Fluids 52, 801–821.

GOVARDHAN, R. & WILLIAMSON, C. H. K. 2000 Modes of vortex formation and frequency response
of a freely vibrating cylinder. J. Fluid Mech. 420, 85–130.

HE, T., ZHOU, D. & BAO, Y. 2012 Combined interface boundary condition method for fluid–rigid
body interaction. Comput. Meth. Appl. Mech. Engng 223–224, 81–102.

INOUE, O., IWAKAMI, W. & HATAKEYAMA, N. 2006 Aeolian tones radiated from flow past two
square cylinders in a side-by-side arrangement. Phys. Fluids 18, 046104.

JAIMAN, R. K., PILLALAMARRI, N. R. & GUAN, M. Z. 2016 A stable second-order partitioned
iterative scheme for freely vibrating low-mass bluff bodies in a uniform flow. Comput. Meth.
Appl. Mech. Engng 301, 187–215.

JOLY, A., ETIENNE, S. & PELLETIER, D. 2012 Galloping of square cylinders in cross-flow at low
Reynolds numbers. J. Fluids Struct. 28, 232–243.

KHALAK, A. & WILLIAMSON, C. H. K. 1999 Motions, forces and mode transitions in vortex-induced
vibrations at low mass-damping. J. Fluids Struct. 13, 813–851.

KIM, S., ALAM, M. M., SAKAMOTO, H. & ZHOU, Y. 2009 Flow-induced vibrations of two circular
cylinders in tandem arrangement. Part 1. Characteristics of vibration. J. Wind Engng Ind.
Aerodyn. 97, 304–311.

KUMAR, D., SING, A. K. & SEN, S. 2018 Identification of response branches for oscillators with
curved and straight contours executing VIV. Ocean Engng 164, 616–627.

LUDLAM, D. V., GIL, A. B. & VELAZQUEZ, A. 2017 Flow-induced vibration of a rotating circular
cylinder using position and velocity feedback. J. Fluids Struct. 72, 127–151.

LUO, S. C., CHEW, Y. T. & NG, Y. T. 2003 Characteristics of square cylinder wake transition flows.
Phys. Fluids 15 (9), 2549–2559.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

57
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.573


Vibrations of a square cylinder submerged in a wake 331

MANSON, J. R., PENDER, G. & WALLIS, S. G. 1996 Limitations of traditional finite volume
discretizations for unsteady computational fluid dynamics. AIAA J. 34 (5), 1074–1076.

MARUAI, N. M., ALI, M. S. M., ISMAIL, M. H. & ZAKI, S. A. 2018 Flow-induced vibration
of square cylinder and downstream flat plate associated with micro-scale energy harvester.
J. Wind Engng Ind. Aerodyn. 175, 264–282.

MEHMOOD, A., ABDELKEFI, A., HAJJ, M. R., NAYFEH, A. H., AKHTAR, I. & UHAIT, A. O. 2013
Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder. J. Sound
Vib. 332, 4656–4667.

MITHUN, M. G. & TIWARI, S. 2014 Flow past two tandem square cylinders vibrating transversely
in phase. Fluid Dyn. Res. 46, 055509.

MORE, B. S., DUTTA, S., CHAUHAN, M. K. & GANDHI, B. K. 2015 Experimental investigation
of flow behind two tandem square cylinders with oscillating upstream cylinder. Exp. Therm.
Fluid Sci. 68, 339–358.

NAKAMURA, Y. & HIRATA, K. 1991 Pressure fluctuations on oscillating rectangular cylinders with
the long side normal to the flow. J. Fluids Struct. 5, 165–183.

NAKAMURA, Y. & MATSUKAWA, T. 1987 Vortex excitation of rectangular cylinders with a long side
normal to the flow. J. Fluid Mech. 180, 171–181.

NAKAMURA, Y. & MIZOTA, T. 1975 Unsteady lifts and wakes of oscillating rectangular prisms.
ASCE J. Engng Mech. 101, 855–871.

NAVROSE & MITTAL, S. 2017 A new regime of multiple states in free vibration of a cylinder at
low Re. J. Fluids Struct. 68, 310–321.

PATANKAR, S. V. 1980 Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation,
Taylor and Francis Group.

QIN, B., ALAM, M. M. & ZHOU, Y. 2017 Two tandem cylinders of different diameter in cross-flow:
flow-induced vibration. J. Fluid Mech. 829, 621–658.

ROBICHAUX, J., BALACHANDAR, S. & VANKA, S. P. 1999 Three-dimensional Floquet instability of
the wake of square cylinder. Phys. Fluids 11 (3), 560–578.

SAHA, A. K., BISWAS, G. & MURALIDHAR, K. 2003 Three-dimensional study of flow past a square
cylinder at low Reynolds numbers. Intl J. Heat Fluid Flow 24, 54–66.

SAHU, A. K., CHHABRA, R. P. & ESWARAN, V. 2009 Two-dimensional unsteady laminar flow of a
power law fluid across a square cylinder. J. Non-Newtonian Fluid Mech. 160, 157–167.

SAKAMOTO, H., HANIU, H. & OBATA, Y. 1987 Fluctuating forces acting on two square prisms in a
tandem arrangement. J. Wind Engng Ind. Aerodyn. 26, 85–103.

SEN, S. & MITTAL, S. 2011 Free vibration of a square cylinder at low Reynolds numbers. J. Fluids
Struct. 27, 875–884.

SEN, S. & MITTAL, S. 2015 Effect of mass ratio on free vibrations of a square cylinder at low
Reynolds numbers. J. Fluids Struct. 54, 661–678.

SHAABAN, M. & MOHANY, A. 2018 Flow-induced vibration of three unevenly spaced in-line cylinders
in cross-flow. J. Fluids Struct. 76, 367–383.

SHARMA, A. & ESWARAN, V. 2004 Heat and fluid flow across a square cylinder in the
two-dimensional laminar flow regime. Numer. Heat Transf. 45 (3), 247–269.

SINGH, A. P., DE, A. K., CARPENTER, V. K., ESWARAN, V. & MURALIDHAR, K. 2009 Flow
past a transversely oscillating square cylinder in free stream at low Reynolds numbers. Intl J.
Numer. Meth. Fluids 61, 658–682.

SINGH, S. & BISWAS, G. 2013 Vortex induced vibrations of a square cylinder at subcritical Reynolds
numbers. J. Fluids Struct. 41, 146–155.

SINGH, S. P. & MITTAL, S. 2005 Vortex-induced oscillations at low Reynolds numbers: hysteresis
and vortex-shedding modes. J. Fluids Struct. 20, 1085–1104.

SOHANKAR, A. 2012 A numerical investigation of the flow over a pair of identical square cylinders
in a tandem arrangement. Intl J. Numer. Meth. Fluids 70, 1244–1257.

SOHANKAR, A., NORBERG, C. & DAVIDSON, L. 1997 Numerical simulation of unsteady low-Reynolds
number flow around rectangular cylinders at incidence. J. Wind Engng Ind. Aerodyn. 69–71,
189–201.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

57
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.573


332 R. Bhatt and Md. M. Alam

SOHANKAR, A., NORBERG, C. & DAVIDSON, L. 1999 Simulation of three-dimensional flow around
a square cylinder at moderate Reynolds numbers. Phys. Fluids 11 (2), 288–306.

SU, Z., LIU, Y., ZHANG, H. & ZHANG, D. 2007 Numerical simulation of vortex-induced vibration
of a square cylinder. J. Mech. Sci. Tech. 21, 1415–1424.

ZHAO, M. 2015 Flow-induced vibrations of square and rectangular cylinders at low Reynolds number.
Fluid Dyn. Res. 47, 025502.

ZHAO, M., CHENG, L. & ZHOU, T. 2013 Numerical simulation of vortex-induced vibration of a
square cylinder at a low Reynolds number. Phys. Fluids 25, 023603.

ZHENG, Q. & ALAM, M. M. 2017 Intrinsic features of flow past three square prisms in side-by-side
arrangement. J. Fluid Mech. 826, 996–1033.

ZHENG, Q. & ALAM, M. M. 2018 Fluid dynamics around three inline square prisms. J. Fluid Mech.
(submitted).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

57
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.573

	Vibrations of a square cylinder submergedin a wake
	Introduction
	Problem description
	Governing equations and numerical methods

	Result validation
	Single vibrating cylinder
	Tandem cylinders
	Reattachment regime (L*=2)
	Vibration response
	Wake structures
	Frequency response
	Fluctuating lift force

	Coshedding regime (L*=6.0)
	Vibration and frequency responses
	Wake structure

	Wake structure at different branches of vibration at Re=100
	Wake structure and phase relationship between CL and Y
	Vortex shedding process and work done

	Wake structure at different branches of vibration at Re=200

	Discussion
	Conclusions
	Acknowledgement
	References


