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Abstract

The notion of recurrent fractal interpolation functions (RFIFs) was introduced by Barnsley et al.

[‘Recurrent iterated function systems’, Constr. Approx. 5 (1989), 362–378]. Roughly speaking, the graph

of an RFIF is the invariant set of a recurrent iterated function system on R2. We generalise the definition

of RFIFs so that iterated functions in the recurrent system need not be contractive with respect to the first

variable. We obtain the box dimensions of all self-affine RFIFs in this general setting.
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Keywords and phrases: box dimension, iterated function systems, recurrent fractal interpolation functions,
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1. Introduction

Let (x0, y0), (x1, y1), . . . , (xN , yN) ∈ R2 be given data, where x0 < x1 < · · · < xN . There

are different functions supported on R that map each xi exactly to yi. These functions

are called interpolation functions. For example, Lagrangian polynomial interpolation

gives a unique polynomial function satisfying the interpolation conditions. However,

polynomials or other smooth functions might not be well suited for approaching ‘frac-

tal’ curves such as coastlines or electrocardiograms. Fractal interpolation functions

(FIFs for short), introduced by Barnsley [3], provide an effective tool in this situation.

In 1989, Barnsley et al. [4] introduced recurrent fractal interpolation functions

as follows. (In the original version, the corresponding iterated function systems are

composed of affine maps.) Let N > 2 and {ℓ(i), r(i)}N
i=1
⊂ {0, 1, . . . , N} with ℓ(i) < r(i).

For 1 6 i 6 N, we set Ii = [xi−1, xi], Di = [xℓ(i), xr(i)] and assume that:

(1) Li : Di → Ii is a homeomorphism;

(2) Fi : Di × R→ R is a continuous function and there exists βi (0 < βi < 1) with

|Fi(x, y′) − Fi(x, y′′)| 6 βi|y
′ − y′′| for all x ∈ Di, y′, y′′ ∈ R;
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(3) if we define ωi : Di × R→ Ii × R by ωi(x, y) = (Li(x), Fi(x, y)), then ωi maps

(xℓ(i), yℓ(i)) to (xi−1, yi−1) and (xr(i), yr(i)) to (xi, yi) (or (xℓ(i), yℓ(i)) to (xi, yi) and

(xr(i), yr(i)) to (xi−1, yi−1)).

Set I(i) := { j : Ij ⊂ Di}. For any function f supported on I = [x0, xN], we let Γ( f ) be

the graph of f, that is, Γ( f ) = {(x, f (x)) : x ∈ I}, and f |Ij
the restriction of f to Ij.

THEOREM 1.1 [4]. Suppose that xr(i) − xℓ(i) > xi − xi−1 for each i and that there exists

αi ∈ (0, 1) such that

|Li(x
′) − Li(x

′′)| ≤ αi|x
′ − x′′| for all x′, x′′ ∈ Di.

Then there is a unique function f ∈ C(I) such that f (x0) = y0, . . . , f (xN) = yN and

Γ( f |Ii
) =
⋃

j∈I(i)

ωi(Γ( f |Ij
)) for 1 6 i 6 N.

Such an f is called the recurrent fractal interpolation function (RFIF for short)

determined by {ω1, . . . ,ωN}. FIFs and RFIFs have been widely used in applications

(see, for example, [13]).

There is great interest in the calculation of fractal dimensions, especially the box

dimension and the Hausdorff dimension, of graphs of FIFs and RFIFs. Given any

bounded set E ⊂ Rn, the lower and upper box dimensions of E are given by

dim
B

E = lim
ε→0

logNE(ε)

− log ε
, dimBE = lim

ε→0

logNE(ε)

− log ε
,

whereNE(ε) is the number of ε-mesh cubes intersecting E. If these two limits coincide,

we call the common value the box dimension of E and denote it by dimBE.

Once we interpolate some rough data by a fractal function, it is reasonable to say

that fractal dimensions of the fractal function reflect the fractal properties of the rough

data. Barnsley et al. [4] obtained the box dimension of the graphs of self-affine RFIFs.

See also [5–8, 10–12, 14] for constructions of FIFs and RFIFs in general settings

(for example, rectangular domains) and the calculations of box dimensions of their

graphs. For results and techniques on the Hausdorff dimension of the graphs of fractal

interpolation functions, see the survey papers [1, 2].

The following question arises naturally.

QUESTION 1.2. Is the assumption xr(i) − xℓ(i) > xi − xi−1, or equivalently |Di| > |Ii|,

essential for the existence of RFIFs? If the assumption is not essential, can we

determine the box dimensions of the graphs in this general setting?

We try to answer this question. By using the classical method of [3], we show that

the assumption can be removed, giving extra flexibility in the construction of RFIFs.

In practice, this helps in finding more effective methods for modelling natural shapes.
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THEOREM 1.3. There always exists a unique function f ∈ C(I) satisfying f (xi) = yi for

0 6 i 6 N and

Γ( f |Ii
) =
⋃

j∈I(i)

ωi(Γ( f |Ij
)) for 1 6 i 6 N. (1.1)

The second part of the question is more involved and we restrict ourselves to affine

cases. To be precise, suppose that there are ai, ci, di, ei, fi ∈ R for 1 6 i 6 N such that

Li(x) = aix + ei, Fi(x, y) = cix + diy + fi for x ∈ Di, y ∈ R,

where di ∈ (−1, 1). Clearly, |ai| = |Ii|/|Di| for all i. Thus,

ωi(x, y) = (aix + ei, cix + diy + fi) for (x, y) ∈ Di × R. (1.2)

In this case, the RFIF determined by {ωi}
N
i=1

is called a self-affine RFIF.

In order to obtain the box dimensions of self-affine RFIFs, we will mainly use the

methods in [4, 11, 14]. Before stating our result, we introduce some basic concepts.

For any s ∈ R, let Q(s) be an N × N matrix defined by Q(s)ij = |di||ai|
s−1 if Ij ⊂ Di and

Q(s)ij = 0 otherwise. For simplicity, we also denote Q(1) by Q if there is no confusion.

To calculate dimBΓ( f ), we define a directed graph G := GQ as follows:

(1) the vertex set of G consists of 1, 2, . . . , N;

(2) there is an edge from j to i (1 6 i, j 6 N) if and only if Qij > 0, that is, Ij ⊂ Di and

di , 0.

We say that G is strongly connected if there is a path from i to j for 1 6 i, j 6 N,

that is, there exists a finite sequence {v0 = i, v1, . . . , vn = j} in {1, . . . , N} such that there

is an edge from vk−1 to vk for 1 6 k 6 n. The subgraph induced by V ′ ⊂ {1, . . . , N} is

called a strongly connected component of G if it is itself strongly connected, but the

subgraph induced by U is not strongly connected whenever {1, . . . , N} ⊃ U % V ′. It is

well known that Q is irreducible if and only if the corresponding directed graph G

is strongly connected (see, for example, [9]). For brevity, we also say that {1, . . . , N}

is strongly connected if G is strongly connected, and V ⊂ {1, . . . , N} is a strongly

connected component if V is the vertex set of a strongly connected component of G.

DEFINITION 1.4 [11]. For 1 6 i 6 N, we call i degenerate if:

(1) points in {(xk, yk) : ℓ(i) 6 k 6 r(i)} are collinear; and

(2) points in {(xk, yk) : ℓ(j) 6 k 6 r(j)} are collinear when there is a path from j to i.

In addition, a strongly connected component V ⊂ {1, . . . , N} is called degenerate if

every i ∈ V is degenerate and otherwise nondegenerate. Clearly, if some i ∈ V is

not degenerate, then any other i′ ∈ V is also not degenerate. In other words, if V is

nondegenerate, then each i ∈ V is not degenerate.

For any N × N matrix A and any V ⊂ {1, . . . , N}, we denote by AV the principal

submatrix of A indexed by V × V , that is, AV is obtained by deleting all the ith rows

and jth columns of A for i, j < V .
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Now we can present our result on the box dimension of the graphs of self-affine

RFIFs.

THEOREM 1.5. Let f be the self-affine RFIF determined by {ωi}
N
i=1

in (1.2), and

V1, . . . , Vm be nondegenerate strongly connected components of {1, . . . , N}. Let st be

the unique real number satisfying ρ(Q(st)Vt
) = 1 for 1 ≤ t ≤ m, where ρ(·) represents

the spectral radius. Then dimBΓ( f ) = max{s1, . . . , sm, 1}.

The paper is organised as follows. In Section 2 we establish the existence and

uniqueness of an RFIF without the assumption that xr(i) − xℓ(i) > xi − xi−1 and present

some basic estimates. In Section 3 we prepare the essential ingredients for Section 4,

where we prove Theorem 1.5.

2. Unique existence and some basic estimates

The proof of Theorem 1.3 is classical.

PROOF OF THEOREM 1.3. Set C∗(I) = {g ∈ C(I) : g(x0) = y0, . . . , g(xN) = yN}. It is

clear that C∗(I) is a closed subset of (C(I), ‖ · ‖∞) and thus a complete metric space.

Given a function g ∈ C∗(I), we define

Tg(x) = Fi(L
−1
i (x), g(L−1

i (x))) for all x ∈ Ii and 1 6 i 6 N.

It is easy to check that Tg is well defined and Tg ∈ C∗(I). For any g, h ∈ C∗(I), any i

and any x ∈ Ii,

|Tg(x) − Th(x)| = |Fi(L
−1
i (x), g(L−1

i (x))) − Fi(L
−1
i (x), h(L−1

i (x)))|

6 |di||g(L−1
i (x)) − h(L−1

i (x))| 6
(

max
16i6N

|di|
)

‖g − h‖∞.

Hence, T is a contractive map and has a unique fixed point f ∈ C∗(I) for which

f (x) = T f (x) = Fi(L
−1
i (x), f (L−1

i (x))) for all x ∈ Ii and 1 6 i 6 N. (2.1)

Thus,

Γ( f |Ii
) = {(x, f (x)) : x ∈ Ii} = {(x, Fi(L

−1
i (x), f (L−1

i (x)))) : x ∈ Ii}

= {(Li(x), Fi(x, f (x))) : x ∈ Di} = {ωi(x, f (x)) : x ∈ Di} =
⋃

j∈I(i)

ωi(Γ( f |Ij
)).

On the other hand, if there is another function g ∈ C∗(I) satisfying (1.1), then

{(x, g(x)) : x ∈ Ii} = {(Li(x), Fi(x, g(x))) : x ∈ Di} = {(x, Fi(L
−1
i (x), g(L−1

i (x)))) : x ∈ Ii}

for 1 6 i 6 N, so that g(x) = Tg(x) for all x ∈ I. Hence, g = f . �

The following proposition is well known and the proof is straightforward.

PROPOSITION 2.1. Let f be the self-affine RFIF determined by {ωi}
N
i=1

in (1.2). If di = 0

for some i with 1 6 i 6 N, then f |Ii
is linear, so that dimBΓ( f |Ii

) = 1.

PROOF. If di = 0, then, from (2.1), f |Ii
(x) = ciL

−1
i

(x) + fi = a−1
i

ci(x − ei) + fi. �

https://doi.org/10.1017/S0004972720001045 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972720001045


282 H.-J. Ruan, J.-C. Xiao and B. Yang [5]

DEFINITION 2.2 [4, 14]. For any bounded closed interval E = [c, d] and 0 < ε < |E|,

we call {τℓ}
m
ℓ=0

an ε-partition of E if τ0 = c, τm = d and ε/2 < τℓ+1 − τℓ 6 ε holds for

0 6 ℓ 6 m − 1.

It is easy to see that if {τℓ}
m
ℓ=0

is an ε-partition of E = [c, d], then mε/2 < d − c 6

mε. For any real function f defined on E and any τ ∈ R, we denote the oscillation of f

on [τ, τ + ε] ∩ E by

O( f , τ, ε) = sup{ f (x′) − f (x′′) : x′, x′′ ∈ [τ, τ + ε] ∩ E}

and define

N∗
Γ( f )(ε) = inf

{

ε−1

m−1
∑

ℓ=0

O( f , τℓ, ε) : {τℓ}
m
ℓ=0 is an ε-partition of E

}

,

where the infimum is taken over all ε-partitions of E. By the following lemma, we can

use N∗
Γ( f )

(ε) instead of NΓ( f )(ε) to estimate the box dimension of Γ( f ).

LEMMA 2.3 [14]. For any continuous function f on a closed interval E = [c, d], there

exist a constant C > 0 independent of f and another constant γ > 0 dependent on f

such that

C−1N∗
Γ( f )(ε) 6 NΓ( f )(ε) 6 γε

−1
+ CN∗

Γ( f )(ε), 0 < ε < d − c.

The method in the proof of [14, Lemma 2] yields the following estimate.

LEMMA 2.4. Let f be the self-affine RFIF determined by {ωi}
N
i=1

in (1.2). Then there

exist two positive constants β, ε0 > 0 such that
∣

∣

∣

∣

∣

N∗
Γ( f |Ii )

(ε) −

∣

∣

∣

∣

∣

di

ai

∣

∣

∣

∣

∣

∑

j∈I(i)

N∗
Γ( f |Ij )

(

ε

|ai|

)

∣

∣

∣

∣

∣

6 βε−1

for 1 6 i 6 N and 0 < ε < ε0.

PROOF. Define ε0 = min{|ai||Ij| : 1 6 i, j 6 N}. For 0 < ε < ε0, we have ε/|ai| < |Ij|

for all i, j. We remark that min{|ai| : 1 6 i 6 N} 6 1 since |ai| = |Ii|/|Di|. Fix i with

16 i6N. If di = 0, then f |Ii
is a linear function, so that there is a constant βi > 0

such that N∗
Γ( f |Ii )

(ε) 6 βiε
−1 for all ε ∈ (0, ε0).

Suppose that di , 0. Given ε ∈ (0, ε0), we let {ηℓ,j}
mj

ℓ=0
be arbitrary ε/|ai|-partitions

of Ij for j ∈ I(i). Then {Li(ηℓ,j) : 0 6 ℓ 6 mj, j ∈ I(i)} is an ε-partition of Ii.

Define qi(x) = cix + fi, x ∈ Di. By (2.1),

f (x′) − f (x′′) = di( f (L−1
i (x′)) − f (L−1

i (x′′))) + qi(L
−1
i (x′)) − qi(L

−1
i (x′′)) (2.2)

for x′, x′′ ∈ Ii. Hence,

∑

j∈I(i)

mj−1
∑

ℓ=0

O( f |Ii
, Li(ηℓ,j), ε) 6 |di|

∑

j∈I(i)

mj−1
∑

ℓ=0

O

(

f |Ij
, ηℓ,j,

ε

|ai|

)

+

∑

j∈I(i)

mj−1
∑

ℓ=0

O

(

qi|Ij
, ηℓ,j,

ε

|ai|

)

.
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For each j ∈ I(i), since {ηℓ,j}
mj

ℓ=0
is an ε/|ai|-partition of Ij, it follows that mjε/|ai| <

2(xj − xj−1). Combining this with the linearity of qi,

mj−1
∑

ℓ=0

O

(

qi|Ij
, ηℓ,j,

ε

|ai|

)

6
|ci|mjε

|ai|
≤ 2|ci|(xj − xj−1), (2.3)

so that
∑

j∈I(i)

∑mj−1

ℓ=0
O(qi|Ij

, ηℓ,j, ε/ai) 6 2|ci|(xr(i) − xℓ(i)). Thus, there exists a constant

βi,1 > 0 such that for all ε ∈ (0, ε0),

N∗
Γ( f |Ii )

(ε) 6

∣

∣

∣

∣

∣

di

ai

∣

∣

∣

∣

∣

∑

j∈I(i)

N∗
Γ( f |Ij )

(

ε

|ai|

)

+ βi,1ε
−1.

On the other hand, given an arbitrary ε-partition {τℓ}
m
ℓ=0

of Ii, we denote

Aj := {L−1
i (τℓ) : 0 6 ℓ 6 m} ∩

(

xj−1 +
ε

2|ai|
, xj −

ε

2|ai|

)

, j ∈ I(i).

From (2.2), for each j ∈ I(i),

∑

ℓ: L−1
i

(τℓ)∈Aj

O

(

f |Ij
, L−1

i (τℓ),
ε

|ai|

)

6
1

|di|

∑

ℓ: L−1
i

(τℓ)∈Aj

(

O( f |Ii
, τℓ, ε) + O

(

qi|Ij
, L−1

i (τℓ),
ε

|ai|

))

.

Summing over j ∈ I(i),

∑

j∈I(i)

∑

ℓ: L−1
i

(τℓ)∈Aj

O

(

f |Ij
, L−1

i (τℓ),
ε

|ai|

)

6
1

|di|

( m−1
∑

ℓ=0

O( f |Ii
, τℓ, ε) +

m−1
∑

ℓ=0

O

(

qi|Di
, L−1

i (τℓ),
ε

|ai|

))

.

One can add xj−1, xj and at most two other points into Aj such that the resulting set,

denoted by A∗
j
, is an ε/|ai|-partition of Ij. This implies that

∑

j∈I(i)

∑

τ∈A∗
j

O

(

f |Ij
, τ,
ε

|ai|

)

6
1

|di|

( m−1
∑

ℓ=0

O( f |Ii
, τℓ, ε) +

m−1
∑

ℓ=0

O

(

qi|Di
, L−1

i (τℓ),
ε

|ai|

))

+ 8N‖ f ‖∞.

As before,
∑m−1
ℓ=0 O(qi|Di

, L−1
i

(τℓ), ε/|ai|) 6 |ai|
−1|ci|mε ≤ 2|ci|(xr(i) − xℓ(i)). Thus, there

exists a constant βi,2 > 0 such that

N∗
Γ( f |Ii )

(ε) >

∣

∣

∣

∣

∣

di

ai

∣

∣

∣

∣

∣

∑

j∈I(i)

N∗
Γ( f |Ij )

(ε/|ai|) − βi,2ε
−1

for all ε ∈ (0, ε0). Let βi = max{βi,1, βi,2}.

The lemma holds with β = max{βi : 1 6 i 6 N}. �

3. Analysis on strongly connected components

The following proposition is a natural property of degenerate elements.

PROPOSITION 3.1. Let f be the self-affine RFIF determined by {ωi}
N
i=1

in (1.2). If i0 is

degenerate, then Γ( f |Ii0
) is a line segment.
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PROOF. Let Ω := { j : there is a path from j to i0} and let T and C∗(I) be as in the proof

of Theorem 1.3. Denote by C∗(I) the collection of g ∈ C∗(I) such that Γ(g|Ik
) is a line

segment connecting (xk−1, yk−1) and (xk, yk) for every k ∈ Ω ∪ {i0}. It suffices to show

that T maps C∗(I) into itself.

For k ∈ Ω ∪ {i0} and x ∈ Ik, there exists θ ∈ [0, 1] such that x = θxk−1 + (1 − θ)xk.

Without loss of generality, we assume that ωk maps (xℓ(k), yℓ(k)) to (xk−1, yk−1) and

(xr(k), yr(k)) to (xk, yk). For any g ∈ C∗(I), since L−1
k

(x) = θxℓ(k) + (1 − θ)xr(k),

Tg(θxk−1 + (1 − θ)xk) = Fk(L−1
k (x), g(L−1

k (x)))

= ckL−1
k (x) + dkg(L−1

k (x)) + fk

= θFk(xℓ(k), g(xℓ(k))) + (1 − θ)Fk(xr(k), g(xr(k)))

= θTg(xk−1) + (1 − θ)Tg(xk),

which implies that Tg ∈ C∗(I). �

DEFINITION 3.2. We say that {i1, . . . , im} ⊂ {1, . . . , N}, where i1, . . . , im are distinct,

forms a cycle if (by rearrangement if necessary) Dik = Iik+1
for each 1 6 k 6 m, where

im+1 = i1.

Note that if V ⊂ {1, . . . , N} forms a cycle, then V is clearly degenerate.

DEFINITION 3.3. For n ∈ Z+ ∪ {0}, we call i = {ik}
n
k=0

an n-chain if ik ∈ {1, 2, . . . , N}

for all 0 6 k 6 n and ik+1 ∈ I(ik) for each 0 6 k 6 n − 1; the weight of i is defined by

a(i) =
∏n

k=0 |aik |.

PROPOSITION 3.4. If no subsets of {1, . . . , N} can form a cycle, then

lim
n→∞

max{a(i) : i is an n-chain} = 0.

PROOF. The key observation is that for any N-chain {ik}
N
k=0

, there must exist some

k0 with 0 6 k0 6 N − 1 such that #I(ik0
) > 2. In fact, by the pigeonhole principle, we

can always find s, t with 0 6 s < t 6 N such that is = it. It follows that there exists

k0 ∈ {s, s + 1, . . . , t} such that I(ik0
) ! {ik0+1} since otherwise {is, is+1, . . . , it−1} would

form a cycle, which leads to a contradiction. Since is = it, we can choose some k0 from

{s, s + 1, . . . , t − 1} so that k0 6 N − 1. Denote

α = max

{ |Ij|

|Di|
: j ∈ I(i), #I(i) > 2

}

.

Then 0 < α < 1 is a constant only dependent on the iterated function system {ωi}
N
i=1

.

For 0 6 k 6 N − 1, we have ik+1 ∈ I(ik), so that |Iik+1
|/|Dik | 6 1. Further, Iik0+1

 Dik0
, so

that |Iik0+1
|/|Dik0

| 6 α.

Given n ∈ Z+ and an n-chain i = {ik}
n
k=0

, we have n = m(N + 1) + p, where 0 6 p 6

N and m is a nonnegative integer. Note that {ik}
N
k=0

, {ik}
2N+1
k=N+1

, . . . , {ik}
m(N+1)−1

k=(m−1)(N+1)
are all

N-chains. From the above argument,
∏(q+1)(N+1)−2

k=q(N+1)
(|Iik+1
|/|Dik |) 6 α for 0 6 q 6 m − 1,

so that
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m(N+1)−1
∏

k=0

|aik | =

m(N+1)−1
∏

k=0

|Iik |

|Dik |
=

|Ii0 |

|Dim(N+1)−1
|

m(N+1)−2
∏

k=0

|Iik+1
|

|Dik |
6

|I|

min16j6N |Dj|
αm.

Similarly,
∏n

k=m(N+1) |aik | 6 |I|/min16j6N |Dj|. Thus, a(i) 6 |I|2αm/min16j6N |Dj|
2, which

proves the proposition. �

We denote by CHn the set of all n-chains. Given V ⊂ {1, . . . , N}, we denote by

CHn(V) the set of all n-chains i = {ik}
n
k=0

with ik ∈ V for 0 6 k 6 n. For convenience,

we also use i0i1 · · · in to denote the chain i = {ik}
n
k=0

.

REMARK 3.5. For any nondegenerate strongly connected component V, one can argue

as above to see that limn→∞max{a(i) : i ∈ CHn(V)} = 0.

LEMMA 3.6 (Perron–Frobenius theorem). Let A = (aij)n×n be an irreducible nonnega-

tive matrix.

(1) The spectral radius of A, denoted by ρ(A), is an eigenvalue of A and has a positive

eigenvector.

(2) ρ(A) strictly increases as any aij strictly increases.

The following simple result will be used in the proof of Proposition 3.8.

LEMMA 3.7. Let E be a closed interval and f ∈ C(E). For any ε > 0 and ε-partition

{τℓ}
m
ℓ=0

of E,

m−1
∑

ℓ=0

O( f , τℓ, ε) > max
x∈E

f (x) −min
x∈E

f (x). (3.1)

PROOF. Set Gℓ = f ([τℓ, τℓ + ε] ∩ E) for 0 6 ℓ 6 m − 1. By the continuity of f, we see

that Gℓ is a bounded closed interval for each ℓ and
⋃m−1
ℓ=0 Gℓ = f (E). Then (3.1) follows

from the facts that O( f , τℓ, ε) = L
1(Gℓ) and maxx∈E f (x) −minx∈E f (x) = L1( f (E)),

where L1 represents the Lebesgue measure on R. �

Now we can obtain the following result by using a similar method to the proof of

[4, Lemma 4.3]. We remark that in the proof of that lemma, the irreducibility of C

should be replaced by CS(1), where C is the connection matrix.

PROPOSITION 3.8. Let f be the self-affine RFIF determined by {ωi}
N
i=1

in (1.2). Suppose

that V ⊂ {1, . . . , N} is a nondegenerate strongly connected component and ρ(QV ) > 1.

Then

lim
ε→0
εN∗
Γ( f |Ij )

(ε) = ∞ for all j ∈ V .

PROOF. Denote λ := ρ(QV ) > 1 and suppose that V = {i1, . . . , iM}. We may assume

for notational simplicity that V = {1, . . . , M}. Since V is a nondegenerate strongly

connected component, Γ( f |Ij
) is not a line segment for each j ∈ V . This allows us to find

pj, qj, rj ∈ R with xj−1 < pj < qj < rj < xj such that f (pj), f (qj), f (rj) are not collinear.

Thus, if we let
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FIGURE 1. pj, qj and rj.

zj :=
f (rj) − f (pj)

rj − pj

(qj − pj) + f (pj),

then γj := | f (qj) − zj| > 0, as one can see in Figure 1. Notice that

max{| f (rj) − f (qj)|, | f (pj) − f (qj)|} ≥ | f (zj) − f (qj)|.

From Lemma 3.7, N∗
Γ( f |Ij )

(ε) > ε−1γj. Denote δ = min16j6M min{pj − xj−1, xj − rj}.

By the Perron–Frobenius theorem, we can find a positive eigenvector of QV

associated with the eigenvalue λ, say v = (v1, . . . , vM), such that 0 < vj 6 γj for 1 6 j 6

M. By the definitions of Q and QV , we have |dj|
∑

k∈V∩I(j) vk = λvj for j = 1, 2, . . . , M.

Since Γ( f |Ij
) ⊃
⋃

k∈V∩I(j) ωj(Γ( f |Ik
)), from Lemma 3.7 and the affinity of ωj,

N∗
Γ( f |Ij )

(ε) > ε−1
∑

k∈V∩I(j)

|dj|γk > ε
−1
∑

k∈V∩I(j)

|dj|vk = ε
−1λvj

for 0 < ε < min{δ|ai| : i ∈ V}. By induction, N∗
Γ( f |Ij )

(ε) > ε−1λnvj for all n ∈ Z+, pro-

vided 0 < ε < min{δa(i) : i ∈ CHn(V)}. Combining this with Remark 3.5 shows that

the proposition holds. �

4. Proof of Theorem 1.5

If some V ⊂ {1, . . . , N} forms a cycle, then, from Proposition 3.1,
⋃

i∈V Γ( f |Ii
) is a

union of line segments. Hence, we may assume that no subset of {1, . . . , N} can form a

cycle. In view of Proposition 3.4, we set

N∗ := min{n > 0 : a(i) < 1 for all m-chains i with m ≥ n}.

In particular, if N∗ = 0, then |ai| < 1 for all 1 6 i 6 N. We also denote

a = max{a(i) : i is an N∗-chain}, a = min{a(i) : i is an N∗-chain}.
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Clearly, 0 < a 6 a < 1. For any v = (v1, . . . , vN)T , it is not difficult to see that

(Q(s))nv = (v
(n)

1
, v

(n)

2
, . . . , v

(n)

N
)T , where

v
(n)

k
=

∑

kj1···jn∈CHn

|dkdj1 · · · djn−1
||akaj1 · · · ajn−1

|s−1vjn , k = 1, 2, . . . , N.

For each matrix A and n ∈ Z+, we have ρ(A) = 1 if and only if ρ(An) = 1. Since each

nonzero entry of the matrix (Q(s)Vt
)N∗+1 decreases as s increases, it follows from

the Perron–Frobenius theorem that there exists a unique real number st such that

ρ(Q(st)Vt
) = 1.

For 1 6 i, j 6 N, we denote i ∼ j if i and j belong to the same strongly connected

component of the graph G. Otherwise, i / j. Let

A(i) = { j : j / i but there is a path from j to i}.

As in [11], we define the position P(i) of each i (1 6 i 6 N) recursively as follows:

P(i) = 1 if A(i) = ∅, otherwise P(i) = 1 +max{P(j) : j ∈ A(i)}. Clearly, P(i) 6 N for

each i. Also, P(i) = P(j) if i ∼ j since in this caseA(i) = A(j).

PROOF OF THEOREM 1.5. From Lemma 2.4, there exist two positive constants β∗ and

ε∗ such that
∣

∣

∣

∣

∣

N∗
Γ( f |Ij )

(ε) −
∑

jj1···jN∗+1∈CHN∗+1

∣

∣

∣

∣

∣

djdj1 · · · djN∗

ajaj1 · · · ajN∗

∣

∣

∣

∣

∣

N∗
Γ( f |IjN∗+1

)

(

ε

|ajaj1 · · · ajN∗
|

)

∣

∣

∣

∣

∣

≤ β∗ε
−1 (4.1)

for 1 ≤ j ≤ N and 0 < ε < ε∗. Let s∗ := max{s1, . . . , sm, 1}. The proof is divided into

two parts.

Step 1. We show that dim
B
Γ( f ) > s∗. Suppose that max{s1, . . . , sm} = si0 for some i0

with 1 6 i0 6 m. It is clear that dim
B
Γ( f ) > 1, so we may assume that si0 > 1. Also,

for notational simplicity, we assume that Vi0 = {1, . . . , M}. By the Perron–Frobenius

theorem, ρ((Q(si0 )Vi0
)N∗+1) = ρ(Q(si0 )Vi0

) = 1, so λ := ρ((QVi0
)N∗+1) > 1. Furthermore,

there are positive eigenvectors v = (v1, . . . , vM)T of (QVi0
)N∗+1 associated with λ, and

w = (w1, . . . , wM)T of (Q(si0 )Vi0
)N∗+1 associated with 1. That is, for all j ∈ Vi0 ,
∑

jj1···jN∗+1∈CHN∗+1(Vi0
)

|djdj1 · · · djN∗
|vjN∗+1

= λvj, (4.2)

∑

jj1···jN∗+1∈CHN∗+1(Vi0
)

|djdj1 · · · djN∗
||ajaj1 · · · ajN∗

|si0
−1wjN∗+1

= wj. (4.3)

Choose B > 0 such that Bvj > β∗ for every j ∈ Vi0 . From (4.1),

N∗
Γ( f |Ij )

(ε) >
∑

jj1···jN∗+1∈CHN∗+1(Vi0
)

∣

∣

∣

∣

∣

djdj1 · · · djN∗

ajaj1 · · · ajN∗

∣

∣

∣

∣

∣

N∗
Γ( f |IjN∗+1

)

(

ε

|ajaj1 · · · ajN∗
|

)

− Bvjε
−1

for j ∈ Vi0 and 0 < ε < ε∗. By Proposition 3.8, we can choose ε∗ so small that

εN∗
Γ( f |Ij )

(ε) > Bvj/(λ − 1) for all j ∈ Vi0 and ε ∈ (0, ε∗). Select a constant B′ > 0 small

enough such that for all ε ∈ [aaε∗, ε∗),
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N∗
Γ( f |Ij )

(ε) > B′ε−si0 wj +
B

λ − 1
vjε
−1 for all j ∈ Vi0 . (4.4)

We prove by induction that (4.4) holds for 0 < ε < ε∗. In fact, if ε ∈ [aa2
ε∗, aaε∗),

since ε/|ajaj1 · · · ajN∗
| ∈ [aaε∗, ε∗) when jj1 · · · jN∗+1 ∈ CHN∗+1, it follows that

N∗
Γ( f |Ij )

(ε) >
∑

jj1···jN∗+1∈CHN∗+1(Vi0
)

∣

∣

∣

∣

∣

djdj1 · · · djN∗

ajaj1 · · · ajN∗

∣

∣

∣

∣

∣

(

B′
(

ε

|ajaj1 · · · ajN∗
|

)−si0

wjN∗+1

+
B

λ − 1
vjN∗+1

(

ε

|ajaj1 · · · ajN∗
|

)−1)

− Bvjε
−1

= B′ε−si0 wj +
Bλ

λ − 1
vjε
−1 − Bvjε

−1
= B′ε−si0 wj +

B

λ − 1
vjε
−1

for j ∈ Vi0 . Similarly, (4.4) holds for ε ∈ [aan
ε∗, ε∗) and n = 1, 2, . . . and hence for all

ε ∈ (0, ε∗). This implies that dim
B
Γ( f ) > si0 = s∗.

Step 2. We show that dimBΓ( f ) 6 s∗. This will be proved by induction on the position

of i (1 6 i 6 N).

Suppose that P(i) = 1. We may assume that i belongs to a strongly connected

component V. Otherwise, there exists no path from any j with 1 6 j 6 N to i and hence

di = 0 and, by Proposition 2.1, dimBΓ( f |Ii
) = 1 6 s∗. For notational simplicity, assume

that V = {1, . . . , n}. By Proposition 3.1, we can assume that V is nondegenerate, that

is, there is some t with 1 6 t 6 m such that V = Vt.

Arbitrarily pick δ > 0. Let λ′ := ρ((Q(s∗ + δ)Vt
)N∗+1). It follows from s∗ + δ > st

that λ′ < 1. Choose p = (p1, . . . , pn)T to be a positive eigenvector of (Q(st)Vt
)N∗+1

associated with eigenvalue 1 and q = (q1, . . . , qn)T of (Q(s∗ + δ)Vt
)N∗+1 associated with

λ′. Choose β′ > 0 such that β′qj > β∗ for all j ∈ Vt.

Since P(i) = 1, we can see for all j ∈ Vt that jj1 · · · jN∗+1 ∈ CHN∗+1 if and only

if jj1 · · · jN∗+1 ∈ CHN∗+1(Vt). Without loss of generality, we may assume that ε∗ < 1.

Combining the fact that s∗ > 1 and (4.1),

N∗
Γ( f |Ij )

(ε) 6
∑

jj1···jN∗+1∈CHN∗+1(Vt)

∣

∣

∣

∣

∣

djdj1 · · · djN∗

ajaj1 · · · ajN∗

∣

∣

∣

∣

∣

N∗
Γ( f |IjN∗+1

)

(

ε

|ajaj1 · · · ajN∗
|

)

+ β′ε−s∗−δqj

(4.5)

for all j ∈ Vt and all ε ∈ (0, ε∗). Choose B1 > 0 large enough such that for all ε ∈

[aaε∗, ε∗),

N∗
Γ( f |j)

(ε) 6 B1ε
−st pj +

β′ε−s∗−δ

1 − λ′
qj for all j ∈ Vt. (4.6)

By applying an analogous induction argument as before, we can show that this

holds for all ε ∈ (0, ε0), which implies that dimBΓ( f |Ij
) 6 s∗ + δ for each j ∈ I(i).

Since δ > 0 is chosen arbitrarily, dimBΓ( f |Ij
) 6 s∗ for each j ∈ I(i) and, in particular,

dimBΓ( f |Ii
)6 s∗.
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Assume that dimBΓ( f |Ii
) 6 s∗ for all i with positions strictly less than P. For any

i such that P(i) = P, we may still assume that i is not degenerate. If there exist no

strongly connected components to which i belongs, then P(j) < P for any j ∈ I(i). By

Lemma 2.3, for arbitrary δ > 0, we have N∗
Γ( f |Ij )

(ε) 6 ε−s∗−δ for all small ε and all

j ∈ I(i). Combining this with Lemma 2.4, we can easily see that dimBΓ( f |Ii
) 6 s∗ + δ

and hence dimBΓ( f |Ii
) 6 s∗.

Now there is only one case left. Suppose that i belongs to a strongly connected

component V. By Proposition 3.1, we may assume that V is nondegenerate, that

is, V = Vt for some 1 6 t 6 m. We will abuse notation again and just assume that

Vt = {1, . . . , n}. Arbitrarily pick δ > 0. Let λ′ := ρ((Q(s∗ + δ)Vt
)N∗+1) < 1. Choose p =

(p1, . . . , pn)T to be a positive eigenvector of (Q(st)Vt
)N∗+1 associated with eigenvalue 1

and q = (q1, . . . , qn)T of (Q(s∗ + δ)Vt
)N∗+1 associated with λ′.

By Lemma 2.4 and the inductive assumption, we can find two positive constants,

still denoted by β and ε0, such that for each j ∈ Vt and 0 < ε < ε0,

N∗
Γ( f |Ij )

(ε) 6

∣

∣

∣

∣

∣

dj

aj

∣

∣

∣

∣

∣

∑

k∈I(j)∩Vt

N∗
Γ( f |Ik )

(

ε

|aj|

)

+ βε−s∗−δ.

As before, in this case, there also exist two positive constants β′ and ε∗∗ such that (4.5)

holds for all j ∈ Vt and all ε ∈ (0, ε∗∗). Thus, using a similar argument again, we can

find a constant B1 > 0 such that (4.6) holds for all j ∈ Vt and all ε ∈ (0, ε∗∗). As a result,

dimBΓ( f |Ii
) 6 s∗ + δ. Hence, dimBΓ( f |Ii

) 6 s∗. �
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