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Summary

Consensus does not exist for which cost forms (i.e., one accounting solely for explicit cost and
the other for both explicit and opportunity costs as in relative opportunity cost) are used in
calculating return on investment (ROI) for conservation-related decisions. This research exam-
ines how the cost of conservation investment with andwithout inclusion of the opportunity cost
of the protected area results in different solutions in a multi-objective optimization framework
at the county level in the Central and Southern Appalachian Region of the USA. We maximize
rates of ROI of both forest-dependent biodiversity and economic impact generated by forest-
based payments for ecosystem services. We find that the conservation budget is optimally
distributed more narrowly among counties that are more likely to be rural when the investment
cost measure is relative opportunity cost than when it is explicit cost. We also find that the
sacrifice in forest-dependent biodiversity per unit increase in economic impact is higher when
investment cost is measured by relative opportunity cost rather than whenmeasured by explicit
cost. By understanding the consequences of using one cost measure over the other, a conser-
vation agency can decide on which cost measure is more appropriate for informing the agency’s
decision-making process.

Introduction

Habitat loss continues to be one of the greatest threats to biodiversity (Hanski 2011), and ways
have been developed to prioritize protected areas in order to help practitioners allocate limited
conservation resources effectively (Rodewald et al. 2019). Return on investment (ROI) has been
widely used as a financial metric to measure the return from an investment in conservation
planning. The ROI approach brings together the costs and benefits of conservation investment
to determine areas that offer a high conservation benefit per dollar invested (Ferraro 2003), and
it is applicable to single- ormulti-objective optimization frameworks in order to identify optimal
solutions for conservation investment decisions (e.g., Soh & Cho 2019).

Calculating ROI requires quantified values of conservation benefit and cost. The conserva-
tion benefits of different ecosystems have been estimated through various simulation models.
For example, terrestrial ecosystem modelling (TEM) forecasts long-run average future forest
carbon storage (Hayes et al. 2011) and Maxent modelling forecasts future geographical species
distributions and ecological niches of species (Peterson et al. 2011). In comparison, the cost data
to be used in calculating ROI have been controversial in the conservation literature (Armsworth
2014). Many studies have relied on proxies for conservation cost data because of substantial
challenges in attaining them (Cho et al. 2019). Regardless of whether actual cost data (or their
proxies) are used, the conservation literature has employed ROI in conservation priority
decision-making or as an input in the optimal decision-making framework. Conservation costs
have two forms: one accounting solely for explicit cost and the other accounting for both explicit
and opportunity costs as in relative opportunity cost.

The explicit cost has been represented by a socioeconomic indicator such as nominal
gross domestic product (GDP) per capita (Eklund et al. 2011), a hypothetical per-unit cost
estimated by non-linear regression with economic indicators as the independent variables
(e.g., purchasing power parity and gross national income) and total area at the country level
(Bode et al. 2008), average agricultural land value or productivity (Wu & Yu 2017), net present
value of agricultural and timber rent (Polasky et al. 2008) and parcel-level real estate values of
forestland and cropland (Rodewald et al. 2019) (see Table 1). Explicit cost is typically closer to
the actual conservation cost for smaller than for larger study areas because acquiring such data
is easier for smaller than for larger study areas. For example, nominal GDP per capita at the
country level is often used to represent cost for global or continental conservation investments
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(Moore et al. 2004), while net present values of agricultural and
timber rents are more representative of biodiversity conservation
cost at the parcel level within a single river basin (Polasky et al.
2008). In particular, parcel-level real estate tax assessment data
and sales transaction data are fairly accurate representations of
conservation acquisition costs in small study areas with consistent
data management systems (Rodewald et al. 2019).

Conservation cost often involves not just the explicit cost of
acquiring a protected area, but also the opportunity cost of the pro-
tected area reflected in potential alternative uses. The relative
opportunity cost of conservation investment has been calculated
using returns from conservation and competing land uses (Cho
et al. 2021) (see Table 1). As examples, Cho et al. (2021) calculate
the relative opportunity cost of protecting ecosystem services in
forestland by subtracting annual urban return from annual forest
return, assuming that urban land use competes with forestland use
based on historical data from their study area. Naidoo and
Adamowicz (2006) calculate the expected opportunity cost of
forestland as the product of returns to potentially competing
agricultural land uses and forestland’s corresponding future prob-
abilities of conversion to those uses.

Studies have used different types of actual cost data in calculat-
ing ROI to evaluate conservation areas for prioritization or as input
into the conservation optimization framework (Rodewald et al.
2019). Using proxy cost data to calculate ROI may lead to devia-
tions in the accuracy of conservation priority recommendations or
the optimal allocation of conservation investments (Armsworth
2014). For example, Sutton et al. (2016) show that using an average
of agricultural land values as a proxy for the cost of acquiring pro-
tected areas results in overestimation of the total required budget
for conservation programmes, and thus reduces the cost efficiency
of those programmes. Despite the consequences for conservation-
related decisions of using proxy cost data, guidelines do not exist

for using either explicit or relative opportunity cost in calculat-
ing ROI.

Although it makes sense theoretically, incorporating the
opportunity cost as part of cost estimation is challenging in prac-
tice. For example, the Conservation Reserve Program (CRP) offers
payments for ecosystem services (PESs) to private landowners in
exchange for furloughing environmentally sensitive land from
agricultural or forestry production. The rental rates in contracts
for land enrolled in the CRP are determined solely based on the
land’s agricultural or forestry productivity. As a result, CRP rental
rates capture the explicit cost of a protected area without consid-
ering the area’s opportunity cost associated with real estate mar-
kets and other competing land use options. The exclusion of
opportunity cost in calculating CRP rental rates ensures a balance
between providing conservation incentives and avoiding competi-
tion with land renters (Baker & Galik 2009). The gap between
theory and practice needs attention because ignoring opportunity
cost as part of the cost of conservation investment often underes-
timates the latter cost, and thus potentially produces misleading
solutions from using optimization frameworks. Such misleading
optimal solutions would undermine the effectiveness of conserva-
tion investments andmay result in a larger than optimal number of
private landowners choosing other land use options over the PES
programme.

That said, PES programmes, including the CRP, tend to be
controversial, due in no small part to the costs they impose on
society andwhat are often uncomfortably high levels of uncertainty
about the economic consequences of such programmes. As an
example of the latter, implementation of PES programmes appears
to be contradictory in terms of its economic impact. Although
several studies show that rural communities with high levels of
CRP enrolment suffer adverse economic impacts (e.g., Sullivan
et al. 2004), others show that some PES programmes achieve

Table 1. Summary of the literature on various conservation cost estimates.

Literature Various conservation cost estimates
Geographical
level

Explicit cost Moore et al. (2004) Hypothetical cost estimation by non-linear regression model with variables
of economic indicators and total area

Country

Messer (2006) Cadastral dataset for land value of forestland, grassland, cropland and urban
land provided by MdProperty View

Parcel

Murdoch et al. (2007) Averaged agricultural land value from the USDA Ecoregion
Bode et al. (2008) Hypothetical cost estimation by non-linear regression model with variables

of economic indicators and total area
Country

Polasky et al. (2008) Net present value of agricultural lands (e.g., orchard/vineyard, grass seed,
pasture and row crop)

Parcel or
county

Eklund et al. (2011) GDP per capita (nominal) Country
Messer (2013) Hypothetical cost estimation by non-linear hedonic model with location-

and distance-related variables
Parcel

Wu and Yu (2017) Agricultural productivity from the CRP of the USDA Parcel
Rodewald et al. (2019) Cadastral datasets for land value of forestland, grassland, cropland and

urban
Parcel

Opportunity cost Naidoo and Ricketts (2006) Sum of probability of conversion to land use i × net benefits of land use i Parcel
Naidoo and Adamowicz (2006) Sum of probability of conversion to land use i × expected annual return

from land use i
Parcel

Adams et al. (2010) Sum of probability of conversion to land use i × return from agricultural
land use i

State

Moilanen et al. (2011) Constant per-hectare opportunity cost by assumption Country
Cho et al. (2019) Return from forestland minus weighted average return from other land uses

(i.e., crop, pasture and urban)
County

Soh and Cho (2019) Return from forestland minus weighted average return from other land uses
(i.e., crop, pasture and urban)

County

Cho et al. (2021) Return from forestland minus return from urban County

CRP = Conservation Reserve Program; GDP = gross domestic product; USDA = US Department of Agriculture.
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positive economic impacts through cash payments to participating
landowners (e.g., Sims et al. 2014). The relevant literature com-
monly finds that low-income rural households and communities
can economically benefit from PES programmes, but the degree
of benefit depends on factors such as local economic conditions
(Milder et al. 2010).

The economic impact of PESs is relevant to identifying the role
of opportunity cost in the cost of conservation investment because
PES programmes are often perceived as ways to achieve conserva-
tion goals while promoting rural economic development (Bremer
et al. 2014). Despite their important implications, to date, no
studies have been performed specifically examining both the cost
efficiency and economic impacts of PESs using either explicit
or relative opportunity cost. Thus, we examine how the cost of
conservation investment with and without the opportunity cost
of the protected area results in divergent optimal solutions under
the multiple objectives of maximizing the cost efficiency of PES
programmes and maximizing economic impacts. We optimize
the multiple objectives of maximizing both forest-dependent
biodiversity and economic impacts generated by forest-based
PESs subject to a budget constraint at the county level in the
Central and Southern Appalachian Region of the USA.

We hypothesize that the optimal spatial targets and their
budget allocations, and the optimal trade-offs between the
forest-dependent biodiversity and economic impacts generated
by PESs, are affected by how the cost portion of the ROI is
measured. We employ the return from forestland from timber
production (referred to as ‘explicit cost’) and the difference
between the return from forestland and its opportunity cost,
measured by the return from urban use associated with forest-
land’s best alternative use (referred to as ‘relative opportunity
cost’), as the two cost measures of conservation investment.

The opportunity cost typically used in the literature is different
from ‘relative opportunity cost’. However, it is similar to ‘explicit
cost’, as opportunity cost in the literature accounts for the return
from the current land use while ignoring return from the best alter-
native use. For example, Naidoo and Adamowicz (2006) rely on
output prices and input costs of agricultural production to estimate
agricultural land values as the opportunity cost without consider-
ing the return from the agricultural land’s best alternative use.
The distribution of relative opportunity cost deviates from the
distribution of the explicit cost because the difference is deter-
mined by the distribution of two completely different types of
land returns in the former but only a single return in the latter.
As a result, the spatial distributions of the two ROIs are expected
to deviate from one another. Consequently, solutions to the multi-
objective optimization problems are expected to be different
depending on which investment cost measure is used.

Nevertheless, the two solutions are expected to be useful for
different purposes. For example, the solution with explicit
cost would be useful for determining spatial targets and their
budget allocations for PES programmes like the CRP, which only
account for the return from the current land use. Conversely,
identifying the immediate application of the solution with relative
opportunity cost may not be so obvious because the majority
of the PES programmes do not account for the opportunity cost
associated with the real estate market or other competing land
use options. However, accounting for the return from the best
alternative use, not just the return from the current land use, in
the optimal solution is imperative particularly in areas where com-
petition with other land use options is inevitable (e.g., areas with
high development pressure).

Methods and data

We develop an optimization framework for the multiple objectives
of maximizing both forest-dependent biodiversity and economic
impacts generated by PESs with the two measures of conservation
investment cost for the 231 counties in the 8 states of the Central
and Southern Appalachian Region of the USA (see Supplementary
Fig. S1, available online). This region’s forested area supports
a large number of endemic species (Pickering et al. 2003), and
forest-based PESs likely will result in spatially varying economic
impacts given the region’s range of socioeconomic conditions
(Porras et al. 2013).

The forest-dependent biodiversity benefit and the economic
impact benefit used in the county-level ROIs for the region’s
PES-eligible forestland area are estimated using Maxent modelling
(Peterson et al. 2011) and Impact Analysis for Planning (IMPLAN
2020), respectively. We use annualized return from forestland as
the explicit cost. The relative opportunity cost for each county is
estimated as the return from urban use minus the return from
forestland. All benefit and cost data are from approximately
2011, because the required data are available at or around that year.
Specifically, the cost and eligible forestland data are for 2011, the
forest-dependent biodiversity data are estimated using Maxent
based on historical species occurrence data for 1950–2010 and
climatic data for 1971–2000 (Zhu et al. 2021) and the economic
data for IMPLAN are for 2015 and deflated to 2011 US$
(US Bureau of Economic Analysis 2020). Although the forest-
dependent biodiversity data are estimated using data prior to
2011, matching them with other 2011 data is not problematic,
given the relatively stable climatic suitability of forest-dependent
biodiversity in the study area for the data’s historical period
(Lv & Zhou 2018).

To estimate the eligible forestland for PESs, we first excluded
30-m pixels that are classified as forests in the 2011 National
Land Cover Database (US Geological Survey 2016) and also fall
within publicly owned or permanently protected areas according
to the Protected Areas Database of the USA (US Geological
Survey, Gap Analysis Project 2016) (see Fig. S1). Then, we aggre-
gated the remaining privately owned forest pixels to the county
level. We only considered privately owned forests as eligible
forestland because PESs would exclusively target private forestland
owners for conservation.

Once the eligible forestland areas in 2011 were estimated, we
used Maxent modelling developed by Zhu et al. (2021) to estimate
the suitable habitat areas for forest-dependent species at the 1-km2

pixel level, which were then aggregated to the county level using the
zone function. To account for the ecological condition of the
landscape, we converted the aggregated suitable habitats to accu-
mulated species ranges (see Text S1).

The total value added generated by IMPLAN was used
as the economic impact triggered by net proprietary income
through PES because it reflects the impacts of the contribution
of the timber and logging industry on the overall regional economy
(Willis & Straka 2016). Specifically, we used IMPLAN version 3.0
(IMPLAN 2020) to estimate the total value added from proprietary
income of private forestland owners with PESs and with logging
separately (see Text S2 in Supplementary material). Then, we sub-
tracted the total value added with PESs from that with logging to
calculate the net economic impact under the premise that propri-
etary income through PESs is received in exchange for the logging
income lost due to the ban on logging under the PES programme.
We estimated a county’s net economic impact using the 2015
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county-level IMPLAN data, deflated to 2011 US$ by the index of
GDP per capita of the state where the county is located (US Bureau
of Economic Analysis 2020).

The return from forestland for timber production as an explicit
cost was estimated using soil expectation value (SEV), which is
commonly regarded as the present discounted value of rents from
forestland (Buongiorno 2001) (see Text S3). Estimating annualized
urban return is challenging because it involves residential, com-
mercial and industrial activities that are too complex to sort out.
As a simplification, we roughly followed the procedure developed
by Lubowski et al. (2006) by separating land values from median
housing prices and annualizing the land values to use as proxy for
the annualized urban return (see Text S4).

Because the optimal solution to the multi-objective optimiza-
tion problem is affected by correlations among the objectives
(Moritz et al. 2014), we investigated correlations between the eco-
nomic impact ROI and the forest-dependent biodiversity ROI with
explicit cost or with relative opportunity cost. Here, the forest-
dependent biodiversity ROIs of the two types were calculated by
dividing accumulated species range by explicit cost of annual
return from forestland or relative opportunity cost, and the eco-
nomic impact ROIs of the two types were calculated by dividing
total value added by explicit cost or relative opportunity cost at
the county level.

Then, we solved the optimization problems with hypothetical
weights assigned to the objectives of maximizing accumulated
species range as the forest-dependent biodiversity measure and
maximizing total value added as the economic impact measure.
The MINIMAX approach minimizes the maximum deviation
between the values for two single-objective maximization
problems (i.e., target values) and the values for multiple-objective
maximization (i.e., actual values). We used the MINIMAX
approach because it is efficient in finding Pareto-optimal solutions
for problems with objectives measured in different units and it uses
uncomplicated processes (Ragsdale 2006). Themaximum value for
each objective and the corresponding optimal budget distribution
under each weight are determined by the optimal ratio of eligible
forestland to total forestland for each county (i.e., the decision
variable) (see Text S5).

Using the MINIMAX approach, we identified a set of optimal
target counties with an optimal budget distribution given different
weights between the two objectives. Specifically, we estimated
ten alternatives: five weighting scenarios involving the two cost
measures. Among them, we mapped the optimal budget distribu-
tions that were generated from assigned weights of 100%–0%,
75%–25% and 50%–50% between the objectives of maximizing
forest-dependent biodiversity and economic impact with explicit
cost and relative opportunity cost, respectively. We then developed
the efficient frontiers between forest-dependent biodiversity
and economic impacts reflected in the percentage of maximum
achievable values with explicit cost and relative opportunity cost.
Specifically, the efficient frontiers were generated from the optimal
solutions for the two cost measures with various weights assigned
to the two objectives.

Results

Figure 1 shows kernel density estimates of the distributions for
explicit cost, urban return and relative opportunity cost in
Fig. 1(a) and their distributions for forest-dependent biodiversity
ROIs using explicit cost and relative opportunity cost in Fig. 1(b).
Apparent visual dissimilarities exist between the distributions of

the relative opportunity cost and the explicit cost, and they
were not correlated (Pearson’s correlation coefficient –0.08,
p-value= 0.24). Consequently, the distributions of the forest-
dependent biodiversity ROI with either relative opportunity cost or
explicit cost differ from one another (two-sample Kolmogorov–
Smirnov test (Massey 1951), p< 0.05).

The correlation coefficient of –0.11 between the forest-
dependent biodiversity ROI with explicit cost and economic
impact is significant at the 10% level and the correlation coefficient
of –0.31 between forest-dependent biodiversity ROI with relative
opportunity cost and economic impact is significant at the 5% level
(see Fig. S2). The significantly negative correlations occur because
the total value added generated by PESs in urban areas is higher
than in rural areas, whereas the opposite is the case for forest-
dependent biodiversity. The reason for the higher total value
added in urban areas than in rural areas is that the total value
added is a direct function of the economic multiplier effect, which
measures how many times dollars are recirculated within a local
economy, and thus is higher in urban areas than in rural areas
(Psaltopoulos et al. 2006).

The relative opportunity cost is greater than the explicit cost in
urban areas because the distribution of the relative opportunity
cost is dictated by the distribution of urban return that is more
positively skewed than the distribution of explicit cost (see
Fig. 1). As a result, the forest-dependent biodiversity ROI with
relative opportunity cost is smaller than with explicit cost in urban
areas. Consequently, the magnitude of the negative correlation
with economic impact is greater for the forest-dependent biodiver-
sity ROI with relative opportunity cost than with explicit cost.
These findings suggest that the forest-dependent biodiversity
ROI would likely generate statistically different spatial targeting
patterns and thus different budget distributions and trade-offs
between the two measures of the cost of conservation investment.

Fig. 1. (a) Kernel density estimates of the distributions for explicit cost, urban return
and relative opportunity cost, and (b) their distributions for forest-dependent biodi-
versity returns on investment (ROIs) using explicit cost and relative opportunity cost.
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Decreasing the weight on maximizing forest-dependent biodi-
versity from 100% to 75% and increasing the weight on maximiz-
ing economic impact from 0% to 25% from points A, a to points B,
b in Fig. 2 yields trade-off ratios of 0.250 and 0.262 (see Table 2).
Because the trade-off ratios are percentage changes of forest-
dependent biodiversity divided by those of economic impact, they
can be interpreted as elasticities. For example, the trade-off ratio of
0.250 means an increase of 1% in maximum achievable economic
impact decreases the maximum achievable forest-dependent
biodiversity by 0.25%. These trade-off ratios indicate the average
sacrifice in forest-based biodiversity required to obtain a percent-
age-point increase in economic impact in moving from one point
to another down the frontier. Further reducing the weight onmaxi-
mizing forest-dependent biodiversity and further increasing the
weight on maximizing economic impact from points B, b to points
C, c, from points C, c to points D, d, and from points D, d to points
E, ewould yield trade-off ratios of 1.097 and 1.163, 1.249 and 2.154,
and 4.295 and 5.222, respectively. Consistently increasing trade-off
ratios suggest that greater amounts of forest-based biodiversity
must be sacrificed to obtain an additional percentage-point
increase in economic impact down the frontiers. Furthermore,
consistently higher trade-off ratios down the frontier using relative
opportunity cost than down the frontier using explicit cost suggests
that greater sacrifice in forest-dependent biodiversity is required
for a percentage-point increase in economic impact when assum-
ing conservation investment cost is measured by relative opportu-
nity rather than by explicit cost.

Figure 3 shows the optimal spatial budget distribution patterns
for one point (A) on the efficient frontier with explicit cost
and those for one point (a) on the efficient frontier with relative
opportunity cost. The numbers of optimal target counties for
the assigned weight are 107 for the optimal solutions with explicit
cost and 19 for the optimal solution with relative opportunity cost
(Fig. 3). Likewise, the numbers for the two assigned weights for the
points (B and C) and the points (b and c) are 122 and 126 for the
optimal solutions with explicit cost and 22 and 18 for the optimal
solutions with relative opportunity cost. Thus, the optimal budget
is distributed more narrowly among the counties when cost of
conservation investment is measured by relative opportunity cost
than by explicit cost. The significantly smaller number of optimally
targeted counties with the relative opportunity cost than with the

explicit cost results from a greater dispersion of the relative
opportunity cost compared with the explicit cost. Specifically,
the coefficient of variation is 1.92 for the relative opportunity cost
while it is 0.82 for the explicit cost. Consequently, the distribution
of the forest-dependent biodiversity ROI with relative opportunity
cost stochastically dominates the distribution of the forest-
dependent biodiversity ROI with explicit cost (two-sample
Kolmogorov–Smirnov test, p< 0.05), which result in fewer
optimally selected counties under the relative opportunity cost.
In addition, the narrowly targeted counties using relative opportu-
nity cost are mostly rural because of higher relative opportunity
cost in urban counties and thus lower forest-dependent biodiver-
sity ROI in those counties (see Table 3). For a 100% weight on
forest-dependent biodiversity, approximately three-quarters
(or 83 of 107) are distributed across the Ridge-and-Valley
Appalachians and Blue Ridge Mountains (i.e., dotted circle) for
the optimal solution with explicit cost (Fig. 3). Approximately
three-quarters (or 15 of 19) are distributed across the border
betweenWest Virginia and Virginia (i.e., dashed circle) and across
north-eastern Kentucky (i.e., bold circle) for the optimal solution
with relative opportunity cost.

Figure S3 shows protected forestlands from the optimal budget
distributions, which exhaust a hypothetical budget of US$10 million,
under the 100% assigned weight to forest-dependent biodiversity and
0% assigned weight to economic impact with explicit cost or relative
opportunity cost. Overall, these result in 3.28 million hectares of
total protected areas in 107 selected target counties at the cost of
US$3.04 per hectare for the optimal solution with explicit cost and
0.56 million hectares of total protected areas in 19 selected target
counties at the cost of US$17.80 per hectare for the optimal solution
with relative opportunity cost. It is worth noting that less than
one-fifth of total protected areas can be protected if the relative
opportunity cost is used instead of the explicit cost because of a higher
relative opportunity cost than explicit cost.

In the neighbourhood of the optimal target counties for the
objective of maximizing forest-dependent biodiversity, compa-
rable numbers of target counties are selected for the 75%–25%
and 50%–50% weights using either cost measure. Of the selected
counties for the 100%–0%, 75%–25% and 50%–50% weights
between forest-dependent biodiversity and economic impact using
explicit cost, only 13.08% (or 14 of 107), 13.93% (or 17 of 122) and

Fig. 2. Efficient frontiers between forest-dependent biodi-
versity and economic impact reflected in percentages of
maximum achievable values with different assigned weights
between the two objectives.

196 Seong-Hoon Cho et al.

https://doi.org/10.1017/S0376892921000187 Published online by Cambridge University Press

https://doi.org/10.1017/S0376892921000187
https://doi.org/10.1017/S0376892921000187


11.90% (or 15 of 126) of counties, respectively, are also selected
when using relative opportunity cost. These findings suggest that
failure to reject the hypothesis means that the optimal spatial tar-
gets and their budget distributions between the forest-dependent

biodiversity ROI and the economic impact ROI generated by
PESs are affected by how the cost of the ROI is defined (see
Text S6 for the sensitivity analysis of the main findings).

Discussion

Our results confirm significantly different optimal spatial targets,
budget distributions and trade-offs between maximizing forest-
dependent biodiversity and economic impact using explicit or
relative opportunity costs. In particular, we find that the optimal
budget is distributed more narrowly among counties that are more
likely to be rural when the cost measure is relative opportunity cost
than when it is explicit cost.We also find that the sacrifice in forest-
dependent biodiversity for a unit increase in economic impact is
higher for the optimized solution using relative opportunity cost
than that using explicit cost.

Our findings can be used as a reference by conservation
agencies interested in the spatial targeting of counties and their
budget allocations for PES conservation investment. In practice,
conservation agencies would consider more than the two objectives
addressed in our analysis (e.g., habitat potential for species of pol-
icy concern). Nevertheless, they still can use the optimally selected
counties as a reference when choosing target areas. For example,
a conservation agency with given preferences between the
two objectives can use our modelling framework to target broader
geographical areas before zooming in with higher spatial
resolution. At the very least, our methods can help a conservation
agency understand that the optimal solutions can be different
depending on how conservation investment cost is measured.

The more narrowly distributed optimal budgets among mostly
rural counties when using relative opportunity cost than when
using explicit cost suggest that the cost measure has important con-
sequences for distributional equity among counties and between
rural and urban areas. Specifically, in using explicit cost instead
of relative opportunity cost in the multi-objective optimization,
the PES budget distribution achieves greater distributional equity
by having a larger percentage of urban counties among the target
counties. Given that advancing equity in rural areas is a key objec-
tive of implementing PESs (Wegner 2016), this finding suggests
that choosing explicit cost over relative opportunity cost may
challenge the objective of rural equity.

The optimal spatial budget distribution patterns based on
explicit cost are relevant for PES programmes such as the CRP,
which does not account for the opportunity cost associated with
real estate markets and other competing land use options. For
example, the maps in Fig. 3(a) would be relevant for CRP contracts
offered to landowners in the selected counties who have limited
competing land use options. Because many of those counties are
likely to be remote, landowners in rural counties are likely to be
important for PES programmes that account for explicit cost
without considering opportunity cost in the cost of conservation
investment. Conversely, the optimal spatial budget distribution
patterns based on relative opportunity cost are relevant for PES
programmes that account for opportunity cost. Thus, the maps
in Fig. 3(b) would be relevant for PES contracts offered to land-
owners of the selected counties who have competing land use
options. Because many of those counties likely face development
pressure, landowners in wildland–urban interface counties are
likely to be important for PES programmes that account for
opportunity cost.

Our optimization framework for conservation investment is at
the county level instead of the parcel level, and thus choosing one

Table 2. Trade-off ratios between the five points in Fig. 2 with explicit cost and
relative opportunity cost.

Weight shift
Symbols in

Fig. 2
Explicit
cost

Relative
opportunity cost

100%–0% to 75%–25% A, a to B, b −0.250 −0.262
75%–25% to 50%–50% B, b to C, c −1.097 −1.163
50%–50% to 25%–75% C, c to D, d −1.249 −2.154
25%–75% to 0%–100% D, d to E, e −4.295 −5.222

Fig. 3. Optimal budget distributions under the 100% assigned weight to forest-
dependent biodiversity and 0% weight to economic impact with (a) explicit cost or
(b) relative opportunity cost.

Table 3. Number of optimal target (urban) counties with explicit cost and
relative opportunity cost under three different assigned weights between
forest-dependent biodiversity and economic impact.

Assigned weights between
forest-dependent biodiversity

and economic impact

100%–0% 75%–25% 50%–50%

Explicit cost 107 (38) 122 (49) 126 (50)
Relative opportunity cost 19 (2) 22 (2) 18 (2)

Note: The numbers in parentheses are the numbers of urban counties among the optimal
target counties.
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cost measure for a county over the other may understate or
overstate the ROIs as well as conservation investment cost for
different forest parcels within the county. A parcel-level model
would be difficult to produce, but improvements to our framework
could be made. In future research, the counties could be sorted by
whether or not forestland owners have significant competing land
uses before executing the multi-objective optimization model.
By doing so, we could use explicit cost or relative opportunity cost
in the optimization model depending on whether the landowners
in a county do or do not have significant competing land uses. One
way to accomplish this partitioning would be to develop a land use
model to identify counties with high or low development pressure.
Once the sorting was done, we could calculate the county ROIs
based on the most relevant cost measure and run the optimization
model once for all the counties with their respective ROIs.

In our framework, we only deal with urban development as the
competing land use for forestland. The choice of urban use as the
competing land use makes sense because deforestation in our study
area is dominated by conversion to urban use (Cho et al. 2021).
However, the opportunity cost of conserving forest-dependent
biodiversity through protecting forestland in other regions might
be the return from other competing land uses, including crop
production or cattle production, as well as urban use. To provide
broader implications for more diverse regions, future research
could explore an optimization model with multiple competing
land use options.

Conclusion

We evaluate how optimal conservation investment decisions that
account for explicit cost only and combining it with opportunity
cost result in different spatial targets, budget distributions and
trade-offs between multiple objectives. By understanding the con-
sequences of using one cost measure over another, a conservation
agency can recognize and choose the cost measure that is most
appropriate for their decision-making process. For example, using
the explicit cost of conservation investment in calculating ROIs
for use in our optimization framework may be of little concern
when forestland owners have few competing land use options to
consider. If a forestland parcel in a remote area were considered
for a PES contract, using the return from the forestland as the
explicit cost would closely represent the cost of conservation
investment because its value in alternative uses (e.g., real estate
or agricultural production) would be negligible. Conversely, if a
forestland parcel considered for a PES contract faced development
pressure, its opportunity cost would be considered in the cost
estimate, because one of the landowner’s options would be to
develop the forestland and forego the PES contract. Given this
decision, the landowner would have to decide which alternative
is greater, the return from development or the return from timber
production, the higher of which would be the landowner’s oppor-
tunity cost of participating in a PES contract, and the conservation
investment cost to the agency of obtaining a PES contract from
the landowner would be at least as high as either the return from
timber production or the return from development, whichever is
higher.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0376892921000187.
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