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Abstract

Epidemiological and experimental observations tend to prove that environment, lifestyle or
nutritional challenges influence heart functions together with genetic factors. Furthermore,
when occurring during sensitive windows of heart development, these environmental
challenges can induce an ‘altered programming’ of heart development and shape the future
heart disease risk. In the etiology of heart diseases driven by environmental challenges,
epigenetics has been highlighted as an underlying mechanism, constituting a bridge between
environment and heart health. In particular, micro-RNAs which are involved in each step of
heart development and functions seem to play a crucial role in the unfavorable programming
of heart diseases. This review describes the latest advances in micro-RNA research in heart
diseases driven by early exposure to challenges and discusses the use of micro-RNAs as
potential targets in the reversal of the pathophysiology.

Origins of heart diseases

The heart is the first organ to form during embryogenesis.1 Its development is a highly
regulated process relying on the intervention of various factors that orchestrate cardiac
morphogenesis, myogenesis, contractility and metabolism. Mammalian heart undergoes
considerable maturation in utero, such that the majority of cardiomyocytes, present shortly
after birth, beat for a lifetime.2,3 Thus, an early challenge altering cardiomyocytes maturation,
endowment and growth in utero can give rise to coronary artery disease,4 cardiomyopathy,5

myocarditis,6 congenital malformations7 and valvular disease,8 which can impact lifelong
cardiac functions and lead to heart failure. By affecting at least 26 million people,9 heart failure
is a worldwide leading cause of death. Heart failure corresponds to the incapacity of the heart
to maintain an adequate circulation of blood in the bodily tissues. Heart failure can be caused
by inherited disorders or develop after birth, and the reason behind this remains, most of the
time, unknown. Mutations in a variety of genes have been associated with heart diseases in
human.10,11 In addition, the use of animal models based on gene mutations suggests a
multiplicity of pathways affecting cardiomyocytes such as transcriptional control,12 calcium
homeostasis,13 force generation and transmission,14 as well as metabolism.15 The use of fast
and cost-effective technologies, genetic testing based on the entire exome or genome
sequencing16 revealed a high number of variants which have little effect on cardiac health
conditions. A number of polymorphisms have been suggested as a risk factor for heart
diseases, however, most of these variants represent susceptibilities that require additional
mutations or injury to cause the phenotype of disease. As such, polymorphisms in the
adrenergic pathway,17 G protein-coupled receptor kinases,18 in the renin–angiotensin–
aldosterone system19,20 have been described.

Besides genetic causes of heart failure, environment,21–24 nutrition and lifestyle25–27 have a
major impact on heart function. Diet, obesity, diabetes and alcohol consumption (in a dose-
dependent manner28–30) are particularly of high concern in heart disease etiology. Given the
worldwide epidemic of obesity and metabolic disorders, strong efforts are being made to gain
insight into the mechanisms of cardiovascular health influenced by nutrition. The important
role of nutrition on cardiac functions is reflected by the model of mice fed through their long-
term feeding with high-fat diet which results in cardiac hypertrophy and fibrosis31–33 asso-
ciated with lipotoxicity.34 Interestingly enough, correlations between myocardial lipid accu-
mulation and cardiac dysfunction have been noted in humans. When comparing healthy lean
individuals to individuals with moderate obesity, an increase in triglyceride accumulation
precedes ventricular hypertrophy.35 Experience of stress such as long-term stress (i.e. work
related) as well as acute stress (e.g. experienced during an earthquake,36 a terrorist attack37 or
an industrial accident38) triggers coronary heart disease,39 myocardial infarction or stroke.
Those factors linked to environment, nutrition and lifestyle have stronger effects on heart
when they occur early during development.
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Early exposure to environmental challenges induces
cardiac disorders

Since the work of Professor D.J. Barker and the hypothesis of the
Developmental Origins of Health and Disease (DOHaD) providing
a framework to assess the effect of early nutrition and growth on
long-term health, a bulk of data identified the developmental
period as a phase when the fetus integrate information from the
fetal milieu allowing the organism to adapt to change later in
life. The fetus learns to adapt to the environment it expects to
encounter once outside of the womb. Such ‘programming’ is a
normal, adaptive component of development by which the fetus is
predisposed to inhabit an environment with expected resources.
When fetal conditions do not match the environment later during
life, the child or the adult can develop non-adapted physiological
response to the environment. As such, a challenge during fetal life
can therefore modify the developmental trajectory and change the
developmental ‘predictive adaptive’ response to the adverse
in utero environment into maladaptive in adulthood if conditions
(e.g. diet and lifestyle) change. Given that turnover of human
cardiomyocytes is limited over a lifetime, the heart is particularly
sensitive to challenges that perturb the intrauterine environment.
In addition to acute effects that may drive long-lasting cardiac
dysfunction,40 early developmental exposure to environmental
challenges can induce changes that may impact cardiac functions
only later in life (Fig. 1). Insults during infancy, gestational and
periconceptional periods are associated with an increased risk of
heart diseases in offspring. Fetal hypoxia is one of the most

common consequences of complicated pregnancies, occurring
during preeclampsia, placental insufficiency or infection. In sheep, a
large animal model in which the timing of cardiomyocyte
maturation is similar to human, prenatal hypoxia can promote fetal
growth restriction associated with a reduction in the total number of
cardiomyocyte.41 In perturbed intrauterine environments such as
fetal hypoxia,42 placental insufficiency and malnutrition,43,44

adaptations made by the fetus cause permanent changes in tissue
structure and function, with depressed cardiac performance and
cardiomyopathies that persist into adulthood.45,46 Those defects
have been associated with left ventricular hypertrophy, altered
myocardial contractility, endothelial dysfunction,41 susceptibility to
ischemia reperfusion injury47 and premature cardiac ageing
phenotype.48 Several underlying mechanisms have been proposed,
including an increase in beta(2)-adrenoreceptor and the G(s)alpha/
G(i)alpha ratio, and a decrease in heat shock protein 70 and
endothelial nitric oxide synthase in the left ventricle,49 or increased
expression of insulin-like growth factor 2 (IGF-2) and its receptor
IGF-2R in utero growth,50 as well as up-regulated IGF-2R-Gαq
signaling in low-birthweight lamb.51 In the context of exposure to
nutritional excess during perinatal life such as maternal obesity
and hyperglycemia52 as well as child obesity, impaired cardiac
function,53 are induced later in life. These exposures change the
programming of cardiac metabolism, inducing excessive lipid
accumulation in myocardial cells54,34 and defects in cardiac insulin
signaling.53

In the early origin of cardiac dysfunctions, the existence of
sensitive developmental windows of exposure had been only

Fig. 1. Lifelong environmental challenges that alter heart functions. Numbers indicate the references of studies associating environmental challenges and cardiac alterations.
ART, assisted reproductive technologies.
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addressed in a few studies which highlighted the impact levels
according to the time of exposure. In the case of high-fat diet,
adult cardiac alterations including increased heart rate were
described when the exposure occurred after weaning.55 Another
study which compared in utero and post-weaning period of
exposure to a high-fat high-sugar diet showed that exposure in
the post-weaning period has a more profound effect on offspring
weight gain and glucose tolerance than maternal overnutrition.56

The analyses of metabolic alterations suggest that post-weaning
period is critical in the altered programming of offspring health
by nutrition. These data emphasize the importance of optimizing
early life nutrition in offspring of both obese and lean mothers.
However, the effects of those exposures were studied on rodent
where postnatal period correspond developmentally to the late
gestation period in human. The critical developmental window of
exposure thus, remains to be investigated in human. In the case of
caffeine, mice exposed in utero to an equivalent to two to four
cups of coffee at an early embryonic stage, develop a greater risk
of dilated cardiomyopathy in adulthood. When the exposure
occurs at a later embryonic stage, that is to say when germ cells
develop, inter-generational (in F2 and F3) hypertrophic cardio-
myopathy is induced.57 During this critical developmental period,
the high sensitivity of the heart to toxicants is observed in the
response to low doses of the toxicant. Indeed, some factors can
have no impact at a determined dose level in adulthood whereas it
can trigger profound effects when the exposure occurs early in
life, such as alcohol. While in adulthood the effects of alcohol
consumption on cardiac health depends on the dose, during
pregnancy, even relatively low doses of alcohol consumed can
be detrimental to long-term cardiac health in the offspring by
inducing ventricular hypertrophy and fibrosis in adulthood.58

Despite public health warnings, younger women continue to
smoke during pregnancy.59 Gestational exposure to nicotine
induces higher risk of perinatal60 and obstetric complications.61

Fetal exposure to nicotine induces alteration in the cardiac
conduction system with disrupted heart rate and electrical
conduction62 which has been suggested as an underlying
mechanism for sudden death. A number of studies showed that
fetal heart is sensitive to maternal stress.63 Stress experienced
postnatally, during maternal separation, increases risk of heart
diseases in animals64 (e.g. increased heart rate response) and
humans65 (e.g. increased risk of developing coronary heart
disease) as observed in children born in Helsinki between 1934
and 1944 and who were separated from their parents. The
developing cardiovascular system is a sensitive target of many
environmental pollutants, including dioxins,66,67 and a plasticizer,
the Bisphenol A (BPA)68 which induce long-term alterations in
offspring heart such as hypertrophy. Furthermore, when
associated with a second hit during life (like unbalanced diet),
prenatal exposure to toxicant has been shown to produce a more
pronounced phenotype in adulthood. For example, when coupled
with postnatal overfeeding, BPA treatment produced a stronger
phenotype with significant increase in inter-ventricular septal
thickness indicating that BPA pre-treatment alters the trajectory
of cardiac function differentially from overfeeding alone that may
be adaptive v. maladaptive.69

Assisted reproductive technologies (ARTs) are widely used in
infertility treatment. Emerging evidence indicates that ART is a
risk factor for heart diseases in offspring.70,71 Hypotheses attribute
the effect of ART on cardiovascular health to embryo manip-
ulation in suboptimal culture conditions or ART-related fetal
insults, or other parental factors. For instance, the advanced

parental age was suggested to be a risk factor of heart
malformation in the offspring.72,73 Strikingly, parental exposures
not only influences cardiac health at an inter-generational level,
but also at a trans-generational level.74 While mother contribu-
tion is well described through the transmission of biomolecules
(nutrients or hormones), environmental influences (temperature)
or behavior (anxiety) to their offspring, the paternal contribution
has been for a long time not considered and under debate.
Recently, increasing evidence is pointing out the role of paternal
contribution to offspring health.75 For example, the Overkalix
cohort study (in Sweden) showed that men who had experienced
famine before puberty were less likely to have grandsons with
cardiovascular disease than men who had plenty to eat.76 In inter-
and trans-generational transmission of acquired traits, epigenetic
marks have been highlighted as underlying molecular bases. The
discovery of epigenetic mechanisms including micro-RNAs77 that
induce specific phenotypes without change in DNA sequence
improved our understanding of DOHaD field while for many
years the early developmental period was considered to be
controlled by the genetic program. Indeed, a single genome gives
rise in development to over 100 different types of cells. The same
genome is present in all of these cells but their functions are
remarkably different. This is achieved through different epigenetic
programming in each of these cell types. As such, the early
epigenome adds powerful layers of diversity to the biologic
predisposition generated by the genome.

Micro-RNAs in heart development and diseases

Heart development is orchestrated by epigenetic processes. The
major epigenetic features include DNA methylation, post-
translational histone modifications and non-coding RNAs,
including small non-coding RNAs (e.g. piRNAs and micro-
RNAs). In close interaction with DNA methylation and histone
post-translational modifications, non-coding RNAs regulate gene
expression. These mechanisms regulate the critical steps of heart
development involving coordinated cellular proliferation, migra-
tion, differentiation and programmed cell death, structural
remodeling,78 and the control of metabolic homeostasis through
the regulation of glucose and lipid metabolism, and insulin
signaling.79 Recent studies have revealed important roles for
micro-RNAs in heart development80 and disease81–83 (Table 1).

Micro-RNA biogenesis and mode of action

While only 1–2% of the genome encode for proteins, the main
part gives rise to non-coding RNAs (ncRNAs) including micro-
RNAs. Micro-RNAs originate from sequences disseminated
throughout the genome, from introns or intergenic regions.
Mature micro-RNAs are small nucleotide sequences (19–24
nucleotides in length). Some micro-RNAs are involved in path-
ways that are conserved throughout phylogeny while
micro-RNA diversity correlates with speciation. The number of
micro-RNA and targets of micro-RNAs reveals morphological
complexities observed in animals.84 Importantly, given that ~ 60%
of the human genes are under their control, micro-RNAs are
master regulators at the post-transcriptional level85 and play
important roles in many biological processes, including
development, differentiation, proliferation, apoptosis, metabolism
and tissue remodeling.

Micro-RNA biogenesis is based on a series of steps that go
from transcription of primary micro-RNAs (pri-micro-RNAs) to
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Table 1. Micro-RNAs associated to cardiac pathophysiology

HF ARRH CAD CHD VALV FIBRO HYPER MI DIA MC

Mir-1 164,165 166,167 168 112,169 170 171 172 173, 174 116

Mir-7 165 175

Let-7 176 177 178 170,179 180

Mir-9 181 182 183 184

Mir-10 185

Mir-15 144

Mir-16 176

Mir-17 176 186 175

Mir-17-92 187 188 189,190 187

Mir-18b 191 175

Mir-19 191 181,192 193 194 195 116,196 197

Mir-20 198

Mir-21 164,176 199 200 179,201 202 202 200 203 204,205

Mir-22 206 207 208

Mir-23 176 209 210

Mir-24 210 211 210 211

Mir-25 212

Mir-26 213 214,215 216 217 218

Mir-27 176 219 220,221 222,223 116

Mir-29 165,176 224 225 226 227 116

Mir-30 176 228 229 170,214 230 231 232 116

Mir-33 233 233

Mir-34 234 225 235 235 236 116,237

Mir-92 176 238,239 240

Mir-93 241 205

Mir-98 242 222 243

Mir-99 244 245 225

Mir-100 246

Mir-101 247 248

miR-103 242

mir-106b-25 249 205

Mir-107 176

Mir-122 176 250 221 251 252 253

Mir-122-370 250

Mir-124 234

Mir-125b 165,176 254 170,255 256 116

Mir-126 257 258 179 173,259

Mir-128 170

Mir-130 176 251 260

Mir-132 261 193 261 262

Mir-133 263 264 234 265 170,255 230 266 253 116

Mir-134-3135b 234 267

Mir-140 176 193,239

Mir-141 268 269

miR-142 193 170

Mir-143 270 271

618 B. Siddeek et al.
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Mir-144 272

Mir-145 181,273 168,177 274 232

Mir-146 275 181,276 277 225 278 116 205

Mir-148 279 280

Mir-149 281,282

Mir-150 276 193 283 284 116

Mir-152 181

miR-154 186

Mir-155 176 177 285 286 116 205,280

Mir-162 181

Mir-181 165,176 287 288 196

Mir-182 239

Mir-185 289

Mir-186 193

Mir-188 290

Mir-191 218

miR-192 244

Mir-193 291 225

miR-194 225

Mir-195 176,210 214 214 210 292 293

Mir-196a 220

Mir-197 294

Mir-199 176,210 186 295 296 116,237

Mir-200 297 225 298

Mir-203 299

Mir-204 300

Mir-206 301 302 303 304 305

Mir-208 139 306 277,307 308 306 292,309 310

Mir-210 193 311 116,237

Mir-212 312 262 116 205

Mir-212-132 262

Mir-214 165,210 244 215 313 210 314 116

miR-216 237

Mir-221 315 316 317 116 318

Mir-222 181 315 319 318

Mir-223 294 237

miR-301 225

miR-302 242

Mir-320 176 320 116

Mir-328 181,321 322 323 267

MiR-329 242

miR-339 186

Mir-340 186

Mir-342 165 244

Mir-350 324

Mir-361 200 200

Mir-365 253

Mir-370 307

Table 1: (Continued )
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Mir-373 203 203

Mir-374 181

Mir-374b* 215

Mir-375 276 224 325

Mir-378 165 326 116

Mir-379 327

miR-380 242

Mir-409 328

Mir-421 221

Mir-423 329 170 116

Mir-424 176 282

Mir-432 181,328

Mir-433 319

Mir-451 176 330 255 331

Mir-454 181 186

miR-455 332

Mir-466 333

Mir-483 334 335

Mir-486 251,300 284

miR-487 242

miR-490 242

Mir-493 181

Mir-494 255 336

Mir-499 337 277 220 253,338 116 310

Mir-500 299

Mir-505 225,299

Mir-511 205

miR-513 225

miR-516 225

Mir-519 297 200

miR-520 297

Mir-545 186

Mir-574 339

miR-575 225

MiR-558 297

miR-582 242

Mir-584 340

Mir-585 186

Mir-590 341 330 341 296

Mir-602
miR-622 297

miR-624 186

miR-630 225

Mir-634 181

miR-636 225

Mir-646 299

miR-650 237

Mir-663 232

Table 1: (Continued )
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the biologically active, mature micro-RNAs (Fig. 2). First, DNA
sequences are transcribed into pri-micro-RNAs mainly through
the action of RNA polymerase II,86 and to a less extent by RNA
Polymerase III.87 The transcribed pri-micro-RNAs are then
cleaved by DROSHA and its cofactor DiGeorge critical region 8
(DGCR8) in the nucleus generating micro-RNA precursors about
60–70 nt called pre-micro-RNAs.88 These pre-micro-RNAs
shuttle into the cytoplasm by interacting with the nuclear pore
complex Exportin-5.89 Once in the cytoplasm, the hairpin
structures, known as pre-micro-RNAs, undergo further proces-
sing by the DICER–TAR RNA-binding protein 2 (TRBP)
complex to produce fully processed RNA duplexes (around 22
nucleotides in length) comprising the mature micro-RNAs and
the micro-RNAs* (also known as passenger strands).90 Each
micro-RNA strand is incorporated into an RNA-induced
silencing complex (RISC) comprising an Argonaute (AGO) pro-
tein that binds to the target mRNA and degrades the passenger
strand.91 The mature micro-RNA guides the RISC to target
sequences located mainly in the 3’UTR of the target messenger
RNA leading to an inhibition of its translation or to its degra-
dation. In addition to their classical roles, micro-RNAs regulate
gene expression through promoter targeting and translational
activation.92,93 Binding to the 5’UTR and to exon sequence have
also been described.94 Interestingly, the micro-RNA biogenesis
machinery is regulated by hypoxia, hormonal and dietary chan-
ges.95–97 More recently, extracellular, circulating micro-RNAs

have been described as highly stable, and as potential blood-based
biomarkers for diseases,98 including heart diseases. We will focus
this review on the involvement of micro-RNAs in heart health
and disease and especially their involvement in heart disease
programming.

Micro-RNAs regulate cardiac development and function

Advances in micro-RNA analysis such as next generation high
depth sequencing techniques have highlighted their critical role in
heart functions. As revealed by conditional knock out of Dicer in
cardiac tissue, defects in micro-RNA biogenesis affect both
embryonic development and postnatal cardiac maintenance and
function.99–102 One important role of micro-RNAs in heart
development and function is linked to their ability to regulate the
cardiac transcriptional pathways that maintain a restricted and
specific pattern of gene expression.103 Experimental studies on
animals and analyses of human samples address specific roles of
different micro-RNAs.

Several clinical and experimental studies have described the
importance of dysregulation of micro-RNAs in the origin of
cardiac disorders (Table 1), such as coronary artery disease,104

cardiac fibrosis and hypertrophy.105 Among them, a few micro-
RNAs, including miR-1, miR-133, miR-208 and miR-499 which
regulate cell proliferation, differentiation and apoptosis in cardiac
tissue from the early developmental stages, have been described as

Mir-664 181

miR-665
Mir-718 225,251

Mir-765 281,282

Mir-873 342 343

miR-874 242

Mir-939 215,299

miR-940 344

Mir-1193 299

miR-1201 221

Mir-1233 291

Mir-1273e 299

Mir-1257 332

miR-1275 221

Mir-1291 232

miR-1972 225

Mir-2861 345

miR-3138 225

Mir-3174 299

Mir-3613 333

miR-3663 225

Mir-4298 299

Mir-4454 255

Mir-4484 255

HF, heart failure; ARRH, arrhythmia; CAD, coronary artery disease; CHD, congenital heart disease; VALV, valvular disease; FIBRO, fibrosis; HYPER, hypertrophy; MI, myocardial infarction; DIA,
diabetic heart disease; MC, myocarditis.
Non-exhaustive list of micro-RNAs that have been described in animal and/or human models of cardiac diseases. Orange color squares indicate micro-RNAs that were reported in specific
cardiac disease. The reference of the study highlighting the involvement of micro-RNA in specific cardiac disease is indicated in each orange square.

Table 1: (Continued )
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key players in heart disease development. Their alterations have
been reported in cardiac hypertrophy, myocardial infarction,
cardiac arrhythmia and heart failure.106 MiR-1, the first
micro-RNA that has been implicated in heart development, exerts
its action through the targeting of multiple pathways. For instance,
miR-1 negatively regulates proliferation and mediates cell cycle
withdrawal by targeting heart and neural crest derivatives expres-
sed 2 (HAND2),107 cell division cycle 42 (CDC42)108 and the
serine/threonine kinase PIM-1.109 MiR-1 levels are also key player
in cardiomyocyte differentiation and cell fate decision by
down-regulating Notch ligand delta 1 (DLL1).110 In addition,
miR-1 regulates contractility of cardiomyocyte by controlling
calcium homeostasis111 and electrical conduction.112 Indeed, it
down-regulates Iroquois Homeobox 4 and 5, IRX4 and IRX5
which are involved in the regulation of the cardiac repolarisation
gradient113 and genes that are involved in gap junction and iron
channel such as GJA1,114 or the cardiac L-type calcium channel
gene CACNA1C (CAV1.2).115 MiR-1 has also displayed its
important role in diabetic cardiac dysfunction. In a mouse model
of streptozotocin-induced diabetes, miR-1 down-regulation may be
involved in the development of cardiac hypertrophy.116 qA study
performed on diabetic patients’ cohorts highlights the potential of
serum miR-1 as a biomarker of myocardial steatosis.117

Furthermore, micro-RNAs have been highlighted as sensitive
biomarkers of cardiac dysfunction and prognostic markers for
diseases. Indeed, changes in their profile in diabetic individuals with
normal ejection fraction are detected before clinical manifestations
of heart diseases,118,119 and are dynamic in response to therapeutic
treatment (i.e. diabetic cardiac microangiopathy).120 Just as gene
polymorphism, micro-RNAs polymorphism can represent risk for
heart diseases. For instance, meta-analyses performed on a total of
13 related studies involving 8120 patients and 8364 controls suggest
that polymorphism in miR-146a (rs2910164), microR-196a2

(rs11614913) and miR-499 (rs3746444) are associated with
coronary heart disease risk.121

Micro-RNAs at the origins of cardiac disorders induced
by environment, lifestyle and diet

Deregulation of micro-RNAs profile has been suggested as a
potential mechanism at the origin of heart diseases induced by
environment and lifestyle.122 In cardiac alterations induced by fetal
hypoxia, a few micro-RNAs have been identified. Among these,
miR-210 was highlighted at the origin of fetal rat cardiomyocytes
death induced by hypoxia through the suppression of glucocorti-
coid receptor (NR3C1).123 MiR-210 is regulated by the binding of
hypoxia-inducible factor 1-alpha (HIF-1-α) to its promoter, and
due to its consistent and powerful response to hypoxia, miR-210 is
termed as the master micro-RNA regulating the cellular response
to hypoxia.124,125 Besides miR-210, other micro-RNAs such as
miR-2285, miR-34, miR-192, miR-449, miR-200 families and
miR-199a-214 cluster, have been associated with hypoxia, for
example in high-altitude adaptation126 or in pathological condi-
tion.127 Changes in micro-RNA profile have been proposed as
underlying mechanisms in the cardiac alterations driven by
maternal exposure to dietary challenges, through the deregulation
of cell death, growth and proliferation in the fetal heart.128 In
animals exposed to high-fat diet, a number of pathways altering
cardiomyocyte metabolism have been described. For instance, mice
exposed to high-fat diet exhibit cardiac lipotoxicity through the
dysregulation of a major cellular sensor of energy availability,
AMP-activated protein kinase (AMPK), and its upstream reg-
ulators, the calcium-binding protein 39 (CAB39) and the liver
kinase B1 (LKB1).129 MiR-451 has been shown to regulate this
LKB1/AMPK pathway and cardiac lipotoxicity through the tar-
geting of CAB39.129 Similarly, dysregulated glycogen synthase

Fig. 2. Micro-RNAs biogenesis. Micro-RNAs biogenesis involves different steps. Pri-micro-RNAs are transcribed from inter- and intra-genic regions. They are then processed into
pre-micro-RNAs and double-stranded micro-RNAs. The mature single-stranded micro-RNAs binds to the UTR ends of targets messenger RNAs (mRNAs) to regulate their levels.
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kinase 3 (GSK3B) and glucose transporter 4 (GLUT4), involved
in the insulin signaling pathway, have been associated with
alterations in miR-29c, miR-21a-3p, miR-29c-3p, miR-144–3p and
miR-195a-3p levels in the heart of animals exposed to high-fat
diet.130 Exposure to maternal hyperglycemia, induces cardiovas-
cular dysfunctions in offspring. Evidence suggests that those
dysfunction are due to altered levels of enhancer of zeste homolog
2 (EZH2) driven by miR-101 in fetal endothelial cells.131 Inter-
estingly, miR-101 and EZH2 have been highlighted in other
models of fetal programming of adult diseases (e.g. infertility)
driven by early exposure to endocrine disruptors.132 Not only in
utero exposure affects cardiac micro-RNAs in short term,128 but
also in long term.133 As such, in mice, a maternal obesogenic diet
during gestation and lactation induces miR-133a alteration in the
offspring heart at 8 weeks of age associated with cardiac hyper-
trophy.133 Furthermore, as highlighted by a recent study, the
impact of in utero exposure to dietary challenges on long-term
cardiac function depends on the timing of the exposure during
development.134 In this study, the comparison between prenatal
exposure to maternal obesity and/or postnatal exposure to a
Western diet on micro-RNA expression profiles showed that many
more cardiac micro-RNA implicated in various cardiac patholo-
gies134 are altered in response to a relatively short period of
postnatal overnutrition, rather than by a longer period of prenatal
overnutrition.134 Furthermore, cardiac micro-RNAs not only
regulate functions, but also regulate metabolism at the body level.
Indeed, miR-208 which cardiac levels are increased in high-fat diet
mice, regulates the mediator complex subunit 13 (Med13) involved
in the regulation energy balance in the heart.135 Cardiac inhibition
of miR-208 is sufficient to confer resistance to obesity in high-fat
diet mice.135 This observation highlights a novel role of cardiac
micro-RNA, as a hormone-like controller on whole-body meta-
bolism. In the effects driven by in utero exposure to environmental
toxicants (such as BPA) on cardiac remodeling, a study performed
in monkeys highlighted the involvement of miR-205 and
miR-224.68 The cellular pathways involved have been more
detailed in a model of cardiomyocyte cell line exposed to a per-
sistent organic pollutant, the polychlorinated biphenyls (PCBs). As
revealed in this in vitro model, the deregulation of micro-RNAs
involved in cardiomyocyte differentiation is a potential underlying
mechanism in PCB driven cardiac dysfunction.136

Micro-RNAs, a target for the reversal of heart disease
programming?

Given their key function in gene regulation, micro-RNAs provide
promising therapeutic targets.137 Advances in micro-RNA
chemistry and delivery technologies allowed the development of
powerful tools for in vivo regulation of micro-RNAs.138 In the
treatment of post-myocardial infarction, cardiac remodeling and
dysfunction, hypertrophy, heart failure, atherosclerosis and
myocarditis,139,140 animal models of in vivo delivery of micro-
RNA mimics or anti-miRs show the potential of micro-RNA
based therapy. For instance, the inhibition of micro-RNAs
(miR-128,141 miR-92a,142 miR-26a,143 miR-15144 or miR-34145

families) involved in cardiomyocyte cell death induced by myo-
cardial ischemia reduces infarct size after ischemia-reperfusion
and augments the recovery of heart function. Pharmacological
inhibition of miR-140 which is involved in mitochondrial fission
reduces infarct size after acute myocardial infarction in mice.146

Inhibition of miR-21147 or miR-25148 prevents heart failure
development in mice by restoring cardiac function, reducing

fibrosis and normalizing cardiomyocyte cell size. Conversely,
micro-RNAs such as miR-210149 which protects cardiomyocytes
and vasculature, when injected intra intramyocardially, reduce
cell death and improve cardiac function and angiogenesis after
acute myocardial infarction.150 Research into the role of micro-
RNAs in heart disease holds great promise for future therapeutic
applications. However, many questions on their delivery and
duration of action in human remain. Thus, modification in
lifestyle and diet remains the first choice in the micro-RNAs
modulation. Interestingly, exercise training improves cardiac
autonomic control, cardiac function and arrhythmogenesis in rats
with preserved ejection fraction heart failure.151 Recently, physical
exercise has been shown to modulate cardiac micro-RNAs which
are possibly involved in exercise mediate cardioprotection.
Modification in these micro-RNAs levels driven by exercise can
be detected in the blood, representing potential biomarkers of
cardiorespiratory fitness.152 Apoptosis-related micro-RNAs and
their downstream proteins in heart can be influenced by swim-
ming training.153 Circulating micro-RNA levels (miR-1, miR-133
and miR-206) are elevated with marathon running154 and with
moderate exercise in pathological conditions like myocardial
infarction (miR-1 and miR-214) which are associated with the
normalization of Ca2+ handling and left ventricular compliance
in infarcted hearts.155

Recent evidence showed that hydrogen sulfide (H2S) has the
potential to protect the heart against diseases.156,157 H2S is a
gaseous mediator along with nitric oxide and carbon monoxide,
and is produced endogenously from cysteine metabolism in
mammalian tissues. Low plasma levels of H2S have been descri-
bed in type 2 diabetic patients,158 in high-fat diet treated mice159

and streptozotocin-treated rats.158 Recent evidence showed that
H2S has the potential to protect the heart against diseases.156,157

Exogenous H2S treatment mitigates cardiomyopathy induced by
diabetes and protects the heart from I/R injury. Interestingly, H2S
has been demonstrated to regulate micro-RNAs160 in cardio-
myocyte cell lines. The preconditioning of myocardial I/R with
H2S decreases miR-1-mediated apoptosis.161 However, in the
context of early programming of heart diseases, little is known
about the potential of micro-RNAs in the reversal of the
pathology. In a rat model of adult cardiac hypertrophy induced by
maternal undernutrition, specific cardiac micro-RNA profiles are
exhibited and are associated with genes involved in inflammation
and cardiovascular development. When the offspring is treated
with growth hormone, the cardiac hypertrophy is reversed,162

accompanied by an up-regulation of cardiac let-7 highlighting the
potential of let-7 micro-RNA family in the reversal of cardiac
pathophysiology induced by maternal undernutrition. Interest-
ingly, recent study showed that short caloric restriction in
adulthood can restore cardiac function in mice that were exposed
postnatally to overnutrition.163 However, the role of micro-RNAs
in the reversal of cardiac alteration programming by nutritional
approach remains to be investigated.

Future perspective

How environmental challenges during early life can alter and
shape offspring cardiac functions through alterations in micro-
RNAs is an intense area of research. However, several questions
still need to be elucidated. While evidence exists for the influence
of early life insults on micro-RNAs and pathophysiology in
adipose tissue, brain, liver and pancreas, evidence for the exis-
tence of a causative link between environmental challenges,
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nutritional constraints, or lifestyle challenges, and micro-RNAs
and developmental programming of cardiovascular diseases is still
limited. Furthermore, the sensitive developmental windows of
exposure and the role of micro-RNAs in gender differences need
to be clarified for the different types of challenges. Finally, the
targeting of micro-RNAs through nutritional, exercise or phar-
macological approaches would provide valuable information that
would allow better advice for early prevention, and promote
appropriate changes to maximize later life health benefits.
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