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1. Introduction

Moduli spaces of general polarized algebraic varieties are studied extensively by alge-
braic geometers. However, there are two classes of moduli spaces where the methods of
differential geometry are equally powerful. These are the moduli spaces of curves and
the moduli spaces of polarized Calabi–Yau manifolds. Both spaces are complex orbifolds.
The Weil–Petersson metric is the main tool for investigating the geometry of such moduli
spaces. Under the Weil–Petersson metrics, these moduli spaces are Kähler orbifolds.
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186 Z. Lu and X. Sun

The GIT construction of the (coarse) moduli space (see [27]) of Mumford is as follows.
Let X be a Calabi–Yau manifold and let L be an ample line bundle over X. The pair
(X, L) is called a polarized Calabi–Yau manifold. Choose a large m such that Lm is very
ample. In this way X is embedded into a complex projective space CPN . Let Hilb(X) be
the Hilbert scheme of X. It is a compact complex variety. The group G = PSL(N +1, C)
acts on Hilb(X) and the moduli space M is the quotient of the stable points of Hilb(X)
by the group G. For the purpose of this paper, we assume that M is connected.

The curvature of these moduli spaces with respect to the Weil–Petersson metric has
been studied by many people. For the moduli space of curves, Wolpert [30] gave an
explicit formula for the curvature and proved that the (Riemannian) sectional curvature
of the Weil–Petersson is negative. Siu [23] generalized the result to the moduli spaces
of Kähler–Einstein manifolds with c1 < 0. Schumacher [21], using Siu’s methods, com-
puted the curvature tensor of the moduli spaces of Kähler–Einstein manifolds in the case
of c1 > 0 and c1 < 0, respectively∗. Furthermore, Strominger [24] gave the curvature
formula for the moduli space of Calabi–Yau threefolds using the Yukawa couplings. Gen-
eralizing the formula, Wang [29] proved the curvature formula for Calabi–Yau n-folds
where there are no Yukawa couplings. His proof is purely Hodge theoretic and is also
true on Weil–Petersson varieties.

It is important and interesting to know the geometry of moduli space at infinity. In [9],
Jost and Yau were able to understand the moduli spaces of curves at infinity using the
Schwarz–Yau Lemma [31]. For moduli space of polarized Calabi–Yau manifolds, similar
results could be found in [11]. In order to make use of the Schwarz–Yau Lemma, we
need some natural metric on the moduli spaces whose holomorphic sectional curvature
is negative away from zero.

Unlike the case of moduli space of curves, the sectional curvature of the Weil–Petersson
metric on moduli space of polarized Calabi–Yau manifolds is not negative, even in the
case when the moduli space is one dimensional. The curvature of the Weil–Petersson
metric can either be positive or negative (cf. [2, p. 65]) on the moduli space of Calabi–
Yau threefolds which are mirror manifolds of the quintic hypersurfaces in CP 4. This fact
prevents us from using the Schwarz–Yau Lemma directly.

In [12], the first author introduced the Hodge metric on the moduli space of polarized
Calabi–Yau manifolds. The Hodge metric is a Kähler metric on the moduli space. Its
holomorphic bisectional curvature is non-positive and both of its Ricci and holomorphic
sectional curvature are negative away from zero. The Hodge metric on moduli space of
Calabi–Yau manifolds is the counterpart of the Weil–Petersson metric on Teichmüller
space. In § 4, we took a further step by defining the ‘partial Hodge metric’. We computed
the curvature of the ‘partial Hodge metric’. The formula is parallel to the curvature
formula of Wolpert [30] on Teichmüller space. In the case of the moduli space of Calabi–
Yau threefolds and fourfolds, we proved that the ‘partial Hodge metric’ is the same as
the Hodge metric, up to a constant.

Perhaps it is useful to make further comments on the motivations of this paper. We go
back to the idea of Griffiths. In [4,5], Griffiths defined the period map. It is a holomor-

∗ Schumacher’s method also yields the curvature formula in the case of c1 = 0.
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phic map from a moduli space to the ‘classifying space’ defined by Griffiths. The image
of the period map is an integral subvariety of the horizontal distribution by the Grif-
fiths transversality. The idea of Griffiths is that by studying the integral submanifold of
the horizontal distribution, one can partially recover the properties of the moduli space
without having the knowledge of the varieties the moduli space parametrized.

In the case of moduli space of polarized Calabi–Yau manifolds, we can do better. By a
theorem of Tian [25], the Weil–Petersson metric can be defined by the curvature of the
first Hodge bundle. This implies that the Weil–Petersson metric can be defined without
the detailed knowledge of the Calabi–Yau manifolds. The presence of the Weil–Petersson
metric gives severe restrictions on integral submanifold of the horizontal distribution.

In § 8, we define the Weil–Petersson geometry. This is defined to be an integral sub-
manifold of the horizontal distribution with the Weil–Petersson metric on it. We further
axiomatize the results of Viehweg [27] and Schmid [20] in defining the Weil–Petersson
geometry. Of course, the axioms will give further restrictions of the integral submanifolds
of the horizontal distribution. It has not been comprehensively studied how these results
interact with the geometry of the integral submanifolds with the Weil–Petersson metrics.

One of the motivation of this paper is to make a firm foundation to study these
interactions.

Before giving the main results of this paper, we give a short definition of Weil–
Petersson, Hodge and partial Hodge metrics. For detailed definitions, see [25, 26] for
Weil–Petersson metrics, [12,13] for Hodge metrics and § 4 for partial Hodge metrics.

All of these three metrics are Hodge theoretic in the sense that they depend on the
variation of the Hodge structures only. Let Fn be the first Hodge bundle over M. Then
the Weil–Petersson metric is defined as

ωWP = c1(Fn) = −
√

−1
2π

∂∂̄ log Q(Ω, Ω̄),

where Ω is a local holomorphic non-zero section of Fn and Q is the polarization
(see (2.2)). The Hodge metric is defined as follows. Given the period map

M → D,

where D is the Griffiths classifying space, let D = G/V for the real semisimple group
G defined by the polarization Q. Let K be the connected components of the maximal
compact subgroup of G containing V . The space G/K is a (Riemannian) symmetric
space which carries the unique invariant metric ds2 (up to a constant). Let π be the
composition map M → D → G/K. Then the Hodge metric is defined by π∗(ds2). It is
Kählerian.

The partial Hodge metric is defined by

ωµ = µωWP + Ric(ωWP)

for positive number µ > m+1, where m is the dimension of the moduli space. In the case
of Calabi–Yau threefolds and fourfolds, with the suitable choice of µ, the partial Hodge
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metric is the Hodge metric. If the dimension of the Calabi–Yau manifolds is greater than
or equal to five, there is no direct link between the Hodge and the partial Hodge metric.

As the first result of this paper, we have the following explicit formula for the curvature
of the partial Hodge metric.

Theorem 1.1. Let M be a moduli space of polarized Calabi–Yau manifolds. Let the
dimension of M be m. Let ωWP be the Kähler form of the Weil–Petersson metric. Then
the metric ωµ = µωWP + Ric(ωWP) is Kähler for µ > m + 1 and the curvature tensor of
ωµ is

R̃ij̄kl̄ = (µ − m − 1)(gij̄gkl̄ + gil̄gkj̄) − (µ − m)Fij̄kl̄ + Fiq̄αl̄Fpj̄kβ̄gαβ̄gpq̄

+ Fαq̄kl̄Fij̄pβ̄gαβ̄gpq̄ +
(DkDαDiΩ, ¯DlDβDjΩ)

(Ω, Ω̄)
gαβ̄

+
(Ekαi, ¯Elβj)

(Ω, Ω̄)
gαβ̄ − hst̄ (Ekαi, ¯DβDtΩ)

(Ω, Ω̄)
(DγDsΩ, ¯Elτj)

(Ω, Ω̄)
gαβ̄gγτ̄ . (1.1)

(For notations, see § 4.)
The obvious feature of the above expression is that the high-order terms of Rīiīi domi-

nates the high-order terms of the rest of the curvature tensor. Using this, we can control
the Riemannian sectional curvature by the scalar curvature in the case of Calabi–Yau
threefolds (cf. [13]) and of Calabi–Yau fourfolds (Theorem 5.4).

In the case of moduli space of Calabi–Yau fourfolds, we have the following result in § 4.

Theorem 1.2. We use the notations as in the above theorem. Let µ = m + 2. Then
the bisectional curvature of the Kähler metric ωµ is non-positive. The Ricci and the
holomorphic sectional curvature are all negatively bounded by the constant −1/(m + 4),
where m is the complex dimension of the moduli space. Furthermore, the partial Hodge
metric is the Hodge metric in the case of moduli space of Calabi–Yau fourfolds, up to a
constant.

Remark 1.3. The Hodge metric was first defined in [12]. Using Theorem 6.2, one can
prove that it is Kähler. The fact that the holomorphic sectional curvature is negative
away from zero also follows from the classical paper of Griffiths and Schmid [7]. The non-
positivity of the holomorphic bisectional curvature is from [12]. The contribution here
is that we find the explicit relation between the Hodge metric and the Weil–Petersson
metric in the moduli space of Calabi–Yau fourfolds, and we find out the optimal constant
for the upper bound of the holomorphic sectional curvature of the Hodge metric.

We remark that the corresponding result of Theorem 1.2 in the case of Calabi–Yau
threefold was proved in [13]. In the fourfold case, we do not have the result of Bryant
and Griffiths [1] about the integral submanifold of the horizontal distribution. However,
we are still able to prove that in the case of fourfold, the ‘partial Hodge metric’ is the
Hodge metric.

Using the above theorems and the Schwarz–Yau Lemma, we have the following global
result in § 5.
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Theorem 1.4. Let M be the moduli space of the polarized Calabi–Yau manifolds.
Then the Hodge volume on any subvarieties of M is finite. The Riemannian sectional
curvature is L1 bounded with respect to the Weil–Petersson metric on any subvarieties.
In particular, the moduli space of the polarized Calabi–Yau manifolds has finite Weil–
Petersson volume.

Remark 1.5. Since we do not know the boundedness of the curvatures of the Weil–
Petersson or Hodge metric at infinity, it seems to be interesting to prove that the integral
of the curvature is bounded. In the one-dimensional case, if a complete Riemann surface
has bounded total Gauss curvature, then it is S2 removing finite many points. In high
dimensions, we wish to find the geometric implications of the fact that the total curvature
is finite.

A more ambitious problem is to prove that the volume and the integration of the
curvatures of the Weil–Petersson metric are rational numbers. The same problem on the
moduli space of curves was studied by many people (cf. [10,16,22,32–34]). The difficulty
in the case of moduli space of Calabi–Yau manifolds is that the compactification is not
known to be ‘good’ in the sense of Mumford [18, § 1]. The results of the Weil–Petersson
volume on moduli space of Calabi–Yau manifolds will be in our next paper [14].

In the second part of this paper, we study the asymptotic behaviour of the curvature
of the Hodge metric at infinity for moduli space of dimension one. The problem is related
to the compactification of the moduli space of Calabi–Yau manifolds. By the theorem
of Viehweg [27], the moduli space is a quasi-projective variety. Other than this result,
we do not know much of the asymptotic behaviour of the moduli space. Yau suggested
that one can compactify the moduli space by completing the moduli space using the
Weil–Petersson metric first and then compactifying it. Under his suggestion, we study
the problem. It seems to us that it is easier to complete the moduli space using the
Hodge metric. After the completion of the moduli space using the Hodge metric, one
would get a metric space which is not worse than a complex orbifold. We wish to study
the curvature of the Hodge metric near the infinity of the moduli space in order to study
the Siegel-type theorem [17] and wish, by using this, we can give a differential geometric
proof of the compactification theorem of Viehweg. The full results will appear at [14]. In
this paper, we have the following result.

Theorem 1.6. Assume the moduli space M of polarized Calabi–Yau threefolds is one
dimensional. If ∆∗ is a holomorphic chart of M such that ∆∗ is complete at 0 with
respect to the Hodge metric, then the Gauss curvature of the Hodge metric is bounded∗.

2. Preliminaries

Let X be a compact Kähler manifold of dimension n. A C∞ form on X decomposes into
(p, q)-components according to the number of dz and dz̄. Denoting the C∞ n-forms and
the C∞(p, q) forms on X by An(X) and Ap,q(X), respectively, we have the following

∗ The referee pointed out that the result is also true for partial Hodge metric.
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decomposition:
An(X) =

⊕
p+q=n

Ap,q(X).

The cohomology group is defined as

Hp,q(X) = {closed (p, q)-forms}/{exact (p, q)-forms}
= {ϕ ∈ Ap,q(X) | dϕ = 0}/dAn−1(X) ∩ Ap,q(X).

The relations between the groups {Hp,q(X)} and the de Rham cohomology is the
following Hodge decomposition.

Theorem 2.1 (Hodge Decomposition Theorem). Let X be a compact Kähler man-
ifold of dimension n. Then the nth complex de Rham cohomology group of X can be
written as the direct sum

Hn(X, Z) ⊗ C = Hn
DR(X, C) =

⊕
p+q=n

Hp,q(X). (2.1)

A (1, 1) form ω is called a polarization of X if [ω] is the first Chern class of an ample
line bundle over X. The pair (X, ω) is called a polarized algebraic variety.

Using ω, one can define

L : Hk(X, C) → Hk+2(X, C), [α] �→ [α ∧ ω]

to be the multiplication by ω for k = 0, . . . , 2n − 2.
The following two famous Lefschetz Theorems give a filtration of the Hodge groups

and thus are extremely important in defining the classifying space and the period map.

Theorem 2.2 (hard Lefschetz Theorem). On a polarized algebraic variety (X, ω) of
dimension n,

Lk : Hn−k(X, C) → Hn+k(X, C)

is an isomorphism for every positive integer k � n.

The primitive cohomology P k(X, C) is then defined to be the kernel of Ln−k+1 on
Hk(X, C).

Theorem 2.3 (Lefschetz Decomposition Theorem). On a polarized algebraic vari-
ety (X, ω) of dimension n, we have the following decomposition:

Hn(X, C) =
[n/2]⊕
k=0

LkPn−2k(X, C).

Let HZ = Pn(X, C) ∩ Hn(X, Z) and Hp,q = Pn(X, C) ∩ Hp,q(X) for 0 � p, q � n.
Then we have

HZ ⊗ C =
∑

Hp,q, Hp,q = Hq,p,

for p + q = n. Set H = HZ ⊗ C. We call {Hp,q} the Hodge decomposition of H.
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Remark 2.4. We define a filtration of HZ ⊗ C = H by

0 ⊂ Fn ⊂ Fn−1 ⊂ · · · ⊂ F 1 = H

such that
Hp,q = F p ∩ F q, F p ⊕ Fn−p+1 = H.

The sets {Hp,q} and {F p} are equivalent in describing the Hodge decomposition of H

(cf. (2.1)). We will use both notations interchangeably for the rest of this paper.

Now suppose that Q is the quadratic form on HZ induced by the cup product of the
cohomology group Hn

DR(X, C). Q can be represented by

Q(ϕ, ψ) = (−1)n(n−1)/2
∫

X

ϕ ∧ ψ (2.2)

for ϕ, ψ ∈ H. Q is a non-degenerate quadratic form, and is skew-symmetric if n is odd and
is symmetric if n is even. On H, the form Q satisfies the two Hodge–Riemann relations
on the space Hp,q of primitive harmonic (p, q) forms:

(1) Q(Hp,q, Hp′,q′
) = 0 unless p′ = n − p, q′ = n − q; and

(2) (
√

−1)p−qQ(ϕ, ϕ̄) > 0 for any non-zero element ϕ ∈ Hp,q.

Definition 2.5. A polarized Hodge structure of weight n, denoted by {HZ , F p, Q}, is
given by a lattice HZ , a filtration of H = HZ ⊗ C,

0 ⊂ Fn ⊂ Fn−1 ⊂ · · · ⊂ F 0 ⊂ H,

such that
H = F p ⊕ Fn−p+1,

together with a bilinear form
Q : HZ ⊗ HZ → Z,

which is skew-symmetric if n is odd and symmetric if n is even such that it satisfies the
two Hodge–Riemann relations:

(3) Q(F p, Fn−p+1) = 0 for p = 1, . . . n; and

(4) (
√

−1)p−qQ(ϕ, ϕ̄) > 0 if ϕ ∈ Hp,q and ϕ 
= 0, where Hp,q is defined by

Hp,q = F p ∩ F q

for p + q = n.

Definition 2.6. The classifying space D for the polarized Hodge structure is the set of
all filtrations

0 ⊂ Fn ⊂ · · · ⊂ F 1 ⊂ H, F p ⊕ Fn−p+1 = H,

or the set of all the decompositions∑
Hp,q = H, Hp,q = Hq,p,

on which Q satisfies the two Hodge–Riemann relations (1), (2) or (3), (4) above.
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Let
GR = {ξ ∈ Hom(HR, HR) | Q(ξϕ, ξψ) = Q(ϕ, ψ)}. (2.3)

Then D can also be written as the homogeneous space

D = G/V, (2.4)

where V is the compact subgroup of G which leaves a fixed Hodge decomposition {Hp,q}
invariant. Apparently, G is a semisimple real Lie group.

Over the classifying space D we have the holomorphic vector bundles F
¯

n, . . . , F
¯

1, H
¯whose fibres at each point are the vector spaces Fn, . . . , F 1, H, respectively. These bun-

dles are called Hodge bundles.
In § 6, we identify the holomorphic tangent bundle T 1,0(D) as a subbundle of

Hom(H
¯

, H
¯

),

T 1,0(D) ⊂ ⊕Hom(F
¯

p, H
¯

/F
¯

p) =
⊕
r>0

Hom(H
¯

p,q, H
¯

p−r,q+r),

such that the following compatible condition holds:

F p −−−−→ F p−1⏐⏐� ⏐⏐�
H/F p ←−−−− H/F p−1

Definition 2.7. A subbundle Th(D) is called the horizontal distribution of D if

Th(D) = {ξ ∈ T 1,0(D) | ξF p ⊂ F p−1, p = 1, . . . , n}.

For any point x ∈ D such that x is defined as subspaces {Hp,q} of H, define the two
vector spaces

H+ = Hn,0 + Hn−2,2 + · · · ,

H− = Hn−1,1 + Hn−3,3 + · · · .

We fix a point x0 ∈ D. Suppose that the corresponding vector spaces are {Hp,q
0 } and

{H+
0 , H−

0 }. Define K to be the connected compact subgroup of G leaving H+
0 invariant.

We give the basic properties of the classifying spaces in the following three lemmas. The
proofs are easy and are omitted.

Lemma 2.8. K is the maximal compact subgroup of G containing V . In particular, V

itself is a compact subgroup.

Define the Weil operator

C : Hp,q → Hp,q, C|Hp,q = (
√

−1)p−q.

Then we have

C|H+ = (
√

−1)n, C|H− = −(
√

−1)n.
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Let
Q1(x, y) = Q(Cx, ȳ).

Then we have the following result.

Lemma 2.9. Q1 is an Hermitian inner product.

Lemma 2.10. Let

D1 = {Hn,0 + Hn−2,2 + · · · | {Hp,q} ∈ D}.

Then the group G acts on D1 transitively with the stable subgroup K at H+
0 , and D1 is

a (Riemannian) symmetric space.

Definition 2.11. We call map p,

p : G/V → G/K, {Hp,q} �→ Hn,0 + Hn−2,2 + · · · ,

the natural projection of the classifying space. Using the notation of coset, p(aV ) = aK

for any a ∈ G.

With the above discussions, we can prove the following result.

Proposition 2.12. Suppose Tv(D) is the distribution of the tangent vectors of the fibres
of the canonical map

p : D → G/K.

Then
Tv(D) ∩ Th(D) = {0}.

Proof. Let g be the Lie algebra of the Lie group G. Let g = f + p be the Cartan
decomposition such that f is the Lie algebra of K. Then

Tv(D) = G ×V v1,

where f = v + v1 and v1 is the orthonormal complement of the Lie algebra v of V . On
the other hand, Th(D) ⊂ G ×V p. So we have Tv(D) ∩ Th(D) = {0}. �

Definition 2.13. A horizontal slice M of D is a complex integral submanifold of the
distribution Th(D).

Definition 2.14. Let U be an open neighbourhood of the universal deformation space
of X. Assume that U is smooth. Then for each X ′ near X, we have an isomorphism
Hn(X ′, C) = Hn(X, C). Under this isomorphism, {Hp,q(X ′) ∩ Pn(X ′, C)}p+q=n can be
considered as a point of D. The map

U → D, X ′ �→ {Hp,q(X ′) ∩ Pn(X ′, C)}p+q=n

is called the period map. If Γ1 → Γ is a homomorphism between two discrete groups
and the period map is equivariant with respect to the two groups, then we also call the
induced map

Γ1 \ U → Γ \ D

a period map.
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The most important property of the period map is the following [6].

Theorem 2.15 (Griffiths). The period map p : U → D is holomorphic. Furthermore,
it is an immersion and p(U) is a horizontal slice of the classifying space.

From the above theorem and Proposition 2.12 in this section, we can prove the follow-
ing.

Corollary 2.16. With the notations as above, the map

p : U ⊂ D → D1 = G/K

is a (real) immersion.

Definition 2.17. Using the above notations, let h be the invariant Kähler metric on D1.
The Hodge metric is defined as the (Riemannian) metric p∗h on the horizontal slice U .

Remark 2.18. In [12], the first author proved that the Hodge metric of U is Kähler.

Now we introduce the Nilpotent Orbit Theorem of Schmid [20]. Let f : X → S be a
family of compact Kähler manifolds. In order to study the degeneration of the variation
of the Hodge structure, we let S = ∆∗l × ∆m−l, where l � 1, m � l, and ∆ and ∆∗ are
the unit disk and the punctured unit disk in the complex plane, respectively. Consider
the period map

Φ : ∆∗l × ∆m−l → Γ \ D.

By going to the universal covering U l × ∆m−l, one can lift Φ to a mapping

Φ̃ : U l × ∆m−l → D,

where U is the upper half plane. Corresponding to each of the first l variables, we choose
a monodromy transformation Ti ∈ Γ , where Γ is the monodromy group, so that

Φ̃(z1, . . . , zi + 1, . . . zl, wl+1, . . . , wm) = Ti ◦ Φ̃(z1, . . . , zl, wl+1, . . . , wm),

holds identically in all variables. The Ti commute with each other. We know that all the
eigenvalues of the Ti are roots of unity. Let Ti = Ti,sTi,u be the Jordan decomposition
where Ti,s is semisimple and Ti,u is unipotent. We also assume that T si

i,s = I for some
positive integer si, so that we can define

Ni =
1
si

log T si
i =

∑
k�1

(−1)k+1 1
k

(T si
i − I)k.

All the Ni are commutative.
Let z = (z1, . . . , zl), sz = (s1z1, . . . , slzl) and w = (wl+1, . . . , wm). The map

Ψ̃(z, w) = exp
(

−
l∑

i=1

siziNi

)
◦ Φ̃(sz, w)

remains invariant under the translation zi �→ zi + 1, 1 � i � l. It follows that Ψ̃ drops to
a mapping

Ψ : ∆∗l × ∆m−l → Ď.
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Theorem 2.19 (Nilpotent Orbit Theorem [20]). The map Ψ extends holomorphi-
cally to ∆m. For w ∈ ∆m−l, the point

a(w) = Ψ(0, w) ∈ Ď

is left fixed by Ti,s, 1 � i � l. For any given number η with 0 < η < 1, there exist constants
α, β � 0, such that under the restrictions

Im zi � α, 1 � i � l, and |wj | � η, l + 1 � j � m,

the point exp(
∑l

i=1 ziNi) ◦ a(w) lies in D and satisfies the inequality

d

(
exp

( l∑
i=1

ziNi

)
◦ a(w), Φ̃(z, w)

)
�

( l∏
i=1

Im zi

)β l∑
i=1

exp(−2πs−1
i Im zi);

here, d is the GR invariant Riemannian distance function on D. Finally, the mapping

(z, w) �→ exp
( l∑

i=1

ziNi

)
◦ a(w)

is horizontal.

Now we assume that the generic fibre X of the map f : X → S is a polarized Calabi–
Yau manifold. For the sake of simplicity, we assume that X is compact, simply connected
and algebraic with c1(X) = 0. By a theorem of Tian [25]∗ (see also [26]), the universal
deformation space of X is smooth. Since there are no non-zero holomorphic vector fields
on a Calabi–Yau manifold, the moduli space of polarized Calabi–Yau manifolds is an
orbifold. The following important theorem of Viehweg gives the compactification of the
moduli space.

Theorem 2.20 (cf. Theorem 1.13 on p. 21 of [27]). Let M be the moduli space
of polarized Calabi–Yau manifolds and the line bundle F

¯
n is the Hodge bundle defined

right after Definition 2.6. Then M is quasi-projective and the line bundle F
¯

n extends to
an ample line bundle over M̄, the compactification of M.

With the classical Hironaka Theorem [8], we have the following result.

Corollary 2.21. Let M̄ be the compactification of the moduli space M in the above
sense. Then after a smooth resolution, one can assume that M̄\M is a divisor of normal
crossing. In other words, let x0 ∈ M̄ \ M. Then in a neighbourhood of x0, we can write
M as

∆∗l × (∆)m−l,

where m is the complex dimension of M̄.
∗ Tian’s proof is more general since one merely assumes the ∂∂̄-lemma hold for X. That is equivalent

to assume that the Hodge–de Rham spectral sequence for X degenerates at the E1 term. See the survey
paper of Friedman [3] for details.
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3. Curvature of Weil–Petersson metrics

For the rest of this paper, we assume that M is the moduli space of polarized Calabi–Yau
manifolds of dimension n > 2∗.

Remark 3.1. The following notations and conventions will be used through out the rest
of this paper.

Form a Kähler manifold M with metric gij̄ , the curvature tensor is given by

Rij̄kl̄ =
∂2gij̄

∂zk∂zl
− gpq̄ ∂giq̄

∂zk

∂gpj̄

∂zl
.

Using this convention, the Ricci curvature is

Rij̄ = −gkl̄Rij̄kl̄.

Furthermore, the Christoffel symbol of this metric is given by

Γ k
ij = gkq̄ ∂giq̄

∂zj
.

We also have

∂Γ k
ij

∂zj
= gkq̄Ril̄jq̄.

So the holomorphic bisectional curvature of this metric is non-positive, which means
Rīijj̄ � 0 for all i, j.

Now let Ω be a non-zero local holomorphic section of the Hodge bundle F
¯

n. In this
section, we assume 1 � i, j � m unless otherwise stated, where m is the dimension of the
moduli space M. We set†

(Ω, Ω̄) = (
√

−1)nQ(Ω, Ω̄). (3.1)

By the Hodge–Riemann relations we know that (Ω, Ω̄) > 0. In local coordinates, the
Weil–Petersson metric is given by

gij̄ = −∂i∂j log(Ω, Ω̄) = − (∂iΩ, ∂jΩ)
(Ω, Ω̄)

+
(∂iΩ, Ω̄)(Ω, ∂jΩ)

(Ω, Ω̄)2
, (3.2)

where ∂i, ∂j are the operators ∂/∂zi, ∂/∂z̄j , respectively. From [25], we know that the
definition is the same as the Weil–Petersson metric defined in the classical way. In this
section, we compute the curvature of the Weil–Petersson metric. We begin with defining

Ki = −∂i log(Ω, Ω̄) = − (∂iΩ, Ω̄)
(Ω, Ω̄)

(3.3)

∗ For K3 surfaces, the Weil–Petersson metric is half of the Hodge metric. Thus we omit this case.
† In fact, we use the notation (ξ, η) = (

√
−1)nQ(ξ, η) in the rest of this paper where ξ, η are n-forms.

The bilinear form (·, ·) is not necessary positive-definite.
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and

DiΩ = ∂iΩ + KiΩ (3.4)

for 1 � i � m. Then gij̄ = ∂̄jKi.

Lemma 3.2. Under the notions as above, the following properties hold:

(1) (DiΩ, Ω̄) = 0;

(2) ∂̄jDiΩ = gij̄Ω; and

(3) gij̄ = −(DiΩ, ¯DjΩ)/(Ω, Ω̄),

where 1 � i, j � m.

Proof. By (3.3) and (3.4), we have

(DiΩ, Ω̄) = (∂iΩ + KiΩ, Ω̄) = (∂iΩ, Ω̄) − (∂iΩ, Ω̄)
(Ω, Ω̄)

(Ω, Ω̄) = 0,

which proves (1). Property (2) follows from

∂̄jDiΩ = ∂̄j∂iΩ + (∂̄jKi)Ω = gij̄Ω.

Combining the above two equations with (3.2) we have

gij̄ =
(∂̄jDiΩ, Ω̄)

(Ω, Ω̄)
= − (DiΩ, ∂jΩ)

(Ω, Ω̄)
= − (DiΩ, DjΩ)

(Ω, Ω̄)
+

(DiΩ, KjΩ)
(Ω, Ω̄)

= − (DiΩ, DjΩ)
(Ω, Ω̄)

.

This finishes the proof. �

From the above lemma, we see that DiΩ is the projection of ∂iΩ into Hn−1,1 with
respect to the quadratic form (·, ·). Now we consider the projection of ∂jDiΩ into Hn−2,2.
In the following we will use Γ k

ij to denote the Christoffel symbol of the Weil–Petersson
metric. Let

DjDiΩ = ∂jDiΩ −
∑

k

Γ k
ijDkΩ + KjDiΩ. (3.5)

Lemma 3.3. Using the same notations as above, for any 1 � i, j, l � m, we have

(1) (DjDiΩ, Ω̄) = 0;

(2) (DjDiΩ, DlΩ) = 0; and

(3) DjDiΩ = DiDjΩ.
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Proof. A straightforward computation gives

(DjDiΩ, Ω̄) = (∂jDiΩ, Ω̄) −
∑

k

Γ k
ij(DkΩ, Ω̄) + Kj(DiΩ, Ω̄) = ∂j(DiΩ, Ω̄) = 0,

where in the last equality, we used (1) of Lemma 3.2. This proves (1). Using Lemma 3.2,
we have

(DjDiΩ, DlΩ)

= (∂jDiΩ, DlΩ) −
∑

k

Γ k
ij(DkΩ, DlΩ) + Kj(DiΩ, DlΩ)

= ∂j(−gil̄(Ω, Ω̄)) − (DiΩ, ∂̄jDlΩ) +
∑

k

Γ k
ijgkl̄(Ω, Ω̄) − Kjgil̄(Ω, Ω̄)

= −∂jgil̄(Ω, Ω̄) − gil̄(∂jΩ, Ω̄) − (DiΩ, gjl̄Ω̄) + ∂jgil̄(Ω, Ω̄) − gil̄(KjΩ, Ω̄)

= −gil̄(DjΩ, Ω̄) − gjl̄(DiΩ, Ω̄)

= 0.

This proves (2). To prove (3), we see that

DjDiΩ = ∂jDiΩ −
∑

k

Γ k
ijDkΩ + KjDiΩ

= ∂j∂iΩ + Ki∂jΩ −
∑

k

Γ k
ijDkΩ + Kj∂iΩ + KjKiΩ

− (∂j∂iΩ, Ω̄)
(Ω, Ω̄)

Ω +
(∂iΩ, Ω̄)(∂jΩ, Ω̄)

(Ω, Ω̄)2
Ω.

Thus (3) follows from the fact that the above formula is symmetric with respect to i

and j. �

Let Rij̄kl̄ be the curvature tensor of gij̄ . Then we have the following [29].

Theorem 3.4. Let (gij̄)m×m be the Weil–Petersson metric and let DjDiΩ be defined
as in (3.5). Then the Weil–Petersson metric is Kähler [25], and the curvature tensor is

Rij̄kl̄ = gij̄gkl̄ + gil̄gkj̄ − (DkDiΩ, DlDjΩ)
(Ω, Ω̄)

(3.6)

for 1 � i, j, k, l � m.

Proof. By definition,

Rij̄kl̄ =
∂2gij̄

∂zk∂z̄l
− gpq̄ ∂giq̄

∂zk

∂gpj̄

∂z̄l
. (3.7)

From (3) of Lemma 3.2, we know that

∂gij̄

∂zk
= − (∂kDiΩ, DjΩ)

(Ω, Ω̄)
− (DiΩ, ∂kDjΩ)

(Ω, Ω̄)
+

(DiΩ, DjΩ)
(Ω, Ω̄)2

(∂kΩ, Ω̄).

https://doi.org/10.1017/S1474748004000076 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748004000076


Weil–Petersson geometry 199

By (1) of Lemma 3.2, we get

(DiΩ, ∂kDjΩ)
(Ω, Ω̄)

=
(DiΩ, ∂̄kDjΩ)

(Ω, Ω̄)
=

(DiΩ, gkj̄Ω̄)
(Ω, Ω̄)

= 0.

Using the definition of Ki, we have

∂gij̄

∂zk
= − (∂kDiΩ + KkDiΩ, DjΩ)

(Ω, Ω̄)
.

Let Aij = ∂iDjΩ + KiDjΩ = DiDjΩ + Γ k
ijDkΩ. Then

∂gij̄

∂zk
= − (Aki, DjΩ)

(Ω, Ω̄)
. (3.8)

Similarly, we have

∂gij̄

∂z̄l
= − (DiΩ, Alj)

(Ω, Ω̄)
. (3.9)

From (3.8) we have

∂2gij̄

∂zk∂z̄l
= − (∂̄lAki, DjΩ)

(Ω, Ω̄)
− (Aki, ∂lDjΩ)

(Ω, Ω̄)
+

(Aki, DjΩ)
(Ω, Ω̄)2

(Ω, ∂lΩ). (3.10)

We also have

∂̄lAki = ∂̄l(∂kDiΩ + KkDiΩ)
= ∂k(∂̄lDiΩ) + (∂̄lKk)DiΩ + Kk∂̄lDiΩ

= ∂k(gil̄Ω) + gkl̄DiΩ + Kkgil̄Ω

= (∂kgil̄)Ω + gil̄DkΩ + gkl̄DiΩ

and
(Aki, DjΩ)

(Ω, Ω̄)2
(Ω, ∂lΩ) = − (Aki,KlDjΩ)

(Ω, Ω̄)
.

Thus from (3.10), we have

∂2gij̄

∂zk∂z̄l
= − ((∂kgil̄)Ω + gil̄DkΩ + gkl̄DiΩ, DjΩ)

(Ω, Ω̄)
− (Aki, ∂lDjΩ)

(Ω, Ω̄)
− (Aki,KlDjΩ)

(Ω, Ω̄)

= gil̄gkj̄ + gij̄gkl̄ − (Aki, Alj)
(Ω, Ω̄)

, (3.11)

by using Lemma 3.2. Combining (3.8), (3.9) and (3.11), and using Lemma 3.3, we have

Rij̄kl̄ = gij̄gkl̄ + gil̄gkj̄ − (Aki, Alj)
(Ω, Ω̄)

+ gpq̄ ∂giq̄

∂zk

(DpΩ, Alj)
(Ω, Ω̄)

= gij̄gkl̄ + gil̄gkj̄ − (Aik − Γ p
ikDpΩ, Alj)

(Ω, Ω̄)

= gij̄gkl̄ + gil̄gkj̄ − (DkDiΩ, DlDjΩ)
(Ω, Ω̄)

.

This finishes the proof. �
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Remark 3.5. For the moduli space of Calabi–Yau threefolds, Strominger [24] proved
that the curvature tensor is

Rij̄kl̄ = gij̄gkl̄ + gil̄gkj̄ −
∑
p,q

1
(Ω, Ω̄)2

gpq̄FikpFjlq,

where Fikp is the Yukawa coupling. In the case of Calabi–Yau threefolds, DiDjΩ ∈ H1,2.
In fact, DiDjΩ is the orthogonal projection of ∂i∂jΩ to H1,2. Thus

(DiDkΩ, DjDlΩ) = − (DiDkΩ, DpΩ)(DqΩ, DjDlΩ)
(Ω, Ω̄)

gpq̄.

It is easy to see that (DiDkΩ, DpΩ) = −Fikp. Thus our theorem is the same as Stro-
minger’s in the case of Calabi–Yau threefolds.

Remark 3.6. Theorem 3.4 was proved in [21] using the method of [23] which is different
from ours. In his paper [26], Todorov introduced the geodesic coordinates from which it
is much easier to get the curvature formula. The current proof was by Wang [29] which
is purely Hodge theoretic. Such a proof can be generalized to general horizontal slice.

4. Partial Hodge metrics

We use the Ricci curvature of the Weil–Petersson metric to construct a new metric. Let
ωWP be the Kähler form of the Weil–Petersson metric and let µ > m+1 be a real number.
Let

ωµ = µωWP + Ric(ωWP). (4.1)

By Theorem 3.4, we know that ωµ is a Kähler metric. We notice here that when the
dimension of the Calabi–Yau manifolds is 3 or 4, by choosing suitable µ, the metric ωµ

coincides with the Hodge metric (cf. § 6). For this reason we call ωµ the ‘partial Hodge
metric’. It is a metric between the Weil–Petersson metric and the Hodge metric.

In this section, unless otherwise stated, the subscripts i, j, k, l, p, q, α, . . . will range
from 1 to m. Define a tensor

Tkαi = ∂kDαDiΩ + KkDαDiΩ −
∑

p

Γ p
αkDpDiΩ −

∑
p

Γ p
ikDαDpΩ, (4.2)

where Γ p
αk is the Christoffel symbol of the Weil–Petersson metric and Ω is a non-zero

local holomorphic section of F
¯

n as in the previous section. We use gij̄ and hij̄ to denote
the metric matrices of the Weil–Petersson metric and the metric ωµ (for some chosen µ)
in local coordinates (z1, . . . , zm), respectively, and use Rij̄kl̄ and R̃ij̄kl̄ to denote their
curvature tensors respectively. We also use Rij̄ to denote the Ricci tensor of the Weil–
Petersson metric.

Let DkDαDiΩ be the projection of Tkαi into Hn−3,3 with respect to the quadratic
form (·, ·) in (3.1). Let Ekαi = Tkαi − DkDαDiΩ. Then we have the following result.
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Lemma 4.1. Using the same notations as above, we have

Tkαi = Ekαi + DkDαDiΩ ∈ Hn−2,2 ⊕ Hn−3,3,

where Tkαi is defined in (4.2).

Proof. By definition of Tkαi and the Griffiths transversality,

Tkαi ∈ Hn,0 ⊕ Hn−1,1 ⊕ Hn−2,2 ⊕ Hn−3,3.

Using Lemma 3.3, we have

(Tkαi, Ω̄) = (∂kDαDiΩ, Ω̄) = 0.

So there is no Hn,0 components in Tkαi. On the other hand, Hn−1,1 is spanned by DiΩ.
Using Lemma 3.3 again, we have

(Tkαi, DjΩ) = 0.

Thus Tkαi has no Hn−1,1 component and this completes the proof. �

Define the curvature like tensor F by

Fij̄kl̄ =
(DkDiΩ, DlDjΩ)

(Ω, Ω̄)
. (4.3)

Using Lemma 3.3 and the Hodge–Riemann relations we know that the tensor F has all
symmetries that a curvature tensor has.

The Strominger formula (Theorem 3.4) can be written as

Rij̄kl̄ = gij̄gkl̄ + gil̄gkj̄ − Fij̄kl̄. (4.4)

The curvature tensor of the partial Hodge metric is as follows.

Theorem 4.2. The metric ωµ is Kähler and the curvature tensor of ωµ is

R̃ij̄kl̄ = (µ − m − 1)(gij̄gkl̄ + gil̄gkj̄) − (µ − m)Fij̄kl̄ +
∑
αβpq

Fiq̄αl̄Fpj̄kβ̄gαβ̄gpq̄

+
∑
αβpq

Fαq̄kl̄Fij̄pβ̄gαβ̄gpq̄ +
∑
αβ

(DkDαDiΩ, DlDβDjΩ)
(Ω, Ω̄)

gαβ̄

+
∑
αβ

(Ekαi, Elβj)
(Ω, Ω̄)

gαβ̄ −
∑

αβγτst

hst̄ (Ekαi, DβDtΩ)
(Ω, Ω̄)

(DγDsΩ, Elτj)
(Ω, Ω̄)

gαβ̄gγτ̄ .

(4.5)

We will leave the proof of this theorem to the appendix due to its length.
The main theorem of this section is that, for the moduli space of Calabi–Yau fourfolds,

with a suitable choice of µ, the partial Hodge metric has the following property.
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Theorem 4.3. Let n = 4 and let ωPH = (m + 2)ωWP + Ric(ωWP), then

(1) ωPH is a Kähler metric;

(2) the Ricci curvature and the holomorphic sectional curvature of ωPH are bounded
above by the negative constant −1/(m + 4); and

(3) the holomorphic bisectional curvature of ωPH is non-positive.

Proof. By Theorem 4.2 we know that ωPH is Kähler. From (9.2) we know that

hij̄ = gij̄ + Fij̄αβ̄gαβ̄ . (4.6)

Fix a point x0 in the moduli space. Let z1, . . . , zm be the local holomorphic normal
coordinate at x0 with respect to the Weil–Petersson metric. Then at the point x0, we
have

gαβ̄ = δαβ , Γ γ
αβ =

∂gαβ̄

∂zγ
=

∂gαβ̄

∂zγ
=

∂gαβ̄

∂z̄γ
=

∂gαβ̄

∂z̄γ
= 0. (4.7)

Replacing Ω by Ω̃ = fΩ, where f is a local holomorphic function defined by

f(z) = (Ω, Ω̄)−1/2(x0) −
∑

i

(∂iΩ, Ω̄)(x0)
((Ω, Ω̄)(x0))3/2 zi,

we have, at the point x0,

(∂kΩ̃, ¯̃Ω) = (Ω̃, ∂kΩ̃) = 0 (4.8)

for each k = 1, 2, . . . , n and

(Ω̃, ¯̃Ω) = 1. (4.9)

By abuse of notations, we use Ω to replace Ω̃ for the rest of this section.
We set i = j and k = l. Based on the above notations, from Theorem 4.2 we have

R̃īikk̄ = 1 + δik − 2(DkDiΩ, DkDiΩ) +
∑
α,γ

(DαDiΩ, DkDγΩ)(DkDγΩ, DαDiΩ)

+
∑
α,β

(DαDiΩ, DβDiΩ)(DβDkΩ, DαDkΩ) +
∑
α

(DkDαDiΩ, DkDαDiΩ)

+
(∑

α

(Ekαi, Ekαi) − hpq̄
∑
α

(Ekαi, DαDqΩ)
∑

β

(DβDpΩ, Ekβi)
)

. (4.10)

Fix the indices k and i. Let Uα = hpq̄
∑

β(Ekβi, DβDqΩ)DαDpΩ. Then Uα ∈ H2,2. By
the Hodge–Riemann relations we know that, for any α,

(Ekαi − Uα, Ekαi − Uα) � 0. (4.11)
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By (4.6), we have

hij̄ = δij +
∑
α

(DαDiΩ, DαDjΩ). (4.12)

Thus∑
α

(Uα, Uα)

=
∑
α

(
hpq̄

∑
β

(Ekβi, DβDqΩ)
)(

hp1q1

∑
γ

(Ekγi, DγDq1Ω)
)

(DαDpΩ, DαDp1Ω)

=
(

hpq̄
∑

β

(Ekβi, DβDqΩ)
)(

hq1p1
∑

γ

(DγDq1Ω, Ekγi)
)

(hpp1 − δpp1)

= hq1q̄
∑

β

(Ekβi, DβDqΩ)
∑

γ

(DγDq1Ω, Ekγi)

−
∑

p

hpq̄
∑

β

(Ekβi, DβDqΩ)hq1p̄
∑

γ

(DγDq1Ω, Ekγi)

= hpq̄
∑

β

(Ekβi, DβDqΩ)
∑

γ

(DγDpΩ, Ekγi) −
∑

p

|hpq̄
∑
β,q

(Ekβi, DβDqΩ)|2

� hpq̄
∑

β

(Ekβi, DβDqΩ)
∑

γ

(DγDpΩ, Ekγi)

=
∑

β

(Ekβi, Uβ), (4.13)

and ∑
α

(Uα, Ekαi) = hpq̄
∑

β

(Ekβi, DβDqΩ)
∑
α

(DαDpΩ, Ekαi). (4.14)

Combining (4.11), (4.13) and (4.14) we have∑
α

(Ekαi, Ekαi) − hpq̄
∑
α

(Ekαi, DαDqΩ)
∑

β

(DβDpΩ, Ekβi) � 0. (4.15)

Thus the sum of the last two terms in (4.10) is non-negative.
We shall show that the term∑

α

(DkDαDiΩ, DkDαDiΩ)

is related to the Yukawa coupling of fourfolds.

Definition 4.4. Using the same notations as above, define a holomorphic section of
Sym2 F

¯
4 ⊗ (T ∗M)⊗4 to be

ξijkl = (Ω, ∂i∂j∂k∂lΩ). (4.16)

We call ξijkl the Yukawa coupling for Calabi–Yau fourfolds.
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Clearly, ξijkl is symmetric with respect to i, j, k, l.

Lemma 4.5. Using the same notations as above, we have

ξijkl = −(DjDkDlΩ, DiΩ) = (DkDlΩ, DjDiΩ). (4.17)

Proof. The lemma follows from the definition of Tkαi and the first Hodge–Riemann
relation. �

Using the above lemma, we have∑
α

(DkDαDiΩ, DkDαDiΩ) = −
∑
α,l

|ξikαl|2. (4.18)

Combining (4.10), (4.15) and (4.18) we have

R̃īikk̄ � 1 + δik − 2(DkDiΩ, DkDiΩ) +
∑
α,γ

(DαDiΩ, DkDγΩ)(DkDγΩ, DαDiΩ)

+
∑
α,β

(DαDiΩ, DβDiΩ)(DβDkΩ, DαDkΩ) −
∑
α,l

|ξikαl|2.

(4.19)

The quadratic form (·, ·) defines an inner product on H2,2 by the second Hodge–
Riemann relation. Let ω1, . . . , ωN be a (real) basis of H2,2 such that (ωp, ωq) = δpq. Fix
the index i. Let DiDαΩ =

∑N
p=1 Aαpωp and let DkDβΩ =

∑N
p=1 Bβpωp. By Lemma 3.3

we have∑
α,β

(DαDiΩ, DβDiΩ)(DβDkΩ, DαDkΩ) −
∑
αβ

|ξikαβ |2

=
∑
α,β

(DiDαΩ, DiDβΩ)(DkDβΩ, DkDαΩ)

−
∑
α,β

(DkDβΩ, DiDαΩ)(DiDβΩ, DkDαΩ)

=
N∑

j,l=1

∑
α,β

(AαjAβjBβlBαl − AαjBβjAβlBαl). (4.20)

Let ujl =
∑

α AαjBαl. From (4.20) we have

∑
α,β

(DαDiΩ, DβDiΩ)(DβDkΩ, DαDkΩ) −
∑
α,τ

(DkDτΩ, DαDiΩ)(DkDτΩ, DαDiΩ)

=
N∑

j,l=1

ujlujl −
N∑

j,l=1

ujlulj =
∑
j<l

|ujl − ulj |2 � 0.

(4.21)
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Combining (4.19) and (4.21) we have

R̃īikk̄ � 1 + δik − 2(DkDiΩ, DkDiΩ) +
∑
α,γ

|(DαDiΩ, DkDγΩ)|2. (4.22)

If i 
= k, then, by (4.22),

R̃īikk̄ � 1 − 2(DkDiΩ, DkDiΩ) + |(DkDiΩ, DkDiΩ)|2 � 0. (4.23)

This implies the holomorphic bisectional curvature of ωPH is non-positive.
Now we estimate the holomorphic sectional curvature. Let i = k. By (4.22) we have

R̃īiīi � 2 − 2(DiDiΩ, DiDiΩ) +
∑
α,β

|(DαDiΩ, DβDiΩ)|2

� 2 − 2(DiDiΩ, DiDiΩ) +
∑
α

|(DαDiΩ, DαDiΩ)|2. (4.24)

By (4.12) we have

hīi = 1 +
∑
α

(DαDiΩ, DαDiΩ). (4.25)

Let aα = (DαDiΩ, DαDiΩ) for α 
= i and let ai = (DiDiΩ, DiDiΩ) − 1. Clearly, they
are real numbers by the Hodge–Riemann relations. From (4.24) and (4.25) we have

R̃īiīi � 1 +
∑
α

a2
α

and

hīi = 2 +
∑
α

aα.

Combining the above two inequalities and the following trivial inequality,

1 +
m∑

α=1

a2
α � 1

m + 4

(
2 +

m∑
α=1

aα

)2

,

we have

R̃īiīi � 1
m + 4

(hīi)
2. (4.26)

This proved the holomorphic sectional curvature of ωPH is bounded above by a negative
constant. Clearly, the Ricci curvature is bounded above by the same negative constant
since the bisectional curvature is non-positive. �
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5. Scalar curvature bounds the sectional curvature

In this section we will prove that the volumes of any subvariety of the moduli space
equipped with the Weil–Petersson metric or the Hodge metric (Definition 2.17) are finite.
Also, we will show that the Riemannian sectional curvature of the Weil–Petersson metric
is finite in the L1 sense. The key tool we use here is Yau’s Schwarz Lemma [31]. The
following version is proved by Royden [19].

Theorem 5.1. Let M , N be two Kähler manifolds such that M is complete and the
Ricci curvature of M is lowerly bounded and the holomorphic sectional curvature of N

is upperly bounded by a negative constant. Then there is a constant C, depending only
on the lower bound of the Ricci curvature M and the upper bound of the holomorphic
sectional curvature of N such that

ωN � CωM .

Using the above theorem, we first have the following.

Theorem 5.2. Let M be the moduli space of polarized Calabi–Yau n-folds. Then the
volume of any subvariety M1 of M equipped with the Weil–Petersson metric or the
Hodge metric is finite.

Proof. Since the moduli space is quasi-projective, after desingularization, we can assume
that M = Y \ R where Y is a compact Kähler manifold and R is a divisor of normal
crossings. From [9], we know that there is a complete metric ω0 on M such that its volume
is finite and its Ricci curvature has a lower bound. Moreover, this metric behaves like
the Poincaré metric near R. By [12, Theorem 1.2] the holomorphic sectional curvature
of the Hodge metric ωH is negative away from zero. Let i be the identity map

i : (M, ω0) → (M, ωH), (5.1)

which is holomorphic. By the Schwarz–Yau Lemma [31] we have

ωH = i∗ωH � cω0 (5.2)

for some positive constant c. Thus∫
M

ωm
H � c1

∫
M

ωm
0 < +∞.

For any subvariety M1 of the moduli space M, we restrict the Hodge metric ωH to it.
By the Gauss equation, the holomorphic sectional curvature on the smooth part of the
subvariety M1 is negative away from zero. Since M1 is either compact or quasi-projective,
using the same argument for M, we proved the volume with respect to the Hodge metric
is finite.

By Corollary 6.5, up to a constant,

ωWP � ωH. (5.3)

So the volume of the Weil–Petersson metric on any subvariety of M is also finite. This
finishes the proof. �
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From the above theorem we can bound the L1 norm of the sectional curvature of the
Weil–Petersson metric.

Theorem 5.3. Let M be the moduli space of polarized Calabi–Yau n-folds. Then the
L1 norm of the Riemannian sectional curvature of M equipped with the Weil–Petersson
metric is finite.

Proof. For any point x0 in the moduli space, let z1, . . . , zm be the local normal coordin-
ates at x0 with respect to the Weil–Petersson metric. Let X and Y be two real unit
tangent vectors of M at x0. Clearly, there is a constant c, which is independent of P ,
such that

|R(X, Y, X, Y )|2 � c|Rij̄kl̄|2 = c
∑

i,j,k,l

Rij̄kl̄Rjīlk̄. (5.4)

We make the assumptions (4.7), (4.8) and (4.9) at x0 like we did in the proof of Theo-
rem 4.3. From the basic fact

|(DkDiΩ, DlDjΩ)|2 � 1
2 (|(DkDiΩ, DkDiΩ)|2 + |(DlDjΩ, DlDjΩ)|2)

and the Strominger formula, we have

|R(X, Y, X, Y )|2 � c
∑

i,j,k,l

Rij̄kl̄Rjīlk̄

= c
∑

i,j,k,l

(δijδkl + δilδkj − (DkDiΩ, DlDjΩ))

× (δijδkl + δilδkj − (DlDjΩ, DkDiΩ))

= c

(
2m2 + 2m − 4

∑
i,k

(DkDiΩ, DkDiΩ) +
∑

i,j,k,l

|(DkDiΩ, DlDjΩ)|2
)

� c1

(
m +

∑
i,k

(DkDiΩ, DkDiΩ)
)2

= c1

(∑
i

hīi

)2

(5.5)

for some universal constant c1 only depending on m. Thus from (5.3) we have∫
M

|R(X, Y, X, Y )|ωm
WP � √

c1

∫
M

∑
i,j

gij̄hij̄ω
m
WP � m

√
c1

∫
M

ωm
H < +∞.

This proves that the L1 norm of the Riemannian sectional curvature of the Weil–Petersson
is bounded. �

For the rest of this section, we assume that n = 4. We will prove that the Riemannian
sectional curvature of ωµ is bounded by the scalar curvature pointwisely up to a constant.
The similar result has been proved in [13] in the case of Calabi–Yau threefolds.
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Theorem 5.4. Let M be the moduli space of polarized Calabi–Yau fourfolds. Then
there are positive constants c1 and c2 such that the Riemannian sectional curvature of
the partial Hodge metric ωµ is bounded by c1 + c2|R̃|, where R̃ is the scalar curvature
of the partial Hodge metric.

Proof. Fix a point x0 ∈ M and let X and Y be two real tangent vectors at x0 such that
X is perpendicular to Y with respect to ωµ. Let ξ = X −

√
−1JX and η = Y −

√
−1JY

where J is the complex structure of M. Clearly, ξ is perpendicular to η with respect
ωµ too. We make the assumption (4.7)–(4.9) like we did in the proof of Theorem 4.3
for the local coordinates (z1, . . . , zm) and the local section Ω. We can choose a unitary
transformation of the coordinates such that ξ = a(∂/∂zi), η = b(∂/∂zj) with i 
= j for
some complex numbers a, b and the matrix hij̄ of ωµ is diagonalized with hij̄ = δijλi.
We have

R̃(X, Y, X, Y ) = 1
8 (Re(R̃(ξ, η̄, ξ, η̄)) − R̃(ξ, ξ̄, η, η̄)). (5.6)

In the following, we will use ‖v‖2 to denote the square of the norm of a complex vector
with respect to ωµ. The second term in the right-hand side of the above formula is easy
to estimate,

|R̃(ξ, ξ̄, η, η̄)| = |a|2|b|2R̃īijj̄

= ‖ξ‖2‖η‖2R̃īijj̄λ
−1
i λ−1

j

� ‖ξ‖2‖η‖2
∑
i,j

R̃īijj̄λ
−1
i λ−1

j

= ‖ξ‖2‖η‖2|R̃|, (5.7)

since R̃īijj̄ � 0 for 1 � i, j � m by Theorem 4.3. By Theorems 4.2 and 4.3,

R̃ij̄ij̄ = −2Fij̄ij̄ + 2
∑
α,β

Fij̄αβ̄Fij̄βᾱ −
∑
αβ

ξiiαβξjjαβ

+
(∑

α

(Eiαi, Ejαj) −
∑
p,α,β

λ−1
p (Eiαi, DαDpΩ)(DβDpΩ, Ejβj)

)
. (5.8)

Let G be the vector space spanned by {Li} where i = 1, . . . , m and Li = (Ei1i, . . . , Eimi).
We now define a bilinear form ((·, ·)) on G by

((Li, Lj)) =
∑
α

(Eiαi, Ejαj) −
∑
p,α,β

λ−1
p (Eiαi, DαDpΩ)(DβDpΩ, Ejβj). (5.9)

By (4.15), we know that ((Li, Lj)) is a Hermitian semi-inner product on G. So we have
the following Cauchy inequality:

|((Li, Lj))| �
√

((Li, Li))((Lj , Lj)). (5.10)
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However, by the proof of Theorem 4.3 we know that

((Li, Li)) =
∑
α

(Eiαi, Eiαi) −
∑
p,α,β

λ−1
p (Eiαi, DαDpΩ)(DβDpΩ, Eiβi) � R̃īiīi � |R̃|λ2

i .

(5.11)

Combining (5.9), (5.10) and (5.11) we have∣∣∣∣∑
α

(Eiαi, Ejαj) −
∑
p,α,β

λ−1
p (Eiαi, DαDpΩ)(DβDpΩ, Ejβj)

∣∣∣∣ � |R̃|λiλj . (5.12)

Since (−1)(·, ·) is a Hermitian inner product on H1,3, from (4.21) we have∑
αβ

ξiiαβξjjαβ �
∑
α,β

|Fīiαβ̄ | |Fjj̄αβ̄ |. (5.13)

By (4.24) we have

R̃īiīi � 2 − 2Fīiīi +
∑
α,β

|Fīiαβ̄ |2 � 1
2

∑
α,β

|Fīiαβ̄ |2. (5.14)

So combining (5.13) and (5.14) we have

∑
αβ

ξiiαβξjjαβ �
√∑

α,β

|Fīiαβ̄ |2
∑
α,β

|Fjj̄αβ̄ |2 � 2
√

R̃īiīiR̃jj̄jj̄ � 2|R̃|λiλj . (5.15)

From (4.22) we have

R̃īijj̄ � 1 − 2Fīijj̄ +
∑
α,β

|Fiβ̄αj̄ |2 �
∑
α,β

|Fij̄αβ̄ |2 − |Fīijj̄ |2. (5.16)

So we have∣∣∣∣2 ∑
α,β

Fij̄αβ̄Fij̄βᾱ

∣∣∣∣ �
∑
α,β

(|Fij̄αβ̄ |2 + |Fij̄βᾱ|2) = 2
∑
α,β

|Fij̄αβ̄ |2 � 2R̃īijj̄ + 2|Fīijj̄ |2.

(5.17)

From (5.14), since i 
= j we have

|Fīijj̄ | �
√

2R̃īiīi (5.18)

and

|Fīijj̄ | = |Fjj̄īi| �
√

2R̃jj̄jj̄ . (5.19)

Combining (5.17), (5.18) and (5.19), we have∣∣∣∣2 ∑
α,β

Fij̄αβ̄Fij̄βᾱ

∣∣∣∣ � 2R̃īijj̄ + 4
√

R̃īiīiR̃jj̄jj̄ � |R̃|λiλj + 4
√

R̃2λ2
i λ

2
j = 5|R̃|λiλj . (5.20)
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From (5.14) we also have

|2Fij̄ij̄ | � 2
√

FīiīiFjj̄jj̄ � 2(4R̃īiīiR̃jj̄jj̄)
1/4 � 2

√
2|R̃|λiλj � 1 + 2|R̃|λiλj . (5.21)

By the Hodge–Riemann relations we know λi = 1 +
∑

α Fīiαᾱ > 1. Combining (5.8),
(5.12), (5.15), (5.20) and (5.21) we have

| Re(R̃(ξ, η̄, ξ, η̄))| � |a|2|b|2|R̃ij̄ij̄ |
� |a|2|b|2 + 9|R̃| |a|2|b|2λiλj

� ‖ξ‖2‖η‖2(1 + 9|R̃|). (5.22)

Combining (5.6), (5.7) and (5.22) we have

|R̃(X, Y, X, Y )| � ( 1
8 + 9

8 |R̃|)‖ξ‖2‖η‖2 = ( 1
2 + 9

8 |R̃|)‖X‖2‖Y ‖2. (5.23)

This finishes the proof. �

6. Hodge metrics

Let X, Y be finite-dimensional Hermitian vector spaces and let 〈·, ·〉X , 〈·, ·〉Y be the
Hermitian inner products of X and Y , respectively. Let A, B : X → Y be linear operators.
Then we can define the natural Hermitian inner product for A, B on the space Hom(X, Y )
as follows. Let e1, . . . , en be a unitary basis of X. Then define

〈A, B〉 =
∑

i

〈Aei, Bēi〉. (6.1)

Let D be the classifying space defined in Definition 2.6. The complexified tangent
bundle TD ⊗ C of D can be realized as the subbundle of

TD ⊗ C ⊂
⊕

p+q=n

Hom(Hp,q, H/Hp,q). (6.2)

By Lemma 2.9, (
√

−1)p−qQ(·, ·) is the Hermitian inner product of Hp,q, it naturally
induced a Riemannian metric h on TD ⊗ C via the above realization.

Define an almost complex structure J on TD ⊗ C as follows. Let X be a local section
of TD ⊗ C. Then

JX =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
−1X if X ∈ Γ

( ⊕
p+q=n

Hom
(

Hp,q,
⊕
r<p

Hr,s

))
,

−
√

−1X if X ∈ Γ

( ⊕
p+q=n

Hom
(

Hp,q,
⊕
r>p

Hr,s

))
.

(6.3)

We have the following result.

Proposition 6.1. The Riemannian metric h is G and J invariant. Furthermore, J is
a G invariant complex structure on D. Thus h defines a Hermitian metric on D.
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Proof. Let x, y ∈ D and ξx = y for some ξ ∈ G. Let ep
1, . . . , e

p
np

be an unitary basis of
Hp,q at x. Then ξep

1, . . . , ξe
p
np

will be an unitary basis of Hp,q at y by the definition of G.
If X is a tangent vector at x, then X induced the tangent vector X̃ = ξXξ−1 at y. Thus

‖X̃‖2 = (
√

−1)p−q
∑

p

∑
i

Q(ξXξ−1ξep
i , ξXξ−1ξep

i ) = ‖X‖2,

which proves the invariance of h with respect to G.
To prove that h is also J invariant, we let X, Y be two holomorphic vectors at x. We

just need to prove that h(X, Y ) = 0. Let p + q = n. Suppose X is non-zero restricting to
Hp,q. As above, let ep

1, . . . , e
p
np

be the unitary basis of Hp,q. We claim that

Q(Xep
i , Y ēp

i ) = 0, 1 � i � dim Hp,q.

To see this, assume that a component of Xep
i ∈ Hr,s. Then we have r < p. In order

that Q((Xep
i )

r,s, Y ēp
i ) 
= 0, we must have s < q. But this is a contradiction because

p + q = r + s = n.
It remains to prove that the almost complex structure is integrable. To prove this, we

first observe that the same J defines an almost complex structure on Ď, the compact
dual of D. The almost complex structure on Ď is defined by the pull back of the complex
structure of the flag manifold, which is a complex manifold. �

The main result of this section is the following.

Theorem 6.2. Let M be a horizontal slice of the classifying space D coming from the
moduli space of the polarized Calabi–Yau manifolds. Then the metric h is the Hodge
metric on M. In particular, the Hodge metric is Kähler.

The assumption in the theorem can be weakened to the case where there is a horizontal
slice with the Weil–Petersson metric is defined (see § 8 for details).

Proof. Let D1 be the Hermitian symmetric space defined by the set of subspaces

H+ = Hn,0 ⊕ Hn−2,2 ⊕ · · ·

in H. As in § 2, the natural projection

p : D → D1

is defined by
{F k}k=1,...,n �→ H+,

which is in general not holomorphic. Using the same method as above, we defined the
unique complex structure on D1 by realizing the holomorphic tangent bundle of D1 as
the subbundle of Hom(H+, H/H+).

Let X ∈ T 1,0M be a holomorphic vector field. Then X is horizontal in the sense that
X is a section of the bundle Hom(Hn,0, Hn−1,1) ⊕ Hom(Hn−1,1, Hn−2,2) ⊕ · · · . Define
X1 to be an element in the bundle such that

X1 =

{
X, restricting to H+,

0, otherwise,
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and let X2 = X − X1. Then we have

X = X1 + X2.

Furthermore, we have the following result.

Lemma 6.3. According to the complex structure of D1, the vectors fields X1 and X2

are holomorphic and anti-holomorphic, respectively.

Proof. Let
H = H+ ⊕ H−.

Then X1 is a map H+ �→ H−, which can be identified as a holomorphic vector fields of
D1. X2 can be identified as a map from H− to H+. It is the dual map of H+ → H−

under the polarization Q. Thus can be identified as an anti-holomorphic vector field. �

We continue with the proof of Theorem 6.2.
From the above argument, we see that under the invariant Kähler metric of D1

‖X‖2 = ‖X1‖2 + ‖X2‖2. (6.4)

If n is an odd number, then D1 is the Hermitian symmetric space of third kind, that is,

D1 = Sp(n, R)/U(n).

It can be realized as the subset of n × n complex matrices

{Z ∈ Mn(C) | In − Z̄TZ > 0, ZT = Z}.

Its invariant Kähler metric can be defined as
√

−1
2π

∂∂̄ log det(In − Z̄TZ).

If n is an even number, then

D1 = O(m, n, R)/(O(m) × O(n)).

There is a natural inclusion of D1,

D1 ↪→ D′
1 = SU(m, nC)/S(U(m) × U(n)).

D′
1 is the Hermitian symmetric space of first kind, which can be realized as the subset of

m × n complex matrices

{Z ∈ Mm,n(C) | In − Z̄TZ > 0}.

The invariant Kähler metric is defined as
√

−1
2π

∂∂̄ log det(In − Z̄TZ).
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The invariant Riemannian metric on D1 is the pull back of the invariant Hermitian metric
on D′

1.
In both cases (of D1 for n odd and of D′

1 for n even), the invariant Kähler metrics are
defined using the polarization Q as

√
−1
2π

∂∂̄ log det Q(·, ·).

In order to prove the theorem, we just need to prove it at the original point. At the
original point of D1 (respectively, D′

1), we can write the Kähler metric as

√
−1
2π

dZij ⊗ dZ̄ij .

Let {∂/∂zα}α=1,...,m be holomorphic vector fields of M. We have

∑
ij

∂Zij

∂zα

∂Z̄ij

∂zα
= 0, 1 � α � m.

The reason for the above equality is that each row of the matrix Zij represents an element
in some Hp,q. By the Griffiths transversality, we have

∂Zij

∂zα
∈ Hp−1,q+1,

∂Z̄ij

∂zα
∈ Hq−1,p+1.

The inner product of the above two is the same as Q(∂Zij/∂zα, ∂Z̄ij/∂zα), which is zero.
Similarly, we have ∑

ij

∂Zij

∂z̄α

∂Z̄ij

∂z̄α
= 0.

Thus we have ∥∥∥∥ ∂

∂zα

∥∥∥∥
2

=
∑
ij

∥∥∥∥∂Zij

∂zα

∥∥∥∥
2

+
∑
ij

∥∥∥∥∂Z̄ij

∂zα

∥∥∥∥
2

.

Comparing the above equation with (6.4), we proved that h is the Hodge metric. Using
the result in [12], we know that the h is Kähler. �

Let ωH be the Kähler form of the Hodge metric h. Then we have the following result.

Corollary 6.4. In the case of n = 3, we have

ωH = (m + 3)ωWP + Ric(ωWP).

In the case of n = 4, we have

ωH = 2(m + 2)ωWP + 2 Ric(ωWP).
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Proof. The case n = 3 was proved in [13] using the result of [1]. In the case of n = 4, we
do not have the similar result as that of [1]. However, using the generalized Strominger
formula (4.4), we have

2(m + 2)ωWP + 2 Ric(ωWP) = 2ωWP + 2gkl̄Fij̄kl̄dzi ∧ dz̄j ,

where F is defined in (4.3). Let X be a holomorphic vector on M. Then by the identifi-
cation (6.2) and the fact that X is horizontal,

X ∈ Hom(H4,0, H3,1) ⊕ Hom(H3,1, H2,2) ⊕ Hom(H2,2, H1,3) ⊕ Hom(H1,3, H0,4).

Using (3) of Lemma 3.2, we know that ωWP gives the part of the metric h restricted on
the space H4,0. Since DiΩ gives a basis of the space H3,1, by (6.1), h restricts to H3,1,
which gives

‖X‖2
H3,1 =

∑
ij

gij̄(X(DiΩ), X(DjΩ))(Ω, Ω̄)−1.

In particular, if X = ∂/∂zα, then

‖X‖2
H3,1 = gij̄Fij̄αᾱ.

To compute the norm of X on H1,3 and H0,4, we use the duality as follows. Let w1, . . . , wN

be a (real) orthonormal basis of H2,2. Then we have

‖X‖2
H2,2 =

N∑
α=1

(X(eα), X(eα)) =
∑
ij

N∑
α=1

gij̄(Ω, Ω̄)−1(X(eα), DiΩ)(DjΩ, X(eα)).

Since the polarization is invariant infinitesimally under X, the above is equal to

‖X‖2
H2,2 =

∑
ij

N∑
α=1

gij̄(Ω, Ω̄)−1(eα, DαDiΩ)(DαDjΩ, eα)

=
∑
ij

gij̄(Ω, Ω̄)−1(DαDiΩ, DαDjΩ).

Thus the norm restricted to H2,2 is the same as that on H3,1. Using the same method,
we can prove that the norm of X on H1,3 is given by the Weil–Petersson metric. The
corollary follows from

‖X‖2
h = ‖X‖2

H4,0 + ‖X‖2
H3,1 + ‖X‖2

H2,2 + ‖X‖2
H1,3 .

�

Corollary 6.5 (cf. [12]). Up to a constant, the Weil–Petersson metric and its Ricci
curvature are less than or equal to the Hodge metric.

Proof. This is an easy consequence of Theorem 3.4. �
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Remark 6.6. It was a well-known theorem of [7] that the holomorphic sectional cur-
vature with respect to the Hermitian connection at the horizontal direction is negative
away from zero. In the previous section, we give an explicit formula proving that the holo-
morphic bisectional curvature on the horizontal slice is non-positive and the holomorphic
sectional curvature is negative away from zero in the case of Calabi–Yau fourfolds. Since
the Hodge metric is Kähler, the connection is also the Levi–Civita connection.

Remark 6.7. One of the most confusing parts of the theory of the Hodge metric is that
the projection in Definition 2.11 is, in general, not holomorphic. This is of course true if
D1 is not a Hermitian symmetric space. Even if D1 is a Hermitian symmetric space, the
projection is Definition 2.11 is in general not holomorphic. However, in this case, there
is a unique complex structure on D that will make the projection holomorphic and thus
make the manifold D homogeneous Kähler. D is in general not homogeneous Kähler,
thus the invariant Hermitian metric cannot be a Kähler metric.

Take a closer look of the above phenomena∗. Let D = G/V as in § 2. Consider the
isotropy representation of the compact group V in T0(D), the tangent space of D at
the original point. If V is the maximal compact subgroup of G, then the representation
is irreducible and thus there is only one invariant almost complex structure. In general
the group representation is not irreducible. Thus there are 2N different almost complex
structures on D where N is the number of irreducible components of the representation.

7. The curvature of the Hodge metric in dimension 1

In this section, we prove that in the one-dimensional case, the curvature of the Hodge
metric is bounded near the boundary points with infinite Hodge distance. We will consider
the n-dimensional case in the next paper [14].

Our starting point is the relation between the completeness of the metrics and the
limiting Hodge structures. Such a relation was first drawn by Wang. In his paper [28],
among the other results, Wang proved the following.

Theorem 7.1. Let ∆∗ be the one-dimensional parameter space of a family of polarized
Calabi–Yau manifolds. Then the necessary and sufficient condition for the Weil–Petersson
metric to be complete is NA0 
= 0, where N is the nilpotent operator in (7.1) of ∆∗ and
A0 is defined in (7.2).

As above, let ∆∗ be the one-dimensional parameter space of a family of polarized
Calabi–Yau manifolds. Let Ω be the section of the first Hodge bundle Fn. Then by the
Nilpotent Orbit Theorem of Schmid (Theorem 2.19), after a possible base change, we
have

Ω = exp
(√

−1
2π

N log
1
z

)
A(z), (7.1)

where N is the nilpotent operator, Nn+1 = 0 for n the dimension of the Calabi–Yau
manifolds, and

A(z) = A0 + A1z + · · · (7.2)
∗ This was pointed out to the authors by Professor A. Todorov.

https://doi.org/10.1017/S1474748004000076 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748004000076


216 Z. Lu and X. Sun

is a vector-valued convergent power series with the convergent radius δ > 0 (see § 2 for
details). Let

fk,l(z) = zk

(
log

1
z

)l

for any k, l � 0. Then we can write Ω as the convergent series

Ω =
∑
k,l

Ak,lz
k

(
log

1
z

)l

=
∑
k,l

Ak,lfk,l. (7.3)

Define deg fk,l = k − l/(n + 1). Then we have the following lemma.

Lemma 7.2. The convergence of (7.3) is in the C∞ sense. Furthermore, we have∥∥∥∥Ω −
∑

deg fk,l�µ

Ak,lfk,l

∥∥∥∥
Cs

� Crk0−s

(
log

1
r

)l0

, (7.4)

where r = |z|, k0, l0 are the unique pair of non-negative integers such that l0 � n,
k0 − l0/(n + 1) > µ and for any pair of integers k′, l′ with k′ − l′/(n + 1) > µ we have
k′ − l′/(n + 1) � k0 − l0/(n + 1). C is a constant depending only on k0, l0, µ and Ω.

Proof. From (7.2), we have |Ak| � ( 1
2δ)−k and thus |Ak,l| � ( 1

4δ)−k−1 for small δ and
large k. Thus we know that

∑
k,l

|Ak,lfk,l| �
∑

( 1
4δ)−k−1rk

(
log

1
r

)l

< +∞,

and thus the convergence in (7.3) is uniform for r < 1
4δ. To prove that the convergence

is Cs for any s � 1, we observe that

f ′
k,l = kfk−1,l − lfk−1,l−1.

Thus we have

∑
k,l

|Ak,lkfk−1,l| + |Ak,llfk−1,l−1| �
∑
k,l

( 1
4δ)−k−1rk−1

(
log

1
r

)l

(k + n) < +∞ (7.5)

for r < 1
4δ. Thus the convergence is C1. Using mathematical induction, the convergence

is in fact in the Ck sense. To get the quantitative result (7.4), we just observe that
(fk,l)(s) is a linear combination of fk−s,l, . . . , fk−s,l−s with the coefficients not more than
(2(|k| + |l|))s. An inequality like (7.5) gives the requires estimates. �

Having finished the convergence of the series, we prove the following.

Theorem 7.3. Assume the moduli space M of polarized Calabi–Yau threefolds is one
dimensional. If ∆∗ is a holomorphic chart of M such that ∆∗ is complete at 0 with
respect to the Hodge metric, then the Gauss curvature of the Hodge metric is bounded∗.

∗ The referee pointed out that the result is also true for partial Hodge metric.
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To prove the theorem, we first assume that NA0 
= 0. Under this assumption, we have
the following.

Lemma 7.4. If NA0 
= 0, then the expression

(
exp

(√
−1
2π

N log
1
z

)
A0, exp

(√
−1
2π

N log
1
z

)
A0

)

is a non-constant polynomial of log(1/r), where r = |z|.

Proof. By the definition of the operator N , we know that N is an element of the Lie
algebra of the Lie group GR. Thus we know that the above expression is equal to(

exp
(√

−1
2π

N log
1
r2

)
A0, A0

)
.

If the above expression is a constant, we then would have

(N lA0, A0) = 0 (7.6)

for any positive integer l. Thus we would have

(
∂z exp

(√
−1
2π

N log
1
z

)
A0, exp

(√
−1
2π

N log
1
z

)
A0

)
= 0.

Since, by the assumption, ∂z exp((
√

−1/2π)N log(1/z))A0 
= 0, the Nilpotent Orbit The-
orem implies that

(
∂z exp

(√
−1
2π

N log
1
z

)
A0, ∂z exp

(√
−1
2π

N log
1
z

)
A0

)
< 0,

which is a contradiction. �

In what follows we use l to denote the degree of the polynomial in the above lemma.

Corollary 7.5. If NA0 
= 0, then

rs+2
(

log
1
r

)3∥∥∥∥ωWP − 1
4 l

1
r2(log(1/r))2

dz ∧ dz̄

∥∥∥∥
Cs

� C,

for any integer s � 0, where C is a constant depending only on s, n and the convergence
radius δ.

Proof. For any mononomials of the form ztz̄s(log(1/r))l, with integers t, s, l, we define
the degree of it to be t + s − l/(n + 1). We write

(Ω, Ω̄) = c

(
log

1
r

)l

+ R0

(
log

1
r

)
+ R̃

(
z, z̄, log

1
r

)
,
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where c(log(1/z))l is the highest-order term of the polynomial in Lemma 7.4, R0 is the
polynomial of log(1/r) of degree less than or equal to l − 1 and R̃(z, z̄, log(1/r)) contains
the terms with degree at least positive. From Lemma 7.2, the above series converges in
the sense of C∞. The corollary follows from the fact that

ωWP − 1
4 l

1
r2(log(1/r))2

dz ∧ dz̄ = −∂∂̄ log
(Ω, Ω̄)

(log(1/r))l
.

�

Now we assume that NA0 = 0. We normalize (Ω, Ω̄) such that (A0, A0) = 1. Then we
have the following expansion,

log(Ω, Ω̄) = P + P̄ + f(z, z̄)
(

log
1
r

)l

+ R(z, z̄), (7.7)

where f(z, z̄) 
≡ 0 is a homogeneous polynomial of degree 2k∗, and P is a polynomial
of z of degree less than or equal to 2k − 1 but no less than 1 and R(z, z̄) is a series of
mononomials of degree great than 2k − l/(n + 1). In the expansion, we allow that l = 0.
But if l = 0, we assume that f(z, z̄) is not of the form of c(z2k + z̄2k), otherwise, we can
include f(z, z̄) in P + P̄ . By Lemma 7.2, the expansion is convergent in the C∞ sense.
We have the following observation.

Lemma 7.6. If l � 1, then there are no z2k or z̄2k terms in the polynomial f(z, z̄). In
particular,

∂z∂̄zf(z, z̄) 
≡ 0.

Proof. From (7.7), we have the following expansion

(Ω, Ω̄) = 1 + P + P̄ + f(z, z̄)
(

log
1
r

)l

+ · · · ,

where the terms in ‘· · · ’ are the terms of degree at least 2k − (l−1)/(n+1), or the terms
without log(1/r). If there is a non-zero z2k term in f(z, z̄), we must have

(N lA2k, Ā0) 
= 0,

which is not possible because of the assumption NA0 = 0. Thus there are no z2k or z̄2k

terms. Since f is not identically zero. This implies that

∂z∂̄zf(z, z̄) 
≡ 0.

�
∗ We shall prove that the degree of the polynomial is actually an even number.
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By (7.7) and the C∞ convergence, we have

λ = −∂z∂̄zf(z, z̄)
(

log
1
r

)l

+ R

(
z, z̄, log

1
r

)
, (7.8)

where λ dz ⊗ dz̄ defines the Weil–Petersson metric and where R(z, z̄, log(1/r)) contains
terms of degree no less than 2k − 2 − (l − 1)/(n + 1). Since λ > 0, we must have

−∂z∂̄zf(z, z̄) � 0.

Thus 2k is an even number, otherwise the integral of the above expression along the unit
circle would be zero, contradicting to Lemma 7.6. So k is actually an integer.

Lemma 7.7. Using the same notations as above, we have

f(z, z̄) = cr2k,

for some constant c.

Proof. By Corollary 6.5, we have, up to a constant

h � −∂z∂̄z log λ,

where hdz ⊗ dz̄ defines the Hodge metric. By the Schwartz–Yau Lemma, we have

−∂z∂̄z log λ � h � 1
r2(log(1/r))2

(7.9)

up to a constant. However, at a point where ∂z∂̄zf 
= 0, we have

log λ = log(−∂z∂̄zf(z, z̄)) + l log
(

log
1
r

)
+ log

(
1 +

R(z, z̄, log(1/r))
−∂z∂̄zf(z, z̄)(log(1/r))l

)
.

Using the same method as in the proof of Corollary 7.5, we have

∂z∂̄z log
(

1 +
R(z, z̄, log(1/r))

−∂z∂̄zf(z, z̄)(log(1/r))l

)
= O

(
1

r2(log(1/r))3

)
.

Using (7.9), we have
∂z∂̄z log(−∂z∂̄zf(z, z̄)) ≡ 0,

otherwise it could have been of the order r−2, which is a contradiction to (7.9). An elem-
entary argument using Lemma 7.6 shows the f(z, z̄) must be of the form stated in the
lemma. �

Proof of Theorem 7.3. First we compute the scalar curvature of the Hodge metric.
We use the same notation as in the previous sections. Let λ be the Weil–Petersson metric

https://doi.org/10.1017/S1474748004000076 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748004000076


220 Z. Lu and X. Sun

and let h be the Hodge metric. Let

K = − log(Ω, Ω̄),

Γ 1
11 =

∂ log λ

∂z
= λ−1∂zλ,

K1 = −∂z log(Ω, Ω̄),

F111 = (Ω, ∂z∂z∂zΩ),

F1111 = ∂1F111 − 3Γ 1
11F111 + 2K1F111,

A = λ−2e2K |F111|2.

Let R11̄11̄ be the curvature of the Weil–Petersson metric and let R̃11̄11̄ be the curvature
of the Hodge metric.

Since M is the moduli space of polarized Calabi–Yau threefolds and M is one dimen-
sional, from the Strominger formula we have

R11̄11̄ = 2λ2 − λ−1e2K |F111|2.

So the Ricci curvature of the Weil–Petersson metric is

Ric(λ) = −∂z∂z̄ log λ = −λ−1R11̄11̄ = −2λ + λ−2e2K |F111|2 = −2λ + A.

This implies that

h = (m + 3)λ + Ric(λ) = 4λ + (−2λ + A) = 2λ + A = λ(2 + λ−3e2K |F111|2).

So we have

∂zh = ∂zλ(2 + λ−3e2K |F111|2)
+ λ[−3λ−4∂zλe2K |F111|2 − 2λ−3(Ω, Ω̄)−3(∂zΩ, Ω̄)|F111|2 + λ−3e2K∂zF111F111]

= hλ−1∂zλ + λ−2e2KF111(−3Γ 1
11F111 + 2K1F111 + ∂zF111)

= hΓ 1
11 + λ−2e2KF111F1111. (7.10)

Similarly, we have
∂z̄h = hΓ 1

11 + λ−2e2KF111F1111.

So the curvature of the Hodge metric is

R̃11̄11̄ = ∂z∂z̄h − h−1∂zh∂z̄h

= ∂z̄(hΓ 1
11 + λ−2e2KF111F1111) − h−1∂zh∂z̄h

= ∂z̄hΓ 1
11 + h∂z̄Γ

1
11 − 2λ−3∂z̄λe2KF111F1111

− 2λ−2(Ω, Ω̄)−3(Ω, ∂zΩ)F111F1111 + λ−2e2K∂zF111F1111

+ λ−2e2KF111∂z̄F1111 − h−1∂zh∂z̄h

= (hΓ 1
11 + λ−2e2KF111F1111)Γ 1

11 + h∂z̄Γ
1
11 − 3λ−2Γ 1

11e
2KF111F1111

+ λ−2Γ 1
11e

2KF111F1111 + 2λ−2e2KK1F111F1111 + λ−2e2K∂zF111F1111

+ λ−2e2KF111∂z̄(∂zF111 − 3Γ 1
11F111 + 2K1F111) − h−1∂zh∂z̄h.

(7.11)
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Using ∂z̄Γ
1
11 = ∂z∂z̄ log λ = − Ric(λ) = 2λ − A, from the above formula we have

R̃11̄11̄ = h|Γ 1
11|2 + Γ 1

11λ
−2e2KF111F1111 + (2λ + A)(2λ − A) + λ−2e2K |F1111|2

+ Γ 1
11λ

−2e2KF111F1111 + λ−2e2KF111(−3(2λ − A) + 2λ)F111

− h−1(hΓ 1
11 + λ−2e2KF111F1111)(hΓ 1

11 + λ−2e2KF111F1111)

= 4λ2 − A2 + λ−2e2K |F1111|2 + A(3A − 4λ) − h−1λ−4e4K |F111|2|F1111|2

= 4λ2 − 4λA + 2A2 + λ−2e2K |F1111|2(1 − h−1A)

= 4λ2 − 4λA + 2A2 + λ−2e2K |F1111|2(2λh−1)

= 4λ2 − 4λA + 2A2 + 2λ−1e2K |F1111|2h−1. (7.12)

The scalar curvature of the Hodge metric is given by

ρ = −h−2R̃11̄11̄

= −4λ2 − 4λA + 2A2

(2λ + A)2
− 2λ−1e2K |F1111|2

(2λ + A)2

= −4 − 4e2Kλ−3|F111|2 + 2e4Kλ−6|F111|4
(2 + e2Kλ−3|F111|2)2

− 2e2Kλ−4|F1111|2
(2 + e2Kλ−3|F111|2)3

. (7.13)

Apparently, the first term on the right-hand side of (7.13) is bounded. Thus in order
to prove the theorem, we just need to bound the second term of the right-hand side
of (7.13).

Case 1 (NA0 �= 0). In this case, by Corollary 7.5, we have

λ ∼ 1
r2(log(1/r))2

. (7.14)

For the Yukawa coupling F111, we always have F111 = O(1/r3). If |F111| = O(1/r2),
then |F1111| = O(1/r3). Thus

2e2Kλ−4|F1111|2 → 0,

and is bounded. If F111 ∼ 1/z3, then we have the following asymptotic computations:

∂1F111 ∼ −3
z4 ,

Γ 1
11F111 ∼ −1

z4 ,

|K1F111| � C
1

r4 log(1/r)
.

Thus we have

|F1111| � C
1

r4 log(1/r)
. (7.15)
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Using the fact that F111 ∼ 1/z3, we have

e2Kλ−3 ∼ r6. (7.16)

Using (7.14), (7.15) and (7.16), we proved that in this case the curvature is bounded.

Case 2 (NA0 = 0). In this case, by (7.8) and Lemma 7.7,

λ = −ck2r2(k−1)
(

log
1
r

)l

+ R

(
z, z̄, log

1
r

)
,

where R(z, z̄, log(1/r)) contains terms of order at least 2(k−1)−(l−1)/(n+1). We claim
that l � 1, otherwise, by the above equation, we would have that the Hodge metric, as
the linear combination of the Weil–Petersson metric and its Ricci curvature, satisfying

h � (log(1/r))s

r
,

for some positive integer s, and thus is incomplete. A straightforward computation gives

e2Kλ−2|F111|2 ∼ 1
r2(log(1/r))2

.

This implies that

F111 ∼ z2k−3,

and by using the same argument as we did in Case 1, we have

|F1111| � Cr2k−4.

Thus we have

2e2Kλ−4|F1111|2
(2 + e2Kλ−3|F111|2)3

� 2e−4Kλ5|F1111|2
|F111|6

,

and it is bounded. �

8. The Weil–Petersson geometry

By a classical result of Wolpert [30], the curvature of the Weil–Petersson metric on
Teichmüller space is non-positive. However, the curvature of the Weil–Petersson metric
on the moduli space of Calabi–Yau manifolds does not have such a good property∗. The
bad curvature property makes it difficult to do geometric analysis on the moduli space.
In order to overcome this difficulty, in [12,13], the first author introduced a new Kähler
metric called Hodge metric. On one side, the holomorphic bisectional curvature of the
Hodge metric is non-positive, on the other side, up to a constant, the Weil–Petersson
metric is smaller than the Hodge metric. Thus one can use the Hodge metric to do the

∗ In fact, physicists found that the curvature of the Weil–Petersson metric on certain moduli space
can either be positive or negative [2, p. 65].
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similar geometric analysis as that on Teichmüller space and then translate the results
back in the language of the Weil–Petersson metric.

In the proof of the non-positivity of the curvature of Hodge metrics (cf. [12,13] and
Theorem 4.3), we do not need the assumption that the manifold is the moduli space
of Calabi–Yau manifolds. All we need is the fact that the manifold is a horizontal slice
and there is a Weil–Petersson metric on it. In fact, the existence of the Weil–Petersson
metric gives severe restrictions on the variation of the Hodge structures. These kinds of
restrictions have not been studied comprehensively.

Lemmas 7.6 and 7.7 are good examples of how the existence of the Weil–Petersson
metric affects the variation of the Hodge structures at infinity of the horizontal slices. In
fact, using the notations in § 7, Lemma 7.7 implies the following.

Proposition 8.1. Let k, l be defined in (7.7). Then if l � 1, we have

(N lAp, Āq) = 0

for any p + q = 2k but p 
= q, where the vectors Ap are defined in (7.2).

Besides the case p = 0, it is rather difficult to prove the above result without using the
Schwarz–Yau inequality. We believe that there are more properties of this kind. Because
of this, we defined the following concept of the Weil–Petersson geometry and would like
to study the properties in a systematic way.

Definition 8.2. The Weil–Petersson geometry contains a Kähler orbifold M with the
orbifold metric ωWP such that the following hold.

(1) Let M̃ be the universal covering space of M . Then there is a natural immersion
M̃ → D from M to the classifying space D (cf. [6]) such that M is a horizontal
slice of D. In this way, we can also endowed the Hodge bundles F 1, . . . , Fn to M

where Fn is a line bundle.

(2) ωWP is the curvature of the bundle Fn. It is positive-definite and thus defines a
Kähler metric in M and is called the Weil–Petersson metric.

(3) M is quasi-projective and Fn is an ample line bundle of M . The compactification
is called Viehweg compactification [27, p. 21, Theorem 1.13]. The Hodge bundles
F 1, . . . , Fn extend to the compactification M̄ of M∗.

(4) After passing to a finite covering and after desingularization, in a neighbourhood
of the infinity, M can be written as

∆n−k × (∆∗)k,

where ∆ is the unit disk and ∆∗ is the punctured unit disk. Let Ω be a local section
of Fn in the neighbourhood, then locally, Ω can be (multi-valuedly) written as

Ω = exp
(√

−1
(

N1 log
1
z1

+ · · · + Nk log
1
zk

))
A(z1, . . . , zn),

∗ This follows from Schmid’s Nilpotent Orbit Theorem [20].
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where N1, . . . , Nk are nilpotent operators and A is a vector valued holomorphic
function of z1, . . . , zn.

Remark 8.3. The first property of above is basically the Griffiths transversality [6]. The
second property is a theorem of Tian [25]. The third one is the compactification theorem
of Viehweg [27] and the fourth property is the Nilpotent Orbit Theorem of Schmid [20].

The theorems in this paper are true for abstract Weil–Petersson geometry defined
above. A further study if the Weil–Petersson geometry will be the project of future
study. In particular, we wish to define a natural metric which is a modification of the
Hodge metric at infinity similar to that of McMullen’s [15] in the case of Teichmüller
space. It would be interesting if we can do so in the category of the Weil–Petersson
Geometry.
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9. Appendix

In this appendix we prove Theorem 4.2. As before, the subscripts i, j, . . . all range from
1 to m, unless otherwise noted.

Proof of Theorem 4.2. By definition, ωµ = µωWP + Ric(ωWP), since the Weil–Peters-
son metric is Kähler, we know ωµ is d-closed. From the Strominger formula (4.4), we
know the Ricci tensor of the Weil–Petersson metric is

Rij̄ = −(m + 1)gij̄ + gkl̄Fij̄kl̄. (9.1)

Thus we have

hij̄ = λgij̄ + gαβ̄Fij̄αβ̄ , (9.2)

where λ = µ − m − 1. Thus ωµ > 0 which implies ωµ is Kähler.
Usually, choosing a normal coordinate system will simplify the computation greatly.

However, in the following computation, the use of general coordinates will make the
computation easier.
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To simplify the computation we first calculate ∂̄lDαDiΩ. Using Remark 3.1 and
Lemma 3.2 we have

∂̄lDαDiΩ = ∂̄l(∂αDiΩ + KαDiΩ − Γ γ
iαDγΩ)

= ∂α(∂̄lDiΩ) + (∂̄lKα)DiΩ + Kα∂̄lDiΩ − (∂̄lΓ
γ
iα)DγΩ − Γ γ

iα∂̄lDγΩ

= ∂α(gil̄Ω) + gαl̄DiΩ + Kαgil̄Ω − Riτ̄αl̄g
γτ̄DγΩ − gγτ̄ ∂giτ̄

∂zα
gγl̄Ω

= gil̄DαΩ + gαl̄DiΩ − Riτ̄αl̄g
γτ̄DγΩ

= Fiτ̄αl̄g
γτ̄DγΩ. (9.3)

Similarly, we have

∂kDβDjΩ = ∂̄kDβDjΩ = Fpβ̄kj̄g
pq̄DqΩ (9.4)

since F is a curvature like tensor. Now because Ω is holomorphic, we have ∂kΩ̄ = ∂̄lΩ = 0.
Using Lemma 3.3, equation (9.4) and the Hodge–Riemann relations, we know that

(DαDiΩ, ∂kDβDjΩ) = Fpβ̄kj̄g
pq̄(DαDiΩ, DqΩ) = 0,

which implies

∂hij̄

∂zk
= λ

∂gij̄

∂zk
+

(∂kDαDiΩ, DβDjΩ)
(Ω, Ω̄)

gαβ̄ +
(DαDiΩ, ∂kDβDjΩ)

(Ω, Ω̄)
gαβ̄

− (DαDiΩ, DβDjΩ)
(Ω, Ω̄)2

gαβ̄(∂kΩ, Ω̄) +
(DαDiΩ, DβDjΩ)

(Ω, Ω̄)
∂gαβ̄

∂zk

= λ
∂gij̄

∂zk
+

(∂kDαDiΩ, DβDjΩ)
(Ω, Ω̄)

gαβ̄

+
(KkDαDiΩ, DβDjΩ)

(Ω, Ω̄)
gαβ̄ − (Γ p

αkDpDiΩ, DβDjΩ)
(Ω, Ω̄)

gαβ̄

= λ
∂gij̄

∂zk
+

(Tkαi, DβDjΩ)
(Ω, Ω̄)

gαβ̄ + Γ p
ik

(DpDαΩ, DβDjΩ)
(Ω, Ω̄)

gαβ̄

= λ
∂gij̄

∂zk
+

(Tkαi, DβDjΩ)
(Ω, Ω̄)

gαβ̄ + Γ p
ik(hpj̄ − λgpj̄)

=
(Tkαi, DβDjΩ)

(Ω, Ω̄)
gαβ̄ + Γ p

ikhpj̄ . (9.5)

Similarly, we have

∂hij̄

∂z̄l
=

(DαDiΩ, Tlβj)
(Ω, Ω̄)

gαβ̄ + Γ q
jlhiq̄. (9.6)
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From (9.5) and (9.6), we have

∂2hij̄

∂zk∂z̄l
=

(∂̄lTkαi, DβDjΩ)
(Ω, Ω̄)

gαβ̄ +
(Tkαi, ∂lDβDjΩ)

(Ω, Ω̄)
gαβ̄

− (TkαiΩ, DβDjΩ)
(Ω, Ω̄)2

gαβ̄(Ω, ∂lΩ) +
(Tkαi, DβDjΩ)

(Ω, Ω̄)
∂gαβ̄

∂z̄l

+ (∂̄lΓ
p
ik)hpj̄ + Γ p

ik

∂hpj̄

∂z̄l

=
(∂̄lTkαi, DβDjΩ)

(Ω, Ω̄)
gαβ̄ +

(Tkαi, ∂lDβDjΩ)
(Ω, Ω̄)

gαβ̄

+
(Tkαi,KlDβDjΩ)

(Ω, Ω̄)
gαβ̄ −

(Tkαi, Γ
q
βlDqDjΩ)

(Ω, Ω̄)
gαβ̄

+ Riq̄kl̄g
pq̄hpj̄ + Γ p

ik

(
(DαDpΩ, Tlβj)

(Ω, Ω̄)
gαβ̄ + Γ q

jlhpq̄

)

=
(∂̄lTkαi, DβDjΩ)

(Ω, Ω̄)
gαβ̄ +

(Tkαi, Tlβj)
(Ω, Ω̄)

gαβ̄ + Γ q
jl

(Tkαi, DqDβΩ)
(Ω, Ω̄)

gαβ̄

+ Riq̄kl̄g
pq̄hpj̄ + Γ p

ik

(
(DαDpΩ, Tlβj)

(Ω, Ω̄)
gαβ̄ + Γ q

jlhpq̄

)
. (9.7)

Since

R̃ij̄kl̄ =
∂2hij̄

∂zk∂z̄l
− hst̄ ∂hit̄

∂zk

∂hsj̄

∂z̄l
,

by (9.7), (9.5) and (9.6), we have

R̃ij̄kl̄ =
(∂̄lTkαi, DβDjΩ)

(Ω, Ω̄)
gαβ̄ +

(Tkαi, Tlβj)
(Ω, Ω̄)

gαβ̄ + Γ q
jl

(Tkαi, DqDβΩ)
(Ω, Ω̄)

gαβ̄

+ Riq̄kl̄g
pq̄hpj̄ + Γ p

ik

(
(DαDpΩ, Tlβj)

(Ω, Ω̄)
gαβ̄ + Γ q

jlhpq̄

)

− hst̄

(
(Tkαi, DβDtΩ)

(Ω, Ω̄)
gαβ̄ + Γ p

ikhpt̄

)(
(DγDsΩ, Tlτj)

(Ω, Ω̄)
gγτ̄ + Γ q

jlhsq̄

)

=
(∂̄lTkαi, DβDjΩ)

(Ω, Ω̄)
gαβ̄ +

(Tkαi, Tlβj)
(Ω, Ω̄)

gαβ̄ + Γ q
jl

(Tkαi, DqDβΩ)
(Ω, Ω̄)

gαβ̄

+ Riq̄kl̄g
pq̄hpj̄ + Γ p

ik

(DαDpΩ, Tlβj)
(Ω, Ω̄)

gαβ̄ + Γ p
ikΓ q

jlhpq̄

− hst̄ (Tkαi, DβDtΩ)
(Ω, Ω̄)

gαβ̄ (DγDsΩ, Tlτj)
(Ω, Ω̄)

gγτ̄ − hst̄Γ p
ikhpt̄Γ

q
jlhsq̄

− hst̄ (Tkαi, DβDtΩ)
(Ω, Ω̄)

gαβ̄Γ q
jlhsq̄ − hst̄ (DγDsΩ, Tlτj)

(Ω, Ω̄)
gγτ̄Γ p

ikhpt̄
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=
(Tkαi, Tlβj)

(Ω, Ω̄)
gαβ̄ − hst̄ (Tkαi, DβDtΩ)

(Ω, Ω̄)
gαβ̄ (DγDsΩ, Tlτj)

(Ω, Ω̄)
gγτ̄

+
(∂̄lTkαi, DβDjΩ)

(Ω, Ω̄)
gαβ̄ + Riq̄kl̄g

pq̄hpj̄ . (9.8)

Using (9.3), Lemmas 3.2 and 3.3 and the Hodge–Riemann relations, we have

(∂̄lTkαi, DβDjΩ)
(Ω, Ω̄)

gαβ̄

=
(∂k∂̄lDαDiΩ, DβDjΩ)

(Ω, Ω̄)
gαβ̄ +

((∂̄lKk)DαDiΩ, DβDjΩ)
(Ω, Ω̄)

gαβ̄

− ((∂̄lΓ
p
αk)DpDiΩ, DβDjΩ)

(Ω, Ω̄)
gαβ̄ − ((∂̄lΓ

p
ik)DpDαΩ, DβDjΩ)

(Ω, Ω̄)
gαβ̄

= Fαl̄iq̄Fpβ̄kj̄g
αβ̄gpq̄ + Fαβ̄ij̄g

αβ̄gkl̄ − Rαq̄kl̄Fpβ̄ij̄g
αβ̄gpq̄ − Riq̄kl̄Fpβ̄αj̄g

αβ̄gpq̄.

(9.9)

By (9.2) and the Strominger formula (4.4), the above expression is

Fiq̄αl̄Fpj̄kβ̄gαβ̄gpq̄ + Fαq̄kl̄Fij̄pβ̄gαβ̄gpq̄ + λ(gij̄gkl̄ + gil̄gkj̄) − (λ + 1)Fij̄kl̄. (9.10)

Using the Hodge–Riemann relations we have

(Tkαi, Tlβj)
(Ω, Ω̄)

gαβ̄ =
(DkDαDiΩ, DlDβDjΩ)

(Ω, Ω̄)
gαβ̄ +

(Ekαi, Elβj)
(Ω, Ω̄)

gαβ̄ (9.11)

and

hst̄ (Tkαi, DβDtΩ)
(Ω, Ω̄)

(DγDsΩ, Tlτj)
(Ω, Ω̄)

gαβ̄gγτ̄ = hst̄ (Ekαi, DβDtΩ)
(Ω, Ω̄)

(DγDsΩ, Elτj)
(Ω, Ω̄)

gαβ̄gγτ̄ .

(9.12)

Theorem 4.2 follows from (9.10), (9.11) and (9.12). �
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