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1. Introduction

Moduli spaces of general polarized algebraic varieties are studied extensively by alge-
braic geometers. However, there are two classes of moduli spaces where the methods of
differential geometry are equally powerful. These are the moduli spaces of curves and
the moduli spaces of polarized Calabi—Yau manifolds. Both spaces are complex orbifolds.
The Weil-Petersson metric is the main tool for investigating the geometry of such moduli
spaces. Under the Weil-Petersson metrics, these moduli spaces are Kéahler orbifolds.
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The GIT construction of the (coarse) moduli space (see [27]) of Mumford is as follows.
Let X be a Calabi—Yau manifold and let L be an ample line bundle over X. The pair
(X, L) is called a polarized Calabi—Yau manifold. Choose a large m such that L™ is very
ample. In this way X is embedded into a complex projective space CPY. Let Hilb(X) be
the Hilbert scheme of X. It is a compact complex variety. The group G = PSL(N+1,C)
acts on Hilb(X) and the moduli space M is the quotient of the stable points of Hilb(X)
by the group G. For the purpose of this paper, we assume that M is connected.

The curvature of these moduli spaces with respect to the Weil-Petersson metric has
been studied by many people. For the moduli space of curves, Wolpert [30] gave an
explicit formula for the curvature and proved that the (Riemannian) sectional curvature
of the Weil-Petersson is negative. Siu [23] generalized the result to the moduli spaces
of Kéhler—Einstein manifolds with ¢; < 0. Schumacher [21], using Siu’s methods, com-
puted the curvature tensor of the moduli spaces of Kéhler—Einstein manifolds in the case
of ¢; >0 and ¢; < 0, respectively*. Furthermore, Strominger [24] gave the curvature
formula for the moduli space of Calabi—Yau threefolds using the Yukawa couplings. Gen-
eralizing the formula, Wang [29] proved the curvature formula for Calabi-Yau n-folds
where there are no Yukawa couplings. His proof is purely Hodge theoretic and is also
true on Weil-Petersson varieties.

It is important and interesting to know the geometry of moduli space at infinity. In [9],
Jost and Yau were able to understand the moduli spaces of curves at infinity using the
Schwarz—Yau Lemma [31]. For moduli space of polarized Calabi—Yau manifolds, similar
results could be found in [11]. In order to make use of the Schwarz—Yau Lemma, we
need some natural metric on the moduli spaces whose holomorphic sectional curvature
is negative away from zero.

Unlike the case of moduli space of curves, the sectional curvature of the Weil-Petersson
metric on moduli space of polarized Calabi—Yau manifolds is not negative, even in the
case when the moduli space is one dimensional. The curvature of the Weil-Petersson
metric can either be positive or negative (cf. [2, p. 65]) on the moduli space of Calabi—
Yau threefolds which are mirror manifolds of the quintic hypersurfaces in CP*. This fact
prevents us from using the Schwarz—Yau Lemma directly.

In [12], the first author introduced the Hodge metric on the moduli space of polarized
Calabi—Yau manifolds. The Hodge metric is a Kéhler metric on the moduli space. Its
holomorphic bisectional curvature is non-positive and both of its Ricci and holomorphic
sectional curvature are negative away from zero. The Hodge metric on moduli space of
Calabi—Yau manifolds is the counterpart of the Weil-Petersson metric on Teichmiiller
space. In §4, we took a further step by defining the ‘partial Hodge metric’. We computed
the curvature of the ‘partial Hodge metric’. The formula is parallel to the curvature
formula of Wolpert [30] on Teichmiiller space. In the case of the moduli space of Calabi—
Yau threefolds and fourfolds, we proved that the ‘partial Hodge metric’ is the same as
the Hodge metric, up to a constant.

Perhaps it is useful to make further comments on the motivations of this paper. We go
back to the idea of Griffiths. In [4,5], Griffiths defined the period map. It is a holomor-

* Schumacher’s method also yields the curvature formula in the case of ¢; = 0.
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phic map from a moduli space to the ‘classifying space’ defined by Griffiths. The image
of the period map is an integral subvariety of the horizontal distribution by the Grif-
fiths transversality. The idea of Griffiths is that by studying the integral submanifold of
the horizontal distribution, one can partially recover the properties of the moduli space
without having the knowledge of the varieties the moduli space parametrized.

In the case of moduli space of polarized Calabi—Yau manifolds, we can do better. By a
theorem of Tian [25], the Weil-Petersson metric can be defined by the curvature of the
first Hodge bundle. This implies that the Weil-Petersson metric can be defined without
the detailed knowledge of the Calabi—Yau manifolds. The presence of the Weil-Petersson
metric gives severe restrictions on integral submanifold of the horizontal distribution.

In §8, we define the Weil-Petersson geometry. This is defined to be an integral sub-
manifold of the horizontal distribution with the Weil-Petersson metric on it. We further
axiomatize the results of Viehweg [27] and Schmid [20] in defining the Weil-Petersson
geometry. Of course, the axioms will give further restrictions of the integral submanifolds
of the horizontal distribution. It has not been comprehensively studied how these results
interact with the geometry of the integral submanifolds with the Weil-Petersson metrics.

One of the motivation of this paper is to make a firm foundation to study these
interactions.

Before giving the main results of this paper, we give a short definition of Weil-
Petersson, Hodge and partial Hodge metrics. For detailed definitions, see [25,26] for
Weil-Petersson metrics, [12,13] for Hodge metrics and §4 for partial Hodge metrics.

All of these three metrics are Hodge theoretic in the sense that they depend on the
variation of the Hodge structures only. Let F™ be the first Hodge bundle over M. Then
the Weil-Petersson metric is defined as

wwp = c1(F") = —g@élogQ(Q, 2),
where {2 is a local holomorphic non-zero section of F™ and () is the polarization
(see (2.2)). The Hodge metric is defined as follows. Given the period map

M — D,

where D is the Griffiths classifying space, let D = G/V for the real semisimple group
G defined by the polarization @. Let K be the connected components of the maximal
compact subgroup of G containing V. The space G/K is a (Riemannian) symmetric
space which carries the unique invariant metric ds? (up to a constant). Let 7 be the
composition map M — D — G/K. Then the Hodge metric is defined by 7*(ds?). It is
Kahlerian.

The partial Hodge metric is defined by

Wy = pwwp + Ric(pr)

for positive number p > m+ 1, where m is the dimension of the moduli space. In the case
of Calabi—Yau threefolds and fourfolds, with the suitable choice of u, the partial Hodge
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metric is the Hodge metric. If the dimension of the Calabi—Yau manifolds is greater than
or equal to five, there is no direct link between the Hodge and the partial Hodge metric.

As the first result of this paper, we have the following explicit formula for the curvature
of the partial Hodge metric.

Theorem 1.1. Let M be a moduli space of polarized Calabi—Yau manifolds. Let the
dimension of M be m. Let wwp be the Kahler form of the Weil-Petersson metric. Then
the metric w,, = pwwp + Ric(wwp) is Kéhler for 1 > m + 1 and the curvature tensor of
w, Is

R = (0 —m = 19550 + 9i9k3) — (1t — m) Fijpi + FigaiFpius9™’ 9"
Dy.DoD;2,D,DgD;2) gaﬁ

+ FogiiFiipa9™" 9" + (

g (2.0)
(Erai» E15j) o # (Ekai, DpD82) (D4 D02, E1rj) o5 »
_WPI B ps = Z P’ (1.1
) ¢ (2.0) @ 90 1D

(For notations, see §4.)

The obvious feature of the above expression is that the high-order terms of R;;;; domi-
nates the high-order terms of the rest of the curvature tensor. Using this, we can control
the Riemannian sectional curvature by the scalar curvature in the case of Calabi—Yau
threefolds (cf. [13]) and of Calabi—Yau fourfolds (Theorem 5.4).

In the case of moduli space of Calabi—Yau fourfolds, we have the following result in § 4.

Theorem 1.2. We use the notations as in the above theorem. Let y = m + 2. Then
the bisectional curvature of the Kahler metric w, is non-positive. The Ricci and the
holomorphic sectional curvature are all negatively bounded by the constant —1/(m +4),
where m is the complex dimension of the moduli space. Furthermore, the partial Hodge
metric is the Hodge metric in the case of moduli space of Calabi—Yau fourfolds, up to a
constant.

Remark 1.3. The Hodge metric was first defined in [12]. Using Theorem 6.2, one can
prove that it is Kéahler. The fact that the holomorphic sectional curvature is negative
away from zero also follows from the classical paper of Griffiths and Schmid [7]. The non-
positivity of the holomorphic bisectional curvature is from [12]. The contribution here
is that we find the explicit relation between the Hodge metric and the Weil-Petersson
metric in the moduli space of Calabi—Yau fourfolds, and we find out the optimal constant
for the upper bound of the holomorphic sectional curvature of the Hodge metric.

We remark that the corresponding result of Theorem 1.2 in the case of Calabi—Yau
threefold was proved in [13]. In the fourfold case, we do not have the result of Bryant
and Griffiths [1] about the integral submanifold of the horizontal distribution. However,
we are still able to prove that in the case of fourfold, the ‘partial Hodge metric’ is the
Hodge metric.

Using the above theorems and the Schwarz—Yau Lemma, we have the following global
result in §5.
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Theorem 1.4. Let M be the moduli space of the polarized Calabi—Yau manifolds.
Then the Hodge volume on any subvarieties of M is finite. The Riemannian sectional
curvature is L' bounded with respect to the Weil-Petersson metric on any subvarieties.
In particular, the moduli space of the polarized Calabi—Yau manifolds has finite Weil—
Petersson volume.

Remark 1.5. Since we do not know the boundedness of the curvatures of the Weil—
Petersson or Hodge metric at infinity, it seems to be interesting to prove that the integral
of the curvature is bounded. In the one-dimensional case, if a complete Riemann surface
has bounded total Gauss curvature, then it is S? removing finite many points. In high
dimensions, we wish to find the geometric implications of the fact that the total curvature
is finite.

A more ambitious problem is to prove that the volume and the integration of the
curvatures of the Weil-Petersson metric are rational numbers. The same problem on the
moduli space of curves was studied by many people (cf. [10,16,22,32-34]). The difficulty
in the case of moduli space of Calabi—Yau manifolds is that the compactification is not
known to be ‘good’ in the sense of Mumford [18, § 1]. The results of the Weil-Petersson
volume on moduli space of Calabi—Yau manifolds will be in our next paper [14].

In the second part of this paper, we study the asymptotic behaviour of the curvature
of the Hodge metric at infinity for moduli space of dimension one. The problem is related
to the compactification of the moduli space of Calabi—Yau manifolds. By the theorem
of Viehweg [27], the moduli space is a quasi-projective variety. Other than this result,
we do not know much of the asymptotic behaviour of the moduli space. Yau suggested
that one can compactify the moduli space by completing the moduli space using the
Weil-Petersson metric first and then compactifying it. Under his suggestion, we study
the problem. It seems to us that it is easier to complete the moduli space using the
Hodge metric. After the completion of the moduli space using the Hodge metric, one
would get a metric space which is not worse than a complex orbifold. We wish to study
the curvature of the Hodge metric near the infinity of the moduli space in order to study
the Siegel-type theorem [17] and wish, by using this, we can give a differential geometric
proof of the compactification theorem of Viehweg. The full results will appear at [14]. In
this paper, we have the following result.

Theorem 1.6. Assume the moduli space M of polarized Calabi—Yau threefolds is one
dimensional. If A* is a holomorphic chart of M such that A* is complete at 0 with
respect to the Hodge metric, then the Gauss curvature of the Hodge metric is bounded*.

2. Preliminaries

Let X be a compact Kéhler manifold of dimension n. A C'*° form on X decomposes into
(p, q)-components according to the number of dz and dz. Denoting the C*° n-forms and
the C*°(p,q) forms on X by A™(X) and AP%(X), respectively, we have the following

* The referee pointed out that the result is also true for partial Hodge metric.
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decomposition:

ANX)= P Aar(x).

p+q=n

The cohomology group is defined as

HP9(X) = {closed (p, q)-forms}/{exact (p, q)-forms}
= {p € APU(X) | dp = 0} /dA" (X)) N API(X).

The relations between the groups {H?%(X)} and the de Rham cohomology is the
following Hodge decomposition.

Theorem 2.1 (Hodge Decomposition Theorem). Let X be a compact Kahler man-
ifold of dimension n. Then the nth complex de Rham cohomology group of X can be
written as the direct sum

H"(X,Z)® C = Hir(X,C) = @ HI(X). (2.1)
p+q=n

A (1,1) form w is called a polarization of X if [w] is the first Chern class of an ample
line bundle over X. The pair (X,w) is called a polarized algebraic variety.
Using w, one can define

L:H*X,C) » H**?(X,C), [a] = [a A w]

to be the multiplication by w for £k =0,...,2n — 2.
The following two famous Lefschetz Theorems give a filtration of the Hodge groups
and thus are extremely important in defining the classifying space and the period map.

Theorem 2.2 (hard Lefschetz Theorem). On a polarized algebraic variety (X,w) of
dimension n,
L* . H" k(X ,C) —» H""*(X,C)

is an isomorphism for every positive integer k < n.

The primitive cohomology P¥(X,C) is then defined to be the kernel of L"~*+1 on
H®(X,C).

Theorem 2.3 (Lefschetz Decomposition Theorem). On a polarized algebraic vari-
ety (X,w) of dimension n, we have the following decomposition:

[n/2]
H™"(X,C) = @ L*P" (X, C).
k=0

Let Hy = P"(X,C)N H"(X,Z) and H?? = P*"(X,C)N HP4(X) for 0 < p,q < n.
Then we have
Hy®C=>» HP9, HP=HI?,

for p+q=mn. Set H= Hz ® C. We call {H?*?} the Hodge decomposition of H.
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Remark 2.4. We define a filtration of Hy ® C = H by
OCF'cF"'!c...cF'=H

such that
HP® = FP N Fa, FP g Fr—r+l =[],

The sets {HP?} and {FP} are equivalent in describing the Hodge decomposition of H
(cf. (2.1)). We will use both notations interchangeably for the rest of this paper.

Now suppose that @ is the quadratic form on Hyz induced by the cup product of the
cohomology group HJ3i (X, C). @ can be represented by

Qo) = (~1)nn=/2 /X o A (2.2)

for p,v € H. @Q is a non-degenerate quadratic form, and is skew-symmetric if n is odd and
is symmetric if n is even. On H, the form @ satisfies the two Hodge—Riemann relations
on the space HP-? of primitive harmonic (p, q) forms:

q, a'y = unless p' =n —p, ¢ =n — ¢q; an
1) Q(H™, HY' ') = 0 unless p' ’ d
(2) (V=1)P79Q(p, @) > 0 for any non-zero element ¢ € HP4.

Definition 2.5. A polarized Hodge structure of weight n, denoted by {Hz, FP,Q}, is
given by a lattice Hyz, a filtration of H = Hz ® C,

OCFrcF*lc...cF'cH,

such that
H = FP &) Fn—p-&-l’

together with a bilinear form
Q:-H;®Hy; — 7,

which is skew-symmetric if n is odd and symmetric if n is even such that it satisfies the
two Hodge—Riemann relations:

(3) Q(FP,Fr=Pt)y=0for p=1,...n; and
(4) (V=1)P79Q(p, @) > 0 if p € HP? and ¢ # 0, where H?? is defined by
HPY = FP N Fa
for p+ q = n.

Definition 2.6. The classifying space D for the polarized Hodge structure is the set of
all filtrations
0OCF'c---c F'cH, FP @ Frn—r+l = [],

or the set of all the decompositions
ZHM = H, HP=THar,

on which @ satisfies the two Hodge-Riemann relations (1), (2) or (3), (4) above.
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Let
Gr = {€ € Hom(Hg, Hr) | Q(&p, {Y) = Qp, ¥)} (2.3)

Then D can also be written as the homogeneous space
D=G/V, (2.4)

where V' is the compact subgroup of G which leaves a fixed Hodge decomposition { HP-9}
invariant. Apparently, G is a semisimple real Lie group.

Over the classifying space D we have the holomorphic vector bundles F™, ..., F' H
whose fibres at each point are the vector spaces F™, ..., F', H, respectively. These bun-
dles are called Hodge bundles.

In §6, we identify the holomorphic tangent bundle T%°(D) as a subbundle of
Hom(H, H),

Tl’O(D) C @ Hom(FP, H/F?) = @Hom(Hp’q, HPratry,
r>0

such that the following compatible condition holds:
FP — Fprl
H/FP «—— H/FP~!
Definition 2.7. A subbundle Tj,(D) is called the horizontal distribution of D if
Tw(D) ={¢ € T"(D) | ¢FP C FP~! p=1,...,n}.

For any point « € D such that x is defined as subspaces { H??} of H, define the two
vector spaces

HY = H" + H"™2% 4 ...
)
H = anl,l + Hn73,3 R
We fix a point zgp € D. Suppose that the corresponding vector spaces are {H}?} and
{H{, Hy }. Define K to be the connected compact subgroup of G leaving Hy invariant.

We give the basic properties of the classifying spaces in the following three lemmas. The
proofs are easy and are omitted.

Lemma 2.8. K is the maximal compact subgroup of G containing V. In particular, V
itself is a compact subgroup.

Define the Weil operator
C:HPY — HP9 Clgra = (V=1)P71
Then we have

Clg+ = (V=-1)", Cly-

I

I
—
ﬁ
—
=
i
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Let
Ql(xa y) = Q(O‘r7 g)
Then we have the following result.

Lemma 2.9. @, is an Hermitian inner product.
Lemma 2.10. Let
Dy ={H""+ H" **+...| {H""} € D}.
Then the group G acts on Dy transitively with the stable subgroup K at HJ, and D1 is
a (Riemannian) symmetric space.
Definition 2.11. We call map p,
p:G/V = G/K,  {HP} s H™O 4 722 4.

the natural projection of the classifying space. Using the notation of coset, p(aV) = aK
for any a € G.

With the above discussions, we can prove the following result.

Proposition 2.12. Suppose T,,(D) is the distribution of the tangent vectors of the fibres
of the canonical map
p: D — G/K.
Then
T,(D) N Tu(D) = {0}.

Proof. Let g be the Lie algebra of the Lie group G. Let g = §f 4+ p be the Cartan
decomposition such that f is the Lie algebra of K. Then

TU(D) =G Xy by,

where f = v + v; and by is the orthonormal complement of the Lie algebra v of V. On
the other hand, T, (D) C G xy p. So we have T, (D) N T, (D) = {0}. O

Definition 2.13. A horizontal slice M of D is a complex integral submanifold of the
distribution Tj, (D).

Definition 2.14. Let U be an open neighbourhood of the universal deformation space
of X. Assume that U is smooth. Then for each X’ near X, we have an isomorphism
H"(X',C) = H*(X,C). Under this isomorphism, {H?9(X’) N P"(X',C)}pt4q=n can be
considered as a point of D. The map

U—D, X' — {HPX')N P (X, C)}prgen

is called the period map. If I — I is a homomorphism between two discrete groups
and the period map is equivariant with respect to the two groups, then we also call the
induced map

n\uv—-r\n

a period map.
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The most important property of the period map is the following [6].

Theorem 2.15 (Griffiths). The period map p : U — D is holomorphic. Furthermore,
it is an immersion and p(U) is a horizontal slice of the classifying space.

From the above theorem and Proposition 2.12 in this section, we can prove the follow-
ing.
Corollary 2.16. With the notations as above, the map
p:UcCcD— D =G/K
is a (real) immersion.

Definition 2.17. Using the above notations, let i be the invariant Kéhler metric on D;.
The Hodge metric is defined as the (Riemannian) metric p*h on the horizontal slice U.

Remark 2.18. In [12], the first author proved that the Hodge metric of U is Kéhler.

Now we introduce the Nilpotent Orbit Theorem of Schmid [20]. Let f : X — S be a
family of compact Kéhler manifolds. In order to study the degeneration of the variation
of the Hodge structure, we let S = A* x A™~! where I > 1, m > I, and A and A* are
the unit disk and the punctured unit disk in the complex plane, respectively. Consider
the period map

A x A™L 5 P\ D.
By going to the universal covering U! x A™~!, one can lift & to a mapping
&:U x A" 5 D,

where U is the upper half plane. Corresponding to each of the first [ variables, we choose
a monodromy transformation 7; € I', where I is the monodromy group, so that

é(zla"'azi + 1?"'Zl7wl+1a" -7wm) = T’l Oé(zla" '7Zlawl+1?"'aw’rn)7

holds identically in all variables. The T; commute with each other. We know that all the
eigenvalues of the T; are roots of unity. Let T; = T; JT; , be the Jordan decomposition
where T; s is semisimple and 7, is unipotent. We also assume that 77, = I for some
positive integer s;, so that we can define

1 1
N, = —logT% = DL (T )k,
i = logT; > (1) LIt = 1)
k>1
All the N; are commutative.
Let z = (21,...,21), sz = (8121, ..., 82) and w = (w41, ..., Wy). The map

l

U(z,w) = exp( Zsizi]\f,) o P(sz,w)

i=1

remains invariant under the translation z; — z; +1, 1 < i < [. It follows that v drops to
a mapping
U A ATt D,
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Theorem 2.19 (Nilpotent Orbit Theorem [20]). The map ¥ extends holomorphi-
cally to A™. For w € A™~!, the point

a(w) =¥(0,w) € D

is left fixed by T} s, 1 < ¢ < . For any given number n with 0 < n < 1, there exist constants
a, 3 = 0, such that under the restrictions

Imz; >, 1<i<]I, and lw;| <n, [+1<j7<m,

the point exp(Zizl ziIN;) o a(w) lies in D and satisfies the inequality

d(exp (ZI: ZN) oa(w),iﬁ(z,w)> < <i]f[11m zi>ﬁ§exp(2ﬂ5;11mzi);

i=1

here, d is the G g invariant Riemannian distance function on D. Finally, the mapping

(z,w) + exp (zl: ZN) o a(w)

i=1
is horizontal.

Now we assume that the generic fibre X of the map f: X — S is a polarized Calabi-
Yau manifold. For the sake of simplicity, we assume that X is compact, simply connected
and algebraic with ¢;(X) = 0. By a theorem of Tian [25]* (see also [26]), the universal
deformation space of X is smooth. Since there are no non-zero holomorphic vector fields
on a Calabi—Yau manifold, the moduli space of polarized Calabi—Yau manifolds is an
orbifold. The following important theorem of Viehweg gives the compactification of the
moduli space.

Theorem 2.20 (cf. Theorem 1.13 on p. 21 of [27]). Let M be the moduli space
of polarized Calabi—Yau manifolds and the line bundle F™ is the Hodge bundle defined
right after Definition 2.6. Then M is quasi-projective and the line bundle F™ extends to
an ample line bundle over M, the compactification of M.

With the classical Hironaka Theorem [8], we have the following result.

Corollary 2.21. Let M be the compactification of the moduli space M in the above
sense. Then after a smooth resolution, one can assume that M\ M is a divisor of normal
crossing. In other words, let o € M\ M. Then in a neighbourhood of z(, we can write
M as
A*l % (A)m—l7
where m is the complex dimension of M.
* Tian’s proof is more general since one merely assumes the 99-lemma, hold for X. That is equivalent

to assume that the Hodge—de Rham spectral sequence for X degenerates at the E; term. See the survey
paper of Friedman [3] for details.
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3. Curvature of Weil-Petersson metrics

For the rest of this paper, we assume that M is the moduli space of polarized Calabi—Yau
manifolds of dimension n > 2*.

Remark 3.1. The following notations and conventions will be used through out the rest
of this paper.
Form a Kéhler manifold M with metric g,;, the curvature tensor is given by

g 7 09iq 09,5
021,071 0zp (92’7

Rijkl’ =

Using this convention, the Ricci curvature is
e _ K
Rz = —g" Rijir-

Furthermore, the Christoffel symbol of this metric is given by

_0giz
Ik = gha22a
t g 3zj
We also have
ork _
i kGp
0% =49 qRizjq-

So the holomorphic bisectional curvature of this metric is non-positive, which means
R > 0 for all 4, j.

W05
Now let £2 be a non-zero local holomorphic section of the Hodge bundle F". In this
section, we assume 1 < ¢, j < m unless otherwise stated, where m is the dimension of the
moduli space M. We setf

(2,02) = (V-1)"Q(2,02). (3.1)

By the Hodge-Riemann relations we know that (£2,2) > 0. In local coordinates, the
Weil-Petersson metric is given by

(0:42,0;2) | (812, 2)(£2,0;02)
(2,2) (2,22

9ij = —0:0;10g(12,2) = — (3.2)

where 9;, 0; are the operators 9/9z;, 0/9%;, respectively. From [25], we know that the

definition is the same as the Weil-Petersson metric defined in the classical way. In this

section, we compute the curvature of the Weil-Petersson metric. We begin with defining
(6i'Qv D)

* For K3 surfaces, the Weil-Petersson metric is half of the Hodge metric. Thus we omit this case.

t In fact, we use the notation (§,n) = (v/—1)"Q(§,n) in the rest of this paper where £, n are n-forms.
The bilinear form (-, -) is not necessary positive-definite.
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and
D2 =002+ K,{? (3.4)
for 1 < i< m. Then 9i; = @-Ki.
Lemma 3.2. Under the notions as above, the following properties hold:
(1) (Dif2,92) =0;
(2) @Di() = g,;42; and
(3) 9ij = —(Di2,D;02)/(12,2),
where 1 <, j < m.
Proof. By (3.3) and (3.4), we have

9 — (8 00— (.00 . @D oo
(Dif2, @) = 0.2+ K2, 2) = (0:82,2) = S5 (2.2) =0,

which proves (1). Property (2) follows from
ngiQ = 5j8i.9 + (5]KZ).Q = ngQ
Combining the above two equations with (3.2) we have

_ 0D, ) (Di,0,2) (D2, D;2) (D2, K;Q) __(Dif2, D; 1)
Wit T @ (@ @ @)

This finishes the proof. O

From the above lemma, we see that D,(2 is the projection of ;{2 into H" ! with
respect to the quadratic form (-, -). Now we consider the projection of 9;D; {2 into H" =22,
In the following we will use I Z; to denote the Christoffel symbol of the Weil-Petersson
metric. Let

D;D;2 = 9;D; 2 — Z IEDy2 + K;D;02. (3.5)
k

Lemma 3.3. Using the same notations as above, for any 1 < 1,j,1 < m, we have
(1) (D;Dif2,2) = 0;
(2) (D]DL.Q,DZ.Q) = O, and

(3) D;D;2 = D;D; 2.
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Proof. A straightforward computation gives

D;D;2,02) = (9;D;02,2) — Fk (Di$2,02) + K;(D;2,02) = 9;(D;£2,2) = 0,
J

where in the last equality, we used (1) of Lemma 3.2. This proves (1). Using Lemma 3.2,
we have

(D;D;£2,D;12)
= (9;D:92,D,2) — Zrk (D102, Di2) + K;(D; 2, D;92)
= 9j(~9:1(£2,2)) - (D 2,0;D.9) +Z 1k(2,2) — K;9,7(92, 2)
= —9;9;1(92,2) — 9;7(9; 2, 2) — (Dz‘@gﬂf?) +0;9:1(£2, 2) — g;1(K; 2, 02)
= _gi[(DjQ7 Q) - gﬂ(Dz‘Q, Q)
=0.
This proves (2). To prove (3), we see that

D;D;2 = 9;D;2 — > TfDy2+ K;D;2
k

= 0,012+ K;0;2 =Y TED02 + K;0,2 + K; K; 2
k

(ajaiQ, _(_2) (0:92, (_2) (8j 0, _(_2)
T@n T mae

Thus (3) follows from the fact that the above formula is symmetric with respect to ¢

and j. (I
Let R;j,; be the curvature tensor of g;;. Then we have the following [29].

Theorem 3.4. Let (gij)me be the Weil-Petersson metric and let D;D;{2 be defined

as in (3.5). Then the Weil-Petersson metric is Kahler [25], and the curvature tensor is

D, D;2,D;D; (2
Rijki:gijgki+gifgkj_( (2,0 i) (3.6)

for 1 <i,7,k,1 <
Proof. By definition,

32913 _ pqagv:q 39p3

02,07 g 0z, 07z ' (37)

Rz‘jki =

From (3) of Lemma 3.2, we know that

6915 o _(QkDi.Q,DjQ) _ (Di.Q,Z)ij.Q) (D,Q,DJQ)
Oz (2,9) (2,9) (£2,02)

(9:12, 02).
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By (1) of Lemma 3.2, we get

(D;i2,0,D;2)  (D;2,0,D;82) (Dif2,9,52)
2.0 (@20 (209
Using the definition of K;, we have

Dz (2,02)
Let Aij = 8¢Dj.Q + KiDjQ = DiDj.Q + FlljDk_Q Then
99,5 (Ari, D;12)

S S e 3.8
D21 (2.0) (38)
Similarly, we have
0945 D2, A;;
g_zj :_( 7 77l‘]). (39)
07 (2,0)
From (3.8) we have
9%g;; (D AR, Dj2) (A, 0 D;2) (A, Dj2) o~
Yo ki — D Y 2,0,92). 3.10
02107 (2, 0) .0 T wnz 299 (3.10)
We also have
O Ak = 01(0kD; 2 + K. D;$2)
= ({)k(ngzQ) + (aKk)DlQ + KkélDiQ
= Ok(9:192) + giDi 2 + Kig;112
= (Ok9:) 92 + 97D $2 + giDi 12
and
(Ai, D;82) - ~—— (Awi, KiD;02)
— 2 (2,02) = ——7——
0, (DA (12,02)
Thus from (3.10), we have
gi; _ ((Owgi)? + ;D2 + gutDi2,D;2) (A, 0D;2) (A, K, D;02)
92107 (2.0) (2.0) (2,0)
Api, Ayj
= 045 + gt — i Au) (3.11)

(2,02)
by using Lemma 3.2. Combining (3.8), (3.9) and (3.11), and using Lemma 3.3, we have

o _ _ o (Aki7TU) pqaguj (DPQ7TU)
Ri5k1 = 955961 + 91955 (2,0) +g Do (12.0)

= 939kT T 9i19k5 — ( Qk (—;; :

(DyD;$2,D,D;2)
(2,02)
This finishes the proof. U

= 93951 T 9i19%5 —
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Remark 3.5. For the moduli space of Calabi-Yau threefolds, Strominger [24] proved
that the curvature tensor is

1 o
Rijir = 9591 + 9:19x5 — Z ngqukaqu,
P.q ’

where Fjpp, is the Yukawa coupling. In the case of Calabi—Yau threefolds, D;D;{2 € H L2,
In fact, D;D;2 is the orthogonal projection of 9;0;12 to H%?. Thus

(D:Dy.2,D;Di02) = —(DZD’“QD”(f;%q”’Dlemgm.

It is easy to see that (D;Dy(2,D,2) = —F;,. Thus our theorem is the same as Stro-
minger’s in the case of Calabi—Yau threefolds.

Remark 3.6. Theorem 3.4 was proved in [21] using the method of [23] which is different
from ours. In his paper [26], Todorov introduced the geodesic coordinates from which it
is much easier to get the curvature formula. The current proof was by Wang [29] which
is purely Hodge theoretic. Such a proof can be generalized to general horizontal slice.

4. Partial Hodge metrics

We use the Ricci curvature of the Weil-Petersson metric to construct a new metric. Let
wwp be the Kahler form of the Weil-Petersson metric and let ¢ > m+1 be a real number.
Let

wy, = pwwp + Ric(wwp). (4.1)

By Theorem 3.4, we know that w, is a Kdhler metric. We notice here that when the
dimension of the Calabi-Yau manifolds is 3 or 4, by choosing suitable x, the metric w),
coincides with the Hodge metric (cf. §6). For this reason we call w, the ‘partial Hodge
metric’. It is a metric between the Weil-Petersson metric and the Hodge metric.

In this section, unless otherwise stated, the subscripts i, 7, k,l,p,q,«,... will range
from 1 to m. Define a tensor

Thoi = Ox Do D2 + KiDoyD;$2 — Z I'* D,D;Q — Z I D, D12, (4.2)
p p

where I'?, is the Christoffel symbol of the Weil-Petersson metric and {2 is a non-zero
local holomorphic section of £ as in the previous section. We use g;; and h;; to denote
the metric matrices of the Weil-Petersson metric and the metric w,, (for some chosen )
in local coordinates (21,...,2m), respectively, and use R,j.; and Rﬁk[ to denote their
curvature tensors respectively. We also use R;; to denote the Ricci tensor of the Weil—
Petersson metric.

Let D, D,D;f2 be the projection of Tye; into H? 33 with respect to the quadratic
form (-,-) in (3.1). Let Frai = Thai — D Do D;f2. Then we have the following result.
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Lemma 4.1. Using the same notations as above, we have
Thoai = Erai + DiDoDi2 € H" 2% @ H"™ 3,
where Tgq; is defined in (4.2).
Proof. By definition of T,; and the Griffiths transversality,
Thoi € H™ @ H* 11 g H'—22 g H"33,
Using Lemma 3.3, we have
(Thai, 2) = (OrDoD; 2, 2) = 0.

So there is no H™° components in Tya;. On the other hand, H* 1! is spanned by D;f2.
Using Lemma 3.3 again, we have

(Thai, D;$2) = 0.
Thus Tjas has no H" 1! component and this completes the proof. O

Define the curvature like tensor F' by

»_ (DuDi2, DiD;12)
1,jk‘l (Q’ Q)

(4.3)

Using Lemma 3.3 and the Hodge—Riemann relations we know that the tensor F' has all
symmetries that a curvature tensor has.
The Strominger formula (Theorem 3.4) can be written as

Rizki = 955961 + 99k — Fijur (4.4)
The curvature tensor of the partial Hodge metric is as follows.

Theorem 4.2. The metric w,, is Kidhler and the curvature tensor of w,, is

Rijkl_ = (p—m— 1)(9i39kl‘ + gil'gkj) — (- m)Fz‘jki + Z Fiqal_ijkﬁ_gaﬁgpq
afpg
B g (DrDoD;$2,D;DsD,S2) 3
+ D FagniFippo™ e+ (2,0) )
afpq af
Z (Elcah?lﬁj)gaﬁ _ Z hsf(Ekai,DthQ) (D'stQlElTj)gaﬁ_gfy;—
(£2,02) (£2,0) (£2,92) '

af afyTst

(4.5)

We will leave the proof of this theorem to the appendix due to its length.
The main theorem of this section is that, for the moduli space of Calabi—Yau fourfolds,
with a suitable choice of u, the partial Hodge metric has the following property.
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Theorem 4.3. Let n =4 and let wpy = (M + 2)wwp + Ric(wwp), then
(1) wpn Is a Kéhler metric;

(2) the Ricci curvature and the holomorphic sectional curvature of wpy are bounded
above by the negative constant —1/(m + 4); and

(3) the holomorphic bisectional curvature of wpy Is non-positive.

Proof. By Theorem 4.2 we know that wpy is Kéhler. From (9.2) we know that
hij = 9ij + Fijapg™”. (4.6)

Fix a point xy in the moduli space. Let z1,..., 2z, be the local holomorphic normal
coordinate at zo with respect to the Weil-Petersson metric. Then at the point z(, we
have

9905  0g°7  0ga5 097

5= 00, Y. = — — = =0. 4.
Jof = Oab 8= 9o T 0s, 0z, 05, 0 (4.7)

Replacing 2 by 2 = f12, where f is a local holomorphic function defined by

72) = (2.2 2(a0) = 3 S

i

we have, at the point xg,

for each K =1,2,...,n and

By abuse of notations, we use 2 to replace £2 for the rest of this section.
We set ¢ = j and k = [. Based on the above notations, from Theorem 4.2 we have

Rinp = 1+ 04, — 2(DrDs 02, Dy D;:12) + Z(DaDiQ, DD, 2)(DyD,2,DaD;12)

o,y
+ Z(DaDiQ, DpD;2)(DgDy 82, Do Dy 12) + Z(Dk.DaDiQ, DypDoD;12)
a,3 «
+ (Z(Ekaig Ekai) - hplj Z(Ekaiv DaDqQ) Z(D,@ngv Ekﬁt)) . (410)
« @ B8

Fix the indices k and i. Let U, = hP? Zﬁ(Ekm, DgDy2)DoDpf2. Then U, € H?2. By
the Hodge—Riemann relations we know that, for any «,

(Ekai — Uss Ekei — Ua) = 0. (411)
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By (4.6), we have

)
a

Thus
> (Ua, Ua)

= Z(thZ(Ekﬂi’ DﬁDqQ)> <hp1qu(Ek'yiv D, Dy, Q)) (DaDva Do Dy, $2)
a B

v

hP? Z(Ekﬁia DﬁDqQ)> (hqlpl Z(Dquer Ek‘w)) (hwpr — Oppy )

8 vy
= h®'0 (Eupi, DgDe2) S (Do Dy, 2, Eryy)
e vy
- Z hPl Z(Ekm,m)h“ Z(DVDM 2, Eyi)
I3 B v
= 113 (Bisis DsDy) (D2 Dy, Fict) = 3 1077 S (Bisi, DD, D)
3 W P B,q
< WPl Z(Ekﬁnm) Z(D’YDPQ’m)
B 8l
S BT (4.13)
B
and
> (Ua: Erai) = "1 (Brpi, DgDg2) > (Do Dp2, Epa).- (4.14)
a B «

Combining (4.11), (4.13) and (4.14) we have

> (Brai» Erai) = W*7 (Brai, DaDgf2) Y (DD, Eypi) = 0. (4.15)
« B

[0

Thus the sum of the last two terms in (4.10) is non-negative.
We shall show that the term

> (DyDoD;if2, Dy Do Dif2)

«
is related to the Yukawa coupling of fourfolds.

Definition 4.4. Using the same notations as above, define a holomorphic section of
Sym? F* ® (T*M)®* to be
&iji = (£2,0;0;0,0,82). (4.16)

We call &;;1; the Yukawa coupling for Calabi-Yau fourfolds.
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Clearly, &;jx; is symmetric with respect to ¢, j, k, [.

Lemma 4.5. Using the same notations as above, we have
&ijkt = —(DjDypD(2,D;82) = (D D12, D;D;(2). (4.17)

Proof. The lemma follows from the definition of Tk,; and the first Hodge-Riemann
relation. 0

Using the above lemma, we have

Z(DkD D;$2,DyD,D;(2) Z|§zlml| (4.18)

«

Combining (4.10), (4.15) and (4.18) we have

Ripi > 1+ 6 — 2(DiDi82, Dy D;2) + Y (Do Di2, DD, 02)(Dy D2, Do D;i12)

ayy

+ (DaDif2, DsD;R2)(DsDy 2, DaDif2) = > |€ikeul*-
a,f3 a,l
(4.19)
The quadratic form (-,-) defines an inner product on H?? by the second Hodge-
Riemann relation. Let wy,...,wx be a (real) basis of H*? such that (wp,w,) = d,q. Fix
the index i. Let D; D, 82 = 25:1 Aqpwp and let Dy Dgf2 = 2521 Bgpwy. By Lemma 3.3
we have

> (DaDif2, DgD;i$2)(Dp D82, DoaDif2) = |€ikas?

a,3 ap
= (DiDy2,D;D302)(Dy, D2, Dy Do 2)
o,
- Z(kagn, D;Do2)(D;Dp2, Dy Do 12)
o,

N

Z > (AajAp;BaiBai — AajBsj AgiBar). (4.20)
=1 a,p

Let uj; = Y, AajBai. From (4.20) we have

Z(DQDiQ, DpD;02)(DpDy 2, Do Dy 12) — Z(DkDTQ, Do D;2) (DD, 2, Do D;12)

o, o,T
N N
= § :ujlujl § :“Jl“la = E [uji —wii” >0
jl=1 ji=1 j<l

(4.21)
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Combining (4.19) and (4.21) we have

Rigpr, > 1+ 0i — 2(DiDi2, Dy Dif2) + Y |(DaD;i 2, DDy 2) . (4.22)

a7y

If ¢ # k, then, by (4.22),

R > 1—2(DpD;i2, D D;:2) + |(Dp D; 2, Dy D;:2)|? > 0. (4.23)

This implies the holomorphic bisectional curvature of wpy is non-positive.
Now we estimate the holomorphic sectional curvature. Let ¢ = k. By (4.22) we have

Ry >2—2(D;D;2,D;D;2) + Y _ |(DoD;if2, DsDif2)?

e
>2—2(D;D;2,D;D;2) + Y |(DoDif2, Do Di2) [, (4.24)

By (4.12) we have
hig =14 (DaD;if2, Do D;f2). (4.25)

Let aq = (Do D;$2,D,D;2) for a # i and let a; = (D;D;§2, D;D;(2) — 1. Clearly, they
are real numbers by the Hodge-Riemann relations. From (4.24) and (4.25) we have

Rz > 1+ Z az,
o
and

hig:2—|—Zaa.

Combining the above two inequalities and the following trivial inequality,

we have

. 1 )

Rizii 2 m(hﬁ) : (4.26)
This proved the holomorphic sectional curvature of wpy is bounded above by a negative
constant. Clearly, the Ricci curvature is bounded above by the same negative constant
since the bisectional curvature is non-positive. O
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5. Scalar curvature bounds the sectional curvature

In this section we will prove that the volumes of any subvariety of the moduli space
equipped with the Weil-Petersson metric or the Hodge metric (Definition 2.17) are finite.
Also, we will show that the Riemannian sectional curvature of the Weil-Petersson metric
is finite in the L' sense. The key tool we use here is Yau’s Schwarz Lemma [31]. The
following version is proved by Royden [19].

Theorem 5.1. Let M, N be two Kéhler manifolds such that M is complete and the
Ricci curvature of M is lowerly bounded and the holomorphic sectional curvature of N
is upperly bounded by a negative constant. Then there is a constant C, depending only
on the lower bound of the Ricci curvature M and the upper bound of the holomorphic
sectional curvature of N such that

wy < Cwyy.

Using the above theorem, we first have the following.

Theorem 5.2. Let M be the moduli space of polarized Calabi—Yau n-folds. Then the
volume of any subvariety M; of M equipped with the Weil-Petersson metric or the
Hodge metric is finite.

Proof. Since the moduli space is quasi-projective, after desingularization, we can assume
that M =Y \ R where Y is a compact Kéhler manifold and R is a divisor of normal
crossings. From [9], we know that there is a complete metric wy on M such that its volume
is finite and its Ricci curvature has a lower bound. Moreover, this metric behaves like
the Poincaré metric near R. By [12, Theorem 1.2] the holomorphic sectional curvature
of the Hodge metric wy is negative away from zero. Let ¢ be the identity map

i (M,(UO) — (Mva)v (51)
which is holomorphic. By the Schwarz—Yau Lemma [31] we have
wg = "wy < cwy (5.2)

for some positive constant c. Thus

/ wﬁ’gcl/ wy' < +oo.
M M

For any subvariety M; of the moduli space M, we restrict the Hodge metric wy to it.
By the Gauss equation, the holomorphic sectional curvature on the smooth part of the
subvariety M is negative away from zero. Since M, is either compact or quasi-projective,
using the same argument for M, we proved the volume with respect to the Hodge metric
is finite.

By Corollary 6.5, up to a constant,

wWwp < wy- (53)

So the volume of the Weil-Petersson metric on any subvariety of M is also finite. This
finishes the proof. O
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From the above theorem we can bound the L' norm of the sectional curvature of the
‘Weil-Petersson metric.

Theorem 5.3. Let M be the moduli space of polarized Calabi—Yau n-folds. Then the
L' norm of the Riemannian sectional curvature of M equipped with the Weil -Petersson
metric is finite.

Proof. For any point zy in the moduli space, let 21, ..., z,, be the local normal coordin-
ates at xg with respect to the Weil-Petersson metric. Let X and Y be two real unit
tangent vectors of M at xg. Clearly, there is a constant ¢, which is independent of P,
such that

|R(X,Y, X, Y)|2 < C|Rijkz’\2 =cC Z RiiiRag- (5.4)
ikl
We make the assumptions (4.7), (4.8) and (4.9) at z like we did in the proof of Theo-
rem 4.3. From the basic fact
|(DiD;i2, D;D;2)|* < $(|(D.D;i82, D D; 2)|* + |(DD; 2, DiD; 2)?)

and the Strominger formula, we have
[ROCY, X, V)P <e Y Rulan

4,5,k

= ¢ Y (8ij0k + 6iu0k; — (D D82, DyD; 2))

i,5,k,l -
X (5ij5kl + 6il6kj — (Dle.Q,DkDi_Q))

= c<2m2 +2m — 42(1),4)1-9, DyD;2) + Z |(DxD; 2, D;D; ) 2>
ik i.4.k,l

2
<o (m +) (DkDif2, DkDiQ)>
ik

o (Z h“)Q (5.5)

for some universal constant ¢; only depending on m. Thus from (5.3) we have
/ |R(X,Y, X,Y)|wwp < \/a/ Zgﬁhﬁw{)ﬂvp < m\/a/ wi < 4o0.
M M T M
i,

This proves that the L' norm of the Riemannian sectional curvature of the Weil-Petersson
is bounded. O

For the rest of this section, we assume that n = 4. We will prove that the Riemannian
sectional curvature of w,, is bounded by the scalar curvature pointwisely up to a constant.
The similar result has been proved in [13] in the case of Calabi-Yau threefolds.
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Theorem 5.4. Let M be the moduli space of polarized Calabi—Yau fourfolds. Then
there are positive constants ¢, and co such that the Riemannian sectional curvature of
the partial Hodge metric w,, is bounded by ci + ca|R|, where R is the scalar curvature
of the partial Hodge metric.

Proof. Fix a point ¢y € M and let X and Y be two real tangent vectors at zy such that
X is perpendicular to Y with respect to w,,. Let £ = X —/=1JX and n =Y —/—-1JY
where J is the complex structure of M. Clearly, £ is perpendicular to n with respect
wy too. We make the assumption (4.7)-(4.9) like we did in the proof of Theorem 4.3
for the local coordinates (21, ..., zy) and the local section §2. We can choose a unitary
transformation of the coordinates such that & = a(9/0z;), n = b(0/0z;) with ¢ # j for
some complex numbers a, b and the matrix h;; of w, is diagonalized with h;; = d;;A;.
We have

R(X,Y,X,Y) = L(Re(R(&,1,&1) — R(£,€,1,7)). (5.6)

In the following, we will use ||v||? to denote the square of the norm of a complex vector
with respect to w,. The second term in the right-hand side of the above formula is easy
to estimate,

| (5 g , 77)| = |a'| |b| Rujj
= €12 Iml? Rz A A7

(2% N

< [lEl*lmll? ZR@;& 'R

= llEl*lInl® \RI7 (5.7)

since R;;;7 > 0 for 1 < < m by Theorem 4.3. By Theorems 4.2 and 4.3,

'Ll]]

Rijz} 132] QZFzgaﬂ ija Zgiiaﬁfjjaﬁ
af

+ (Z(Em,EjaJ Z Ay N (Biais DaDp$2)(DgDy 12 Em)> (5.8)

«

Let G be the vector space spanned by {L;} wherei =1,...,m and L; = (Ej14, . . ., Fimi)-
We now define a bilinear form ((-,-)) on G by

(Li, L) = > (Eiai, Bjag) — Z A (Biai, DaDyp$2) (D Dy 2, Ej ). (5.9)

(e

By (4.15), we know that ((L;, L;)) is a Hermitian semi-inner product on G. So we have
the following Cauchy inequality:

(L L) < /(Le. L)) (L5 Ly)). (5.10)
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However, by the proof of Theorem 4.3 we know that

(Lis L) = > (Biais Biai) = Y Ay (Biai, DaDp2)(DsDpf2, Eigi) < Ry < |R|A;.

a p,a,f
(5.11)
Combining (5.9), (5.10) and (5.11) we have
> (Binis Ejaj) — Z Ay H(Biais DaDp2)(DDyp2, Ejp;)| < |RINA,. (5.12)
o )
Since (—1)(+,-) is a Hermitian inner product on H'3, from (4.21) we have
> iaplijas < D | Fiagl Fjjasl- (5.13)
af a,B
By (4.24) we have
~ 1
Rﬁ nu + Z ‘ ua5|2 = 2 Z |Fﬁaﬁ‘2' (514)
a,p
So combining (5.13) and (5.14) we have
S iiasbran < |3 Fuaagl? S 1yl < 2 (5.15)
a3 a,B a,B
From (4.22) we have
Rﬁjj Z?,]j + Z ‘ iBaj |2 Z | jaﬁIQ Fﬁjj|2' (516)
So we have
3 2
jaﬁ ijBa Z Ja,6’| + | ]ﬁa - 22 ‘ 7aﬁ < 2Rﬁjj + Q‘Fﬁjﬂ .

o,
(5.17)

From (5.14), since i # j we have

|Fyij5] < \/2Rg3 (5.18)
|Fiagsl = | il < /2R3 (5.19)

Combining (5.17), (5.18) and (5.19), we have

and

IRNA; + 4/ R2N2A2 = 5|R|\ ;. (5.20)

’2 > FiapFiipa
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From (5.14) we also have

12F;5:5] < 2/ FiaiiFii5 < 2(4Ri Rizis) Yt < 20/2[RINA; < T+ 2[RI (5.21)
By the Hodge-Riemann relations we know A\; =1+ Fi;,5 > 1. Combining (5.8),

(5.12), (5.15), (5.20) and (5.21) we have

| Re(R(&,7,€,m)| < lal?[b| Riji5
< lal[of? + 9IR] |af* b AiA;
< [IEIP Il (1 + 9| R)). (5.22)

Combining (5.6), (5.7) and (5.22) we have
[ROX,Y, X, Y) < (5 + IRDIEIPInI* = (5 + §IRDIXIY . (5.23)

This finishes the proof. O

6. Hodge metrics

Let X, Y be finite-dimensional Hermitian vector spaces and let {-,-)x, (-,-)y be the
Hermitian inner products of X and Y, respectively. Let A, B : X — Y be linear operators.
Then we can define the natural Hermitian inner product for A, B on the space Hom(X,Y")
as follows. Let ey, ..., e, be a unitary basis of X. Then define

(A,B) = (Ae;, Be;). (6.1)

(2

Let D be the classifying space defined in Definition 2.6. The complexified tangent
bundle TD ® C of D can be realized as the subbundle of

TD®CC D Hom(H"", H/H"Y). (6.2)
ptqg=n

By Lemma 2.9, (v/—1)?77Q(:,-) is the Hermitian inner product of HP'?, it naturally
induced a Riemannian metric h on T'D ® C via the above realization.

Define an almost complex structure J on T'D ® C as follows. Let X be a local section
of TD ® C. Then

V-1X ierF( P Hom(Hp"ﬂ@H“S))?

p+g=n r<p

—/—1X ierF( EB Hom(Hp’q,@Hm)).

ptq=n r>p

JX = (6.3)

We have the following result.

Proposition 6.1. The Riemannian metric h is G and J invariant. Furthermore, J is
a G invariant complex structure on D. Thus h defines a Hermitian metric on D.
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Proof. Let x,y € D and {x = y for some £ € G. Let €}, ... e, be an unitary basis of

HP% at x. Then €Y, ... ,§eﬁp will be an unitary basis of HP'? at y by the definition of G.
If X is a tangent vector at x, then X induced the tangent vector X = ¢X¢~! at y. Thus

IXI1P = (V=171 > Qexe el exeeed) = || X7,
D i

which proves the invariance of h with respect to G.

To prove that h is also J invariant, we let X, ¥ be two holomorphic vectors at . We
just need to prove that h(X,Y) = 0. Let p+ g = n. Suppose X is non-zero restricting to
HP1. As above, let ef, ... , el be the unitary basis of HP1. We claim that

Q(XelYel)=0, 1<i<dimH>

To see this, assume that a component of Xe? € H™*. Then we have r < p. In order
that Q((Xe?)™*,Yel') #0, we must have s < ¢. But this is a contradiction because
ptg=r+s=n.

It remains to prove that the almost complex structure is integrable. To prove this, we
first observe that the same .J defines an almost complex structure on D, the compact
dual of D. The almost complex structure on D is defined by the pull back of the complex
structure of the flag manifold, which is a complex manifold. O

The main result of this section is the following.

Theorem 6.2. Let M be a horizontal slice of the classifying space D coming from the
moduli space of the polarized Calabi—Yau manifolds. Then the metric h is the Hodge
metric on M. In particular, the Hodge metric is Kéhler.

The assumption in the theorem can be weakened to the case where there is a horizontal
slice with the Weil-Petersson metric is defined (see §8 for details).

Proof. Let Dy be the Hermitian symmetric space defined by the set of subspaces
Ht=H" o H" *?a...
in H. As in §2, the natural projection
p:D — D
is defined by
{F*Yier n—> HT,

which is in general not holomorphic. Using the same method as above, we defined the
unique complex structure on D; by realizing the holomorphic tangent bundle of D; as
the subbundle of Hom(H™, H/H™).

Let X € TY° M be a holomorphic vector field. Then X is horizontal in the sense that
X is a section of the bundle Hom(H™°, H*~11) @ Hom(H™ 11, H"=22) @ - ... Define
X1 to be an element in the bundle such that

X, restricting to H™T,
X = .
0, otherwise,
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and let Xo = X — X¢. Then we have
X=X+ X5

Furthermore, we have the following result.

Lemma 6.3. According to the complex structure of Dy, the vectors fields X1 and X,
are holomorphic and anti-holomorphic, respectively.

Proof. Let
H=H"®H .

Then X, is a map HT + H~, which can be identified as a holomorphic vector fields of
D;. X, can be identified as a map from H~ to H'. It is the dual map of H™ — H~
under the polarization Q. Thus can be identified as an anti-holomorphic vector field. [

We continue with the proof of Theorem 6.2.
From the above argument, we see that under the invariant Kahler metric of D,

IX 1% = 1X 0] + 1 X[, (6.4)
If n is an odd number, then D; is the Hermitian symmetric space of third kind, that is,
Dy =Sp(n,R)/U(n).
It can be realized as the subset of n X n complex matrices
{(ZeM,(C)| I, -Z"Z >0, Z" = Z}.
Its invariant Kahler metric can be defined as
gaé logdet(I,, — Z* 7).
If n is an even number, then
Dy = O(m,n, R)/(O(m) x O(n)).
There is a natural inclusion of Dy,
Dy < D} = SU(m,nC)/S(U(m) x U(n)).

Dy is the Hermitian symmetric space of first kind, which can be realized as the subset of
m X n complex matrices

{Z € My n(C) | I, — Z%Z > 0}.

The invariant Kahler metric is defined as

=1 - _
~5—00log det(I,, — 21 7).
™
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The invariant Riemannian metric on Dy is the pull back of the invariant Hermitian metric
on Dj.
In both cases (of D; for n odd and of D] for n even), the invariant Kéhler metrics are
defined using the polarization @ as
v_1 -
——300logdet Q(+,-).
27
In order to prove the theorem, we just need to prove it at the original point. At the
original point of D; (respectively, D), we can write the Kéhler metric as
a

1 _
Let {0/0z0 }a=1....m be holomorphic vector fields of M. We have

.....

0Zi; 02,
—0, 1<a<m.
%: 0zq Oz 0, asm

The reason for the above equality is that each row of the matrix Z;; represents an element
in some HP4. By the Griffiths transversality, we have
0z

0Zij c Ha-Lp+l,

—1,q+1
c Hp »q ,
8Za

The inner product of the above two is the same as Q(0Z;;/0zaq, BZij/aza), which is zero.
Similarly, we have
— 0z, 0z, '

1

Thus we have
2

n>

j

9
024

0z,

2 ~ 2
GZij

Comparing the above equation with (6.4), we proved that h is the Hodge metric. Using
the result in [12], we know that the h is Kéahler. O

Let wy be the Kéhler form of the Hodge metric h. Then we have the following result.

Corollary 6.4. In the case of n = 3, we have

WH = (m + 3)WWP + RiC(pr).
In the case of n = 4, we have

wi = 2(m + 2)wwp + 2 Ric(wwp).
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Proof. The case n = 3 was proved in [13] using the result of [1]. In the case of n = 4, we
do not have the similar result as that of [1]. However, using the generalized Strominger
formula (4.4), we have

2(m + 2)wwp + 2 Ric(wwe) = 2wwe + 20" F5.5dz; A dz;,

where F is defined in (4.3). Let X be a holomorphic vector on M. Then by the identifi-
cation (6.2) and the fact that X is horizontal,

X € Hom(H*°, H*') @ Hom(H*', H*?) @ Hom(H*?, H"3) © Hom(H"3, H**).

Using (3) of Lemma 3.2, we know that wwp gives the part of the metric h restricted on
the space H*. Since D;f2 gives a basis of the space H>!, by (6.1), h restricts to H>1,
which gives )

1X s = 32 67 (X (D:2), X(D; 2))(92, 2)7.
ij

In particular, if X = /024, then
IX|I35.1 = 97 Fijaa-

To compute the norm of X on H'? and H%*, we use the duality as follows. Let w1, . .., wy
be a (real) orthonormal basis of H?2. Then we have

N

X 22 = D (X(ea), X(ea)) = D >~ 97 (2,2)7 (X (ea), Di2)(D;2, X (ea))-

a=1 iy a=1

Since the polarization is invariant infinitesimally under X, the above is equal to

N
||X||?{22 = Z Zgij(“(27 Q)_l(eow DaDiQ)(Dangvea)

ij a=1

=" g9(2,2)"(DaDi2, DaD;0).
ij

Thus the norm restricted to H?? is the same as that on H>!. Using the same method,
we can prove that the norm of X on H'? is given by the Weil-Petersson metric. The
corollary follows from

X115 = 1X a0 + 1 X0 + 1X [ F22 + |1 X s
O

Corollary 6.5 (cf. [12]). Up to a constant, the Weil-Petersson metric and its Ricci
curvature are less than or equal to the Hodge metric.

Proof. This is an easy consequence of Theorem 3.4. |
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Remark 6.6. It was a well-known theorem of [7] that the holomorphic sectional cur-
vature with respect to the Hermitian connection at the horizontal direction is negative
away from zero. In the previous section, we give an explicit formula proving that the holo-
morphic bisectional curvature on the horizontal slice is non-positive and the holomorphic
sectional curvature is negative away from zero in the case of Calabi—Yau fourfolds. Since
the Hodge metric is Kahler, the connection is also the Levi-Civita connection.

Remark 6.7. One of the most confusing parts of the theory of the Hodge metric is that
the projection in Definition 2.11 is, in general, not holomorphic. This is of course true if
D is not a Hermitian symmetric space. Even if D is a Hermitian symmetric space, the
projection is Definition 2.11 is in general not holomorphic. However, in this case, there
is a unique complex structure on D that will make the projection holomorphic and thus
make the manifold D homogeneous Kahler. D is in general not homogeneous Kahler,
thus the invariant Hermitian metric cannot be a Kéahler metric.

Take a closer look of the above phenomena*. Let D = G/V as in §2. Consider the
isotropy representation of the compact group V in Ty(D), the tangent space of D at
the original point. If V' is the maximal compact subgroup of G, then the representation
is irreducible and thus there is only one invariant almost complex structure. In general
the group representation is not irreducible. Thus there are 2V different almost complex
structures on D where N is the number of irreducible components of the representation.

7. The curvature of the Hodge metric in dimension 1

In this section, we prove that in the one-dimensional case, the curvature of the Hodge
metric is bounded near the boundary points with infinite Hodge distance. We will consider
the n-dimensional case in the next paper [14].

Our starting point is the relation between the completeness of the metrics and the
limiting Hodge structures. Such a relation was first drawn by Wang. In his paper [28],
among the other results, Wang proved the following.

Theorem 7.1. Let A* be the one-dimensional parameter space of a family of polarized
Calabi—Yau manifolds. Then the necessary and sufficient condition for the Weil-Petersson
metric to be complete is NAg # 0, where N is the nilpotent operator in (7.1) of A* and
Ay is defined in (7.2).

As above, let A* be the one-dimensional parameter space of a family of polarized
Calabi—Yau manifolds. Let 2 be the section of the first Hodge bundle F'™. Then by the
Nilpotent Orbit Theorem of Schmid (Theorem 2.19), after a possible base change, we

have
1

0= exp(\g?]\flog Z)A(z), (7.1)

where N is the nilpotent operator, N"*! = 0 for n the dimension of the Calabi-Yau
manifolds, and

* This was pointed out to the authors by Professor A. Todorov.
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is a vector-valued convergent power series with the convergent radius 6 > 0 (see §2 for

details). Let
1
1
fei(z) = P <log z)

for any k,l > 0. Then we can write {2 as the convergent series
1V
2= Z AkJZk (10g > = Z Ak,lfk,l~ (73)
k,l o k,l
Define deg fr; = k —1/(n+ 1). Then we have the following lemma.

Lemma 7.2. The convergence of (7.3) is in the C*° sense. Furthermore, we have

lo
1
HQ_ S Apafea|| < Crko <1Og) ; (7.4)
deg fr,1<p ce "
where r = |z|, ko, lo are the unique pair of non-negative integers such that ly < n,

ko —lo/(n+ 1) > p and for any pair of integers k', I with k' —1'/(n + 1) > p we have
E=U/(n+1)>ko—1lo/(n+1). C is a constant depending only on ko, lo, 1t and {2.

Proof. From (7.2), we have |Ax| < (
large k. Thus we know that

N
Z | Ak fi] < Z(%S)*k*lrk <log r) < 400,
Kl

and thus the convergence in (7.3) is uniform for r < id To prove that the convergence
is C® for any s > 1, we observe that

Jea =Efeeig — U101

§)~% and thus |Ag | < (36)7 %71 for small § and

1 1
2 1

Thus we have

!
1

E |Ag ik fro—10] + Akl fee1,-1] < E (35)F-tpht <log r) (k+n) <400  (7.5)

k,l k,l

for r < i(S . Thus the convergence is C'. Using mathematical induction, the convergence
is in fact in the C* sense. To get the quantitative result (7.4), we just observe that
(fk’l)(s) is a linear combination of fy_s, ..., fi—si—s With the coefficients not more than
(2(Jk] + |1]))®. An inequality like (7.5) gives the requires estimates. O

Having finished the convergence of the series, we prove the following.

Theorem 7.3. Assume the moduli space M of polarized Calabi—Yau threefolds is one
dimensional. If A* is a holomorphic chart of M such that A* is complete at 0 with
respect to the Hodge metric, then the Gauss curvature of the Hodge metric is bounded*.

* The referee pointed out that the result is also true for partial Hodge metric.

https://doi.org/10.1017/51474748004000076 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748004000076

Weil-Petersson geometry 217

To prove the theorem, we first assume that N Ay # 0. Under this assumption, we have
the following.

Lemma 7.4. If NAg # 0, then the expression

(oSt Yt (v L )

is a non-constant polynomial of log(1/r), where r = |z|.

Proof. By the definition of the operator N, we know that N is an element of the Lie
algebra of the Lie group Gi. Thus we know that the above expression is equal to

/—1 1 _
exp| ——Nlog — | Ap, Ag |-
2m 72
If the above expression is a constant, we then would have
(N Ap, ) = 0 (7.6)

for any positive integer [. Thus we would have

(a eXp((Nlog )Ao,exp(‘?mog )AO) -

Since, by the assumption, 9, exp((v/—1/27)N log(1/z)) A # 0, the Nilpotent Orbit The-
orem implies that

(6 exp(2N10g >A0,3 exp<2N10g )AO) 0,

which is a contradiction. O

In what follows we use [ to denote the degree of the polynomial in the above lemma.

Corollary 7.5. If NAg # 0, then
1 1 _
wwp — gl ydz Adz

e <1g1> 2 loa(1/1?

for any integer s > 0, where C' is a constant depending only on s, n and the convergence
radius 9.

< C7
C's

Proof. For any mononomials of the form z¢z*(log(1/r))!, with integers ¢, s, [, we define
the degree of it to be t + s — I/(n + 1). We write

1
_ 1 1 - 1
(2,02) = c(log ) + Ry (log ) + R(z7 z,log ),
r r r
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where c(log(1/2))! is the highest-order term of the polynomial in Lemma 7.4, Ry is the
polynomial of log(1/7) of degree less than or equal to I — 1 and R(z, Z,log(1/r)) contains
the terms with degree at least positive. From Lemma 7.2, the above series converges in
the sense of C°°. The corollary follows from the fact that

(12,92

e = 1 o)

]

Now we assume that N Ag = 0. We normalize (£2, £2) such that (Ag, Ag) = 1. Then we
have the following expansion,

!
log(£2,2) = P+ P+ f(z,%) <10g i) + R(z, %), (7.7)

where f(z,Z) # 0 is a homogeneous polynomial of degree 2k*, and P is a polynomial
of z of degree less than or equal to 2k — 1 but no less than 1 and R(z, z) is a series of
mononomials of degree great than 2k —[/(n + 1). In the expansion, we allow that [ = 0.
But if [ = 0, we assume that f(z, z) is not of the form of c(22* + z%¥), otherwise, we can
include f(z,%) in P + P. By Lemma 7.2, the expansion is convergent in the C> sense.
We have the following observation.

2k

Lemma 7.6. If] > 1, then there are no z2* or z?* terms in the polynomial f(z, ). In

particular,

0.0.f(2,2) #0.

Proof. From (7.7), we have the following expansion
— _ 1 U
(Q,Q) = 1—|—P+P+f(z,z)(logr> +oee

where the terms in ‘- - -7 are the terms of degree at least 2k — (I —1)/(n+ 1), or the terms
without log(1/r). If there is a non-zero 22* term in f(z, Z), we must have

(NIA2/€7 AO) 7& 0)

which is not possible because of the assumption NAy = 0. Thus there are no z%* or z2*

terms. Since f is not identically zero. This implies that

0,0.f(z,2) #Z0.

* We shall prove that the degree of the polynomial is actually an even number.
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By (7.7) and the C*° convergence, we have

!
= 1 1
A=-0.0.f(z2) (log ) + R(z, z,log )7 (7.8)
r r

where Adz ® dz defines the Weil-Petersson metric and where R(z, Z,log(1/r)) contains
terms of degree no less than 2k —2 — (I — 1)/(n + 1). Since A > 0, we must have

—0,0.f(2,%Z) > 0.

Thus 2k is an even number, otherwise the integral of the above expression along the unit
circle would be zero, contradicting to Lemma 7.6. So k is actually an integer.

Lemma 7.7. Using the same notations as above, we have
f(z,2) = er?*,
for some constant c.
Proof. By Corollary 6.5, we have, up to a constant
h > —0.0. log \,
where hdz ® dz defines the Hodge metric. By the Schwartz—Yau Lemma, we have

- 1
000X SIS o iog (/)

up to a constant. However, at a point where 9,0, f # 0, we have

}?(z,é,log(l/r)) >
—0.0.f(z,2)(log(1/r))! )

Using the same method as in the proof of Corollary 7.5, we have

5 1o R(z, z,log(1/r)) _
82821 g(l + 7az(§zf(za 2)(10g(1/7’))l) =0

log A = log(—0.0. f(2,2)) + llog <1og i) + log <1 +

(et

Using (7.9), we have
6252 IOg(_azng(Za 2)) = Oa

otherwise it could have been of the order r =2, which is a contradiction to (7.9). An elem-
entary argument using Lemma 7.6 shows the f(z,Z) must be of the form stated in the
lemma. ]

Proof of Theorem 7.3. First we compute the scalar curvature of the Hodge metric.
We use the same notation as in the previous sections. Let A be the Weil-Petersson metric
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and let h be the Hodge metric. Let

K=- 10g(Q7 Q)a

dlog A _ Al
0z

K = —0.1og(£2, ),

Fi11 = (£2,0.0.0.12),
Fiin = 01 Fiy — 31, Finn + 2K, Fuy,

A= A22K [Fyyy 2.

1
Fll_

Let Ry1;7 be the curvature of the Weil-Petersson metric and let Ry7;1 be the curvature
of the Hodge metric.

Since M is the moduli space of polarized Calabi—Yau threefolds and M is one dimen-
sional, from the Strominger formula we have

Riti1 = 202 — ALK Py 2
So the Ricci curvature of the Weil-Petersson metric is
Ric(A\) = —0.0:log A = =X\ Ri11 = —2XA + A 2K |Fpp)? = =20 + A.
This implies that
h=(m+3)A+Ric(A) = 44X+ (=2A + A) = 20 + A = A2+ A 32K | Fyy, 2).
So we have
0.h = O N2+ A 3e*K | Fipy|?)
+ A[=3A TN K Fip)? — 2073(02, 2)73(0.02, Q)| Fin1 |> + A 3?50, F111 Fiq1)
= MO+ N2 (=31 Fuyy + 2K Fiyg + 0.F11)
= hIY + A2 5P Fiog. (7.10)

Similarly, we have L
Ozh = hIly + A\ 2*X Fiy Fiong.

So the curvature of the Hodge metric is
Ritit = 0.0:h — h™10.hd:h

= 0z (hI}, + X 2e*X F11 Fii11) — h™10.ho:h

= O:hI}, + ho:TY, — 2020 0* K Fy Fin
—2072(02,2)73(2,0,2) Fii1 Fiinn + A 220, Fii Fin

+ A2 10 Fiiy — h10.ho:h

= (R} + 222K Py Frn ) DY 4 hos T, — 322 2K Py Fin

+ AL B F Py 4 20 2P K B Fro + A 2250, Fr Fian

+ A2 F10:(0,. Fi11 — 30 Fiyg + 2K, Fi1y) — h™10.ho:zh.
(7.11)
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Using 9;I'}; = 0.0 log A = — Ric()\) = 2\ — A, from the above formula we have

Ripi1 = TP+ THA 22X F P + (20 + A) (24 — A) + A 22K | iy |2
+ T2 iy + A 228 Fp (=3(20 — A) + 20 Fipy
— RN R + AT22E P g ) (hTE + A 22Ky Fron)
=407 — A% L A2 P )P+ ABA — 4N — AT Py P P )?
= 4N% —ANA +24% + X 22K P 2 (1 - Rt A)
= 40?7 —ANA + 2A4% X2 P P (2007
= 4N? —ANA + 247 20 e Py PR (7.12)

The scalar curvature of the Hodge metric is given by

p=—h" R
AD2 —ANA 4242 221K |y 2
- @A+ A2 (2M+ A2
_ 44T R P+ 2 AT P [t 26K P (7.13)
(2+62K>\73|F111|2)2 (2+62K)\73|F111|2)3' :

Apparently, the first term on the right-hand side of (7.13) is bounded. Thus in order
to prove the theorem, we just need to bound the second term of the right-hand side
of (7.13).

Case 1 (NAg # 0). In this case, by Corollary 7.5, we have

1
* Elog(t/r

For the Yukawa coupling Fi11, we always have Fyi; = O(1/r3). If |Fi11| = O(1/r?),
then |Fy111| = O(1/r®). Thus

(7.14)

2€2K/\_4|F1111 ‘2 — 0,

and is bounded. If Fjj; ~ 1/23, then we have the following asymptotic computations:

01 Fi11 ~ %37
Iy Fip ~ ;41,
|K1F1| < Cm-
Thus we have
Fin| < cm. (7.15)
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Using the fact that Fy11 ~ 1/23, we have
e2EN=3 S, (7.16)

Using (7.14), (7.15) and (7.16), we proved that in this case the curvature is bounded.
Case 2 (NAp = 0). In this case, by (7.8) and Lemma 7.7,

l
1 1
A = —ck?r?—1) <10g ) + R(z, z,log ) ,
r r

where R(z, z,log(1/r)) contains terms of order at least 2(k—1)—(I—1)/(n+1). We claim
that [ > 1, otherwise, by the above equation, we would have that the Hodge metric, as
the linear combination of the Weil-Petersson metric and its Ricci curvature, satisfying

< (os(1/)°

)

for some positive integer s, and thus is incomplete. A straightforward computation gives

1
2K y—2 2
et AT ~—.
Pl S og(1/my
This implies that
Fiyq ~ 2273,
and by using the same argument as we did in Case 1, we have

|Fii11] < Or?F—4,

Thus we have
2€2K)\_4|F1111|2 26_4K)\5|F1111|2
(2+ 2KX3[Fip[?)3 | Fi11/8 ’

and it is bounded. O

8. The Weil-Petersson geometry

By a classical result of Wolpert [30], the curvature of the Weil-Petersson metric on
Teichmiiller space is non-positive. However, the curvature of the Weil-Petersson metric
on the moduli space of Calabi—Yau manifolds does not have such a good property*. The
bad curvature property makes it difficult to do geometric analysis on the moduli space.
In order to overcome this difficulty, in [12,13], the first author introduced a new Kéhler
metric called Hodge metric. On one side, the holomorphic bisectional curvature of the
Hodge metric is non-positive, on the other side, up to a constant, the Weil-Petersson
metric is smaller than the Hodge metric. Thus one can use the Hodge metric to do the

* In fact, physicists found that the curvature of the Weil-Petersson metric on certain moduli space
can either be positive or negative [2, p. 65].
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similar geometric analysis as that on Teichmiiller space and then translate the results
back in the language of the Weil-Petersson metric.

In the proof of the non-positivity of the curvature of Hodge metrics (cf. [12,13] and
Theorem 4.3), we do not need the assumption that the manifold is the moduli space
of Calabi—Yau manifolds. All we need is the fact that the manifold is a horizontal slice
and there is a Weil-Petersson metric on it. In fact, the existence of the Weil-Petersson
metric gives severe restrictions on the variation of the Hodge structures. These kinds of
restrictions have not been studied comprehensively.

Lemmas 7.6 and 7.7 are good examples of how the existence of the Weil-Petersson
metric affects the variation of the Hodge structures at infinity of the horizontal slices. In
fact, using the notations in §7, Lemma 7.7 implies the following.

Proposition 8.1. Let k, | be defined in (7.7). Then if | > 1, we have
(N'A,, A)) =0
for any p+ q = 2k but p # ¢, where the vectors A, are defined in (7.2).

Besides the case p = 0, it is rather difficult to prove the above result without using the
Schwarz—Yau inequality. We believe that there are more properties of this kind. Because
of this, we defined the following concept of the Weil-Petersson geometry and would like
to study the properties in a systematic way.

Definition 8.2. The Weil-Petersson geometry contains a Kahler orbifold M with the
orbifold metric wwp such that the following hold.

(1) Let M be the universal covering space of M. Then there is a natural immersion
M — D from M to the classifying space D (cf. [6]) such that M is a horizontal
slice of D. In this way, we can also endowed the Hodge bundles F!,... , F"™ to M
where F'" is a line bundle.

(2) wwp is the curvature of the bundle F™. It is positive-definite and thus defines a
Kahler metric in M and is called the Weil-Petersson metric.

(3) M is quasi-projective and F™ is an ample line bundle of M. The compactification
is called Viehweg compactification [27, p. 21, Theorem 1.13]. The Hodge bundles
F' ..., F™ extend to the compactification M of M*.

ter passing to a finite covering and after desingularization, in a nel ourhoo
4) Af ing to a fini ing and after desingularization, i ighbourhood
of the infinity, M can be written as

An—k % (A*)k,

where A is the unit disk and A* is the punctured unit disk. Let {2 be a local section
of F™ in the neighbourhood, then locally, {2 can be (multi-valuedly) written as

1 1
= exp(\/—l(Nl log— + -+ Ng log))A(zl,...,zn),
<1 23

* This follows from Schmid’s Nilpotent Orbit Theorem [20].
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where Ni,..., Ny are nilpotent operators and A is a vector valued holomorphic
function of zq,..., z,.

Remark 8.3. The first property of above is basically the Griffiths transversality [6]. The
second property is a theorem of Tian [25]. The third one is the compactification theorem
of Viehweg [27] and the fourth property is the Nilpotent Orbit Theorem of Schmid [20].

The theorems in this paper are true for abstract Weil-Petersson geometry defined
above. A further study if the Weil-Petersson geometry will be the project of future
study. In particular, we wish to define a natural metric which is a modification of the
Hodge metric at infinity similar to that of McMullen’s [15] in the case of Teichmiiller
space. It would be interesting if we can do so in the category of the Weil-Petersson
Geometry.
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9. Appendix

In this appendix we prove Theorem 4.2. As before, the subscripts i, j,... all range from
1 to m, unless otherwise noted.

Proof of Theorem 4.2. By definition, w,, = pwwp + Ric(wwp), since the Weil-Peters-
son metric is Kéhler, we know w, is d-closed. From the Strominger formula (4.4), we
know the Ricci tensor of the Weil-Petersson metric is

R =—(m+1)g; + gleijkl_- (9.1)

Thus we have

hij = Agi + 9% Fijag, (9.2)
where A = i —m — 1. Thus w, > 0 which implies w,, is Kahler.

Usually, choosing a normal coordinate system will simplify the computation greatly.
However, in the following computation, the use of general coordinates will make the

computation easier.
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To simplify the computation we first calculate 0;D,D;f2. Using Remark 3.1 and
Lemma 3.2 we have

O Do D; 2 = 0)(0oDi 2 + Ko,D; 2 — I D, 12)
= 00(0,D;2) + (0,K,)Di 2 + Ko0,D; 2 — (0,1,) D2 — I 9, D, 2
99z

= 00(9,12) + 9oiDif2 + Ko gii2 — Ri7019" " D402 — 77 D2 9,12
= GitDaf2 + gaiDif2 — Rz 019" Do 2
= Fi019"" D02, (9.3)
Similarly, we have
8kD5D]-(2 = 5kD5DjQ = FpﬁkjgquqQ (9.4)

since F is a curvature like tensor. Now because {2 is holomorphic, we have 9,2 = 0,12 = 0.
Using Lemma 3.3, equation (9.4) and the Hodge-Riemann relations, we know that

(DaD;i$2,0,D5D;2) = F,5,59"1(Da D2, Dy 2) = 0,

which implies

Ohiz _ ,99:5 , (OxDaDif2, DsD,;2) op | (DaDif2,0:DsD;02) oj
oz, Oz (2, 9) g (12,9)
(DoaDif2,DgD;02) .5 ~ . (DaDif2, D5D;02) 9g°”
- - aB(9,0, 0 ~
TN A R R 1 ) 9
:/\591-3 (OkDaDif2,DsD;2) .5
Dz (12,0)
(K Do D:52, D5 D;02) e (I2,D,Di2, DD;2) 5
(£2,0) (£2,02)
_ /\agﬁ (TkaiaDqD,jQ)gaB P (DpDaQal?ﬁDj‘Q) af
Az, (02, 02) ik (£2,02)
995 | (Thai, DD ) .5
o T @ 9 T =)
(Thai, D D;12)

- Wgaﬂ + I hyj- (9.5)

Similarly, we have

Ohi;  (DaDif2,Tis;)
05 (2.9

9’ + Tjihig. (9.6)
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From (9.5) and (9.6), we have

9%h;  (0Tkai, DgD;02) of (Tkai,alDﬂDjQ)gaﬁ—

92107 .2 7 (12, 0)
(T4ai 2. DgD;2) o, 0 5 . (Thais DgD;02) 0g°°
- ~ oB(0,9,0 A
G A R T N TR
_ oh,
+ (L) hy; + T azij
_ (5lTkai’DﬁDj“Q)ga5 (Tkai,alDﬁDj.Q) af
(92,0) (2,9)
(Tkoﬂ',KlD_ngQ) ga’é _ (Tkaiargl?qu.Q) of
(92,0) (2,9)

(Do Dp2,Ty5)
(2,92)
(0 Tkais DsDi2) o5 | (ThaisTigg) ap | 77 Thois DaDs?) o5

= L @ AR T Pd ) qo [4i-ke g Pt o

w7 T 0 T @

(DaDy2,Tig)) o5 | +a

+ Riqkigpthj + I, ( 9*7 + F;Ilhpq>

+ Rz‘qkl'gpthj + Fﬁc (

. 7 T
Since
Ry = 0t Oy
J 021,07 0z, 0%

by (9.7), (9.5) and (9.6), we have

~ (0iThoi, DgD; 2) o5 (Tkai;Tlﬂj)gaB —7 Tkai, DgDp$2) 5

R-_» 7T = — —————————— N —
i7h1 X w0 ¢ T (@0
: (DaDy2.Ti5) o =
+ Rigrig™hy; + I, <(!§7 %) 9% + T fihpg

( (Tio : 2T
_ hst((TkauDﬁDtQ)gaﬂ +Fﬁchpt) <(D7D 02,1 ])g'y‘r +thsq>

(£2,02) (2,92) i
_ (51Tkm,DijQ)ga5 (Tkaiajjlﬂj)gaﬁ+ﬁ(Tkai,Dq7D69) of
(2,02) (2,02) T(2,9)
: (DD T5)) o5 1o
+Riqkl’9pth5+rﬁcé—mﬁj9 6+F£«Ffzhpq
t Tai7D Dy 2 af D Ds'Q»TiT' 7 st g
7h’8t( k(Q %)t )g B( ’Y(Q Q)lj)gfy 7htFlZ]:;hpt7F]qthq
(Thoi DyDi8?) i (D,D.2,Tin)) .-
_ hst( kais B )gaﬁpjg‘lhsq _ hst( vy sdey L] J)g'y'r[vl;l])chp{

(2,0) (2,0)
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_ TioisTig) o pysi (Lot DaDif2) 05 (D3 Ds 2 Tirj) e
(£2,42) (12,02) (12,92
0 Tyai, DgD;f2) .3 .
R TR 54 Rt . (08)

Using (9.3), Lemmas 3.2 and 3.3 and the Hodge-Riemann relations, we have

(5lTk:oci7Df3DjQ) af
(42,42)
_ (90D, D3D;9) o | (BKi)DaDi2.DD;9) o
(£2,02) (£2,0)
(@OTBID, DR DD 5 (AT)D,Du0.DiD50)
(£2,0) (£2,02)
= al_inka_;gaﬁgpq + Faﬁijgaﬁgkl_ - Ratjkl_FpBijgaﬁgpq - Ri(jkl_FpBajgaﬁgpq'
(9.9)

By (9.2) and the Strominger formula (4.4), the above expression is
FiqatFying9™" 9" + FoqniFipa9°" 9" + M9i3951 + 9:9k3) — A+ DEgr. - (9.10)
Using the Hodge-Riemann relations we have

(Trai; Tipj) of _ (DeDaDi2, DiDsD;2) 5 (Ekais Eigj) op

_ _ = 9.11
@0 ¢ (2.9) ! (2.9) (8-10)
and
hsf(Tkai7D/3_Dt‘Q) (D’YDS'Q_’TTj)gDLBg’Y‘F — hsf(EkOti?D[th‘Q) (D’YDS‘QlElTj) afl ~T
(92,02) (£2,0) (£2,0) (£2,0) '
(9.12)
Theorem 4.2 follows from (9.10), (9.11) and (9.12). O
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