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SUMMARY
If the joint clearances of the joints of a manipulator are considered, an unconstrained motion of the
end-effector can be computed. This is true for all poses of the manipulator, even with all actuators
locked.

This paper presents how this unconstrained motion can be determined for a planar 3-RPR
manipulator. The singularities are then studied. It is shown that when clearances are considered,
the singularity curves normally found in the workspace of such a manipulator become singular zones.
These zones can be significant and greatly reduce the usable workspace of a manipulator. Since
a prescribed configuration that would not, in theory, corresponds to a singular pose can become
singular due to the unconstrained motion, the results of this paper are relevant to manipulator design
and trajectory planning.
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1. Introduction
Many researchers have worked on the optimization of kinematic properties and the identification of
singular configurations. These configurations result in an instantaneous change of degrees of freedom
(DOF), loss of control, and a degradation of much sought kinematic properties of parallel manipulators.
Different works can be found on the study of singular configurations, on their classification, on their
computation, and on their avoidance.

Gosselin and Angeles1 classify singularities of parallel manipulators into three types, based on the
Jacobian matrices. The first type corresponds to the workspace boundary and to boundaries inside
the workspace that separate regions that do not have the same number of solutions to the inverse
kinematic problem (IKP). The inverse Jacobian matrix is then singular. The second type, where the
direct Jacobian matrix is singular, may occur inside the workspace, and the third type, often called
architectural (certain special geometrical parameters are needed), can be avoided at the design stage.
In this case, both Jacobian matrices are singular simultaneously. Zlatanov, Fenton and Benhabib2,3

have compiled and grouped singularities into 6 types and 21 classes using velocity equations. This
classification is exhaustive. For the planar 3-RPR (revolute-actuated prismatic-revolute) studied here,
all possible singular configurations can be obtained using the simpler classification of Gosselin and
Angeles,1 where only the Jacobian matrices are needed. Also, since this architecture is well-known, the
singularity equations have already been obtained.4,5 Singularity curves have also been superimposed
onto the cartesian workspace, for best interpretation of the results.4,6,7

In order to avoid singularities, some work exists on trajectory planning,8–10 on redundant
actuation,11–13 and even on adding braking systems at the passive joints.14 Other works focus on
parallel manipulator synthesis in order to obtain architectures having singularity-free workspaces.15,16

A source of error of the position and orientation accuracy is the clearance in the joints. Researchers
agree on the necessity to study joint clearances.17–22 Calibration of manipulators can compensate for
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errors caused by the link dimensional tolerance, since these errors are predictable. For this reason,
some say joint clearance is a more important source of error.20

In two-dimensional (2D), joint clearances in revolute joints are modeled in different manners.
Ting, Zhu and Watkins23 model clearances by replacing each of the joints with an additional actuated
link having a length equal to half of the clearance. Their model is used to geometrically determine
the largest possible errors. Tsai and Lai24,25 and Ting, Hsu, Yu and Wang22 also model clearance in
revolute joints by replacing them with links, but these are not actuated.

Other authors include the effect of clearances by varying the length of certain links and obtain a
workspace when the actuators are locked.19,26,27 This approach is used in this paper, where the leg
lengths vary according to the clearance of the passive revolute joints. The workspaces are obtained
with the algorithm presented in ref. [28],where the boundaries of a constant orientation workspace
are composed of arcs for the manipulator studied. The method is easy to implement in a computer
algorithm.

The errors due to joint clearance vary inside the workspace. These errors are included inside an
unconstrained workspace, which can be obtained at any prescribed posture of the manipulator. The
unconstrained workspace represents the possible movement of the end-effector when the actuators are
locked. For task or trajectory planning, it is important to know how these errors can affect kinematic
properties, especially the location of singular configurations.

The workspace of a manipulator without joint clearances may contain singularity curves. When
considering finite values of clearance, these same singularity curves become singularity zones.
Knowing where these zones are located may greatly help task or trajectory planning, and even the
design of a manipulator.

In this paper, the planar 3-RPR parallel manipulator is considered and its kinematics are briefly
recalled. Then, the constant orientation workspace is calculated, as well as the Jacobian matrices.
Algorithms are presented to obtain the unconstrained workspace of the manipulator, which will be
useful to compute singularity zones of the manipulator. In Section 3, a joint clearance model is
presented, as well as the computation of the resulting unconstrained workspace. In Section 4, the
algorithm used to obtain the singularity zones is explained. Results are then presented, followed by
the conclusions.

2. The Planar Three-Degree-of-Freedom Parallel Manipulator
The manipulator studied in this paper is well-known. This section recalls the geometry, workspace,
and velocity equations needed to study the effects of joint clearances on the singular configurations
of the manipulator.

2.1. Geometry and inverse kinematic problem (IKP)
The manipulator is shown in Fig. 1. The geometry of the base is defined by the position vectors r1,
r2, and r3 of the fixed revolute joints expressed in a fixed reference frame: Oxy. The geometry of
the mobile platform is defined by three vectors: s10, s20, and s30, giving the position of the mobile
revolute joints and expressed in the reference frame O′x′y′, which is attached to the mobile platform at
the end-effector. These same vectors are denoted si, i = 1, 2, 3 when expressed in the fixed reference
frame.

The mobile platform is connected to the fixed base via three identical RPR kinematic chains, where
the prismatic joint is actuated. Vectors ui, i = 1, 2, 3 are along the length of the prismatic joints and
originate at the fixed revolute joints on the base. The length of each actuator (which is assumed to be
positive) is given by ρ1, ρ2, and ρ3, which are the lengths of vectors ui, i = 1, 2, 3. The output can
be expressed as the position vector p = [

x, y
]T

and the rotation matrix Q:

Q =
[

cos φ − sin φ

sin φ cos φ

]
, (1)

where φ is the orientation of O′x′y′ with respect to Oxy.
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Fig. 1. The 3-RPR planar parallel manipulator.

For each of the kinematic chains, the solution to the IKP is given by

ρ2
i = uT

i ui = (p + si − ri)
T(p + si − ri), i = 1, 2, 3, (2)

2.2. Workspace
The most common type of workspace for planar 3-DOF manipulators is the constant orientation
workspace. For a constant orientation, where vectors si, i = 1, 2, 3 are fixed, the constant orientation
workspace is the intersection of three annular regions, each composed of two concentric circles,
centered at the end of vectors ri − si, i = 1, 2, 3. The inner and outer radii correspond to the minimum
and maximum actuated leg lengths ρi,min and ρi,max, respectively, for i = 1, 2, 3. To obtain an x, y, φ
workspace, the orientation φ can be varied and the constant orientation workspace obtained at each
value of φ. This is useful for determining the unconstrained motion of the manipulator.

2.3. Singularities
The Jacobian matrices are obtained by differentiating the IKP Eq. (2) with respect to time:

2ρiρ̇i = 2(p + si − ri)
T(ṗ + Q̇si0), i = 1, 2, 3. (3)

With

p + si − ri = ui and Q̇si0 = φ̇EQsi0, (4)

where

E =
[

0 −1
1 0

]
, (5)

Eq. (3) can be written in matrix form:

A[ρ̇1 ρ̇2 ρ̇3]T = B[ṗ φ̇]T, (6)

where

A =

⎡
⎢⎣

ρ1 0 0

0 ρ2 0

0 0 ρ3

⎤
⎥⎦ and B =

⎡
⎢⎣

uT
1 uT

1 EQs10

uT
2 uT

2 EQs20

uT
3 uT

3 EQs30

⎤
⎥⎦ . (7)
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Fig. 2. Clearance in a passive revolute joint.

Matrix B is singular when vectors u1, u2, and u3 intersect at one point or at infinity (parallel). These
singularities are of type II1 and can be located inside the workspace. The locus of the singularities in
the workspace is obtained by writing det (B) = 0. For this manipulator, the equations are quadratic
for a constant orientation:4

E1x2 + E2y2 + E3xy + E4x + E5y = 0, (8)

where coefficients Ei, i = 1, 2, . . . , 5 are a function of the orientation and the geometry of the
manipulator (vectors ri and si0, i = 1, 2, 3).

3. Unconstrained Workspace Caused by Joint Clearance
This section first presents how the clearance is modeled inside the passive revolute joints and its effect
on each leg. It is then shown what unconstrained motion of the end-effector is possible when the
actuators are locked. The unconstrained motion of the end-effector, caused by clearance, may cause
an important degradation of the global properties of the manipulators. The aim of this study is to find
all configurations that may become singular due to joint clearance.

3.1. Joint clearance model
Figure 2 shows the simple 1-DOF clearance model chosen for the passive revolute joints. The clearance
is defined as the distance between the center of the pin and the center of the hole, when there is contact
in the joint.

When the prismatic actuators are locked, each RPR leg becomes an RR kinematic chain. Then,
the clearance of each revolute joint is considered (δ1 and δ2). The total possible variation of each leg
length due to clearances is 2δ, where δ = δ1 + δ2. This result can be applied in the same manner to
a SPS (S for spherical) kinematic chain, which becomes a SS kinematic chain when the prismatic
actuator is locked.

For the remainder of this paper, δ designates the combination of the passive joint clearances. For
the determination of the unconstrained workspace (when the actuators are locked), the following
minimum and maximum leg lengths will be used for i = 1, 2, 3:

ρi − δ minimum leg length
ρi + δ maximum leg length. (9)

Some authors vary the link lengths of manipulators in the same manner as presented here in order
to model the clearance present in the joints.19,26,27 Others obtain the position error at the end-effector
due to errors in the actuators.29,30 This is similar to the approach used here when the actuators are
prismatic, but the authors specify that their method is valid when used in a singularity-free area of the
workspace. In this paper, the clearance is modeled at singular configurations.

3.2. Unconstrained workspace
The unconstrained workspace represents the possible movement of the end-effector when the actuators
are locked. It can be obtained for any prescribed pose of the end-effector. The unconstrained workspace
is obtained in the same manner as the workspace of the manipulators, by substituting the minimum
and maximum prismatic actuator lengths with the corresponding values defined in Eq. (9). If this
workspace is composed of more than one piece (not simply connected), only the one containing the
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Fig. 3. Unconnected unconstrained workspace.

initial chosen position is truly the unconstrained workspace, as the end-effector cannot move from
one to the other. An example is shown in Fig. 3, where the workspace obtained is composed of two
separate areas, highlighted with black and white stripes. The area where the end-effector is identified is
the true unconstrained workspace. Therefore, the other area marked with an X is the area to eliminate.

The boundaries of the workspace is defined by a list of arcs. The following steps are used to select
and keep only the arcs that make up the true unconstrained workspace:

1. Determine which arc is closest to the end-effector. This arc becomes the first arc of the list of
arcs that will define the boundaries of the unconstrained workspace. One of its ends becomes the
starting point.

2. Search remaining arcs to find one adjacent to the last arc added to the list. Add to the list.
3. Determine if last arc added closes the loop by joining the very first arc of the list. In the affirmative:

stop, otherwise go to previous step.

At this point, only constant-orientation workspaces have been considered. Since the orientation
of the end-effector is also unconstrained, an xyφ unconstrained workspace must be obtained. This is
possible by discretizing the value of the orientation φ. The increment (�φ) must be sufficiently small
to resemble the actual xyφ unconstrained workspace, but large enough to minimize computation time.
The value of �φ must be carefully chosen for each architecture.

For each value of φ, arcs that are not part of the unconstrained workspace must be eliminated as
described above. Furthermore, the unconstrained workspaces of two consecutive values of φ must be
connected for the end-effector to rotate from one orientation to the other. To verify this, the existence
of the intersection of these workspaces, projected on the same xy-plane of the xyφ configuration space,
is verified. If this intersection exists, the two workspaces are considered to be connected.

Figure 4 illustrates an example of connected consecutive workspaces, when projected on the same
plane. The following algorithm is used to check for an intersection of two workspaces:

1. Have a list of arcs, arcs1, defining the boundaries of an unconstrained workspace.
2. Obtain a list of arcs, arcs2, defining the boundaries of a second unconstrained workspace.
3. Verify if at least one arc of list arcs2 intersects one of the arcs from list arcs1. If yes: stop, an

intersection of the workspaces exists.
4. Verify if any arc of list arcs2 is inside the boundaries defined by arcs1. If yes: stop, an intersection

of the workspaces exists.
5. Verify if any arc of list arcs1 is inside the boundaries defined by arcs2. If yes: stop, an intersection

of the workspaces exists.
6. There is no intersection of the workspaces.
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Fig. 4. Workspaces obtained for two consecutive values of φ projected onto the xy-plane.

Fig. 5. xyφ unconstrained workspace of the manipulator for a chosen position and orientation of the end-effector.

The xyφ unconstrained workspace of Fig. 5 shows no discontinuities and is entirely connected.
The end-effector could thus reach any point of any orientation shown.

The shape and size of xyφ unconstrained workspaces vary for different xyφ values inside the
workspace of the 3-RPR manipulator. This unconstrained motion will cause position and orientation
errors of the end-effector. Kinematic properties of the manipulator will vary. The worst case scenario
is when the unconstrained motion of the manipulator in a non-singular configuration may allow the
manipulator to reach a singular configuration under the action of certain external forces or moments.
This possibility exists if the three-dimensional (3D) unconstrained workspace intersects the singularity
manifold.

For trajectory planning, it is thus important not only to avoid singularity curves located inside the
workspace, but also all configurations that may become singular, which will be called singularity
zones henceforth. The following section explains how all singular zones are identified.

4. Algorithm for Obtaining Singularities
The algorithm presented here is useful for identifying the areas of the workspace where the manipulator
may reach a singular configuration, and allow for a clearance-free planning of tasks in the singularity-
free part of the workspace. It is therefore useful in choosing a singularity-free trajectory inside of the
workspace.

The methods proposed here are based on the following principle: At a given point A of the workspace
of the 3-RPR, the unconstrained workspace is obtained and includes a point B. If, at this point B, the
unconstrained workspace is obtained, it will include point A. This is illustrated in Fig. 6 for a planar
2-DOF manipulator, where points A and B are inside both unconstrained workspaces. The same is true
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Fig. 6. Two points, A and B, each with their respective unconstrained workspaces.

for the 3-RPR manipulator. If point B is chosen inside the xyφ unconstrained workspace computed
at point A, point A would be included in the xyφ unconstrained workspace computed at point B.

The inverse kinematic solution of point A will be included in the [ρi − δ, ρi + δ], i = 1, 2, 3
intervals obtained from the inverse kinematic solution of point B and vice-versa. Most importantly, if
point A represents a singularity and an unconstrained workspace is obtained, any point B included in
this workspace will represent a potential singular configuration as its own unconstrained workspace
will include the singular point A. Point B is thus part of the singularity zone. The search for all the
areas constituting the singularity zone will therefore originate on the singularity manifold.

The goal is to obtain the singularity zones of a constant orientation workspace (φ = φchosen).
However, since the unconstrained workspace is a region of the 3D xyφ space, the unconstrained
rotation is considered when determining whether a xyφchosen point is inside the singularity zone. For
incrementing values of φ, the singularity curves are obtained and discretized to obtain a list of xy
points at which the unconstrained motion is computed. If, at any value of φ, the 3D xyφ unconstrained
workspace of a singular xy point contains the originally chosen orientation (φchosen), the corresponding
2D xy slice of the 3D xyφ unconstrained workspace is part of the singularity zone.

The following four steps of the algorithm, repeated in a loop with incrementing values of φ, add to
the singularity zone until it is complete. The value of φ starts at φchosen and increases by �φ with each
cycle through the loop until an orientation that contributes nothing to the singularity zone is reached.
The value of φ is then reset to φchosen and decreased by �φ with each cycle through the loop until an
orientation that contributes nothing to the singularity zone is reached. The singularity zone will then
be complete. These are the steps to execute at each value of φ:

1. Obtain the singularity curve and discretize to obtain list of points (xi, yi), i = 1 . . . n.
2. For each of the n points, obtain leg lengths ρ1, ρ2, and ρ3.
3. For each of the n points, obtain 3D xyφ unconstrained workspace.
4. For each of the n points, verify if xyφ unconstrained workspace contains a xy slice corresponding

to φchosen. In the affirmative, add xy slice to singularity zone.

At the first cycle through the loop, steps 1 and 2 remain the same. However, steps 3 and 4 are
simplified as the value of φ is φchosen: the n 2D xyφchosen unconstrained workspaces are computed
and plotted on the constant orientation workspace, as their union will constitute part of the final
singularity zone. Figure 7 shows this preliminary result. At this stage, the unconstrained rotation
of the end-effector has not yet been considered. In the example of Fig. 7, the singularity curve is an
ellipse. The unconstrained workspaces are shown for different points of the ellipse. The corresponding
constant orientation workspace of the manipulator is also shown.

5. Results
The singularity zones include all positions (for a chosen orientation) of the end-effector that may
allow the manipulator to reach a singular configuration. Outside of these zones, it is impossible
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Table I. Architecture of the planar 3-RPR manipulator.

Fixed base Mobile platform

r1 = [ 0 0 ]T s01 = [ −0.2 − 0.2 ]T

r2 = [ 1 0 ]T s02 = [ 0.2 0 ]T

r3 = [ 0 1 ]T s03 = [ −0.1 0.3 ]T

Fig. 7. The singularity zone obtained before the unconstrained rotation of the end-effector is considered.

Fig. 8. Singularity curve obtained with a constant orientation φ = 60
◦

and the singularity zones corresponding
to δ = 0.1 and δ = 0.2.

for the manipulator to reach a singular configuration. All the following results were obtained using
Matlab R©.

The fixed base of the planar 3-RPR is defined by vectors r1, r2, and r3 presented in Table I.
The mobile platform is described by vectors s01, s02, and s03, expressed in the mobile reference
frame attached to the mobile platform. The minimum and maximum leg lengths are ρmin = 0.3 and
ρmax = 2.7, respectively, and are identical for ρi, i = 1, 2, 3. The results presented are obtained with
this architecture.

Figure 8 shows, for an orientation of 60
◦
, the effect of the value of δ on the spread of the singularity

zone.
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Fig. 9. Singularity curve for φ = −30◦ and the singularity zone when δ = 0.1.

Fig. 10. Singularity curves for φ = −40◦, −30◦, −25◦, and −20◦.

The smaller paler zone corresponds to δ = 0.1 and the larger darker zone corresponds to δ = 0.2.
The ellipse corresponds to the singularity curve (δ = 0). The constant orientation workspace is also
shown. According to these results, doubling the value of δ does not have the effect of doubling the
area of the singularity zone.

Similarly to the case with φ = 60
◦
, the singularity locus for an orientation of −30

◦
is also an ellipse

(see Fig. 9). As opposed to the first chosen orientation, the singularity zone for δ = 0.1 is much more
extensive and divides the workspace into two unconnected parts. This phenomenon can be explained
with the help of Fig. 10. Figure 10 shows how the singularity curve evolves for varying orientations
around the chosen value of −30◦. For diminishing values of φ, the singularity curve continues to be
elliptical, as shown in Fig. 10 for φ = −40◦. Between values φ = −30◦ and φ = −25◦, the singularity
curve changes from elliptical to hyperbolic. Furthermore, while φ varies from −30◦ to −25◦ (only
5◦), the movement of the curve sweeps a large area.

The same phenomenon occurs on the other side of the elliptical-hyperbolic transition, seen in
Fig. 11. At an orientation of 20

◦
, the singularity curve is an ellipse, but the transition to a hyperbola

is sufficiently close to influence the shape of the singularity zone when δ = 0.2.
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Fig. 11. Singularity curve for φ = 20◦ and singularity zone with δ = 0.2.

Fig. 12. Singular curves at φ = −10◦, 0◦, and 10◦.

At an orientation of φ = 0◦, the singularity curves are two intersecting lines. Figure 12 shows the
singularity curves corresponding to orientations φ = −10◦, φ = 0◦, and φ = 10◦. For small variations
in orientation, the singularity curves change rapidly. This leads to large singularity zones, when the
joint clearances are considered. The usable constant orientation workspace is thus greatly diminished.
Figure 13 shows the workspace and the singularity zones when δ = 0.2. The singularity zone is
very extensive, compared to the first results shown, when φ = 30◦. When planning a given task, it is
important to choose an orientation interval as far away as possible from rapid changes in the shape of
the singularity curves.

6. Conclusion
The effect of the joint clearances on the singularity configuration was evaluated. Algorithms were
presented in order to obtain a connected unconstrained workspace and the singularity zones of a planar
3-RPR manipulator.
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Fig. 13. Singular curves at φ = 0◦ and corresponding singularity zone for δ = 0.2.

The singularity zones of the manipulator were presented for chosen orientations and for two
different values of δ: δ = 0.1 and δ = 0.2, the effect of the joint clearances. To the author’s knowledge,
this type of result has not been obtained by others.

Some important observations were made. First, a doubled value of δ did not have the effect of
doubling the area of the singularity zone. In fact, the area and shape of the singularity zone did not
behave as intuition would predict. Also, the manipulator had relatively small singularity zones for
certain orientations and extensive singularity zones at other orientations. It was shown that the size
of the singularity zones were related to the rate of change of the shape of the singularity curve in the
proximity of the chosen orientation φ. The singularity zones were larger if the singularity curves show
greater variations in shape for small variations of φ. A special case arises at the orientation φ = 0◦,
where the singularity curves are two intersecting lines. Most of the useful workspace disappears as it
is transformed into singularity zones for δ = 0.2.

The algorithm presented here to obtain the singularity zones may be applied to any 3-RPR or 3-SPS
manipulator. It may be simplified for a 2-RPR planar manipulator and modified for a n-RPR or n-SPS
manipulator.
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