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In this work, we investigate the mixing of active scalars in two dimensions by the stirring
action of stochastically generated weak shock waves. We use Fourier pseudospectral direct
numerical simulations of the interaction of shock waves with two non-reacting species to
analyse the mixing dynamics for different Atwood numbers (At). Unlike passive scalars,
the presence of density gradients in active scalars alters the molecular diffusion term and
makes the species diffusion nonlinear, introducing a concentration gradient-driven term
and a density gradient-driven nonlinear dissipation term in the concentration evolution
equation. We show that the direction of concentration gradient causes the interface across
which molecular diffusion occurs to expand outwards or inwards, even without any stirring
action. Shock waves enhance the mixing process by increasing the perimeter of the
interface and by sustaining concentration gradients. Negative Atwood number mixtures
sustain concentration gradients for a longer time than positive Atwood number mixtures
due to the so-called nonlinear dissipation terms. We estimate the time until that when
the action of stirring is dominant over molecular mixing. We also highlight the role of
baroclinicity in increasing the interface perimeter in the stirring dominant regime. We
compare the stirring effect of shock waves on mixing of passive scalars with active scalars
and show that the vorticity generated by baroclinicity is responsible for the folding and
stretching of the interface in the case of active scalars. We conclude by showing that lighter
mixtures with denser inhomogeneities (At < 0) take a longer time to homogenise than the
denser mixtures with lighter inhomogeneities (At > 0).

Key words: turbulent mixing

1. Introduction
Mixing is the process of evolution of constituent concentrations from an initial state of
segregation to a final state of homogeneity (Villermaux 2019). Usually, the influence
of turbulence on the mixing of passive scalars is studied to quantify turbulent mixing
(Sreenivasan 2019). The evolution of the concentration (c) of a passive scalar is governed
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by the advection and molecular diffusion terms as shown in (1.1). Molecular diffusion acts
across the interface and reduces the mean value of concentration gradients (Eckart 1948).
In the absence of advection, mixing by molecular diffusion occurs at a relatively slow rate
(Tennekes & Lumley 1972). Any action that affects the advective term of (1.1) is termed as
‘stirring’. Stirring enhances the mixing process by increasing the mean value of gradients
and increases the area across which molecular diffusion occurs (Eckart 1948). Mixing
comprising of both stirring and molecular diffusion can be split into two regimes: the
regime where stirring dominates over molecular diffusion and the regime where molecular
diffusion becomes the significant contributor to mixing (Meunier & Villermaux 2003;
Sreenivasan 2019). In this work, we investigate the stirring effect of nonlinear acoustic
waves (weak shock waves) and analyse the mechanism by which shock waves enhance the
mixing process.

∂c

∂t
+ u · ∇c = D∇2c. (1.1)

Dimotakis (2005) classifies the mixing process into three levels based on the effect of
the mixing constituents on the flow dynamics. The mixing of passive scalars is called
level-1 mixing, where the mixing constituents have no effect on the flow dynamics
irrespective of the coupling due to density gradients. Examples involve the mixing
of pollutants, dyes, smoke particles, etc. in fluid. The mixing of active scalars is
termed as level-2 mixing, where the mixing process is coupled with the flow dynamics
through density gradients. Rayleigh–Taylor and Ritchymer–Meshkov instabilities (RMI)
(Richtmyer 1954; Meshkov 1969) are examples of level-2 mixing. Mixing that proceeds
with changes in fluid composition is called level-3 mixing. Combustion and detonations
are some of the best examples of level-3 mixing. There exists an abundant literature
on the mixing of passive scalars in both incompressible and compressible flow fields.
Experimental studies on the mixing of passive scalars show that scalar gradients decay
with time, and the role of vorticity in turbulent fields is to sustain scalar gradients
(Buch & Dahm 1996). Meunier & Villermaux (2003) study the mixing of a passive
scalar blob using a diffusing Lamb–Oseen type vortex, and show that the changes in
concentration can be used to indicate the time in which the effect of stirring is dominant.
They identify ‘mixing time’ as an indicator to denote the time during which the action of
stirring is dominant over molecular diffusion. They show that the maximum concentration
grows linearly until a mixing time is reached, after which it decays in time as t−3/2.
Schumacher & Sreenivasan (2005) derive a relation between the geometrical properties
and the mixing statistics of passive scalars using direct numerical simulations (DNS) of
a stochastically forced isotropic turbulent field. They relate the area-to-volume ratio to
the passive scalar concentration fluctuations and show that the fluctuations mostly follow
a Gaussian distribution. Ni (2016) reports that the convolution of scalar fields in forced
compressible turbulent flow fields is more pronounced in forcing schemes with a higher
ratio of solenoidal-to-dilational components. In a similar study, John et al. (2019) show
that the breakdown of the passive scalar field depends on the solenoidal components and
that the role of compressibility is negligible in the mixing of passive scalars. Gao et al.
(2020) challenge the idea of negligible compressibility effects on mixing by showing the
alignment of shock with scalar gradients affects mixing in a canonical shock–turbulence
interaction configuration. However, only a few studies exist that analyse the level-2 and
level-3 mixing in compressible flows. In this work, we analyse the level-2 mixing of two
non-reacting fluids of different densities and study the effect of density inhomogeneity on
mixing and flow dynamics in a randomly forced shock-wave field in a two-dimensional
set-up.
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Ritchymer–Meshkov instabilities refer to the growth of perturbations in the interface
between two fluids of different densities under the influence of an impulsive acceleration.
Ritchymer–Meshkov instabilities are observed in various man-made applications such as
inertial-confinement fusion and supersonic combustion (Thomas & Kares 2012; Yang
et al. 1993; Zhou et al. 2021), as well as naturally occurring phenomena in astrophysics
(Burrows 2000; Arnett 2000; Zhou 2017). In cases where shock waves are used for
impulsively accelerating the interface, the baroclinic vorticity generated at the interface
by the misalignment of pressure gradients and density gradients triggers the growth of
perturbations on the interface. The growth of these perturbations triggers other instabilities
like Kelvin–Helmholtz instabilities (KHIs), leading to enhanced mixing (Brouillette 2002;
Zhou 2024). The RMI enhanced mixing plays an important role in the design of inertial-
confinement fusion reactors (Thomas & Kares 2012; Zhou et al. 2025), and the combustion
chambers of supersonic air-breathing engines (Yang et al. 1993). The change in interface
profile caused by RMI is used to develop stellar evolution models to explain the evolution
of supernovae explosions (Burrows 2000; Arnett 2000). Ritchymer–Meshkov instabilities
are also the fundamental process for studying shock–flame interactions, where the density
difference between the two species is used to model burnt and unburnt fuel mixtures, and
the passage of shock waves is used to study the flame propagation and the formation of
detonation waves (Al-Thehabey 2020). Primarily, the interfacial mixing and the dynamics
of the interface are studied in RMI. Yu et al. (2021) show that density gradients across the
interface govern the mixing rate. They derive an exact mixing rate expression and show
the difference in mixing rates during different stages of RMI. Gao et al. (2016) use Favre
averaging of mass fraction to derive the growth rate of the mixing zone width and show that
compressibility suppresses the mixing rate for a single pass RMI case. They also report a
reduction in the role of the diffusion term in mixing with time. The interface dynamics in
RMI are explained in terms of the kinematics of the large-scale coherent structures: spikes
(penetration of denser fluid into lighter fluid) and bubbles (penetration of lighter fluid into
denser fluid). Zhang (1998) uses the Layzer-type model (infinite density ratio across the
interface) to show that spikes and bubbles have different growth rates. Herrmann et al.
(2008) report that bubbles across interfaces of similar density differences move faster and
flatten slower compared with interfaces of higher density differences. They conclude that
the evolution of the interface is a non-local and multiscale process. Li et al. (2021) develop
an analytical model to explain the compression and stretching effect of the mixing layer
for a single passage of shock wave. They also show that the mixing triggered by RMI
lasts even after the passage of the shockwave. In the present work, we use stochastically
forced shock waves to induce multimodal perturbations on the interface. We study the
mixing induced by such shock waves across interfaces of different density ratios. To this
end, we use a simplified two-dimensional model to analyse the mixing characteristics and
interface dynamics resulting from continuous and stochastic forcing of a set-up resembling
that of RMI using shock-resolved DNS of the fully compressible Navier–Stokes
equations.

In this work, we analyse the mixing of active scalars driven by random shock waves.
We consider binary mixtures of two non-reacting species with different density ratios.
Throughout, we consider a circular shaped inhomogeneity (blob) with a smaller area than
the rest of the domain. In § 2, we discuss the governing equations we use to study the
mixing enhancement effect of shock waves. We also discuss the details of the numerical
set-up and the parameters used to carry out the shock-resolved DNS. In § 3, we first discuss
the effect of density gradients on the diffusion of active scalar without shock waves.
We use a simplified one-dimensional (1-D) nonlinear diffusion equation to show that the
direction of the density gradients affects the evolution of mass fraction due to nonlinear
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diffusion. We next show the stirring effect of shock waves and its role in enhancing the
mixing. We also show the role of baroclinicity in increasing the perimeter across which
diffusion occurs before concluding with a summary of our findings in § 4.

2. Governing equations and numerical simulations
In this section, we discuss the governing equations and the numerical method used to study
the mixing of two non-reacting species by stochastically forced shock waves. We use the
previously developed forcing scheme for generating a random shock-wave field (Jossy &
Gupta 2023) and summarise it below along with the parameter space.

We use the dimensionless form of the Navier–Stokes and species equation to analyse the
mixing of active scalars by shock waves. A non-reacting binary mixture is used to create
different density inhomogeneities by varying the molecular weight (Wi ) of the species.
The dimensionless equations of the density ρ, velocity u, pressure p and concentration of
the i th species Yi (mass fraction) are given by

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

∂u
∂t

+ u · ∇u + ∇ p

ρ
= 1

ρReac
(∇ · (2μS)) + 1

ρReac

(
∇ ·
(

κ − 2μ

3

)
D
)

+ F, (2.2)

∂p

∂t
+ u · ∇ p + γ p∇ · u = 1

Reac Pr
∇ · (α∇T ) + γ − 1

Reac

(
2μS : S +

(
κ − 2μ

3

)
D : D
)

,

(2.3)

∂Yi

∂t
+ u · ∇Yi = 1

ρ Reac Sc
∇ ·
(

ρ
Wi

W
∇Xi

)
, (2.4)

where W is the mean molecular mass of the mixture, and Xi is the mole fraction of the i th

species related to the mass fraction Yi as

Xi = W

Wi
Yi . (2.5)

We combine the above equations using the dimensionless equation of state for an ideal gas
mixture,

γ p = ρ

W
T, (2.6)

where
1
W

= Y1

W1
+ Y2

W2
. (2.7)

We use the pressure equation (2.3) derived from the conservative energy equation and the
internal energy equation for an ideal gas (Kundu et al. 2015). We note that solving pressure
equation is equivalent to solving the internal energy equation for a perfect gas. Moreover,
the pressure equation has been extensively used previously in mixing and compressible
turbulence studies spanning all ranges of Mach numbers (Sarkar et al. 1991; Sarkar 1995;
Pantano et al. 2003). In (2.2) and (2.3), S and D are the strain rate and dilatation tensors,
respectively, given by

S = 1
2

(∇u + ∇uT ), D = (∇ · u) I . (2.8)
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The fluid properties such as dynamic viscosity (μ), bulk viscosity (κ) and thermal
conductivity (α) are all dimensionless. The flow properties are governed by the
dimensionless numbers, the acoustic Reynolds number (Reac), the Prandlt number (Pr )
and the Schmidt number (Sc) defined as

Reac = ρmcm Lm

μm
, Pr = γμm R̃

(γ − 1)Wmαm
, Sc = μm

ρmλm
. (2.9)

The flow field parameters are scaled using the characteristic dimensional quantities which
are denoted by the subscript ()m . The velocity is scaled using the characteristic speed of
sound cm , and R̃, μm, αm and λm denote the universal gas constant, dimensional viscosity,
thermal conductivity and diffusion coefficient, respectively. Since we use dimensionless
equations in our numerical simulations, the specific values of the characteristic scales hold
no significance. We also assume that the heat capacities of both the species are the same.

We refer the reader to our earlier work (Jossy & Gupta 2023) for a detailed derivation of
the dimensionless governing equations (2.1)–(2.3) and the appropriate characteristic scales
of the quantities. The forcing term F in (2.2) is used to generate shock waves. For species
diffusion, we use the Hirschfelder and Curtiss approximation (Hirschfelder et al. 1964;
Poinsot & Veynante 2005) in (2.4) with a constant equivalent diffusion coefficient. As we
discuss in later sections, the nonlinear diffusive flux in (2.4) results in a translation of the
active scalar interface, resulting in an expansion or contraction of the inhomogeneities,
depending on the value of the molecular mass ratio.

2.1. Fourier pseudospectral simulations
We perform shock-resolved DNS of the fully compressible two-dimensional Navier–
Stokes equations (2.1)–(2.3) and the species equation (2.4) using an MPI (message passing
interface) parallelised Fourier pseudospectral solver (Boyd 2001). We note that both the
momentum (2.2) and the pressure equation (2.3) are used in the non-conservative form
in this work. Since the derivatives are calculated using the exact relation ∇̂φ = ikφ̂

(where φ̂ denotes the Fourier transform of a field φ), the non-conservative form of the
equations poses no limitations. We use the Runge–Kutta fourth-order scheme for time
stepping and ensure numerical stability using the 2/3 deliasing method in the nonlinear
terms only to eliminate the aliasing errors. As we show later, nonlinearities are negligible
for length scales much larger than the length scale below which the aliasing errors are
removed. For all the simulations discussed in the work, we consider 3072 Fourier modes
in each direction such that the nonlinear terms are resolved until kmax = 1024. We show
in § 2.2 and the convergence study in appendix A that the resolution is sufficient to
resolve all the scales for the values of the energy injection rate (ε in (2.13)) used in
this work. Each simulation is run using 256 cores consuming approximately 105 core
hours. We consider constant viscosity (μ = 1) and thermal conductivity (α = 1) for all
our simulations and ignore bulk viscosity (κ = 0) for simplicity. For all simulations, we
consider Pr = Sc = 0.7, such that the molecular diffusion and heat diffusivity remain the
same. We initialise our simulations using quiescent (u = 0), isobaric (uniform pressure)
and isothermal (uniform temperature) conditions with a circular blob of radius π/2. We
specify the species having a circular distribution using the tanh function to specify the
initial concentration field, as follows:

Yc = 1
2

[
1 − tanh

(
1
δ

(√
(x − π)2 + (y − π)2 − π

2

))]
. (2.10)
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The species constituting the blob has density ρc and the surrounding species has density
ρs . We use subscript ()c to indicate the species inside the circular blob and the subscript
()s to denote the surrounding species. We use the parameter value δ = 1/15 in (2.10) to
obtain a steep but smooth concentration distribution to achieve a diffused thin interface.
The parameter δ represents a characteristic interface thickness and will be used later to
calculate the apparent perimeter of the interface during mixing.

The forcing F in (2.2) is similar to the one used by Jossy & Gupta (2023). For
completeness, we provide a brief overview here. The forcing F is defined in the
Fourier space and computed using four statistically independent Uhlenbeck–Ornstein
(UO) (Eswaran & Pope 1988) processes (ai,k(t) for i = 1, 2, 3 and 4), satisfying the
following conditions: 〈

ai,k(t)
〉= 0, (2.11)〈

ai,k(t)a
∗
j,k(t + s)

〉= 2σ 2δi j exp(−s/TL), (2.12)
where 〈·〉 denotes the ensemble average, ()∗ denotes the complex conjugate, σ 2 is the
variance, and TL is the forcing timescale. To prevent any direct effect of energy injection at
small length scales, we restrict our forcing to larger scales within the band of wavenumbers
0 < |k| < kF , where kF = 5 in all our simulations. The total rate of energy injection ε is a
function of the variance σ 2, the time scale TL of the UO process, and the number of wave
vectors within the forcing band NF and is given by

ε = 4NF TLσ 2. (2.13)

The forcing vector in the Fourier space can be obtained by combining the four independent
processes as

âk = (a1,k + ia2,k, a3,k + ia4,k
)T

. (2.14)

To force only the acoustical component of velocity, we remove the vortical component
from âk yielding

F̂k(t) = (̂ak(t) · k)

|k|2 k. (2.15)

It has been shown that decaying acoustic wave turbulence has similar behaviour to Burgers
turbulence (Gupta & Scalo 2018). We speculate that the behaviour of stochastically
forced shock waves may be similar to that of two-dimensional forced Burgers turbulence
(Cho et al. 2014). A detailed comparison between the two is beyond the scope of the
current study. In our earlier work (Jossy & Gupta 2023), we have used the stochastic
forcing method described above to generate a field of isotropic shock waves. The wave
energy spectra of the random shock waves generated exhibit identical dependence on
the dissipation and the integral length scale as decaying 1-D turbulence (Gupta & Scalo
2018) as well as shallow water wave-turbulence (Augier et al. 2019). Augier et al. (2019)
derive the shallow water wave-turbulence scaling laws assuming isotropy, independent of
the dispersive nature of the shallow water waves. Hence, the forcing method mentioned
in (2.15) generates a field of isotropic random shock waves whose phasing changes at
every time instant in a homogeneous mixture. Reflections of the shock waves at the
inhomogeneity interface may introduce some spatial anistropy, a detailed analysis of which
is deferred to future studies and is beyond the scope of the current work. As mentioned
earlier, in this work, we study the interaction of forced weak shock waves, which induce
multimodal perturbations on the inhomogeneity interface separating the two species and
thus influencing the active scalar mixing dynamics.
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S. No Active/passive At χ Indicator

1 Passive – – PS∗
2 Active 0.5 3 At = 0.5∗
3 Active −0.5 0.33 At = −0.5∗

Table 1. Parameter space for simulations considering only the effect of molecular diffusion without any shock
waves along with their indicators.

2.2. Simulation parameters
To study the effect of forced weak shock waves on the mixing of species with different
densities, we use the Atwood number (At), defined as

At = ρs − ρc

ρs + ρc
= χ − 1

χ + 1
. (2.16)

We study the effect of shock waves in both a denser mixture (χ > 1) and a lighter mixture
(χ < 1), where χ is the density ratio of surrounding species to the blob species. To
understand the effect of density gradients on the species diffusion alone, we run one
case each of positive and negative Atwood numbers without any shocks and compare
them with a passive scalar case. Table 1 shows the parameters of the simulation cases
without any shock waves. We study the effect of weak shock waves on mixing for three
values of positive and negative Atwood numbers each and compare their mixing dynamics
with a passive scalar case. Since each realisation of the stochastic forcing F is different,
the mixing process itself is a stochastic non-equilibrium process. Hence, we simulate
additional realisations of the end ranges of the Atwood number, i.e. four realisations of
At = ±0.75 and three realisations of At = ±0.25 to show that the mixing characteristics
are consistent across Atwood numbers for different realisations of the same forcing
parameters. The average of the different realisations is represented by the superscript ()†.

As mentioned earlier, we choose kmax = 1024 to discuss the results of the study.
But to show that the chosen resolution is sufficient, we run additional simulations
with kmax = 768 and kmax = 1536, which are denoted by the superscripts ()
 and ()‡,
respectively. The details of the convergence study are given in appendix A. Table 2 shows
the simulation cases used to study the stirring effect of shock waves. For all simulations, we
inject acoustic energy at the rate of ε/4NF = 1.25 × 10−6 to generate weak shock waves
(〈M〉 < 1.1). We run all the realisations for all the cases for sufficiently long times until
the effects of molecular diffusion take over the effects of stirring. We run one realisation
for all the different Atwood numbers shown in table 2 further close to homogenisation.
The smallest length scales generated in the simulations correspond to the shock thickness
scale η (Donzis 2012; Larsson et al. 2013; Gupta & Scalo 2018; Jossy & Gupta 2023) and
the Batchelor scale ηB , which are related to the acoustic Reynolds number Reac as

η ∼ 1
Reac

(ε�)−1/3, ηB = η√
Sc

, (2.17)
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S. No Active/passive At χ 〈M〉 〈η〉t 〈ηB〉t/� kmax Indicator

1 Passive – – 1.09 0.032 12.2 768 PS


2 Passive – – 1.09 0.031 12.2 1024 PS
3 Passive – – 1.09 0.031 12.2 1536 PS‡

4 Active 0.25 1.67 1.08 0.039 15.8 768 At = 0.25


5 Active 0.25 1.67 1.08 0.038 15.8 1024 At = 0.25†

6 Active 0.25 1.67 1.08 0.038 15.8 1536 At = 0.25‡

7 Active 0.5 3.0 1.07 0.023 9.3 768 At = 0.5


8 Active 0.5 3.0 1.07 0.023 9.3 1024 At = 0.5
9 Active 0.5 3.0 1.07 0.023 9.3 1536 At = 0.5‡

10 Active 0.75 7.0 1.07 0.019 7.7 1024 At = 0.75†

11 Active 0.75 7.0 1.07 0.019 7.7 1536 At = 0.75‡

12 Active −0.25 0.6 1.08 0.029 11.8 1024 At = −0.25†

13 Active −0.5 0.33 1.07 0.028 11.3 1024 At = −0.5
14 Active −0.75 0.1428 1.08 0.022 9.37 1024 At = −0.75†

Table 2. Parameter space for simulations with stochastically generated shock waves and their corresponding
indicators. In the above table, 〈M〉 represents the area averaged Mach number of the shock waves in the domain,
〈η〉t represents the time-averaged shock thickness scale and 〈ηB〉 represents the time averaged Batchelor scale.

where � = 2/kF is the integral length scale, which represents the mean distance between
two shocks. To ensure shock-resolved simulations, we consider Reac = 1000, such that
kmaxη > 1.5 and follow an even more strict resolution scale for mixing, ηB/� > 0.5
(Schumacher et al. 2005) where � is given by 2

√
2π/3kmax . To show resolution in

all our simulations, we calculate the binned density-weighted wave spectral energy
Êwk and the spectral flux of the wave energy Π̂wk whose definitions are given in
(2.18) and (2.19), respectively. We direct the reader to previous studies (Miura &
Kida 1995; Jossy & Gupta 2023) for the detailed derivation of the density-weighted
spectral quantities. We use a density-weighted velocity w = √

ρu and its wave component
obtained upon the Helmholtz decomposition (Miura & Kida 1995; Jossy & Gupta 2023).
Denoting the Fourier transform of a quantity φ by φ̂ and the complex conjugate by
φ̂∗, the density-weighted wave spectral energy Êwk and its transfer function T̂wk are
obtained as

Êwk = 1
2

(
ŵ∗

wk · ŵwk +
̂

(
p − 1

γ

)∗

k

̂

(
p − 1

γ

)
k

)
, (2.18)

T̂wk =R
[
ŵ∗

wk ·
( ∇̂ p√

ρ

)
k

+
̂

(
p − 1

γ

)∗

k
∇̂ · uwk

]

+R

⎡⎢⎣ŵ∗
wk · (̂w · ∇u

)
wk − ŵ∗

wk ·
⎛⎜⎝ ̂

(
p − 1

γ

)
∇ p

√
ρ

⎞⎟⎠
k

⎤⎥⎦
+R
[
γ

̂

(
p − 1

γ

)∗

k

(
̂

(
p − 1

γ

)
∇ · u

)
wk

+
̂

(
p − 1

γ

)∗

k

(
̂u · ∇ p
)
wk

]
, (2.19)

where the subscript ()wk denotes the Fourier transform of the wavefield, and R() denotes
the real part of the quantity. Equations (2.18) and (2.19) are derived using the second-order
approximation of (2.1)–(2.3) (see Jossy & Gupta (2023) for a detailed derivation). The
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Figure 1. Dimensionless scaled density-weighted wave energy Êwk spectra (a) and spectral flux of wave energy
Π̂wk (b) of active scalars cases in table 2 averaged over the time interval t = 50 to t = 300. The vertical lines
in both the figures show the dealiasing limit kmax�. The spectral flux is negligible beyond the kmax� limit
highlighting that all the nonlinear scales are resolved. The legends are identical for both the figures. Contours
of divergence at different time instances for At = 0.5 (c).

term p − 1
γ

is the change in pressure from the isobaric base state at the dimensionless
pressure of 1/γ . Figure 1(a) shows the scaled density-weighted wave energy spectra
Êwkε

−2/3�−5/3 versus the scaled wavenumber k�. Since the forcing acts only within
0 < k� < 2, wave energy in the further wavenumbers highlights forward spectral wave
energy cascade due to the nonlinear terms in the governing equations. Since the generated
shock waves are weak, Êwk decays as k−2 before decaying rapidly due to thermoviscous
dissipation. Figure 1(b) shows the scaled flux of the spectral wave energy Π̂wk/ε

calculated as the cumulative sum of the transfer function T̂wk in (2.19). The spectral flux
approaches net dissipation (equal to net energy injection) and then decays after a decade as
the wavenumber increases. Unlike hydrodynamic turbulence, thermoviscous dissipation is
significant at all scales in a field of random shock waves since the wave energy ∼ k−2 and
the dissipation scales as k2 Êwk approximately. Similar values of spectral flux and the net
energy injection highlight that the waves generated are nonlinear. Decay of the spectral
flux in figure 1 before kmax� for all the cases shows that nonlinearities become negligible
for length scales approaching 1/kmax . Since the dealiasing is used only in the nonlinear
terms, any linear dynamics at length scales smaller than 1/kmax until 1/3072 are well
resolved. In appendix A, we show that the wave energy spectra for k > kmax are modified
slightly only for At = 0.75 case for kmax = 1536. However, the energy in these scales is
more than seven orders of magnitude smaller than the integral length scale energy. Hence,
these scales have negligible influence on the mixing dynamics, which are governed by the
pressure variations leading to baroclinicity (see §§ 3.2 and 3.3). Yet, we show the contours
and discuss the effects of weak shock waves on mixing dynamics using At = ±0.5 cases,
for which all the scales are resolved for kmax = 1024 as shown in appendix A.
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The variation of density-weighted wave spectra across different Atwood number cases
occurs due to the variation in density across the inhomogeneity interface. Stretching
and folding of the inhomogeneity generate smaller scales in the interface. However, the
scale corresponding to the interface thickness increases due to molecular diffusion. As
discussed later in § 3.1, the molecular diffusion term responsible for the diffusion of
the interface (later termed as the Laplacian diffusion term) and the molecular diffusion
term responsible for the movement of the interface due to the density gradients (later
termed as the nonlinear dissipation term) change with the Atwood number (cf. (3.4)).
For At > 0, the Laplacian diffusion term dominates the nonlinear dissipation term.
As At > 0 increases, the Laplacian diffusion coefficient decreases, indicating relatively
smaller scales maintained for higher values of At > 0 in figure 1(a). As At < 0 decreases,
the nonlinear dissipation coefficient increases resulting in more rapid expansion of the
interface. This results in more collisions of the shock waves with the interface generating
smaller scales in the interface for more negative At cases. For the same value of |At |, the
At > 0 mixture seems to exhibit more energy in smaller length scales compared with the
At < 0 mixture, as evident from figure 1(a). Hence, in the convergence study discussed
in appendix A, we run At > 0 cases at higher resolution. It is important to note that in
figure 1, the density gradients due to mixture being inhomogeneous have the smallest
contribution for At = ±0.25 cases since the density values of the two species are the
closest among the cases considered.

In viscous compressible simulations, shocks can be identified by the negative divergence
lines (Samtaney et al. 2001; Augier et al. 2019). Figure 1(c) shows the contours of negative
divergence for At = 0.5 at different time instances. The high negative values of divergence
are indicative of the presence of shocks in the field. To quantify the strength of the random
shock waves generated, we calculate the shock Mach number using the dimensionless
entropy. The entropy for a mixture of species is defined as (Liepmann & Roshko 2001)

s = 1
W

(
γ

γ − 1
log

T

To

)
−

2∑
i=1

1
Wi

log
pi

pio
, (2.20)

where pi is the partial pressure of species i and the subscript ()o indicates the initial state
of the species. At a point in the domain, entropy changes due to mixing as well as the
entropy generated due to shocks. To isolate the entropy generated due to the shock waves
only, we calculate the entropy jump only in the regions where the divergence is negative
(∇ · u < 0). We calculate the approximate entropy jump using the entropy field s as

�s ≈
∣∣∣∣ ∂s

∂x

∣∣∣∣ dx +
∣∣∣∣ ∂s

∂y

∣∣∣∣ dy. (2.21)

Using the entropy jump field �s, we calculate the Mach number field assuming weak
shocks using

M =
√

1 +
(

3�s(γ + 1)2

2γ

)1/3

. (2.22)

Figure 2(a) shows the contours of Mach number for the case At = 0.5 at t = 250. We
note that the points at which the Mach number peaks correlate with those at which −∇ · u
peaks in figure 1(c). In figure 2(b), we show the time-averaged normalised histogram or
probability distribution function (PDF) of the Mach number field M for all the Atwood
number cases with shocks. Since the shock waves are very thin, most of the domain
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Figure 2. Mach number contours of At = 0.5 at t = 250 calculated using (2.22) (a) Time averaged
normalised histogram of the Mach number of active scalars cases in table 2 (b).

exhibits Mach number very close to 1. A single value of the representative mean Mach
number for all the cases with shocks is shown in table 2.

3. Results and discussion
In this section, we present the mixing effects of the forced shock waves on active scalars
in a two-dimensional set-up. Density gradients affect both the advection and diffusion
of active scalars. In the presence of shock waves, the baroclinic interaction of density
gradients with shock waves results in a vorticity field, which tends to deform the blob
and increase the total apparent interface perimeter through advection. Additionally, the
density-weighted nonlinear diffusion of active scalars is significantly different from the
diffusion of passive scalars. We first discuss the mixing of active scalars in the absence
of shock waves to isolate the effect of the density gradients on the diffusion process.
We then discuss the enhancement of mixing by shock waves and finally discuss the role
of baroclinicity in increasing the apparent perimeter of the interface through advection.
We present the contours of At = ±0.5 cases for visualisation wherever necessary and use
At = ±0.25 and At = ±0.75 cases to discuss the effects of Atwood number on the mixing
dynamics.

3.1. Effect of density gradients on nonlinear molecular diffusion
The role of molecular diffusion in passive scalars is to reduce the mean value of
concentration gradients. In this section, we analyse the effect of density gradients on the
nonlinear molecular diffusion process of active scalars. To isolate the effect of density
gradients on mixing by molecular diffusion, we consider cases At = 0.5∗ and At = −0.5∗
where mixing is solely due to molecular diffusion. These cases are compared with the
diffusion of a passive scalar case PS∗ in table 1, where no density gradients are present. In
these three cases, F in (2.2) is set to zero. Without shock waves, the advective term of the
concentration evolution equation becomes negligible, and (2.4) can be approximated as

∂Yi

∂t
= 1

ρReac Sc
∇ ·
(

ρ
Wi

W
∇Xi

)
. (3.1)
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The right-hand side of (3.1) can be written as follows:

1
ρ Reac Sc

∇ ·
(

ρ
Wi

W
∇Xi

)
= 1

ρ Reac Sc
∇ ·
(

ρ
∇W

W
Yi + ρ∇Yi

)
. (3.2)

The right-hand side of (3.2) represents the diffusion of an active scalar. Unlike the linear
diffusion of a passive scalar (cf. (1.1)), which depends only on the concentration gradients,
the diffusion of an active scalar also depends on the mean molecular mass gradients and is
nonlinear. Using the definition of mean molecular mass and the mass fraction conservation
constraint (Yc + Ys = 1), the equation for the evolution of the circular species (Yc) can be
written in terms of gradients of species concentration as

∂Yc

∂t
= 1

Reac Sc

⎛⎜⎜⎝D1∇2Yc︸ ︷︷ ︸
I

+ D2∇Yc · ∇Yc︸ ︷︷ ︸
I I

+ D1

ρ
(∇ρ · ∇Yc)︸ ︷︷ ︸

I I I

⎞⎟⎟⎠ , (3.3)

where D1 and D2 are defined as

D1 = 1
1 + (χ − 1)Yc

, D2 = 1 − χ

(1 + (χ − 1)Yc)
2 . (3.4)

The second and third terms in (3.3) are additional terms modifying the diffusion of
active scalars. The effect of these terms is shown in the contours of Yc at different time
instances in figures 3(a) and 3(b), for At > 0 and At < 0, respectively. We see that for the
At > 0 (denser mixture, lighter blob), the interface moves inwards, and the blob seems to
shrink, while for At < 0 (lighter mixture, denser blob), the interface moves outwards, and
the blob seemingly expands. This highlights the biased diffusion process in active scalars,
where the interface moves towards the lighter species. The two terms mentioned above
(I I and I I I in (3.3)) are similar to the scalar dissipation term analysed in the mixing of
shock–bubble interaction studies and hence, are referred to as nonlinear dissipation terms
(Tomkins et al. 2008; Yu et al. 2021). Specifically, we choose to call I I and I I I in (3.3)
the concentration-gradient-driven and density-gradient-driven dissipation, respectively, in
the current study. Figure 6(a) shows the evolution of radius R at which the maximum
value of |∇Yc| is located from the centre of the blob. We see that for the lighter blob case
(At = 0.5), the interface moves inwards, while for the heavier blob case (At = −0.5), the
interface moves outwards. We also see that in the passive scalar diffusion, there is very
little movement of the interface. To illustrate that the nonlinear dissipation terms (I I and
I I I in (3.3)) are indeed responsible for the movement of the interface, we solve a 1-D
unsteady nonlinear conduction equation,

∂Y

∂t
= D

∂2Y

∂x2 + K

(
∂Y

∂x

)2

, (3.5)

with K = ±1 for the same initial condition as (2.10) and D = 1/10 in one dimension.
Figure 6(b) shows the evolution of Y governed by (3.5) with K = ±1. We see that for

positive coefficients, the interface moves outwards, while for negative coefficients, the
interface moves inwards. Hence, the essential physics of the movement of the interface
is captured by the nonlinear conduction equation (3.5) highlighting that the nonlinear
diffusion terms in (3.3) result in the movement of the interface, while the Laplacian
term diffuses the interface as usual. These observations agree with the known diffusive
travelling wave type solutions of nonlinear conduction equations (Atkinson et al.
1981). Additionally, these results are also in line with the observations in figure 6(a),
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Figure 3. Contours of concentration of blob for At = 0.5∗ (a) and At = −0.5∗ (b) at same times. Darker
colour indicates heavier species. The changes in concentration indicate the mixing driven solely by molecular
diffusion. The lighter blob shrinks while the heavier blob expands. In the above contours, the lighter colour
indicates the species which is less dense while the darker colour indicates the species which is heavier.

where from (3.3), we see that for At = 0.5, χ > 1, D2 < 0 and hence the interface
moves inwards, while for At = −0.5, χ < 1, D2 > 0 and hence the interface moves
outwards. Analogously, the density-driven nonlinear dissipation term alters the direction
of movement of the interface based on the density gradient direction. The movement of
the interface affects the decay of concentration gradients and hence we see the difference
in average slopes of decay in figure 4(a).

Although the interface (location of |∇Yc|max ) seems to expand for At < 0 and shrink for
At > 0, the area where the blob species can be found (or the area occupied) identified as
Yc > 0.01 increases for both the cases. Figure 4(b) shows that the area occupied is similar
for both At < 0 and At > 0, but significantly smaller than the passive scalar. In the next
section, we discuss the influence of shock waves on active scalar mixing.
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Figure 4. Evolution of maximum value of |∇Yc| in log–log scale with the averaged slope of decay (a) and
evolution of the percentage of area occupied by the circular species (b). The presence of density gradients in
active scalars alters the diffusion coefficients as shown in (3.3) compared with passive scalar diffusion, hence
modifying the rate of decay.

3.2. Stirring effect of shock waves
Stirring increases the mean value of concentration gradients and also increases the area
across which molecular diffusion occurs. Random shock waves interact with the blob
interface characterised by large density gradients. Baroclinic torque generated by such
interactions generates localised vorticity at the interface. Consequently, the interface
deforms and folds, thus increasing the apparent perimeter over which diffusion takes place.
We call this baroclinic vorticity induced mixing as stirring. In this section, we analyse
the stirring action of shock waves and its role in enhancing the mixing of active scalars.
We also discuss the effect of the Atwood number on the evolution of the concentration
levels and present a comparison of the time scales of each mixing process. Furthermore,
we distinguish between stirring-dominated and diffusion-dominated regimes of mixing by
using the maximum value of species concentration.

Stochastically generated shock waves interact with the blob interface where the gradient
of density is maximum. Figures 7(a) and 7(b) show the contours of the evolution of the
circular species concentration for At = 0.5 and At = −0.5, respectively. In comparison
with the no shock cases of figures 3(a) and 3(b), we see that in the presence of shock
waves, the blob is stretched and folded leading to a continuous distortion of the interface.
The figures suggest that homogenisation occurs at a faster rate under the stirring action
of shock waves, resulting in a completely mixed state. To quantify the extent to which
shocks enhance the mixing process, we compare the space-filling capacity of the blob
species in the presence of shock waves to the no-shock cases. Figure 8(a) shows that
shock waves increase the rate of the space-filling capacity of the blob compared with the
no-shock/only molecular diffusion case. Shock waves increase the space-filling capacity
by increasing the mean concentration gradients and sustaining them for a longer time as
shown in figure 8(b). For passive scalars, shocks have a negligible effect on the mixing
because the baroclinic torque is absent. We discuss the reason for the sustained gradients
in the case of active scalars in detail below.

The concentration diffusion flux is proportional to the perimeter of the interface across
which diffusion occurs and the strength of the gradients across the interface. As mentioned
earlier, the role of stirring is to increase the perimeter, thereby increasing the total diffusion
flux across the interface. This also results in an increase in the mean magnitude of
concentration gradients. Figures 9(a) and 9(b) show the contours of |∇Yc| for positive and
negative Atwood numbers, respectively. The figures also show that the mean magnitude of
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Figure 5. Contours of |∇Yc| for At = 0.5∗ (a) and At = −0.5∗ (b) at same times. Due to the terms I I and I I I
in (3.3), the interface moves inwards for the lighter blob while the interface moves outwards for the heavier
blob.

concentration gradients (〈|∇Yc|〉) increases due to an increase in the perimeter of the blob
interface caused by shock waves. Furthermore, for all the active scalar cases with shocks,
we see that the concentration gradients decay faster in the final time instances when
compared with the no-shock cases. Figure 9(a) shows that a lighter blob homogenises
faster when compared with a denser blob. To quantify the effectiveness of stirring, we
look at the mean magnitude of concentration gradient and compare it with the mixing
driven by only molecular diffusion in figure 8(b). For the no-shock cases, the negative
Atwood number case has a mean value that increases with time, while for the positive
Atwood number case, the mean value of the concentration gradient decays with time. This
is due to the nonlinear diffusive transport (termed as nonlinear dissipation) which causes
the interface to expand for At < 0 and shrink for At > 0. Initially, when Yc ≈ 1 near the
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Figure 6. Evolution of the location of |∇Yc|max measured from the centre of the blob (a) and 1-D evolution of
Y from the 1-D unsteady nonlinear diffusion equation (3.5) solved using a 1-D Fourier pseudospectral solver
(b). The directions of concentration and density gradients affect the coefficients of terms I I and I I I in (3.3),
causing the interface of the positive Atwood case to move inwards and the negative Atwood case to move
outwards. The black line represents the initial condition at t = t0. The blue and red lines represent cases with
K = ±1, respectively, and t0 < t1 < t2. For K > 0, the interface moves outwards while diffusing and for K < 0,
the interface moves inwards while diffusing.

interface, the denser blob (At < 0) tends to expand quickly compared with diffusion, and
vice versa for the lighter blob (At > 0). This can be realised by considering the ratio of the
molecular diffusion time scale (τm) to the nonlinear dissipation time scale (τd ) given as

τm

τd
∼ |D2|

D1
∼ |1 − χ |

1 + (χ − 1) Yc
. (3.6)

The reader is referred to appendix B for a detailed discussion on the ratio of the
molecular diffusion time scale to the nonlinear dissipation time scale.

Figure 8(b) shows that the shock waves increase the mean magnitude of concentration
gradients for the Atwood numbers cases. However, the passive scalar concentration
gradient is not affected by the shock waves. Figure 10 shows that shock waves increase
the mean magnitude of the concentration gradients for all Atwood numbers considered by
increasing the area (apparent perimeter in two dimensions) across which the gradients are
present. Figure 10 also shows that the negative Atwood numbers attain a higher value of
〈|∇Yc|〉 than the positive Atwood numbers. Though the diffusion term smoothens out the
gradients and reduces the value of the concentration gradients in all Atwood number cases
locally, the increase in the mean magnitude is due to the increase in the perimeter. The
outwards expansion in the negative Atwood number cases further increases the perimeter
and causes the gradients to exist over a larger perimeter. Additionally, as the magnitude
of the Atwood number increases, more stretching and folding of the interface occurs thus
increasing the generated maximum mean concentration gradients.

Figure 11 shows the evolution of maximum value of |∇Yc| for passive and active scalar
cases with shocks. We see that the dynamics of the passive scalar case with and without
shocks are similar. A few fluctuations in the maximum value of |∇Yc| exist which can
be attributed to the randomised vorticity generated due to the curvature of the randomly
generated shocks (Jossy & Gupta 2023). The maximum value of |∇Yc| also decays for
the active scalar cases but with localised random spikes in values. The presence of shock
waves sustains the gradients longer for the active scalar cases. We quantify this through
figures 12(a) and 12(b), which show the PDF of the magnitude of concentration gradients
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Figure 7. Contours of concentration of blob for At = 0.5 (a) and At = −0.5 (b) at same times. The darker
colour indicates heavier species. A comparison with figures 6(a) and 6(b) shows that shock waves enhance
the mixing process. Shock waves continuously deform the interface of the blob, breaking it apart. The denser
mixture (lighter blob) homogenises faster than the lighter mixture (denser blob). In the above contours, the
lighter colour indicates the species that is less dense while the darker colour indicates the species that is heavier.

for At = 0.5 and At = −0.5, respectively. We observe that the decay of the tail is more
rapid for At > 0 compared with At < 0.

The above discussion indicates towards two regimes of mixing: one where the action
of stirring is dominant (termed as the vorticity-dominated regime) and the other where
molecular diffusion is dominant (termed as the diffusive regime). The regime to the
left of the peak value of 〈|∇Yc|〉 in figure 10 is the vorticity-dominated regime, and
the regime to the right is the diffusive regime. In the vorticity-dominated regime, the
interface gets stretched and folded due to baroclinic vorticity (also discussed in § 3.3).
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Figure 8. Evolution of percentage of the ratio of mixed area to total area (a) and the evolution of area-averaged
concentration gradients (b). Shock waves improve the space-filling capacity of active scalars when compared
with the pure diffusion cases. The labels are identical for both the figures.

As the stretching continues, more points inside the blob are exposed to the surrounding
species, thus facilitating molecular diffusion more. As we discuss below, for At < 0, the
interface keeps expanding, thus delaying the time taken by stirring to expose all the points
inside the blob to the surrounding species.

To estimate the time until which the interface of the blob can be stretched, we calculate
the normalised maximum concentration (Y N

c ) given by

Y N
c = Yc,max

Y 0
c,max

, (3.7)

where Yc,max is the maximum concentration of the circular species at the given instant
and Y 0

c,max is the initial maximum concentration of the circular species. The normalised
maximum concentration has been used to estimate the mixing time in passive scalar
mixing (Meunier & Villermaux 2003) and shock–bubble interaction mixing (Liu et al.
2022) studies. A normalised maximum concentration (Y N

c ) <1 indicates that stirring
has stretched the blob interface and exposed all of it to the surrounding species. After
this instant, the role of stirring is secondary and the molecular diffusion dominates. For
positive Atwood numbers, the nonlinear dissipation results in the apparent contraction
of the blob. Hence, the overall time taken to expose all the points of the blob species
to the surroundings is smaller. However, for negative Atwood numbers, the effect of the
outwards expansion delays the time taken for all points of the blob to be exposed to the
surrounding species. To account for the outwards expansion, we modify the normalised
maximum concentration as follows for negative Atwood number cases:

Y N
c = Yc,max

0.95 Y 0
c,max

. (3.8)

The vertical lines on figure 10 indicate the time when normalised maximum
concentration falls below unity. We see that the estimated time is located very close
to the peaks of 〈|∇Yc|〉. Hence, the calculated normalised maximum concentration
highlights that stirring deforms any geometrical concentration inhomogeneity until all the
points of the inhomogeneity are exposed to stronger gradients. Therefore, it serves as a
suitable indicator for distinguishing the regimes where stirring and molecular diffusion
are dominant. In the next section, we discuss the role of baroclinic vorticity and also its
role in increasing the stirring time of a denser blob.
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Figure 9. Contours of |∇Yc| for At = 0.5 (a) and At = −0.5 (b) at the same times. The concentration gradients
are sustained longer for the denser blob. This is due to the outwards expansion of interface by the terms I I and
I I I in (3.3) which delays the exposure of the blob to the action of molecular diffusion.

3.3. Role of baroclinicity in stirring
In this section, we discuss the mechanism by which the stirring action of the randomly
generated shock waves increases the apparent interfacial perimeter. We show the effect of
the Atwood number on baroclinicity and its role in enhancing the mixing. We also derive
a time scale for the shock-induced stirring and show that it is sustained for a longer time
for a lighter mixture.

As discussed in the previous section, the presence of shock waves increases the mean
magnitude of concentration gradients for active scalars. But, figure 8(b) shows that, despite
the presence of shocks, the mean magnitude of the concentration gradients for the passive

1007 A25-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

47
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.47


J.P. Jossy and P. Gupta

1.0

0.8

0.6

0.4〈|�
Y c

|〉

0.2

0 50

At = 0.25

At = 0.25†

At = 0.75

At = 0.75†

At = –0.75

At = –0.75†

At = –0.25

At = –0.25†

At = 0.5

t

At = –0.5

100 150 200 250 300

Figure 10. The evolution of area-averaged concentration gradients. The vertical lines indicate the mixing time
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for both the figures.
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Figure 11. Evolution of maximum value of |∇Yc| in log–log scale for all the cases in table 2. Shock waves have
no significant effect on the decay of the maximum concentration gradients of passive scalars. The presence of
density gradients in active scalars sustains concentration gradients longer compared with the passive scalar.

scalar does not increase. The stirring action of shock waves affects mixing through the
advection term of the species equation in (2.4). The velocity in the advection term can be
decomposed using Helmholtz decomposition as follows:

u = uw + uv (3.9)

where uw and uv are the acoustical and vortical components of velocity, respectively. Both
passive and active scalars have the same rate of injection of acoustical energy. Therefore,
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Figure 12. The PDF of the magnitude of concentration gradient at different time instances for At = 0.5 (a)
and At = −0.5 (b). Initially, the PDF indicates two peaks, one at 0 and other at the maximum value inside the
interface. With time, the PDF tails drop indicating diffusion. Negative Atwood numbers sustain concentration
gradients longer owing to the outwards expansion effect of the nonlinear dissipation terms.

any difference caused between the two would stem from the vortical component of velocity
(uv). We obtain the evolution equation of vorticity (ω) by taking the curl of (2.2) as

∂ω

∂t
= ∇ρ × ∇ p

ρ2 + μ∇2ω

ρReac
+ μ

Reac

∇ρ × [∇ × ω]
ρ2

−
(

4μ

3Reac

) ∇ρ × ∇(∇ · u)

ρ2 − ∇ · (uω) + Fr
ω. (3.10)

The last term on the right-hand side of (3.10) is the vortical forcing component and is
zero in the current study. The first term on the right-hand side is the baroclinic term and
is the primary term responsible for generation of vorticity in the domain, and hence the
stirring action. The behaviour of the diffusion terms of vorticity is similar to the findings
reported earlier (Jossy & Gupta 2023), where the interaction of random shock waves with
thermal gradients was analysed. The second term is the viscous diffusion of vorticity
and is the major contributor to the vorticity dissipation. The next two terms represent the
interaction of density gradients with viscous stresses in the domain. The term proportional
to bulk force (∇(∇ · u)) has higher dissipation contribution than the dissipation term
propositional to the shear stress (∇ × ω) in a flow field where shocks are involved. The
term proportional to bulk force will be maximum along the shocks where the divergence
of velocity is maximum. These terms will increase in magnitude with increase in Atwood
number, due to stronger density gradients. The second last term is the advection term of
vorticity, which has the minimum contribution to the enstrophy budgets (Jossy & Gupta
2023).

The difference between passive and active scalars is the presence of the density gradients
in the latter. In our study, vorticity production is primarily due to the misalignment of the
pressure gradients in the shock waves and the density gradients at the blob interface. This
indicates that the absence of strong density gradients in the passive scalar case results in no
stirring effect. The mixing of both active and passive scalars is primarily due to the vortical
(solenoidal) structures and is independent of compressibility when it comes to large-scale
effects. Similar observations were made in the compressible mixing of passive scalars,
where the dilational component did not enhance the mixing process of passive scalars
(John et al. 2019; Ni 2016). Jossy & Gupta (2023) show that shock waves generated by
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Figure 13. Contours of vorticity for At = 0.5 (a) and At = −0.5 (b) at the same times. The vorticity
is concentrated along the perimeter where density gradients are maximum with alternating rotating and
counter-rotating vortices. Spikes and bubbles develop at the intersection of the vortices rotating in opposite
directions.

stochastic forcing generate broadband vorticity owing to the continuous variation of shock
curvature. We see that vorticity generated due to shock curvature has only a slight and
insignificant effect on the mixing of passive scalars. Hence, the vorticity generated at the
interface between the blob and surrounding species is solely responsible for mixing of the
active scalars.

Figures 13(a) and 13(b) show the vorticity contours of At = 0.5 and At = −0.5,
respectively. We see that the vorticity is concentrated along the interface of the blob. As
discussed earlier, the only source of production of strong vorticity in a two-dimensional
compressible flow in a periodic domain is baroclinicity. The pressure gradients within the
shock waves and the high-density gradients along the interface of the inhomogeneity result
in vorticity production due to baroclinicity. In this context, the current study resembles a
continuously forced RMI set-up (Richtmyer 1954; Meshkov 1969), where shock waves
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are continuously distorting the interface at random locations and random time intervals
governed by the stochastic forcing of the shock waves. Similar to RMI, we see the
development of spikes (denser fluid penetrating into lighter fluid) and bubbles (lighter
fluid penetrating into denser fluid) at the interface (Abarzhi 2002; Yuan et al. 2023).
Figures 13(a) and 13(b) show that both clockwise and anticlockwise rotating vortices are
present along the interface of the blob and surrounding species. The resultant direction
of velocity at each intersection of clockwise rotating vortices and anticlockwise rotating
vortices results in either the production of a spike or a bubble. This results in the stretching
of the interface in addition to the stretching (compression) occurring from the nonlinear
dissipation terms for a denser (lighter) blob (as highlighted in § 3.1). The sharp jump
in tangential velocity across the interface can also trigger shear instability, a KHI in the
limiting inviscid case. Such a shear instability results in further folding of the interface.
However, in the current study, it is difficult to distinguish between the role of RMI and
KHI in enhancing the mixing due to the continuous forcing of the RMI. We also see
a reduction in the vorticity production with time. This is expected as the mixing in
active scalars proceeds to homogenise density gradients, thus reducing the magnitude of
baroclinic torque generated due to the interaction of shock waves. Note that the shock
waves are continuously forced, and hence typical values of ∇ p remain similar as indicated
by figure 2(b). The strength of the shock waves can be altered by changing the rate of
energy injection ε in (2.13). Any reduction in the rate of energy injection will reduce the
strength of the shock waves, leading to a weaker baroclinic vorticity. This will result in the
species taking a longer time to homogenise. In a similar fashion, any increase in the rate
of energy injection will result in stronger shocks leading to faster homogenisation.

At the initialisation, the magnitude of the density gradient increases with the absolute
value of the Atwood number due to the increasing density difference. Stronger density
gradients produce higher values of baroclinic vorticity. Figure 14(a) shows the evolution
of the magnitude of the area-averaged baroclinic vorticity generation for all the active
scalar cases with shock waves. We see that the baroclinicity increases with a wider
disparity in density ratio between the surrounding and the circular species. The increase
in baroclinicity indicates an increasing amount of stirring. Furthermore, prolonged high
values of baroclinicity indicate prolonged stirring, which is the case for At < 0 mixtures.
Figure 14(a) suggests that baroclinicity is responsible for stretching the interface and that
the stretching is higher for larger absolute values of the Atwood number. To show that
the stretching of the interface is primarily due to stirring and not the nonlinear dissipation
terms, we compare their respective time scales. We derive the time scale for stirring from
the evolution equation for the advection term of the species equation, which is given by

∂Yk

∂t
= uv · ∇Yk . (3.11)

Using scaling arguments, the time scale of stirring τs can be written as

1
τs

∼
(

Lv

τv

)
1
L

, (3.12)

where τv is the vortical time scale, L is the length scale across which the concentration
change occurs and Lv is the vortical length scale. Both L and Lv are of the same order
since any changes in the concentration from stirring occur only where vorticity is present.
To derive the vortical time scale, we use the vorticity equation with only baroclinic term

∂ω

∂t
= ∇ p × ∇ρ

ρ2 , (3.13)
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Figure 14. Evolution of the area-averaged magnitude of baroclinic vorticity generation (a) and the variation
of the ratio of the time scale of stirring to nonlinear dissipation with a concentration level of blob (b). The
wider disparity in density ratios results in stronger baroclinic vorticity production. The stronger vorticity is
responsible for stretching the perimeter of the interface.

from which we obtain

cm

�

1
τv

∼
(

�p
η

) (
�ρ
δ

)
ρ2

m
, (3.14)

where �/cm is the time scale of the passage of a shock wave and ρm is the total density
of the mixture. The pressure jump �p is estimated using the mean Mach number of the
shock waves and �ρ is a function of the Atwood number. In a similar fashion, we derive
the time scale of the nonlinear dissipation term from

∂Yk

∂t
= D2

Reac Sc
(∇Yk · ∇Yk) . (3.15)

The time scale of the nonlinear dissipation is obtained as

1
τd

∼ |D2|Yc

Reac ScL2 . (3.16)

Using (3.12), (3.14) and (3.16) we get a comparison of the time scales of nonlinear
dissipation and stirring as

τs

τd
∼ |D2|Yc

Reac ScL2
ρ2

m(
�p
η

) (
�ρ
δ

) cm

�
. (3.17)

Figure 14(b) shows the variation of the ratio of stirring time scale to the nonlinear
dissipation with concentration levels of the blob. We note that for typical values of Yc
at the interface 0 < Yc < 1, the stirring time scale is slower than the dissipation time scale
τs/τd > 1 for all Atwood numbers. For higher values of Yc, the stirring is considerably
slower than dissipation for At < 0 (denser blob, lighter mixture) as compared with At > 0
(lighter blob, denser mixture). In the initial stages, for high values of Yc inside the
interface, the lighter inhomogeneities tend to get mixed by the shocks earlier than the
denser inhomogeneities (also see t = 1 vorticity contours for At = 0.5 and At = −0.5
mixtures in figure 13), As the maximum value of Yc decreases due to mixing, stirring
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Figure 15. Evolution of the apparent interface perimeter obtained by using the condition |∇Yc| > 1.0 (a) and
the critical time of occurrence of maximum value of perimeter versus Atwood numbers (b). Shock waves
stretch the interface across which molecular diffusion occurs, allowing more molecular diffusion to occur. The
superscript s stands for the maximum time taken to reach peak perimeter for the simulations by stirring, and the
subscripts indicates the value of ∇Yc used to track the perimeter. The trend of the critical time is independent
of the choice of the limiting value of ∇Yc used for calculating the interface.

becomes faster than the nonlinear dissipation for denser inhomogeneities, indicating
dominant stirring action at later stages for At < 0 mixtures.

We have shown that the baroclinicity is responsible for enhancing the mixing by
stretching the interface of the blob. As mentioned earlier, it is difficult to track any definite
interface to calculate the perimeter. But to show the effect of baroclinicity, we calculate
a characteristic apparent perimeter (P) by tracking the area defined by |∇Yc| > 1 and
dividing it by the initial characteristic width (δ in (2.13)). Figure 15(a) shows the evolution
of the apparent perimeter of all the active scalar cases with shock waves. We see that
the perimeter for the active scalars increases with an increase in baroclinicity. The peak
value of the perimeter shifts to the right with an increase in the absolute value of the
Atwood number. The shift is more for a heavier blob when compared with a lighter
blob, as the increase in the perimeter is augmented by the outwards expansion due to
the nonlinear dissipation terms. Moreover, the time of occurrence of the maximum value
of the perimeter (τcr ) depends on the choice of the limiting value of |∇Yc| used to
identify the interface for the apparent perimeter calculation. However, the trend of τcr
remains identical for any choice of the limiting value provided the limiting value is not
the characteristic value of the concentration gradient in the diffusive regime (Y N

c < 1).
Figure 15(b) shows the occurrence of the time at which maximum perimeter is achieved
for different choices of |∇Yc|. The maximum time (τcr ) is labelled as the critical time as
it distinguishes the time before which the action of stirring is dominant over molecular
diffusion. We see that the At < 0 mixtures (heavier blob, lighter mixture) have a longer
stirring time than At > 0 mixtures (lighter blob, denser mixture). The trend remains the
same irrespective of the choice of interface parameter. The simulation results are in line
with the time scale analysis, which shows that the stirring action is sustained longer for
the At < 0 mixtures. The current two-dimensional study isolates the mixing effects of the
vorticity by baroclinicity. In three-dimensional cases, the mixing effects will be further
enhanced by the vortex stretching mechanism.
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Figure 16. Schematic illustrating the interaction of forced periodic shock waves with the concentration
interface for At = 0.75(a,c) and At = −0.75 (b,d) cases at time t1 (a,b) and a later time t2 (c,d). The shocks were
traced and sketched using the dilatation values and the interface was traced and sketched using the magnitude of
the concentration gradient. As the interface is stretched and folded by the baroclinic vorticity, more interaction
points are introduced thus resulting in increased baroclinic interactions. This stretching is augmented by the
interface expansion in the At < 0 case due to the nonlinear dissipation term, further increasing the baroclinic
interactions.

In figure 15, we note that higher variation occurs in critical time values for the
negative Atwood numbers’ stochastic realisations when compared with that of the positive
Atwood numbers. The same can also be inferred from figure 14(a), where the area-
averaged baroclinicity shows that the vorticity generated has a higher degree of variation
for negative Atwood numbers for different stochastic realisations at the same Atwood
number. We explain this difference using the schematic shown in figure 16. Figures 13(a)
and 13(b) show that baroclinic vorticity is of significance only at the interface where the
high-pressure gradients within the shock waves interact with the high-density gradients
present across the interface. Figures 16(a) and 16(b) illustrate this interaction at some
initial time t1. Figures 16(a) and 16(b) also highlight the points of interaction between
the shock waves and the density gradients across the interface. Therefore, the vorticity
generated due to baroclinicity is the summation of N such interactions across the interface
(Γ ). This can be expressed as

〈∣∣∣∣∇ρ × ∇ p

ρ2

〉∣∣∣∣≈ ∮
inter f ace

∣∣∣∣∇ p × ∇ρ

ρ2

∣∣∣∣ dΓ ≈
N∑

i=1

∣∣∣∣∇ p × ∇ρ

ρ2

∣∣∣∣
i
�Γi , (3.18)
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where the pressure gradient at each point of interaction is a stochastic process and has a
variance associated with it. At a later time, t2, the perimeter of the interface is stretched by
the baroclinic vorticity for both positive and negative Atwood number cases. The same
is also shown in schematic figures 16(c) and 16(d). However, the perimeter is higher
for the negative Atwood number cases compared with the positive Atwood number case
due to the nonlinear dissipation term. The increase in perimeter results in more points
of interaction between the pressure gradients and density gradients, resulting in more
baroclinic vorticity. This indicates that for identical parameters of stochastic forcing, the
negative Atwood number cases will generate more vorticity than the positive Atwood
number case for the same magnitude of density gradients across the interface, and the
same can also be seen in figure 14(a). This increase in the number of interaction points
also increases the uncertainty/variance associated with pressure gradients across the
interface. Negative Atwood numbers have more such points when compared with positive
Atwood numbers, and hence have more variation in values among realisations. But at
later times, when molecular diffusion dominates mixing, the variance among realisations
reduces.

4. Conclusions
We have studied the enhancement of the mixing of an active scalar by the stirring action of
stochastically forced shock waves using two-dimensional DNS. We consider the mixing of
two different species of varying densities where one of the species has an initial circular
profile. The Atwood number is used as the dimensionless parameter to study the effect
of the shock waves on the mixing of a lighter blob (At > 0) and a denser blob (At < 0).
We simplify the diffusion term in the evolution equation for the concentration of the blob
(3.3) in terms of the concentration gradients. Comparison of the diffusion terms in the
concentration of passive and active scalars shows that two additional terms – concentration
gradient driven nonlinear dissipation and density gradient driven nonlinear dissipation
term –are present in the diffusion of active scalars in addition to the Laplacian term. We
show how the presence of density gradients affects mixing by considering cases where
mixing is purely due to molecular diffusion. We show that the density gradients and the
concentration gradients alter the coefficients of the Laplacian term and the nonlinear
dissipation terms. A 1-D unsteady nonlinear diffusion equation is used to show that
the positive coefficients for the nonlinear dissipation terms for a denser blob causes
the interface to expand, while the negative coefficients which occur for a lighter blob
causes the interface to shrink. This competing effect of nonlinear dissipation in active
scalars also modifies the effect of shock waves driven stirring on the mixing of active
scalars.

We show that the stirring action of shock waves increases the space-filling capacity of
the active scalars and enhances mixing overall. Shock waves increase the mean value of
concentration gradients and sustain them for longer times, allowing for more effective
mixing. The lighter mixtures (At < 0) sustain concentration gradients longer than the
denser mixtures (At > 0) due to the perimeter increase caused by the nonlinear dissipation
terms, and the time scale of this perimeter increase is similar to the shock-wave-driven
stirring time scale. Shock waves enhance mixing by stretching the interface across which
the molecular diffusion occurs and act until all the points of the inhomogeneity are exposed
to the surrounding species. We give an estimate of this mixing time using the maximum
concentration of the blob and show that it is also the time instant at which the area-
averaged magnitude of the concentration gradients peaks. For compressible flow in a
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two-dimensional periodic domain, baroclinicity is the only vorticity production possible,
thus affecting the velocity in the advection term of the species concentration evolution
equation. The interface between the active scalars exhibits large density gradients.
Consequently, random shock waves interacting with this interface generate strong vorticity
at the interface via the baroclinicity. Hence, a random shock field enhances the mixing of
active scalars but has no effect on passive scalar mixing. We also show that the increase in
density gradient increases the baroclinicity, thereby enhancing the mixing. Furthermore,
shock waves do not enhance the mixing of passive scalars due to the absence of density
gradients.

The current study shows that the mixing of active scalars differs significantly from that
of passive scalars. In active scalar mixing, the nonlinear diffusion (termed as nonlinear
dissipation in this work), the Laplacian diffusion and the stirring interplay, thus resulting
in different mixing dynamics for heavier mixtures with lighter inhomogeneities as opposed
to the lighter mixtures. The study is also a step towards a better understanding of shock-
enhanced fuel–air mixing in air-breathing engines where there is very little residence time
(Broadwell & Breidenthal 1984; Tian et al. 2017; Wong et al. 2022). The future research
direction of this work is to consider the effect of the vortex stretching term in sustained
three-dimensional shock-resolved simulations. In three dimensions, the higher baroclinic
torque in At < 0 mixtures may result in the triggering of hydrodynamic turbulence, which
could result in the enhancement of mixing. However, the interplay of stirring with the
nonlinear diffusion of the active scalars would result in similar dynamics presented in this
work.
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Appendix A. Modal Convergence
To highlight the spatial convergence at kmax = 1024, we present the additional cases
with kmax = 768 and kmax = 1536 (see table 2) for the positive Atwood number cases.
We choose to study the convergence only for the positive Atwood number cases as
they generate more scales when compared with the negative Atwood number cases
(see figure 1a). Figure 17(a) shows the wave energy spectra for the different resolution
cases. We see that the passive scalar cases are fully resolved for all three resolutions. As
shown earlier in § 3.3, no mixing occurs in passive scalar cases. Hence, no new scales are
generated as a result of mixing. Any scale that is generated is only due to wave steepening.
This shows that for the given forcing parameters, the shock waves generated are completely
resolved. For active scalar cases, we see that spectra for kmax = 1024 and kmax = 1536
overlap for all the cases until the dealiasing limit of k� = 1024�. At = 0.25 and At = 0.25‡

as well as At = 0.5 and At = 0.5‡ cases overlap for all the length scales with only a
small deviation between At = 0.75 and At = 0.75‡ for k� > 1024�. Figure 17(b) shows the
spectral flux of all the cases. We see that for kmax = 1024 and kmax = 1536, values overlap
for all the cases, highlighting that the nonlinear terms are converged at kmax = 1024 for
these cases. Additionally, we see that the spectral flux for k� > 1024� is negligible for all
cases, indicating that nonlinear terms are negligible for those scales and the dissipation
dominates relatively. To check the resolution of dissipation dominated scales, we use the
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Figure 17. Dimensionless scaled density-weighted wave energy Êwk spectra (a), spectral flux of wave energy
Π̂wk (b) and cumulative dissipation D̂wk (c) . The vertical lines in the figures show the dealiasing limit kmax�

for kmax = 1024 cases. The spectral flux is negligible beyond the 1024� limit highlighting that all the nonlinear
scales are resolved. The legends are identical for all three figures.
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cumulative dissipation
∑

k D̂wk given by

D̂wk =R
[
ŵ∗

wk ·
(

̂μ√
ρ Reac

(∇ · (∇u + ∇uT )
))

wk

]

+R
[

̂

(
p − 1

γ

)∗

k
·
(

̂1
Reac Pr

∇ · (α∇T ′)
)

k

]

+R
[
ŵ∗

wk ·
(

̂1√
ρ Reac

∇ ·
((

κ − 2μ

3

)
(∇ · u))

))
k

]
. (A1)

As shown in figure 17(c), the values of scaled cumulative dissipation
∑

k D̂wk/ε for
kmax = 1536 overlap with those of kmax = 1024 for all the cases highlighting that the
dissipation terms are converged. The At = 0.5
 case with kmax = 768 highlights how the
spectral quantities look for an unresolved case, further highlighting that kmax = 1024 and
kmax = 1536 results are converged.

Although the energy spectra deviate for At = 0.75‡ from At = 0.75 for k� > 1024�

slightly, the energy content in these scales is more than seven orders of magnitude
smaller than integral length scales. Hence, these scales have a negligible contribution in
dissipation. Consequently, kmax = 1024 is sufficient to resolve all the relevant dynamics in
all the simulations discussed in this work.

Appendix B. Diffusion and dissipation time scale comparison
In this appendix, we compare the time scales across which Laplacian molecular diffusion
and dissipation occur. To derive a time scale across which only molecular diffusion of
active scalars driven by the Laplacian term occurs, we use the equation

∂Yk

∂t
= D1

Reac Sc
∇2Yk . (B1)

Using scaling analysis, we obtain the time scale over which molecular diffusion (τm) of
active scalars occurs as

1
τm

∼ D1

Reac ScL2 . (B2)

Combining (B2) and (3.16), we get the ratio of the molecular diffusion time scale (τm) to
the nonlinear dissipation time scale (τd ) as

τm

τd
∼ |D2|Yc

D1
∼ |1 − χ |Yc

1 + (χ − 1) Yc
. (B3)

Figure 18 shows the variation of the ratio of molecular diffusion time scale to nonlinear
dissipation time scale with the concentration Yc. The figure can be interpreted as the
variation in time scales across the decaying moving interface. The concentration at the
interface is high during the initial time, resulting in nonlinear dissipation occurring faster
than molecular diffusion for At < 0. This results in the concentration gradient decaying
less and mostly resulting in a shift/movement of the concentration gradients. But for the
positive Atwood number, molecular diffusion occurs faster than nonlinear dissipation,
resulting in more decay of gradients. For negative Atwood number cases, the nonlinear
dissipation term dominates the molecular diffusion term, allowing higher gradients to
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Figure 18. Variation of the ratio of Laplacian diffusion to dissipation time scales with concentration level of
blob.

exist longer while for a positive Atwood number, molecular diffusion leads to the drop
in 〈|∇Yc|〉. This can also be inferred from the contours plots of |∇Yc| of figures 5(a)
and 5(b).
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