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Abstract. Let f be a germ of a holomorphic diffeomorphism with an irrationally indifferent

fixed point at the origin in C (i.e. f (0) = 0, f ′(0) = e2πiα , α ∈ R − Q). Pérez-Marco

[Fixed points and circle maps. Acta Math. 179(2) (1997), 243–294] showed the existence of

a unique continuous monotone one-parameter family of non-trivial invariant full continua

containing the fixed point called Siegel compacta, and gave a correspondence between

germs and families (gt ) of circle maps obtained by conformally mapping the complement

of these compacts to the complement of the unit disk. The family of circle maps (gt ) is

the orbit of a locally defined semigroup (8t ) on the space of analytic circle maps, which

we show has a well-defined infinitesimal generator X. The explicit form of X is obtained

by using the Loewner equation associated to the family of hulls (Kt ). We show that the

Loewner measures (µt ) driving the equation are 2-conformal measures on the circle for

the circle maps (gt ).
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1. Introduction
A holomorphic diffeomorphism f (z) = e2πiαz+O(z2), α ∈ R − Q/Z defined in a

neighbourhood of the origin in C is said to be linearizable if it is analytically conjugate

to the rigid rotation Rα(z) = e2πiαz. The number α is called the rotation number of f
and the maximal domain of linearization is called the Siegel disk of f. The linearizability

of f is dependent on the arithmetic of α and there is an optimal arithmetic condition for

linearizability in this setting given by the well-known Brjuno condition B ⊂ R − Q, such

that if α ∈ B, then any map f with rotation number α is linearizable, while if α /∈ B, then

there exists a map f with rotation number α which is non-linearizable (see [Sie42, Brj71,

Yoc95]).

Irrespective of whether or not f is linearizable, Pérez-Marco proved the existence of

a unique, strictly increasing Hausdorff continuous family (Kt )t>0 of non-trivial, totally
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invariant (meaning that f (Kt ) = f−1(Kt ) = Kt ), full continua containing the fixed point

called Siegel compacts [PM97, PM96], where Kt → {0} as t → 0, and Kt can be

described as the connected component containing the origin of the set of non-escaping

points in the closed disk Dt of radius t around the origin. When f is non-linearizable,

these are called hedgehogs. The topology and dynamics of hedgehogs have been studied

by Pérez-Marco [PM94, PM96], who also developed techniques using ‘tube-log Riemann

surfaces’ [BPM15a, BPM15b, BPM13] for the construction of interesting examples

[PM93, PM95, PM00] of indifferent germs and hedgehogs, which were also used by the

author [Bis05, Bis08, Bis16] and Chéritat [Ch11] to construct further examples.

Notation. Throughout, D∞ will denote the complement in Ĉ of the closed unit disk,

D∞ = Ĉ − D, r : C∗ → C∗ will denote complex reflection in the unit circle, r(ξ) = 1/ξ

and d+/dt will denote the right-hand derivative.

The construction of Pérez-Marco from [PM97] associates to a pair (f , K) an analytic

circle diffeomorphism g, where f is a germ with an irrationally indifferent fixed point at

the origin and K is a Siegel compact of f, by considering a conformal map ψ from the

complement of K to the complement of the closed unit disk, ψ : Ĉ −K → D∞, such that

ψ(∞) = ∞. Conjugating f by ψ gives a holomorphic diffeomorphism g = ψ ◦ f ◦ ψ−1

in an annulus in D∞ having S1 as a boundary component, and g is shown to extend across

S1 to an analytic circle diffeomorphism defined in a neighbourhood of S1 such that the

rotation numbers of g and f are equal, ρ(g) = ρ(f ) = α.

Invariant compacts for g containing S1 then correspond to invariant compacts for f
containing K, and the theorem on existence and uniqueness of Siegel compacts then gives

the existence and uniqueness of a continuous strictly increasing one-parameter family

of Herman compacts (At )0≤t<ǫ for the circle map g with A0 = S1, where a Herman

compact for g is a connected totally invariant compact A containing S1 such that Ĉ − A

has two components and r(A) = A. The construction which produces g from the pair

(f , K) can similarly be applied to each pair (g, At ) to give a one-parameter family of

analytic circle diffeomorphisms (gt )t≥0 with g0 = g, by conjugating g by a conformal

map ψt : Ĉ − (D ∪ At ) → D∞, normalized so that ψt (∞) = ∞, ψ ′
t (∞) > 0. As before

the map gt = ψt ◦ g ◦ ψ−1
t defined in a one-sided neighbourhood of S1 extends across to

give an analytic circle diffeomorphism gt with rotation number equal to that of g.

The family At of Herman compacts can be shown to be Hausdorff continuous by the

same argument as in [PM96] used to show Hausdorff continuity of the family of Siegel

compacts Kt . Since the family At is Hausdorff continuous and strictly increasing, it is

possible to reparametrize the family so that the compacts D ∪ At have logarithmic capacity

t, meaning that the expansion of ψt near z = ∞ is of the form

ψt (z) = e−tz+ a0(t)+
a1(t)

z
+ · · · .

Let Diffω(S1) and Diffωα (S
1) denote the space of analytic, orientation-preserving circle

diffeomorphisms and the subspace of those diffeomorphisms with fixed rotation number

α ∈ (R − Q)/Z, respectively. We obtain for t ≥ 0 a locally defined family of maps

8t : Dt ⊂ Diffωα (S
1) → Diffωα (S

1) mapping a circle map g to the circle map gt obtained
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from the above construction. Here the domain Dt of 8t consists of those circle maps in

Diffωα (S
1) which extend to an annular neighbourhood of S1 and have a Herman compact A

in that neighbourhood such that D ∪ A has logarithmic capacity t (such a Herman compact

is independent of the choice of annular neighbourhood; see Lemma 5.1). It is not hard to

show that in fact the maps 8t form a continuous semigroup, namely 80 = id,

8s ◦8t = 8s+t

on the domain of 8s+t (which is contained in the domain of 8s ◦8t ; see Proposition 5.2)

and the orbits t 7→ 8t (g) give continuous curves in Diffωα (S
1) for the topology of uniform

convergence on S1 (see §5 for the proofs of these assertions).

We show in fact that the semigroup (8t )t≥0 has an infinitesimal generator X, meaning

that the curves t 7→ 8t (g) are right-hand differentiable in t and

d+

dt
8t (g) = X(8t (g)).

Since the space Diffωα (S
1) does not carry any obvious differentiable structure, the sense in

which these assertions hold is made precise in the statements of the theorems below.

The form of the infinitesimal generator X is obtained by studying the Loewner equation
associated to the family of hulls D ∪ At (we recall in §3 the basic facts about the Loewner

equation which we will be needing). The maps φt := ψ−1
t : D∞ → Ĉ − (D ∪ At ) form

a Loewner chain and it is known [Pom75, Lemma 6.1] that t 7→ φt (z) is absolutely

continuous for each fixed z ∈ D∞. Moreover, for almost every (a.e.) t, the right-hand

derivatives

χt (z) =
d+

ds |s=t
(φ−1
t ◦ φs)(z)

exist and the functions Ht (z) = χt (z)/z are given by the Herglotz transforms on D∞ of

a family of probability measures on the unit circle (µt ), called the driving or Loewner
measures of the Loewner equation. Here by the Herglotz transform on D∞ of a probability

measure µ on S1 we mean the holomorphic function H = Hµ in D∞ with positive real

part and satisfying H(∞) = 1, defined by

(Hµ)(z) =

∫

S1

1/ξ + 1/z

1/ξ − 1/z
dµ(ξ)

(the classical Herglotz theorem asserts that any holomorphic function H on D∞ satisfying

Re H > 0, H(∞) = 1 is of this form for a unique probability measure µ on S1). Douady

and Yoccoz have shown in [DY99] the existence and uniqueness of an s-conformal measure

µ = µs,g for any C2 circle diffeomorphism g with irrational rotation number and any

s ∈ R. By an s-conformal measure for a circle diffeomorphism g we mean a probability

measure µ on S1 such that

µ(g(E)) =

∫

E

|g′(x)|s dµ(x)

for all measurable sets E ⊂ S1.
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We show that for any g in Diffωα (S
1), the associated Loewner chain (φt ) is differentiable

for all t uniformly for z in any compact subset of D∞, and the associated Loewner measures

are the 2-conformal measures of the circle diffeomorphisms gt = 8t (g).

THEOREM 1.1. (Loewner measures are 2-conformal measures) For any g in Diffωα (S
1) and

any t ≥ 0, the right-hand derivative of the Loewner chain (φt ) exists (uniformly for z in
any compact subset of D∞) and is given by

χt (z) =
d+

ds |s=t
(φ−1
t ◦ φs)(z) = z · (Hµ2,gt )(z),

where µ2,gt is the unique 2-conformal measure of gt .

We remark that the map φ−1
t ◦ φs is only defined on D∞ for s > t , so we only consider

right-hand derivatives in the above theorem (even though it is true that for each fixed z ∈

D∞ and t > 0, there is a two-sided neighbourhood of t such that φ−1
t ◦ φs is defined near

z for s in this neighbourhood of t). The existence and form of the infinitesimal generator X
of the semigroup (8t ) are stated as follows.

THEOREM 1.2. (Infinitesimal generator of the semigroup) For any g ∈ Diffωα (S
1), there

exists a function X(g) holomorphic in a neighbourhood V of S1 such that for t > 0 small
the circle maps 8t (g) are defined in V and

lim
t→0+

8t (g)− g

t
= X(g) (1)

uniformly on compacts in V. The holomorphic function X(g) is given (in V ∩ D∞, a
one-sided neighbourhood of S1) by

X(g) = g′ · χ − χ ◦ g, (2)

where χ(z) = z · (Hµ2,g)(z).

We can think of the curves (t 7→ 8t (g)) as integral curves of a vector field X on the

space Diffωα (S
1). It is worth noting that while by equation (2) above the holomorphic

function X(g) is defined a priori only in a one-sided neighbourhood V ∩ D∞ of S1,

by equation (1) above (which holds on V) the function X(g) does in fact extend to

a holomorphic function in a full neighbourhood V of S1, so the differential equation

dg/dt = X(g) does make sense on S1. Moreover, for each g ∈ Diffωα (S
1), there exists

an integral curve for this ordinary differential equation, namely the curve t 7→ 8t (g)

constructed using the Herman compacts At . The next theorem asserts the uniqueness in

forward time for these integral curves.

THEOREM 1.3. (Uniqueness in forward time of integral curves) If (gt )0≤t<ǫ ⊂ Diffωα (S
1)

is a family of circle diffeomorphisms holomorphic in a neighbourhood V of S1, continuous
in t (for the topology of uniform convergence on compacts in V), such that the right-hand
derivatives exist and satisfy

d+

ds |s=t
gs(z) = X(gt )(z)

uniformly on compacts in V, then gt = 8t (g0) for 0 ≤ t < ǫ.
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Definition 1.4. (Germ of integral curves) An integral curve (in the sense of the previous

theorem) (gt )−∞<t<t0 ⊂ Diffωα (S
1) defined for all times t less than some t0 is said

to be a backward integral curve of X. We say that two backward integral curves

(g1
t )−∞<t<t1 , (g2

t )−∞<t<t2 of X define the same germ of the integral curve of X if g1
t = g2

t

for all t < t0 for some t0 < t1, t2.

It follows from the above that if (g1
t )−∞<t<t0 , (g2

t )−∞<t<t0 are two backward integral

curves defining the same germ of an integral curve, then in fact g1
t = g2

t for all t < t0.

Any germ f with an irrationally indifferent fixed point gives a family of Siegel compacts

(Kt )−∞<t<t0 (parametrizing the compacts Kt by their logarithmic capacities) and hence

(by applying the germs to the circle map construction to the pairs (f , Kt )) gives a family

of circle maps (gt = g
f
t )−∞<t<t0 , which it is easy to see is a backward integral curve. We

remark that unlike the uniqueness in forward time for integral curves, we cannot yet show

uniqueness in backward time for integral curves, which is related to an open conjecture of

Pérez-Marco’s in [PM97, §V.3(a)]. We show that conversely any backward integral curve

arises in this way from a germ f. Denoting the space of germs with rotation number α by

Diffα(C, 0), we have the following.

THEOREM 1.5. (Germs of diffeomorphisms and germs of integral curves) For any
backward integral curve (gt )−∞<t<t0 ⊂ Diffωα (S

1) of X, we have gt → Rα uniformly on
S1 as t → −∞.

The map f 7→ [(g
f
t )] gives a one-to-one correspondence between Diffα(C, 0) and

germs of integral curves of X.

Finally in §8 we describe some further results that can be obtained in the case of

analytically linearizable circle maps and germs.

2. Boundary values of the Herglotz transform
The Herglotz transform of a probability measure µ on S1 is the holomorphic function Hµ

in D defined by

(Hµ)(w) =

∫

S1

ξ + w

ξ − w
dµ(ξ). (3)

The real and imaginary parts of the Herglotz transform Hµ = Pµ+ iQµ are given by

the Poisson and conjugate Poisson transforms,

(Pµ)(w) =

∫

S1
Re

ξ + w

ξ − w
dµ(w) =

∫

S1

1 − |w|2

|ξ − w|2
dµ(ξ),

(Qµ)(w) =

∫

S1
Im

ξ + w

ξ − w
dµ(w) =

∫

S1

2 Im ξw

|ξ − w|2
dµ(ξ).

The radial limits of these harmonic functions exist for a.e. ξ ∈ S1 with respect to

Lebesgue measure λ; we will call the radial limits P and Q, respectively, and will call

the function P + iQ the boundary value of the function Hµ. The decomposition of the

measure µ into absolutely continuous and singular parts with respect to Lebesgue measure

µ = f dλ+ µs can be recovered from these radial limits as follows.
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THEOREM 2.1. (Fatou) For Lebesgue-a.e. ξ ∈ S1, the radial limit P of (Pµ)(w) exists
and equals f (ξ).

THEOREM 2.2. (Poltoratski [Pol96]) As t → +∞, the measures (π/2)t1{|Q|>t}dλ con-
verge weakly to µs (where Q denotes the radial limit of Qµ on S1).

Since we will be dealing with functions defined in D∞, we will refer to the holomorphic

function in D∞ defined by

H(z) =

∫

S1

1/ξ + 1/z

1/ξ − 1/z
dµ(ξ) , z ∈ D∞

as the Herglotz transform of µ on D∞. Then H(z) = H̃ (r(z)), where r(z) = 1/z and

H̃ = Hµ is the Herglotz transform defined by equation (3), which is holomorphic in D.

Appropriate versions of the above theorems hold for the boundary values of the function

H. Let the boundary values of H , H̃ be P + iQ, P̃ + iQ̃, respectively. Then P + iQ =

P̃ − iQ̃, so for µ = f dλ+ µs we have

f = P̃ = P

and

µs = lim
t→+∞

(π

2
t1{|Q̃|>t}dλ

)

= lim
t→+∞

(π

2
t1{|Q|>t}dλ

)

weakly.

3. The Loewner equation
A hull is a connected, full, non-trivial compact K in C containing the origin. Its

complement � in Ĉ is then a simply connected domain containing ∞, so there is a

conformal map from the complement of the closed unit disk, φ : D∞ → � = Ĉ −K , such

that φ(∞) = ∞, which is unique when normalized to satisfy φ′(∞) > 0. The map φ has

an expansion around z = ∞ of the form

φ(z) = ec(K)z+ a0 +
a1

z
+ · · ·,

where the real number c(K) is called the logarithmic capacity of the hull K (note that the

closed disk of radius R then has logarithmic capacity log R).

Given a strictly increasing family of hulls (Kt )−∞<t≤t0 , if the domains �t = Ĉ −Kt

are continuous for the Carathéodory topology (which holds if the family of hulls is

Hausdorff continuous for example) andKt → {0} as t → −∞, then one can continuously

reparametrize the family by logarithmic capacity so that the associated conformal maps

φt : D∞ → �t satisfy

φt (z) = etz+ a0(t)+
a1(t)

z
+ · · ·.

The family of conformal maps (φt ) is called a Loewner chain (strictly speaking, the

classical notion of Loewner chain as presented in [Pom75, Ch. 6] considers conformal
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maps from the unit disk D with images simply connected domains containing 0 ∈ C, and

the parameter t lies in [0, ∞); what we consider here though is a version of this notion

where the conformal maps are defined on the disk D∞ with images simply connected

domains containing ∞ ∈ Ĉ, for which it is natural that the parameter t lies in (−∞, t0]).

For each compact K ⊂ D∞, for each z in K the map t 7→ φt (z) is CK -Lipschitz in t for

some constant CK only depending on K [Pom75, §6.1]. Thus, for each z the derivative of

φt (z) with respect to t exists for all t outside some null set Ez, but in fact one can choose a

null set E independent of z such that the derivative with respect to t exists for all z in D∞

[Pom75, Theorem 6.3]. Moreover, this derivative is of the form

d+

ds |s=t
(φ−1
t ◦ φs)(z) = zHt (z)

(only the right-hand derivative is considered since the maps φ−1
t ◦ φs are only defined

on D∞ for t ≤ s), where Ht is a holomorphic function on D∞ satisfying Re Ht >

0, Ht (∞) = 1 and hence can be written as the Herglotz transform on D∞ of a unique

probability measure µt on S1,

Ht (z) =

∫

S1

1/ξ + 1/z

1/ξ − 1/z
dµt (ξ).

The measures (µt ) are called the driving or Loewner measures for the Loewner chain (φt ).

4. Conformal measures of analytic circle diffeomorphisms
A conformal measure of dimension δ for a holomorphic map f is a finite measure µ on an

f -invariant compact K such that

µ(f (E)) =

∫

E

|f ′(z)|δ dµ(z)

for all measurable sets E ⊂ K or, when f is a diffeomorphism,

f ∗µ = |f ′|δ dµ,

where f ∗µ is defined by (f ∗µ)(E) = µ(f (E)). Conformal measures have been studied

extensively for rational maps and Kleinian groups (as Patterson–Sullivan measures), where

existence is usually proved by means of transfer operators for hyperbolic dynamical

systems. While the machinery of transfer operators is not available for circle diffeomor-

phisms, Douady and Yoccoz [DY99] proved nonetheless the existence and uniqueness of

s-conformal measures µs,g for any C2 circle diffeomorphism g with irrational rotation

number for every s ∈ R. Moreover, the measures µs,g depend continuously on s, g for the

weak topology on measures and the C1 topology on circle diffeomorphisms.

5. The semigroup (8t )t≥0 on Diffωα (S
1)

Given an analytic circle diffeomorphism g with irrational rotation number α, for ǫ > 0

small, there is a unique, strictly increasing, Hausdorff continuous family of Herman

compacts (At )0≤t<ǫ totally invariant under g (and the reflection r) such that the hulls D ∪

At have logarithmic capacity t. Let (�t )0≤t<ǫ be the family of decreasing simply connected
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domains �t = Ĉ − (D ∪ At ) and let φt : D∞ → �t be conformal maps normalized so

that φt (∞) = ∞, φ′
t (∞) = et . We let ψt = φ−1

t : �t → D∞.

The map gt := ψt ◦ g ◦ ψ−1
t is holomorphic in an annulus contained in D∞ with one

boundary component equal to S1 and (as shown in [PM97]) extends analytically across S1

to give an analytic circle diffeomorphism with rotation number equal to α. This defines a

map

8t : Dt ⊂ Diffωα (S
1) → Diffωα (S

1),

g 7→ gt ,

where Dt is the set of g in Diffωα (S
1) having a Herman compact A such that D ∪ A has

logarithmic capacity t. To remove any ambiguity considering the possibility of different

Herman compacts for holomorphic extensions of g to different open sets containing S1,

we prove the following lemma.

LEMMA 5.1. Let g ∈ Diffωα (S
1), where α ∈ R − Q, and let t0 ≥ 0. For i = 1, 2, let Ui be

a connected open set containing S1 which is symmetric under the reflection r and such that
g and g−1 extend holomorphically to Ui , and g has a Herman compact Ai ⊂ Ui such that
D ∪ Ai has logarithmic capacity t0. Then A1 = A2.

Proof. We will use the following fact, which follows from the results of [PM96]: if W ⊃

S1 is a (topological) annulus with C1 boundary, symmetric under the reflection r, such

that g and g−1 are univalent in a neighbourhood of W , then there exists a unique Herman

compact A = A(g, W) for g such that A ⊂ W and A ∩ ∂W 6= ∅. Moreover, the compact

A(g, W) is given by the connected component containing S1 of the set {z ∈ W | gn(z) ∈

W for all n ∈ Z}.

For i = 1, 2, we can choose an annulus Wi ⊃ S1 with C1 boundary and symmetric

under the reflection r such that Ai ⊂ Wi and Wi ⊂ Ui . Choosing a C1 diffeomorphism

φi : {1/2 ≤ |z| ≤ 2} such that φ ◦ r = r ◦ φ, the annulus Wi admits a filtration by closed

sub-annuli W s
i := φ({(1/2)s ≤ |z| ≤ 2s}), 0 ≤ s ≤ 1. This gives a Hausdorff continuous,

strictly increasing one-parameter family of Herman compacts Asi := A(g, W s
i ) such that

Ai = A
si
i , where si = inf{s ∈ [0, 1] | Ai ⊂ W s

i }. We can reparametrize the family (Asi )

by logarithmic capacity, i.e. for 0 ≤ s ≤ si , we let t = t (s) be the logarithmic capacity

of D ∪ Asi , and set Ai,t = Asi and thus obtain a Hausdorff continuous, strictly increasing

family of Herman compacts (Ai,t )0≤t≤t0 parametrized by t ∈ [0, t0], with Ai,0 = S1 and

Ai,t0 = Ai . Consider the set C = {t ∈ [0, t0] | A1,t = A2,t }. Then 0 ∈ C, and the set C
is closed since if tn ∈ C converges to some t, then A1,tn = A2,tn for all n implies that

A1,t = A2,t because Ai,tn → Ai,t as n → ∞ for i = 1, 2 in the Hausdorff topology.

Since C is closed, sup C ∈ C. We claim that sup C = t0. Suppose to the contrary

that t1 := sup C < t0. Then A1,t1 = A2,t1 = A, say. Let V = U1 ∩ U2; then V is an open

neighbourhood of A and we can find an annulus W with C1 boundary such that A ⊂ W ,

W ⊂ V and W is symmetric with respect to the reflection r. As before we can choose

a filtration of W by closed sub-annuli W s , 0 ≤ s ≤ 1, with W 0 = S1 and W 1 = W . By

Hausdorff continuity, since A ⊂ W , we can choose t2 ∈ (t1, t0) such that for t ∈ [t1, t2],

we have Ai,t ⊂ W , i = 1, 2. For t ∈ [t1, t2] and i = 1, 2, let si(t) = inf{s ∈ [0, 1] | Ai,t ⊂

W s}; then t 7→ si(t) is a continuous, strictly increasing function and Ai,t = A(g, W si (t))
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for t ∈ [t1, t2]. For t ∈ (t1, t2) close enough to t1, we have s1(t) < s2(t2) (since s2(t2) >

s2(t1) = s1(t1)), so there exists t ′ ∈ (t1, t2) such that s1(t) = s2(t
′) and hence A1,t =

A(g, W s1(t)) = A(g, W s2(t
′)) = A2,t ′ . In particular, the logarithmic capacities of D ∪ A1,t

and D ∪ A2,t ′ are equal and hence t = t ′. It follows that for t > t1 close enough to t1, we

have A1,t = A2,t , so t ∈ C, contradicting the fact that t1 = sup C. Hence, sup C = t0 ∈ C,

so A1 = A1,t0 = A2,t0 = A2. �

For g in Diffωα (S
1) and t ≥ 0, let At (g) be a Herman compact for g such that D ∪

At (g) has logarithmic capacity t (if such a Herman compact exists), let �t (g) := Ĉ −

(D ∪ At (g)) and let ψt (g) : �t (g) → D∞ be the corresponding normalized conformal

map.

PROPOSITION 5.2. For s, t ≥ 0, 8t (Ds+t ) ⊂ Ds and 8s ◦8t = 8s+t on Dt+s . More-
over, if g ∈ Dt0 for some t0 > 0, then the curve t ∈ [0, t0] 7→ 8t (g) ∈ Diffωα (S

1) is
continuous (for the topology of uniform convergence on S1).

Proof. For g ∈ Ds+t , where s, t ≥ 0, ψt (g) maps �s+t (g) conformally to a domain �1

such that the compact A1 given by the complement of �1 and its reflection in the unit

circle is invariant under 8t (g) and hence �1 = �s′(8t (g)) for some s′ ≥ 0. The map

ψs′(8t (g)) maps �1 conformally to D∞, so the composition ψ := ψs′(8t (g)) ◦ ψt (g)

maps �s+t (g) conformally to D∞ and satisfies the normalizations ψ(∞) = ∞, ψ ′(∞) =

es
′
et = es

′+t > 0. It follows from uniqueness of the normalized conformal mapping that

ψ = ψs+t (g), so es
′+t = es+t and hence s′ = s. Thus, ψs(8t (g)) ◦ ψt (g) = ψs+t (g),

from which it follows that (8s ◦8t )(g) = 8s+t (g).

Now suppose that g ∈ Dt0 for some t0 > 0. Let tn ∈ [0, t0] be a sequence converging to

some t ∈ [0, t0]. Then the compacts Atn(g) converge to At (g) in the Hausdorff topology,

so the domains �tn(g) converge to the domain �t (g) in the sense of Carathéodory kernel

convergence. By the Carathéodory kernel convergence theorem, the normalized conformal

mappings ψtn(g) and their inverses ψ−1
tn
(g) converge uniformly on compacts of�t (g) and

D∞ to the maps ψt (g) and ψ−1
t (g), respectively. Let V be an annular neighbourhood

of S1 containing At0(g) such that g extends holomorphically to V. We can choose a

Jordan curve γ ⊂ V ∩ D∞ which separates At0(g) from ∞. Then the Jordan curves βn :=

ψtn(g)(γ ) ⊂ D∞ converge to the Jordan curve β := ψt (g)(γ ) ⊂ D∞, so we can choose

R > 1 close to one such that the annulus {1/R ≤ |z| ≤ R} is contained in the annuli An

bounded by βn and r(βn) for all n. Each map 8tn(g), 8t (g) then extends holomorphically

to a neighbourhood of the annulus {1/R ≤ |z| ≤ R} and8tn(g) = ψtn(g) ◦ g ◦ ψ−1
tn
(g) on

the circle {|z| = R}; hence, 8tn(g) → 8t (g) = ψt (g) ◦ g ◦ ψ−1
t (g) uniformly on {|z| =

R} as n → ∞. Since these maps commute with the reflection r, this implies uniform

convergence of 8tn(g) to 8t (g) on {|z| = 1/R} and hence by the maximum principle

we have uniform convergence on S1. �

6. Infinitesimal generator of the semigroup
Let g be an analytic circle diffeomorphism with irrational rotation number α. Let (At )0≤t<ǫ

be the family of Herman compacts of g and (Ht = D ∪ At )0≤t<ǫ the associated family

of hulls. Let �t = Ĉ − Ht and let φt : D∞ → �t , ψt = φ−1
t be normalized conformal
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mappings. Let gt ∈ Diffωα (S
1) be the family of analytic circle diffeomorphisms obtained

from g using the Herman compacts At as in the previous section (so gt = ψt ◦ g ◦ ψ−1
t in

an annulus in D∞ with one boundary component equal to S1). The functions {(φt − id)/t :

0 ≤ t < ǫ} form a normal family [Pom75, §6.1].

LEMMA 6.1. Let {tn} be a sequence decreasing monotonically to 0 such that (φtn − id)/tn

converges uniformly on compacts of D∞ to a holomorphic function χ . Then (ψtn − id)/tn

converges uniformly on compacts in D∞ to (−χ).

Proof. Fix a compact K ⊂ D∞; then, for n large, K ⊂ �tn and the maps ψtn are defined

on K. We have φtn = id + tnχ + o(tn) uniformly on K. Then id = φtn ◦ ψtn gives

id = (id + tnχ + o(tn)) ◦ ψtn = ψtn + tnχ ◦ ψtn + o(tn),

so

ψtn − id

tn
= −χ ◦ ψtn + o(1)

uniformly on K and the lemma follows since ψtn → id uniformly on K as n → ∞. �

LEMMA 6.2. Let {tn} be a sequence decreasing monotonically to 0 such that (φtn − id)/tn

converges uniformly on compacts of D∞ to a holomorphic function χ . Then (gtn − g)/tn

converges uniformly on compacts in a neighbourhood V of S1 to a holomorphic function ġ
given (in V ∩ D∞) by

ġ = g′ · χ − χ ◦ g.

Moreover, the functions {(gt − g)/t : 0 ≤ t < ǫ} form a normal family on V.

Proof. By the previous lemma, the equality ψtn ◦ g = gtn ◦ ψtn gives

(id − tnχ + o(tn)) ◦ g = gtn ◦ (id − tnχ + o(tn))

uniformly on a circle {|z| = R} ⊂ D∞, so

g − tnχ ◦ g + o(tn) = gtn − g′
tn
tnχ + o(tn);

thus,

gtn − g

tn
= g′

tn
· χ − χ ◦ g + o(1) → g′ · χ − χ ◦ g

uniformly on {|z| = R}. Since the maps gtn , g are circle maps, (gtn − g)/tn converges

uniformly on the circle {|z| = 1/R} ⊂ D and hence by the maximum principle we have

uniform convergence on the closed annulus V = {1/R ≤ |z| ≤ R}.

To see that {(gt − g)/t : 0 ≤ t < ǫ} is a normal family, it suffices to show that for

any sequence tn converging to 0, the sequence (gtn − g)/tn has a normally convergent

subsequence (note for t bounded away from 0, the functions (gt − g)/t are uniformly

bounded on V since gt , g are uniformly bounded on V). Given a sequence tn converging

to 0, since the family {(φt − id)/t} is normal, there is a subsequence of the sequence

{(φtn − id)/tn} which converges normally, but then by the first part of the lemma, the

same subsequence of the sequence {(gtn − g)/tn} converges normally. �
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THEOREM 6.3. Let {tn} be a sequence decreasing monotonically to 0 such that
(φtn − id)/tn converges uniformly on compacts of D∞ to a holomorphic function χ .
Then H = χ/id satisfies Re H > 0, H(∞) = 1 and is the Herglotz transform Hµ on D∞

of µ = µ2,g , where µ2,g is the unique 2-conformal measure of g.

Proof. Let χn(z) = (φtn(z)− z)/tn and let Hn(z) = χn(z)/z for |z| > 1. Since for t >

0, �t is a proper subdomain of D∞, by the Schwarz lemma |φt (z)/z| > 1 for all

t > 0. The Moebius map w = (z− 1)/(z+ 1) maps D∞ conformally to the half-plane

{Re w > 0}, so

Re

(

tnzHn(z)

φtn(z)+ z

)

= Re

(

φtn(z)− z

φtn(z)+ z

)

> 0

and, letting n → ∞, it follows that (using Hn(z) → H(z), z/(φtn(z)+ z) → 1/2)

Re H(z) ≥ 0 for all z. Moreover, Hn(∞) = (etn − 1)/tn and Hn converges uniformly

to H on compacts in D∞, so H(∞) = 1. If Re H(z0) = 0 for some z0, then by the open

mapping theorem we must have H(z) ≡ H(z0) ∈ iR, contradicting H(∞) = 1 and hence

Re H(z) > 0 for all z. By the Herglotz theorem, H is the Herglotz transform on D∞ of a

probability measure µ on S1. It suffices to show that µ is 2-conformal for g.

Let µ = f dλ+ µs be the decomposition of µ into absolutely continuous and singular

parts with respect to Lebesgue measure.

By Fatou’s theorem, the radial limits of Re H exist for a.e. ξ ∈ S1 and equal f. From

Lemma 6.2, we have ġ + χ ◦ g = g′ · χ and so

ġ

g
(z)+ (H ◦ g)(z) =

zg′(z)

g(z)
H(z).

By Lemma 6.2, the function ġ is holomorphic in a neighbourhood of S1 and, since

gtn(ξ) converges to g(ξ) along S1 for ξ in S1, we have Re (ġ/g)(ξ) = 0. Moreover,

ξg′(ξ)/g(ξ) = |g′(ξ)| since g is a circle map, so taking real parts in the equation above as

z tends to ξ ∈ S1 radially gives (f ◦ g)(ξ) = |g′(ξ)|f (ξ); thus,

g∗(f dλ) = (f ◦ g)|g′| dλ = |g′|2(f dλ)

and thus the absolutely continuous part f dλ of µ is 2-conformal.

It remains to show that the singular part µs of µ is 2-conformal. Taking imaginary parts

in (ġ/g)(z)+ (H ◦ g)(z) = (zg′(z)/g(z))H(z) as z tends to a point ξ ∈ S1 radially gives

(recalling that the boundary value of H is given by H = P + iQ)

(ġ/g)(ξ)+ i(Q ◦ g)(ξ) = |g′(ξ)|iQ(ξ).

The function ġ/g is holomorphic in a neighbourhood of S1 and hence bounded on S1,

so ||Q ◦ g| − |g′||Q|| < M for some M > 0.

For t ≫ 1, let νt denote the measure (π/2)t1|Q|>tdλ, so νt converges weakly to µs as

t → +∞.

Given a small ǫ > 0, by uniform continuity of g′ on S1 there exists δ = δ(ǫ) > 0

such that if U ⊂ S1 is any interval of length less than δ, then for any ξ , ξ0 ∈ U ,

we have (1 − ǫ) < |g′(ξ)/g′(ξ0)| < (1 + ǫ). For t ≫ 1 such that t/(t −M) < 1 + ǫ,
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t/(t +M) > 1 − ǫ, we then have

νt (g(U)) =
π

2
tλ(g(U) ∩ {|Q| > t})

=
π

2
tλ(g({ξ ∈ U , |Q(g(ξ))| > t}))

≤
π

2
t (1 + ǫ)|g′(ξ0)|λ({ξ ∈ U , |Q(g(ξ))| > t})

≤
π

2
t (1 + ǫ)|g′(ξ0)|λ({ξ ∈ U , |g′(ξ)||Q(ξ)| > t −M})

≤ t (1 + ǫ)|g′(ξ0)|
1

T
νT (U)

(

where T =
t −M

(1 + ǫ)|g′(ξ0)|

)

≤ (1 + ǫ)3|g′(ξ0)|
2νT (U).

Similarly, we have

νt (g(U)) ≥ (1 − ǫ)3|g′(ξ0)|
2νT ′(U),

where T ′ = (t +M)/(1 − ǫ)|g′(ξ0)|.

Douady and Yoccoz [DY99] showed that if log |g′| is of bounded variation (which is

the case if g is C2), then any conformal measure for g has no atoms. In particular, µs has

no atoms and hence νt (U) → µs(U) for any interval U. From the above we then have that

given ǫ, there is a δ = δ(ǫ) > 0 such that if U is any interval of length less than δ, and

ξ0 ∈ U , then

(1 − ǫ)3|g′(ξ0)|
2µs(U) ≤ µs(g(U)) ≤ (1 + ǫ)3|g′(ξ0)|

2µs(U).

Given any interval V in S1 and ǫ > 0, letU1, . . . , Un be a partition of V into intervals of

length less than δ(ǫ) centred around points ξ1, . . . , ξn. We may assume that the variation

of |g′|2 on each Ui is less than ǫ. Then

µs(g(V )) =
∑

i

µs(g(Ui))

≤
∑

i

(1 + ǫ)3|g′(ξi)|
2µs(Ui)

≤ (1 + ǫ)3
∑

i

∫

Ui

(|g′(ξ)|2 + ǫ) dµs(ξ)

= (1 + ǫ)3
(∫

V

|g′(ξ)|2 dµs(ξ)+ ǫ

)

.

Letting ǫ tend to 0 gives µs(g(V )) ≤
∫

V
|g′|2 dµs and similarly µs(g(V )) ≥

∫

V
|g′|2 dµs . It follows that µs is 2-conformal for g and hence µ is 2-conformal for g

and µ = µ2,g . �

7. Proofs of main results
We can now prove the main results from the Introduction.

Proof of Theorem 1.1. Given g ∈ Diffωα (S
1), by uniqueness of the 2-conformal measure

µ2,g of g, it follows from Theorem 6.3 that any normal limit χ of the functions
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(φt − t)/t , t > 0 (where φt : D∞ → �t is the normalized Riemann mapping as before)

is given by χ(z) = z ·H(z), where H is the Herglotz transform on D∞ of µ2,g (recall that

the family {(φt − id)/t} is normal by [Pom75, §6.1]). Since the normal limit is unique,

φt (z)− z

t
→ z ·H(z)

uniformly on compacts in D∞ as t → 0.

For any t > 0 and s > t , the map φ−1
t ◦ φs is the normalized Riemann mapping from

D∞ to the complement of the unique hull of logarithmic capacity s − t associated to the

circle map gt , so it follows from the same argument as above (applied to gt ) that

φ−1
t ◦ φs(z)− z

s − t
→ z ·Ht (z)

uniformly on compacts in D∞ as s → t , where Ht is the Herglotz transform on D∞ of

µ2,gt . �

Proof of Theorem 1.2. Given g ∈ Diffωα (S
1) and gt = 8t (g), since (φt − id)/t converges

uniformly on compacts in D∞ to a unique function χ as t → 0, it follows from Lemma 6.2

that for any sequence {tn} converging to 0, the functions (gtn − g)/tn converge uniformly

on compacts in a neighbourhood V of S1 to a holomorphic function ġ on V satisfying (in

V ∩ D∞)

ġ = g′ · χ − χ ◦ g.

So, all normal limits of the normal family {(gt − g)/t} coincide (recall that the family

is normal by Lemma 6.2) and thus

gt − g

t
→ g′ · χ − χ ◦ g

as t → 0, where χ(z) = z ·H(z), H being the Herglotz transform on D∞ of µ2,g . �

Proof of Theorem 1.3. Let g ∈ Diffωα (S
1) and let {gt }0≤t<ǫ ⊂ Diffωα (S

1) be such that g0 =

g and such that the right-hand derivatives exist uniformly on a neighbourhood V of S1 and

satisfy (on V ∩ D∞)

ġt :=
d+

ds s=t
gs(z) = X(gt )(z) = g′

t (z) · χt (z)− χt ◦ gt (z),

where χt (z) = zHt (z), Ht (z) being the Herglotz transform on D∞ of the measure µ2,gt .

The function p(z, t) := Ht (z) satisfies Re p(z, t) > 0, p(∞, t) = 1. We are assuming

that the maps gt depend continuously on t with respect to the topology of uniform

convergence in a neighbourhood of S1 and, hence, being analytic maps, with respect

to C1 convergence on S1, so by [DY99] the measures µ2,gt depend continuously on t
for the weak topology and hence p(z, t) = Ht (z) depends continuously on t for fixed

z. It follows [Pom75, Theorem 6.3] that there exists a Loewner chain (φt )0≤t<ǫ , where

the maps φt are normalized conformal mappings from D∞ onto a decreasing family of

simply connected domains�t , such that φt (z) = etz+O(1) near z = ∞, φ0 = id and the
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following right-hand derivatives exist uniformly on compacts of D∞:

d+

ds |s=t
φ−1
t ◦ φs = χt .

Let (At )0≤t<ǫ be the increasing family of annular compacts containing S1 given by the

complement in Ĉ of �t and its reflection in S1, so that the hulls Ht := Ĉ −�t are given

by Ht = D ∪ At .

Let ht = φt ◦ gt ◦ φ−1
t ; then ht depends continuously on t with respect to the topology

of uniform convergence on compacts in a neighbourhood of S1 and hence so does h′
t .

We will show that in fact ht does not depend on t. Let U = V ∩ D∞ be a one-sided

neighbourhood of S1. For s > t , let h = s − t ; then as h → 0, we have, uniformly on

any compact in U,

h′
s = h′

t + o(1),

φs = φt ◦ (id + hχt + o(h)) = φt + hφ′
tχt + o(h),

gs = gt + hġt + o(h),

so the equation hs ◦ φs = φs ◦ gs gives

hs ◦ (φt + hφ′
tχt + o(h)) = (φt + hφ′

tχt + o(h)) ◦ (gt + hġt + o(h))

⇒ hs ◦ φt + h(h′
s ◦ φt )(φ

′
tχt )+ o(h) = φt ◦ gt + h(φ′

t ◦ gt )(χt ◦ gt + ġt )+ o(h)

⇒ hs ◦ φt + h(h′
t ◦ φt )(φ

′
tχt )+ o(h) = ht ◦ φt + h(φ′

t ◦ gt )(g
′
tχt )+ o(h)

⇒ (hs − ht ) ◦ φt + h(ht ◦ φt )
′χt + o(h) = h(φt ◦ gt )

′χt + o(h)

⇒ (hs − ht ) ◦ φt + h(ht ◦ φt )
′χt + o(h) = h(ht ◦ φt )

′χt + o(h),

from which it follows that for any z in U, the right-hand derivative (d+/dt)ht (z) = 0

for all t. Since t 7→ ht (z) is continuous, we have ht (z) = h0(z) = g(z) for all t (since

a continuous function on an interval whose right-hand derivative exists and vanishes

everywhere is constant).

The map ht , being the conjugate of the circle map gt by the map φt on U, maps the

annulus φt (U) to the annulus φt (gt (U)). Both these annuli have ∂Ht as one boundary

component, and ht = g extends analytically across S1 to be univalent in a neighbourhood

of S1 containing Ht and hence g leaves At invariant. It follows that At is the unique

annular compact of g such that the hull Ht = D ∪ At has logarithmic capacity t and hence

gt = 8t (g). �

Proof of Theorem 1.5. Let f be a germ with rotation number α. Let (Kt )−∞<t<t0 be

the one-parameter family of Siegel compacts of f parametrized by their logarithmic

capacities and let φt : D∞ → Ĉ −Kt be normalized conformal mappings such that

φt (∞) = ∞, φt (z) = etz+O(1) near z = ∞. Fix disks Dr ⊂ Dr0 with 0 < r < r0 such

that f maps Dr univalently into Dr0 . Then, for t ≪ −1, the circle map g
f
t (given by

conjugating f by φ−1
t ) is univalent on φ−1

t (Dr −Kt ), which is an annulus in D∞ with

modulus tending to +∞ as t → −∞. Therefore, the family (g
f
t ) forms a normal family

and any normal limit of g
f
t as t → −∞ must be a circle map univalent on D∞ and hence

equal to Rα , so g
f
t → Rα as t → −∞.
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If two germs of integral curves (g
f1
t ), (g

f2
t ) are equal, then there are a t0 ∈ R and

neighbourhoods D1, D2 of the origin such that for t < t0 there is a map ht univalent

on Ĉ −Kt (f1) with h′
t (∞) = 1 conjugating f1 on D1 −Kt (f1) to f2 on D2 −Kt (f2)

(where Kt (fi), i = 1, 2 denotes the Siegel compact of fi of logarithmic capacity t). The

maps (ht )t<t0 form a normal family, any normal limit of which is univalent on C∗, takes

values in C∗ and has derivative one at ∞ and hence must be the identity. Thus, ht → id as

t → −∞ and f1 = f2.

Finally, given a backward integral curve (gt )−∞<t≤c, let {tn} be a sequence in (−∞, c]

decreasing to −∞. Pérez-Marco showed in [PM97] that for the circle map gt0 , there exists

a germ ft0 with a Siegel compact K such that the fundamental construction of [PM97]

applied to the pair (ft0 , K) gives the circle map gt0 . Conjugating by a scaling if necessary,

we may assume that K has logarithmic capacity t0, so K = Kt0(ft0) and gt0 = g
ft0
t0

.

By Theorem 1.3, for t ∈ [t0, c], gt = 8t−t0(gt0), i.e. gt arises from gt0 by applying the

fundamental construction of §5 to gt0 and a Herman compact of gt0 ; then pulling back

this Herman compact for gt0 to the plane of ft0 gives a Siegel compact Kt (ft0) for ft0 of

logarithmic capacity t such that gt = g
ft0
t .

Similarly, for any n ≥ 0, we obtain a germ ftn such that gt = g
ftn
t for all t ∈ [tn, c].

In particular, this holds for t = c, so ftn is given, outside a Siegel compact Kc(ftn), by

conjugating gc by a conformal map φn : D∞ → Ĉ −Kc(ftn) with φn(z) = ecz+O(z)

near z = ∞. The maps {φn} are conformal mappings on D∞ with fixed derivative at ∞ and

hence form a normal family. Fix an annulus U ⊂ D∞ with boundary components S1 and

a Jordan curve γ such that gc is univalent on a neighbourhood of U . Let Dn be the Jordan

domain bounded by φn(γ ). We may assume that the map ftn is defined and univalent

on the whole domain Dn as follows: the map φn ◦ gc ◦ φ−1
n is defined and univalent on

the domain Wn := Dn −Kc(ftn) and we can choose a connected neighbourhood Un of

Kc(ftn) such that ftn is defined and univalent onUn and such thatUn ⊂ Wn; then the maps

φn ◦ gc ◦ φ−1
n and ftn on the domains Wn and Un agree on the intersection Wn ∩ Un and

hence they may be glued together to give a holomorphic map on Wn ∪ Un = Dn, which

we continue to denote by ftn . The maps {ftn} are then normalized univalent functions on

the Jordan domainsDn bounded by φn(γ ) and we may pass to a subsequence such that the

Jordan curves φn(γ ) converge (since {φn} is a normal family); then the maps {ftn} form a

normal family on the kernel of the domains Dn. Any normal limit f then satisfies gt = g
f
t

for all t ≤ c (by continuity of the fundamental construction of [PM97]). �

The fact [PM97] that any circle map g arises from a pair (f , K), where f is a germ with

a Siegel compact K, also gives the following.

PROPOSITION 7.1. For any g ∈ Diffωα (S
1), there exists a backward integral curve

(gt )−∞<t≤c with gc = g.

Proof. Given a pair (f , K) which gives rise to the circle map g, let (Kt )−∞<t≤c be the

unique family of Siegel compacts of f parametrized by logarithmic capacity, withKc = K .

Applying the fundamental construction of [PM97] to each pair (f , Kt ) gives a backward

integral curve (gt )−∞<t≤c with gc = g. �
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8. Linearizable maps and conformal radius of linearization domains
Let g ∈ Diffωα (S

1) be a circle map which is analytically linearizable. For such a map we

have uniqueness in both forward and backward time for any integral curve with initial

condition g.

THEOREM 8.1. Let (git )−∞<t<c ⊂ Diffωα (S
1), i = 1, 2, be two integral curves of X such

that g1
c0

= g2
c0

= g for some c0 < c. Then g1
t = g2

t for all t < c.

Proof. By Theorem 1.3, we have g1
t = g2

t for c0 ≤ t < c. Consider a t < c0; then we have

g = 8s(g
1
t ) = 8s(g

2
t ), where s = c0 − t > 0. Let φ1, φ2 be the normalized conformal

mappings defined on D∞ conjugating g to g1
t , g2

t , respectively (implicitly, here we fix

a holomorphic extension of g to a neighbourhood N of S1 and modify extensions of

g1
t , g2

t appropriately so that their domains contain the images of N ∩ D∞ under φ1, φ2,

respectively). Let U ⊂ D∞ be an invariant annulus for g with boundary components equal

to S1 and a Jordan curve γ ⊂ D∞ such that g is univalent in a neighbourhood of U . For

i = 1, 2, φi(γ ) is an invariant Jordan curve for git in D∞ and hence so is r(φi(γ )); letting

Vi denote the annulus with boundary components φi(γ ) and r(φi(γ )), it follows that Vi

is an invariant annulus for git containing S1, so git is analytically linearizable. Since git is

analytically linearizable, the git -invariant annulus Vi is filtered by a monotone increasing

one-parameter family of git -invariant sub-annuli containing S1, whose closures give the

family of Herman compacts of git contained in Vi . So, the Herman compact for git which

gives rise to g (on conjugating by φi) is given by one such git -invariant sub-annulus

containing S1, with boundary components equal to an invariant Jordan curve γ i ⊂ D∞

and its reflection r(γ i). Let Ai be the git -invariant annulus with boundary components S1

and γ i ; then φi maps D∞ conformally to Ĉ − (D ∪ Ai) and conjugates the action of g on

S1 to that of git on γ i .

Let L = φ2 ◦ (φ1)−1 : Ĉ − (D ∪ A1) → Ĉ − (D ∪ A2); then L(∞) = ∞, L′(∞) = 1

and L conjugates the action of g1
t on γ 1 to that of g2

t on γ 2. Fix a point z1 ∈ γ 1 and let z2 =

L(z1) ∈ γ 2. For i = 1, 2, let ηi be a conformal map from a round annulus {ri < |z| < 1}

to Ai mapping S1 to γ i such that ηi(zi) = 1; then ηi conjugates the rotation Rα to git .

Suppose that r1 ≥ r2. Then the holomorphic map ν := η2 ◦ (η1)(−1) maps A1 into A2,

conjugates the action of g1
t on γ 1 to that of g2

t on γ 2, and ν(z1) = L(z1) = z2; hence, ν =

L on γ 1 (since the maps ν, L differ on γ 1 by post-composition with a homeomorphism of

γ 2 commuting with g2
t , which must be the identity if it fixes a point of γ 2).

It follows that L extends to a continuous map from D∞ into D∞ by setting L = ν on

A1 ∪ γ 1, and this map is holomorphic on D∞ − γ 1 and hence also on D∞ since the curve

γ 1 is analytic and hence removable. Since L′(∞) = 1, the Schwarz lemma implies that

L = id and hence g1
t = g2

t .

A similar argument works if r2 ≥ r1. �

We recall that the conformal radius r(D, z0) of a simply connected domainD 6= C with

a base point z0 ∈ D is defined by r(D, z0) = h′(0) > 0, where h : D → D is a conformal

map from the unit disk to D satisfying the normalizations h(0) = z0, h′(0) > 0. Note that

a disk of radius R centred around z0 has conformal radius R. If D is a simply connected
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domain in Ĉ with base point z0 = ∞, and such that the complement of D in C has at least

two points, then the conformal radius is defined to be r = e−t , where t is the logarithmic

capacity of the hull Ĉ −D (so the domain {|z| > R} has conformal radius 1/R).

Let f be a linearizable germ with irrational rotation number and let (Kt )−∞<t<c

be the family of Siegel compacts of f parametrized by logarithmic capacity. Let D be

a linearization domain of f and let h : D → D be the normalized conformal mapping

satisfying h(0) = 0, h′(0) > 0. For some t0 ≤ c, the interiors of the Siegel compacts Kt

for t < t0 are linearization domains Dt ⊂ D for f bounded by analytic Jordan curves γt .

Let r(t) = r(Dt , 0) be the conformal radius of Dt and let R = r(D, 0) be the conformal

radius of the linearization domain D. The normalized conformal mappings of the domains

Dt are given by the maps ht : D → Dt , w 7→ h((r(t)/R)w). Let �t = Ĉ −Kt and let

φt : D∞ → �t be the normalized conformal map satisfying φt (∞) = ∞, φ′
t (∞) > 0.

Since γt = ∂Dt = ∂�t is an analytic Jordan curve, the maps ht , φt extend analytically

across S1 and define an associated ‘welding homeomorphism’, which is the analytic

circle map wt := h−1
t ◦ φt |S1 : S1 → S1. The analytic circle map kt := w−1

t conjugates

the rotation Rα to the circle map gt = g
f
t (arising from the pair (f , Kt )).

LEMMA 8.2. For t < t0:

(i) the conformal radius r = r(t) of the interior Dt of γt depends smoothly on the
conformal radius e−t of the exterior �t of γt ;

(ii) the map kt depends smoothly on t.

Proof. (i) For r ∈ (0, r(t0)), let t = t (r) ∈ (−∞, t0) be the logarithmic capacity of

the hull Kt = h({|w| ≤ r/R}). Fix a β ∈ (0, 1) and let C1,β(S1) denote the Schauder

space of C1 complex functions on S1 whose derivative is β-Hölder continuous. The

parametrizations ξ ∈ S1 7→ h(ξr/R) of the Jordan curves γt depend smoothly on r in

the space C1,β(S1) and hence the boundary values φt |S1 of the normalized conformal

mappings φt depend smoothly on r as well in C1,β(S1) (see [dCP03, Theorem 3.4] and

[dCR00, Theorem 5.4]). Since φ′
t (∞) = et is given in terms of these boundary values by

Cauchy’s integral formula, it follows that t = t (r) depends smoothly on r. We claim that

moreover t ′(r) > 0 for all r.

Fix an r1 ∈ (0, r(t0)) and let r ∈ (r1, r(t0)). Let t1 = t (r1) and t = t (r). Note that the

map φ−1
t1

◦ φt is holomorphic in a neighbourhood of D∞ and (φ−1
t1

◦ φt )(z) = et−t1z+

O(1) near z = ∞, so by Cauchy’s integral formula

et−t1 =
1

2πi

∫

S1
(φ−1
t1

◦ φt )(ξ)
1

ξ

dξ

ξ
. (4)

In a neighbourhood of S1 we have φt1 = ht1 ◦ wt1 , φt = ht ◦ wt and so for r close

enough to r1, in a neighbourhood of S1 we can write

wt1 ◦ φ−1
t1

◦ φt (ξ) = h−1
t1

◦ ht ◦ wt (ξ)

=
r

r1
wt (ξ)
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(where we have used ht1(ξ) = h((r1/R)ξ), ht (ξ) = h((r/R)ξ); the above equation holds

taking analytic extensions of wt1 , wt to a neighbourhood of S1). For ξ ∈ S1, taking

right-hand derivatives in the equation above with respect to r at r = r1 gives, on writing

ẇt1(ξ) = d
dr |r=r1

wt (ξ),

w′
t1
(ξ) ·

d+

dr |r=r1
(φ−1
t1

◦ φt )(ξ) =
1

r1
wt1(ξ)+ ẇt1(ξ).

Now taking right-hand derivatives with respect to r at r = r1 in equation (4) and using

the above equation gives

t ′(r1) =
1

2πi

∫

S1

d+

dr |r=r1
(φ−1
t1

◦ φt )(ξ)
1

ξ

dξ

ξ

=
1

2πi

∫

S1

1

r1

wt1(ξ)

ξw′
t1
(ξ)

+
ẇt1(ξ)

ξw′
t1
(ξ)

dξ

ξ

=
1

2πi

∫

S1

1

r1

1

|w′
t1
(ξ)|

+
1

|w′
t1
(ξ)|

ẇt1(ξ)

wt1(ξ)

dξ

ξ

> 0

(where we have used the facts that ξw′
t1
(ξ)/wt1(ξ) = |w′

t1
(ξ)| sincewt1 is an analytic circle

map and that Re ẇt1(ξ)/wt1(ξ) = 0 since the mapswt are all circle maps). This proves that

t ′(r) > 0 for all r ∈ (0, r(t0) and hence the inverse mapping t ∈ (−∞, t0) 7→ r = r(t) ∈

(0, r(t0)) is smooth.

(ii) Since the boundary values φt |S1 depend smoothly on r and t = t (r) is smooth by

(i), these boundary values depend smoothly on t as well. By [dCP03, Theorem 3.9], the

welding maps wt depend smoothly on t and hence so do their inverses kt . �

THEOREM 8.3. Let Ht be the Herglotz transform on D∞ of the measure µ2,gt and let
Pt + iQt be the boundary values on S1 of Ht (defined as radial limits almost everywhere
as in §2). Then, for ξ ∈ S1, we have

(Pt ◦ kt )(ξ) =
r ′(t)

r(t)
· |k′

t (ξ)|

and

k̇t (ξ)

kt (ξ)
+ iQt (kt (ξ)) = 0

(where k̇t (ξ) denotes the derivative with respect to t).

Proof. For s = t + ǫ with ǫ > 0 small, and w ∈ D∞ close to S1, we have

(k−1
t ◦ φ−1

t ◦ φs ◦ ks)(w) =
r(s)

r(t)
(w)

(where the above equation holds taking analytic extensions of the maps k−1
t , ks to a

neighbourhood of S1; it is not hard to show that in fact kt can be defined on the annu-

lus {r(t)/R < |z| < R/r(t)}). As ǫ → 0, we have φ−1
t ◦ φs = id + ǫχt + o(ǫ), where
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χt (z) = zHt (z), and ks = kt + ǫk̇t + o(ǫ), r(s)/r(t) = 1 + ǫr ′(t)/r(t)+ o(ǫ); hence,

k−1
t ◦ (id + ǫχt ) ◦ (kt + ǫk̇t )(w)+ o(ǫ) =

(

1 + ǫ
r ′(t)

r(t)

)

w + o(ǫ)

⇒ k−1
t ◦ (kt + ǫ(k̇t + χt ◦ kt ))(w)+ o(ǫ) =

(

1 + ǫ
r ′(t)

r(t)

)

w + o(ǫ)

⇒ (id + ǫ((k−1)′t ◦ kt )(k̇t + χt ◦ kt ))(w)+ o(ǫ) =

(

1 + ǫ
r ′(t)

r(t)

)

w + o(ǫ);

thus,

k̇t (w)+ (χt ◦ kt )(w)

k′
t (w)

=
r ′(t)

r(t)
w,

from which we obtain

k̇t (w)

kt (w)
+ (Ht ◦ kt )(w) =

r ′(t)

r(t)
·
k′
t (w)

kt (w)
· w.

Since gt is analytically linearizable, the measure µ2,gt is absolutely continuous with

respect to Lebesgue measure and has a smooth density. So, for any ξ ∈ S1, letting w
tend to ξ radially in the equation above and taking real and imaginary parts gives the

equalities asserted in the theorem (using the facts that k̇t (ξ)/kt (ξ) is purely imaginary and

ξk′
t (ξ)/kt (ξ) = |k′

t (ξ)| since the maps kt are circle maps). �

We obtain as a corollary the following formula relating the conformal radius of

linearization domains to the conformal radius of their complements.

COROLLARY 8.4. The conformal radius of the linearization domains Dt satisfies

r ′(t)

r(t)
=

∫

S1

dµ2,gt

dλ
dµ0,gt ,

where µ0,gt is the invariant probability measure of the circle map gt . The above equality
can also be written more symmetrically as

r ′(t)

r(t)
=

∫

S1

dµ2,gt

dλ

dµ0,gt

dλ
dλ,

Proof. We have Pt = dµ2,gt /dλ by Fatou’s theorem, so the equality above follows

by integrating the equality (Pt ◦ kt )(ξ) = r ′(t)/r(t) · |k′
t (ξ)| with respect to normalized

Lebesgue measure (1/2π)λ, since
∫

S1 |k′
t (ξ)|(dλ/2π) = 1 and (kt )∗(λ/2π) = µ0,gt . �
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