J. Appl. Prob. 55,900-919 (2018)
doi:10.1017/jpr.2018.57
© Applied Probability Trust 2018

FROM TREES TO GRAPHS: COLLAPSING
CONTINUOUS-TIME BRANCHING PROCESSES
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Abstract

Continuous-time branching processes (CTBPs) are powerful tools in random graph
theory, but are not appropriate to describe real-world networks since they produce trees
rather than (multi)graphs. In this paper we analyze collapsed branching processes (CBPs),
obtained by a collapsing procedure on CTBPs, in order to define multigraphs where
vertices have fixed out-degree m > 2. A key example consists of preferential attachment
models (PAMs), as well as generalized PAMs where vertices are chosen according to
their degree and age. We identify the degree distribution of CBP's, showing that it is
closely related to the limiting distribution of the CTBP before collapsing. In particular,
this is the first time that CTBPs are used to investigate the degree distribution of PAMs
beyond the tree setting.
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1. Introduction and main results

1.1. Our model and main result

The main result of this paper is the definition of multigraphs from continuous-time branching
processes (CTBPs), through a procedure we call collapsing. We analyze the case where we
collapse a fixed number m € N of individuals. Our heuristic approach is to consider the tree
defined by the branching process, and collapse or merge together m different nodes in the tree
to create a vertex in the multigraph. Throughout this paper we will consider an individual to be
a node in the tree of the branching process, while a vertex is a node in the multigraph obtained
by collapsing. We call the number of vertices in a graph the size of the graph.

‘We now recall some notation for CTBPs. For a more detailed introduction, we refer the reader
to Section 2.1. We consider a branching process & defined by a birth process (&;);>0. In these
models, individuals produce children according to independent and identically distributed
(i.i.d.) copies of the process (&;);>0. Usually, individuals in the branching populations are
denoted by x = @x| - - - x (see Definition 4). In this paper we will not denote individuals with
their position in the genealogical tree, but rather by their birth order. Denote the sequence of
birth times of individuals in the branching population by (7;,),eN-

Fix m € N. Denote (n, j) = m(n — 1) + j for j = 1,...,m. We now state the precise
definition of the collapsed branching process.
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FIGURE 1: (a) A branching process tree, and (b) an example of a CBP where vertices have fixed out-degree
m=3.

Definition 1. (Collapsed branching process.) Consider a branching process &. Then, a col-
lapsed branching process (CBP) is a random process (CBP;’"))QO, for which, for every ¢ > 0,
CBP;’”) is a directed multigraph with adjacency matrix (gx,y(#))x,yeN, Where

m
gy = L o (1, o IR (0 = T, ),
j=1

and {(x, j) = (v, 1), ..., (v, m)} is the event that there is a directed edge between individual
(x, j) and one of the individuals (y, 1), ..., (¥, m) in the tree defined by the branching process
at time ¢. We denote the size of CBP" by N (z).

As we can see from the definition, the collapsing procedure combines m individuals together
with their edges to create a vertex, and there is an edge between two vertices if and only if there
is an edge between a pair of individuals collapsed to create the two vertices. A CBP{" is a
graph where every vertex (except vertex 1) has out-degree m. Self-loops and multiple edges
are allowed; see Figure 1 for an example of a CBP.

We consider the birth time of the vertex n in the multigraph to be 7(;,1) = Tjn(u—1)+1. Thus,
vertex n in CBP™ is considered alive when (n, 1) is alive in &. Note that when 7 is born, it has
only one out-edge, since the other individuals (n, 2), ..., (n, m) are not yet alive. Clearly, the
in-degree at time ¢ of a vertex n in CBP™ is

m
in (n’])
D) =Y &) .
j=1

The main difference between CBPs and preferential attachment models (PAMs) is that CBPs
are defined in continuous time, while time in PAMs is discrete. Heuristically, discrete time
in PAMs is described as the time unit at which a new vertex is added to the graph (see, for
example, [1], [9], and [26, Chapter 8]), while in CBPs time is continuous and new vertices are
born at an exponential rate; see [23, Theorem 5.4], [24, Theorem A], and Theorem 3.

1.2. Results

Our main goal is to show that we can define a multigraph from a CTBP, and analyze its rate
of growth as well as the limiting degree distribution.

https://doi.org/10.1017/jpr.2018.57 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2018.57

902 A. GARAVAGLIA AND R. VAN DER HOFSTAD

Our results are a first attempt to create a link between trees and multigraphs in continuous
time. The collapsing procedure creates difficulties though. For instance, we consider different
individuals to create a vertex, each one of them having its own birth time. This has to be taken
into account in order to investigate the degree evolution of a vertex in CBP.

We state the result on the limiting degree distribution of CBPs, relying on properties of CTBPs
as formulated in Theorem 4.

Theorem 1. (Limiting degree distribution of CBPs.) Consider a branching process &, and fix
m € N. Denote the size of CBP" by N"(t) and the number of vertices with degree k by
N,i"”(t). Under the hypotheses of Theorem 4, as t — 00,

N{(1)

k P (m) __ 1 . m

N (1) = =PCr, + -+, =k,

where (5,1)120, .. (§[")i=0 are m independent copies of the birth process (&);>0, a* is the

Malthusian parameter of &, and Ty is an exponentially distributed random variable with
. 7 3 P ’
parameter o*. We denote convergence in probability by ‘—".

The hypotheses of Theorem 4 are technical, and they are deferred until later. Theorem 1 is
part of Theorem 4, which is more general and requires notation from CTBPs theory, and we
introduce this in Section 2.1.

1.3. Embedding PAMs

In discrete time, PAMs are defined as a sequence of random graphs (4, ),en, Where at every
step a new vertex is introduced in the graph. In general, the attachment rule is given in terms
of a function of the degree f that we call the preferential attachment (PA) function or weight.
Conditionally on the graph 4, j), where the jth edge of the nth vertex has been added,

P 50| G p) = o) ()
Zh:l f(Dp(n, j))
where D; (n, j) denotes the degree of the vertex i in G, j). When f is affine, it is possible to
define the model with out-degree m > 2 from the tree case where the out-degree is 1; we refer
the reader to [26, Chapter 8, Section 8.2] for the precise definition. In particular, the collapsing
procedure introduced in Definition 1 mimics the construction of PAMs with affine attachment
function.

CTBPs have used to investigate the degree distribution of PA trees; see [2], [4], [6], and [24].
In particular, embedding theorems were proved between discrete and continuous time; see [2,
Theorem 3.3] and [4, Theorem 2.1]. These results are based on the fact that all intervals between
two jumps in every copy of the birth process (&;);>0 are exponentially distributed. This means
that, conditionally on the present state of the tree, the probability that a new vertex is attached to
the ith vertex already present is just the ratio between the PA function of the degree of vertex i
and the total weight of the tree. Also PAMs with out-degree m > 2 have been investigated, but
not through embeddings of CTBPs.

It is possible to construct a CBP that embeds PAMs with an affine attachment function.
We need to define a suitable birth process in order to do so.

Definition 2. (Embedding birth process.) Consider a sequence of positive numbers (Ag)xeN-
Let (Ex)ken be a sequence of independent and exponentially distributed random variables
with Ex ~ E(Ax) and E_; = 0. We call (§;);>0 the embedding birth process, where

&=k iftelE + -+ E 1, E_1 +---+ Ep).

https://doi.org/10.1017/jpr.2018.57 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2018.57

From trees to graphs 903

This construction was used in [2], [4], and [24]. It allows us to embed PA trees in continuous
time where the PA function is given by f(k) = A;. Embedding birth processes allows us to
describe PAMs with out-degree m > 2 and affine f using CBPs. In fact, an immediate
application of [2, Theorem 3.3] and [4, Theorem 2.1] is that it is enough to prove that the
transition probability in a CBP from CBP“”) | o CBP"”) ., is exactly given by (1), with the
restriction that the first edge of every vertex cannot be a self loop. In particular, this yields the
next result, proved in several other papers through entirely different means; see below for a
discussion.

Corollary 1. (Continuous-time PAM.) Fixm > 2 and § > —m. Let (&):>0 be an embedding
birth process defined by the sequence (k + 1+ §/m)ien. Then the corresponding CBP embeds
the PAM in continuous time with attachment rule f (k) = k + § and satisfies Theorem I (and
Theorem 4). As a consequence, the limiting degree distribution is

P/(cm) (2+ )F(2+8/m+m+8) C'tk+m+96) - )
C'(m + 9) Fk+m+8+3+38/m)

The limiting degree distributions of PAMs is already known in the literature. Interestingly,
(2) is the limiting degree disribution for several versions of PAMs. Bollobads et al. [9] proved
it for § = 0, i.e. the original Barabdsi—Albert model. For other works related to the degree
sequence of several other versions of PAMs, we refer the reader to [6], [8], [13], [16], [22],
and [25].

Corollary 1 is the application of Theorem 1 to the case of the CTBPs that embed PAMs
in continuous time. Indeed, the CBP observed at times (t,),cN (the sequence of birth times
of the CTBP) corresponds to the discrete-time PAM. However, since the ratio N}/ (1) JN® (1)
converges in probability, Theorem 1 does notimply the convergence along the sequence (), eN-
To prove that the convergence also holds in discrete time, an extra argument is needed, therefore
we state it as a separate result.

Theorem 2. (Discrete-time PAMs.) Fixm > 2 and § > —m. Let (&):>0 be an embedding
birth process defined by the sequence (k + 1+ 6/ m)ren. Consider the corresponding discrete-
time PAM defined as PA,, j(m, §) = CBP(’;’)J forn € Nand j € [m]. Then, for every k € N,
the fraction of vertices with degree k in PA,, j(m, 8) converges in probability to p('") asin(2).

While CTBP arguments have been used extensively in the context of PA trees (for which
m = 1), Theorem 2 provides the first example where it is applied beyond the tree setting. Thus,
our results offer the opportunity to use the powerful CTBP tools in order to study PAMs.

To show the universality of our collapsing construction, we apply Theorem 1 to another
classical random graph model. A random recursive tree (RRT) is a sequence of PA trees where
the attachment function f is equal to 1. At every step, a vertex is added to the tree and attached
uniformly to one existing vertex; see [27] for an introduction. We also consider a graph version
of the RRT. In this case we obtain the following result, which could be interpreted as the § = oo
version of Theorem 2, in which a graph is grown by uniform attachments.

Corollary 2. (Random recursive graph.) Fix m > 2. Let (&);>0 be an embedding birth
process defined by the sequence i = 1 for every k € N. Then the corresponding CBP defines
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a sequence of random graphs with transition probabilities

1
, . fiEn
e
w=nrim TN

We call the sequence of random graphs defined by (3) a random recursive graph (RRG). As a
consequence, the limiting degree distribution is

g R B 4)
Pr S om4+1 m '

Consequently, the same result also holds in discrete time.

In this case the CBP can be seen as the generalization of the RRT to the case where the out-
degree is m > 2. In particular, when m = 1 the distribution in (4) reduces to p,((” =2~ k+D)
which is the known limiting degree distribution for the RRT; see [21]. The result also holds in
discrete time by Theorem 2 since the argument is general; see Section 6.

An extension of the PAM was proposed by Garavaglia et al. [14], where fitness and ageing
in PA trees was introduced. The methodology used in the present work is applicable to the
case with ageing only. The fitness case is not tractable, and we explain the reason for this in
Section 1.4. A PA tree with ageing is given in terms of a CTBP where we introduce the effect
of ageing, i.e. the probability of generating a child decreases with age. For a precise definition
of such processes, we refer the reader to [14, Section 2.2].

Definition 3. (Ageing birth process.) Consider a sequence of positive numbers (A )keN, and the
corresponding embedding birth process as in Definition 2. Consider a function g: R™ — R™,
called the ageing function, such that f;° g(t)dt < co. Defining G(r) = fot g(s)ds, we call
(6(1)) =0 an ageing birth process.

The assumption on the integrability of g is not necessary, but as shown in [14] this is the
nontrivial case of the ageing effect. Garavaglia et al. [14] proved that a CTBP defined by an
ageing birth process has a limiting degree distribution ( p,((”)keN with exponential tail, under the
condition that lim;_, oo E[£G(;)] > 1. The result of the present paper can also be applied to the
ageing birth processes, leading to our next result.

Corollary 3. (Ageing PAMs.) Fixm > 2,8 > —m, and define the sequence (k+1+8/m)geN.
Denote the corresponding embedding birth process by (&);>0. Let g be an ageing function as
in Definition 3 such that g(t) < g for some constant g > 0 and for every t > 0. Assume that
lim; 00 E[§G()] > 1. Then the CBP obtained by the CTBP defined by the ageing process
satisfies Theorem 1 (and Theorem 4). As a consequence, the limiting degree distribution

(P/(:"))keN satisfies
m _ Tk+m+ S)C_Ck(l

Pe = "Trar)
where C = |log(1 — exp(— [ g(t) d1))|.

+o(1)), o)

In particular, it is possible to show that the transition probabilities of the discrete-time version
(CBP%?J))”EN’ jerm) of a CBP defined by an ageing process satisfies

i+l

m (Di (tn.jy) + 8)g(T(n. j+1) — Tai.1))
]P(}’l — 1 | CBP-([(:‘J.),T(,!’]'+1)) ~ i\t j) (n,j+1) @i,1)

, (6)
Y one1 (Dh(tn, ) + 8)&(T(n, j+1) — Th,1))
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where D; (t) denotes the total degree of vertex i in CBP!" and the approximation is due to
the fact that we consider 7(; 1) as the birth time of all the m individuals collapsed to generate
vertex i. The expression in (6) for the attachment rule in the presence of ageing resembles those
in the literature on ageing in PAMs; see [12], [15], [17], [18], [28], and [29].

1.4. Discussion and open problems

1.4.1. Neighborhoodsin CBP. A CBP with fixed out-degree m > 2 is a continuous-time random
graph model in which the size of the graph grows exponentially in time (see (9)), and we are
able to describe its limiting degree distribution. In particular, we can view a branching tree as
a special case of a CBP with m = 1. This is an attempt to translate properties from a CTBP to
multigraphs. As a consequence, we might ask what other topological properties a CBP might
inherit from the underlying CTBP. As an example, PAMs are known to be locally tree-like
graphs (see [5]), prompting the question whether this is true because PAMs can be defined
as CBPs.

For example, a tree in a CBP with depth k and vertices of minimum degree m is generated by
chains of individuals in the corresponding CTBP. Caravenna et al. [11] proved that the number
of such trees in a PAM diverges as the size of the graph increases. In terms of the CTBP, it
is necessary to look for structures similar to the one in Figure 2. It would be interesting to
investigate the topological properties of the neighborhoods of vertices in a CBP, to see if and
how they depend on the corresponding CTBP. It would also be interesting to compare the local
structure of a CTBP with the result of [5] in terms of local weak convergence.

1.4.2. Random out-degree. An interesting extension of the present work is the case of random
out-degree graphs. Instead, our CBPs have fixed out-degree m > 2. However, the collapsing
procedure is well defined for any sequence of out-degrees (m,),cN, both deterministic or
random. Results are known for PAMs with random out-degree (see [13]), suggesting that
a CBP with random out-degrees is the continuous-time version of a PAM with random out-
degrees. In our CBP setting there are some difficulties, for instance, in Proposition 2. Since m
is now random, all the indeces (n, 1), ..., (n, m) in (21) corresponding to vertex n in the CBP
are all random variables. This requires care when carrying out the conditional expectation

L3k b
5 ®
o T

FIGURE 2: (a) An example of minimum degree tree in a CBP with m = 2, and (b) a realization of the
corresponding structure in the CTBP that generates it. Note that different realizations in the CTBP can
generate the same graph in the CBP.
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1.4.3. More general PA functions and fitnesses. When collapsing, the degree D" (f) of a
vertex n in the CBP is distributed as the sum of m independent birth process (§;);>0. When we
consider an affine PA function of the type f (k) = ak + b, witha > 0 and b > 0, the sum of
the m weights corresponding to the m individuals becomes a(D1 + - - - + D,,) + mb, i.e. the
collapsed individuals become indistinguishable. This still holds when we consider an affine
PA function f and ageing g, due to the linearity of f and the fact that the error given by the
difference in birth times is negligible.

This no longer holds when the PA function is not affine and/or in the presence of fitness.
In fitness models, every individual x is assigned an independent realization 1, from a fitness
distribution, and it produces children according to the sequence of PA weights (1, f (k))keN;
see [7], [10], and [14]. In this case, individuals with different fitness values are no longer
indistinguishable. Assigning the same fitness value to m different individuals would define a
process that is not a CTBP in the sense of Definition 4. To overcome this problem, in the case
of discrete-valued fitness, we might collapse individuals according to their fitness values and
not according to their birth order. This might be applied also to CTBPs with fitness and ageing
as introduced in [14]. This is a topic for future work.

2. Overview of the proof of Theorem 4

2.1. General branching process theory

We recall the main results on branching processes that we will use in this paper. CTBPs are
models where a population is composed of individuals that produce children according to i.i.d.
copies of a birth process (§;);>0. The formal definition of a CTBP is as follows.

Definition 4. (Branching process.) We define the set of individuals in the population as
N =[N
neN
Consider a point process &. Then the CTBP is described by
(Q, A, P) = [ ] (Qu, A, Po),
xeN

where (2, 4y, IP;) are probability spaces and (§*),c.y are i.i.d. copies of &. For x € N" and
k € N, we denote the kth child of x by xk € N"*!. More generally, for x € N” and y € N,
we denote the y descendant of x by xy. We call the branching process the triplet (2, 4, IP) and
the sequence of point processes (§*),e.. We denote the branching process by &.

The behavior of CTBPs is determined by the properties of the birth process. Consider a jump
process £ on R™, i.e. an integer-valued random measure on R™. Denote the time of the kth
jump of (&);>0 by Tx. Then we say that & is supercritical when there exists «* > 0 such that

£Ee@@) = [ e Be@n = 1. ™

Here E£(dx) denotes the density of the averaged measure E[£ ([0, t])].

A second fundamental property for the analysis of branching processes is the Malthusian
property. Consider a point process &. Take the parameter o* that satisfies (7). Then the
process & is Malthusian with Malthusian parameter o™ if

d
W= —d—(£(]E$(d-)))(a)
o

o0 *
= / te” ¥ "E&(dt) < oo.
0

C(*
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An important class of functions of branching processes are random characteristics.

Definition 5. (Random characteristic.) A random characteristic is a real-valued process & :
Q2 x R — R such that ®(w, s) = 0 for any s < 0, and ®(w, s) = P(s) is a deterministic
bounded function for every s > 0 that depends only on w through the birth time of the individual
as well as the birth process of its children.

Let L(f(-))(«) denote the Laplace transform of a function f evaluated in « > 0. We are
now ready to state the main result on CTBPs.

Theorem 3. Consider a point process & and the corresponding branching process &. Let & be
supercritical and Malthusian with parameter o™, and suppose that there exists &« < o™ such that

/ - e Y EE(dr) < oo.
0

Then, the following properties hold:

(1) there exists a random variable ® such that, for any random characteristic ¥ ast — 00,

e gy %eC(IE[\IJ(J])(a*)@, P-as. ®)

(where we abbreviate P-almost surely to P-a.s.);
(i1) on the event {E[IRJr — 00}, P(® >0)=1and E[®] = 1.

These results, first proved by Nerman [23], are classical, and proved in great generality in
the extensive work by Jagers and Nerman; see [19] and [20]. From (8), it follows immediately
that for any two random characteristics ® and ¥ as t — oo,

&0 LEPODE@)
£ LENODE@H
As aconsequence, the ratio between the branching process evaluated with the two characteristics

1) and 1R+, which is the fraction of individuals with k children, converges to a deterministic
limit. We denote this limit by (p;"")ken, where

p = * LPEC) = k) (@) =a* fo e " 'P(E(t) = k) df = E[P(E(u) = k)y=1,. |-

Here T,+ is an exponential random variable with rate «* independent of &. Then ( p,({l)) keN 18
called the limiting degree distribution for the branching process €. The notation p,({]) underlines
the fact that the CTBP can be seen as a CBP with fixed m = 1.

2.2. Structure of the proof of Theorem 4
Our main result requires the next condition.
Condition 1. (Lipschitz.) Assume that a birth process (& ):>0 is supercritical and Malthusian.

The Lipschitz condition is that, for every k € N, there exists a constant 0 < £(k) < oo such
that the function Pr[£](t) = P(& = k) is Lipschitz with constant £(k).

Condition 1 requires that the functions (Px[£](?))reN associated to the birth process (& )r>0
are smooth, in the sense that they do not have dramatic changes over time. We can now state
the main result of the paper.
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Theorem 4. Let (§:):>0 be a supercritical and Malthusian birth process that satisfies Condi-
tion 1. Let (CBP;’")),ZO be the corresponding CBP. Let ® and  be as in Theorem 3. Denote
the size of CBP" by N™(t), and the number of vertices with degree k by N"’(t). Then, as
r— oo,

. 1
me™% tN(m)(t) — _®’ P-a.s. (9)
por*

Further, for every k € N, there exists pl((m) such that

—a* m 1 m

me "IN (1) > —p"'©. (10)

o

Asa consequence,
N (1)

k P (m)
— . 11
N (1) P (11)

The sequence ( p,({'"))keN is called the limiting degree distribution of (CBP;’”)),ZO, ie.

py" = @ L(PIEIOF™ (@) = EIPENT)}"],

where Py[£](t) = P(& = k), Ty+ is an exponentially distributed random variable with param-
eter o*, and
PEEIO™ = Y PylEl@)--- Py, [E1()

kt+thm =k

is the kth element of the m-fold convolution of the sequence (Px[£](?))keN-

We now comment on Theorem 4 (for comparison with CTBPs, see Theorem 3). Equation (9)
ensures that the size of a CBP grows at an exponential rate «* as does the underlying CTBP.
Even the size of CBP;'"), up to the constant m, scales exactly as the size of the CTBP, and the
limiting random variable ® is the same. This means that the collapsing procedure does not
destroy the exponential growth of the graph.

Equation (10) ensures that, for every k € N, the number of vertices with in-degree k scales
exponentially and also in this case we have a limiting random variable. Equation (11) tells us
that there exists a deterministic limiting degree distribution for a CBP.

The expression for (p;"")xen can be explained in terms of CTBPs. In fact, for a CTBP £, the
limiting degree distribution is p,({” = E[ P¢[£](Ty+)] with «* the Malthusian parameter of £. We
can view Ty as a time unit that a process (§;);>0 takes to generate, on average, one individual.
Then p,(:) can be seen as the probability that (§;);>0 generates k individuals instead of the, on
average, one. Using the same heuristic, the limiting degree distribution of a CBP can be seen
as the probability that m different individuals produce k children in total in the time unit Ty x.
Note that in the expression of ( p,(c"’)) keN, the Malthusian parameter «* is that of the branching
process &.

Unfortunately, the size of a CBP and the number of vertices with degree k € N are not the
result of a CTBP with a random characteristic as in Definition 5. For example, the degree of
a vertex in a CBP is the sum of the degrees of m different individuals. The solution for the
size of a CBP and the number of vertices with degree k is different. From Definition 1, it is

obvious that
5=
N™(t) = [IT] (12)

Using (8), the proof of (9) is immediate.
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Q(n, ) ‘ ‘ Cbk(t_t(n, 1))
) ‘ ‘ O (1=T(n, 2))
Q(n, ) ‘ ‘ D, (=T, 1)
D(nin)(t)
FIGURE 3: Heuristic of the random characteristic CD('") For a CTBP, to m 1nd1V1duals (n,1),. (n m)
we assign different probability spaces Q2. 1), - - Q(n m) With the birth processes 5, 1'1(, b Et o)

respectively. The degree of vertex n in the CBP by the sum of the processes as indicated by the circles
within the dashed rectangle. We artificially add the remaining processes in the shaded area to define the
random characteristic d>,(('”).

The proof of (10) is not so immediate and requires a conditional second-moment method
on N,i'")(t). Before stating the result, we need a preliminary discussion. We use artificial
randomness added to the branching process in order to rewrite the degree of a vertex in a CBP
in terms of a random characteristic. In the population space in the definition of CTBPs, we
consider a single birth process (§/);>o for every 1nd1v1dua1 x in the populatlon We instead
consider on every 2, a vector of birth processes (&‘, v, E0™), where 5[ s, &V areiid.
copies of the birth process, defined on the space correspondlng to the individual x. With this
notation, the standard branching processes defined by (&;);>0 is the branching process where we
consider the birth process as the first component of every vector associated to every individual.

Figure ?? explains how the additional processes are assigned to individuals.

Now, for k € N, we consider the random characteristic

(m)(t) = l{k (St -[A +St Tx)

which corresponds to the event that the sum of the components of the vector associated to the
individual x when its age r — 7, is equal to k. This is a random characteristic that depends only
on the randomness defined on the space €2 .
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The crucial observation is that

P(D™ (1) = k) = P(g("!” e £ o K)

tff(n,l) tff(n.m) -

1 il (n,j),m
“m ZP(SI_TULD oot Sf—f<n,.i> = k)
=
1 m
=— ZE[@;{”‘)U — T(n,j))] + (error), 13)
=1

when we assume that the difference between the birth times 7(,, 1), T(1,2), - - -, T(a,m) 1S very
small. The approximation in (13) can be explained by the fact that all the components of the
vectors (St"’l, co &M are iid. and T(,.1) X Tum)- In fact, on the left-hand side of (13) we
have the probability that the sum of m independent copies of (§;);>0, evaluated at different times,
is equal to k. Assuming that the differences between the birth times 7(, 1), T(4,2), - - - » T(n,m) are
small, we can just evaluate the m different processes at time 7, 1), with a negligible error.

The proof of this, based on Condition 1, can be found in Proposition 2. It provides
the bound on the error term with the difference between the birth times of the individuals
collapsed to generate the vertex, i.e. the error term is bounded by m€|t(, m) — T, 1)|, Where
£ = max; e {€(i)}.

The use of artificial randomness might not seem intuitive. The point is that the equality
in expectation between the random characteristic CD;(’”)(I — T(r,1)) and D™ (1) is enough. This
relies on the fact that, conditionally on the first stages of the branching process, the contribution
to the number of vertices with degree k given by the latter individuals is almost deterministic.
We now formalize this idea.

Definition 6. (x-bulk filtration.) Consider a branching process & and its natural filtration
(F1)i>0. Consider an increasing function x(¢): RT — RT. We call (Fx@))e=0 the x-bulk
filtration of &. Atevery time ¢t > 0, arandom variable measurable with respect to ¥ ;) is called
x-bulk-measurable.

If we consider x(¢) to be o(¢) then the x-bulk filtration heuristically contains information
only on the early stage of the CTBP. Nevertheless, the information contained in £y ;) is enough
to estimate the behavior of the CTBP.

Proposition 1. (Conditional moments of N, ,gm) (t).) Assume that x is a monotonic function such
that, ast — 00, x(t) — oo and x(t) = o(t). Then, under the conditions of Theorem 4, as
t — 00,

N 1
me " 'E[N" (1) | Frin] > — L@ (N (@O, P-as., (14)
"
e IEINT (1) | Fapl<e CEIN (1) | FaD)? +o(1), P-as. (15)

We point out that if X < Y + o(1) then o(1) is a term that converges almost surely to 0.
The proof of Proposition 1 can be found in Section 4. With Proposition 1 in hand, we can
prove (10). We bound [me™*"" N (t) — (1/p)L(D{" ())(@*)O| by

|me_°‘*tN;£m)(t) - me_“*'E[Nigm)(t) | Fxll

. 1
e BING @) | Fag] = - LB O)@O), (16)
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As a consequence, (10) holds if both terms in (16) converge P-a.s. to 0, denoted by 0, 5. (1). For
the second term, this holds by (14). For the first term, we use (14) and (15) to conclude that
var(me™ ¥ N (t) | Fx()) = 0as.(1), s0 that

Ime™ NI (1) — me B[N () | Fen]] = 0.
This concludes the proof of (10). Equation (11) follows immediately.

Remark 1. (Times and bulk sigma-field.) Proposition 1 was proved (and, thus, Theorem 4) by
looking at the CTBP at time ¢, and considering the x(¢)-bulk sigma-field. We can extend the
argument as follows. Consider s > 0, and let y: R* — R™T be a monotonic function of s such
that y(s)/s — 0o as s — o0. In this case, looking at the graph at time y(s) and considering
the s-bulk sigma-field, Proposition 1 still holds. More generally, as we see from (27) below,
conditionally on the s-bulk sigma-field, the evolution of a CTBP is almost deterministic. This
implies that Proposition 1 holds even when we consider a random process Y (s) such that
Y(s)/s 2% 00, under the assumption that Y (s) is s-bulk-measurable for every s > 0. These
observations will be useful when extending our results to the discrete-time setting in Section 6.

3. Preliminaries on birth times

3.1. Bound on the difference in time

In this section we prove the fact that the error term in (13) can be bounded by the difference
in the birth times of the considered individuals. We now introduce the definition of convolution,
as well as the bound we are interested in.

Definition 7. (Convolution.) We define the convolution between two sequences (ax)ren and
(b )ken as

k
(@b =Y ab .
=0
Lemma 1. (Difference in times.) Consider the sequence of functions (P& 1k (t))ken- If (6:)r>0
satisfies Condition 1 then, for every x € R and for every h; < x fori € [m],

|(PIE1(x — h1) * -+ % PIEN(x — )k — (PE](x — h)™™ )] < EZ lhy —hjl, (A7)

j=2
where £ = max;ex) £(7).

Proof. Without loss of generality, assume that 0 < by < --- < h;,. We prove Lemma 1 by
induction on m. We start the induction with m = 2, so

k
(P[E](x — h1) * P[E](t — h2))ik = Z P[E]i(x — h) P[Elk—i(x — h2). (18)

=0

‘We now use Condition 1 to bound |P[E]x—;(x — ho) — P[Elx—1(x — h))| < €k —1)(hy — hy).
Using this in (18), we then obtain, for £ = max;¢[x] £(i),

|(PIE1(x — k1) * PIEI(t — h))x — (PIEN(x — h1)** )]

k
<€) PlEk—1(x — h)l(ha — ). (19)

=0
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Since Y/ PI[E](x — hy) = P[E]l<x(x — hy) <1,
I(PIET(x — hy) % PIEN(t — h))k — (PIEN(x — k1) 2)i| < €lhy — By,

so (17) holds for m = 2. We now advance the induction hypothesis, so suppose that (17) holds
for m — 1. We can write

(PIE](x — hy) -+ - % P[E](x — hm))k

k
= Z(P[E](x —hi) %% PIE)(x — hp—1))1 P[§Jk—1(x — hp). (20)
=0

Note that we can apply (17) to the first terms in the sum in (20) thanks to the induction hypothesis,
since it is now the convolution of m — 1 functions. We just need to replace P[&]x—;(x — hy,) by
P[&]x—;(x — hy). This is straightforward by using a similar argument used to prove the bound
in (19), which implies again the use of Condition 1. To conclude, we have

m—1

[(P[E1(x — A1) s - - % PE](x — hy))i — (PIE)(x — )™ )| < ¢ Z |hy —hjl+ L hy — Ry,
j=2

where the m — 1 terms come from the induction hypothesis, and the last one from the approxi-
mation of P[£]x—;(x — hy,,). This completes the proof. O

Lemma 1 holds for every time x and Ay, ..., h;, that we consider. We can now prove the
bound on the error term in (13).

Proposition 2. (Approximation at fixed time.) Consider (CBP;'"))IZ() obtained from a branch-
ing process §. Assume that (§;);>0 satisfies Condition 1. Then, for every k € N, with £ as in
Lemma 1, P-a.s. for everyn € N,

[PDS" (@) =k | Tn1ys - - - s Tom) — (PIENCE — T(u, 1)kl < m|Tumy — Tl (21)

Proof. Conditionally on the birth times, the processes (E,("’l)),zo, e, (E,("’m)),zo are inde-
pendent. As a consequence,

P(DY"(t) =k | Tn,1)s - - - s Tm)) = (PLEN — T(u,1y) % - - - % PLEN(t — Tgnm))k-

Then (21) follows immediately from Lemma 1, where we consider 7| = 7(,,1), ..., b =
T(n,m)» and the fact that 7, j) — T(s,1) < T(um) — T@n,1) forevery j =1,...,m. O

3.2. Replacing birth times with ¥;-measurable approximations
Recall that F; denotes the natural filtration of the CTBP up to time 7. We can write (8) as

X 1
ne " » — @, P-as.
o™
As a consequence, as n — 00,

1 1 1
-1, + —logn - —log| —® ), P-as. (22)
o* o* ot
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Note that on the event {‘;',I]R+ N o0}, @ is positive with probability 1, so log((1/ua*)®) is

well defined. Define, for n > & %",
1 1 1
ou(t) ;= —logn — — log| —©; |, (23)
o* o* ot

where ©; = pa*e ! §,1R+ . Then o, (¢) is an approximation of t,, given the information up to
time ¢, where the factor ®, includes the stochastic fluctuation of the size of the branching process.
What is interesting is that the random variable o, () is an approximation of t,, measurable with
respect to ¥;. We now prove that (0, (¢));>0 is an acceptable approximation of t,.

Lemma 2. (Error of (0,,(¢))s>0.) It holds that, P-a.s. as t — oo,

sup |on(t) — 1| = O. 24)

1
n>§, R

1
Proof. Foreveryt > 0andn > § B* we have

lon(t) — Tl <

1 1 1
a—*logn — T, — Jlog W@

1 1 1

+ —|log —G)) —log{ —O; |} |. (25)
o* no* na*

Using (25) in (24), we can bound
1 1 1
sup |op(t) — | < — log(—@) — log( @,)‘
I+ a* nor* poc*
n>§
1 1 1
+ sup —logn—r,,——log<— )’ (26)
1y |OF o* ua*

nzit

First, from (8) we know that ®,/ua* = e*a*fg,lf“ — O/ua*. As a consequence, the first
term on the right-hand side of (26) converges P-a.s. to 0. For the second term, we use (22) and
the fact that the supremum decreases as & ©' — o0o. This completes the proof. ]

From Lemma 2, conditionally on #;, we can replace the birth sequence (7,),,-. gl with the
. . . =5t
sequence (0y,(1)),,~ £l when evaluating random characteristics.
=St

4. Second-moment method: proof of Proposition 1

4.1. First conditional moment asymptotics

In this section we investigate the first conditional moment of N,im) (t) with respect to the
bulk filtration. In particular, we consider a function x such that, as t — oo, x(t) — oo and
x(t) = o(t). Heuristically, we want to show that

(m)
D, ]
t—x(t)1"

mEIN (t) | Few] ~ N™ (x(0)E[& 27

From (27), conditionally on the information up to time x(z), at time ¢ we have N™ (x(t))
processes, each one producing the expected number of vertices with degree k at time ¢ — x(¢).
This follows from the fact that all the individual processes in & are independent from each other
once we condition on the birth times.
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We start by writing N, ,i’”)(t) as the sum of indicator functions, i.e.

N (x(1)) 00

EIN{ (1) | Fa] = E[ > Lip =ty + > L =t
n=1 =N (x()+1

j‘(vx(t)jl.

We can ignore the first sum in the conditional expectation, since

N (x(2))

—a*t )

S DD
n=1

and using Theorem 3 and the fact that x (r) = o(¢),

E(x)} < e “INT (1)), (28)

e @ U= XONM (x (1)) - 0, P-as. (29)

We now consider the sequence (o, (x (t)));z%I as defined in Section 3.2. This is a sequence of

random variables that approximates (7,),cn and measurable with respect to the bulk filtration.
This means that we can write, for any n > N ™ (x(z)),

DI (1) = EM V(1 — 00,1y (x (1)) + - -+ ETM(t — 00, my (x(1))) + 0a5.(1).

Now, condmonally on the birth times U(n Hx(@)), ..., 0u,mx(t)), the m processes related to
the nth vertex (é, D )0, - (é( ),>0 are mdependent so the probability that the sum is
equal to k is

(P51 — 0,1y (x (1)) % -+ % P[]t — O(n,m) (x (1)),
which is an x-bulk-measurable random variable. As a consequence,

e¢]

E|: Z 1{D}}"’(t):k}
n=N (x(t))+1
o0

= > (PIENE — oy (x (1) -+ % PIEN(E — 0umy (X(1))k- (30)

n=N (x(t))+1

?x(z)]

For any k € N, the function u — Pi[£](u) is O for the negative argument. As a consequence,
the sum in (30) is taken only over indeces n such that o, j)(x(¢)) < t. From the definition of
O, j)(x(?)) as in (23) and the fact that (n, j) = m(n — 1) + j, it follows that o, j)(x(1)) <t
if and only if

n<1—i+
m

eo*(t=x(1) gle
)C

= e (TN (D)(1+ 045.(1), 31
m

where, again, 0, ¢ (1) denotes a term that converges P-a.s. to 0. Using (31) and then applying
Proposition 2 for £ as in Lemma 1, we obtain

N(m)(x(l))ea*(t—x(f)) N(m)(x([))eoz*(t—x(t))
> PIEN = 0u 1y (x ()™ + tm > Ty (X(1)) = 0,1y (X(1)),
n=N (x(1))+1 =N (x(1))+1

(32)
where the difference between (30) and the first sum in (32) is bounded in absolute value by the
second sum in (32).
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Consider the difference t — o, 1)(x(¢)). Using the definition of the sequence (o, (x (¢)))neN,
and recalling that mN™ (x(t)) = E:(DS (1 + 0a5.(1)) (see (12)), it follows that r —

U(N(m>(x(,))’1)(x(t)) = (t —x())(1 + 045.(1)). As a consequence,

r— U(n,l)(x(t)) =1- G(N("l)(x(t)),l)(x(t)) - (U(n,l)(x(t)) — O(NmM (x(1)),1) (x(®)))

_ i mn—1)+1
= a0+ g MO D) o)
1 n
=t—x()+ o 10g<m> + 0as.(1). (33)

The second sum on the right-hand side of (32) is bounded by a telescopic sum, since
o, 1)(x(t)) = 0(—1,m)(x(¢)), which implies that we can bound it with the difference between
the last and the first term. Using (33) in (32), for s = ¢ — x(¢), leads to

(m) a*s *

N (x(0))e . 1 | mmn—1)+1\\"  me 1 mN™ (x(r))e* *

2, P = pee( S ) )+ e e
n=N0 (x(t))+1

eu*s N(m)(x(t))

— i o *m B
= Pgl q; P[§]<S oot log<P + N(’”)()C(t))>> + ml(t — x(1))

k
ea*s 1 *m
= W) Y PIEI(s = o log(p)) 4 meta = x(0)
p=l g
=N (x() Y E[%"’) (s - ai log(p)>] +ml(t = x(1), 34
p=1

The contribution of the m€(t — x(¢)) term is negligible since e me(r — x(1)) = o(l).
To analyze the remaining sum, we introduce two measures y; and y, on R*. Forv > 0,

y1([0, v]) = / Z 8(1 /o log p) (dut) = ¥,

peN
y2([0, v]) = E[ / > a{t,,}(dm] = E[&,*'].
0 neN

Note that y» is the average measure of the random measure given by the branching process size.

From Theorem 3, we know that y, ([0, v]) = E[ JW] = (l/ua*)e“*”(l + o(1)). This means
that, asymptotically in v, y1 ([0, v]) = pa*y2([0, v])(1+ o(1)). Using these two measures, we
can write

>oa] e (s - o) | = [ Bl - wln@o
p=1 0

= lwt*/ E[®;" (s — w)]y2(du) + o(1)
0

)
= poEl& " 1+ 0(1). 35)
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Using (35) in (34), we conclude that

(m)

ot - ot - @
e tE[N/i )(t) | Fxnl=¢e “ [NW*N( )(x(t))]E[‘g't_kx(t)] + 0a5.(1)
ok R d>(m)
= (na*e *ON™ (x()) (e CTFIE[E ) ]) + 0as. (D).
Applying (8), it follows that as t — oo, wore O N (x (1)) converges P-a.s. to ®, while
. (m)

pote (”x(’))]E[’g'lqi’;(t)] converges to £(P{" (-))(*)/w. This completes the proof of (14).
4.2. Conditional second-moment asymptotics

In this section we prove (15), i.e. the result on the conditional second moment of N,i’") (1).
We again write N,i’”)(t) as the sum of indicator functions, which means

e 2 tE[N,im)(l‘)z | Frn] = e_ZO‘*IEI: Z I{D'Sila)(l):k}I{D(i/n)([)=k}

n,n’eN

‘?X(t)} .

We now divide the sum into different sums, according to the indices n and n’, as

> Lo =y L =iy + > Lip =ty L (=)
n,n <N (x (1)) n,n’ >N (x (1))

+2 > Lo =ty L (=1 (36)
RENOD (x(0), 1> N (x(0)

For the first sum in (36), we use (28) as a bound, and by (29) it is 0,5.(1). For the second
sum in (36), we again use the sequence (o, (x(t)))neN to approximate the birth times. Using
similar arguments as in Section 4.1, and the fact that conditionally on the birth times all the
birth processes are independent, we write, forn # n’ and n, n’ > N™ (x (1)),

P(D™(t) =k, DS (1) =k | Frry)
= [PLE](t — o(n,1)(x(1))) * - - % P[E(t — O(u,m)(x (1)) ]k
X [PIE](t — o 1)(x(2))) * - - % PIEI(t — 0 my (x (1)) k- (37

We can use (37) to bound the conditional expectation of the second sum in (36). In fact, adding
the missing terms, we can write

E[ 2 Lo =i o=ty | F W]

n,n'>N0 (x(t))

2
< < > (PIENE = 01y (x(0))) % -+ % PIEN — 0(n,m)(X(t))))k>

n>N (x(1))
+EIN" @) | Fein]

= E[ Z l{D,(,i")(t)zk}

2
}}m] +E[N" () | Fr]
n>N (x(1))

<EIN" () | Fxiy]* +EIN" (1) | Fein]-
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The third sum in (36) can be bounded easily by 2N ™ (x (1)) E[N ,i’") (t) | Fx@)]. Combining the
three bounds, we see that e_zo‘*’E[N,im) (1)? | Fx()]is bounded by

e 2CTEINL () | Fen)? +e 24T RN(x (1) + DE[Nk (1) | Fen] + 0as.(1).  (38)

The result follows since the second term in (38) is again 0,5 (1), similarly to the first term
in (36).

5. Proofs of Corollaries 1-3

Proof of Corollaries 1 and 2. In Section 1.2 we showed that CBPs defined by birth processes
as in Definition 2 embed the PAM in continuous time and what we called the RRG. We just
need to show that Condition 1 is satisfied. In general, processes defined as in Definition 2 are
differentiable and satisfy a recursive property (see [3, Section 3.2]), i.e.

d —roPol§1(), k=0,
d, _ 39
a PHIEIO) — Pe[E)(0) + A1 P [E](0), k> 1. )

Since, in general, we consider a nondecreasing sequence (Ax)ieN, it is possible to satisfy
Condition 1 if we set £(k) = Ag. Hence, the limiting degree distribution (p,((’"))keN is the
distribution of the sum of m independent copies of (&,);>0 at exponential time T+ for an o*
Malthusian parameter of the CTBP.

In the case of PAM embedding, the sum of m birth processes is distributed as an embedding
birth process defined by the PA rule Ay = k 4+ m + § (it is straightforward to prove this by
induction over the distribution of birth times). This implies that we can use known results on

this type of birth process (see [2] and [24]) to write
a* Ii:[l i+m+3§
i=0

(m) 1 m
i =P, e Sy S | PO S

which can be written as in (2) using I' functions, since in this case a* = 1 4 §/m; see [24,
Section 4.2] and [14, Proposition 3.15].

For the RRG, calculations are easier. Itis easy to show thatin this case «* = 1. Since the sum
of m Poisson processes (PPs) with parameter 1 is a PP with parameter m, the limiting degree
distribution is the distribution of a PP at an exponentially distributed time with parameter 1.

Then .
_ )k 1 1\~
(m) — ]E mT) (m — 1 — )
Pr © X! mr1U T

As mentioned, for m = 1 (so without collapsing) the RRG reduces to the RRT, and the limiting
distribution is just p;’ = 27*¥1; see [21]. O

Proof of Corollary 3. (The ageing case.) The result follows immediately from the proof of
Corollary 1 and the definition of the ageing process. In fact, an ageing process is defined as
(6(1)) =0, where (&;);>0 is an embedding process defined by the sequence (k + 1 4 §/m)en.
As a simple consequence of the chain rule, from (39) it follows that

d 1) 8
g PENG @) = (—(k +1+ —)Pk[S](t) + (k + —)Pk—l[é](t))g(t)-
t m m
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Assuming that the ageing function g is bounded almost everywhere, Condition 1 is satisfied
for £ = ksup,~ |g(?)]. The condition lim;_, o, E[§G(s)] > 1 is necessary and sufficient for the
existence of the Malthusian parameter o*; see [14, Lemma 4.1].

Since the sum of m processes 5;,1 + -+ & is distributed as a single embedding process
defined by the sequence (k + m + §)jeN, it follows that éé(l) 4+ -+ Sg’(t) is distributed as a
single ageing process with the same ageing function g and sequence (k+m+98)ren. Equation (5)
is then a consequence of [14, Proposition 5.2]. U

6. Discrete-time processes.

Proof of Theorem 2. The convergence result given in Theorem 1 ensures that in continuous
time the proportion of vertices in a CBP with degree k converges in probability to p,({’"). When
considering a CTBP in the presence of ageing, this result is enough since these types of CBP
are defined only in continuous time.

When we instead consider embedding processes as in Definition 2, we can consider a discrete-
time sequence of random graphs (CBP;’;’)),,GN, where (t,),eN is the sequence of birth times
of the corresponding CTBP. This is the way the PAM is usually defined. In particular, the
sequence (7,),eN corresponds to the sequence of times at which a new edge appears in the
CBP. In this setting, the convergence in probability given in Theorem 1 does not imply the
convergence in probability of (me=*" Ny " (,))nen. Here, we will prove that e N ('")(r,,)
converges in probability to p”’® /ua*, and that this further implies that N;" (Tju,) /n converges
in probability to p;", as required.

Recall the #-bulk sigma-field. We denote, as in (23), for n > S, ,

1 1
o, = ou(t) = a—*logn — W(H)t

Take t = ¢, = (log n)i/2. 2 Then deﬁne the sequence (t,)qeN, Where T, := o, (f,). Note that t,,
is #,-bulk-measurable. Further, 7, 2% oo and

1/2 172

In (logn) . (logn) as g
. (1/a*)logn — (1/pa*)log®,,  logn(l/a* —log ©,, /ua*logn)

By Remark 1, Proposition 1 holds for me=%" T N,i'”)(t/), so that

Ppk®

a*

_o( ‘L'”N(m)( n)

The advantage of the sequence (7,,),eN, other than being f,,-bulk-measurable, is that it is a good
approximation of the sequence (t,),cn. Indeed,

1 1 1 1
It — T, < |Tw — —*logn—Flog@‘—i—‘—*log@—ﬁlog@m ,

so that |7, — /| =% 0. As a consequence, we also have me™® BN (1) > pin O/ uat,
Further, by Theorem 4, we have me™®"'N™(r) %0 /ue*, so this holds also for
me~% ™ N™(1,). As a consequence,

me_‘"*’” N]im)(fn) N]im)(fn)
me—a*r,,Nw(f Yy NO(g,)

m P
(m) (m)
= N/ (tn) = p;"

Consequently, N," P (T /1 5 p(’") This completes the proof of Theorem 2. ]
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