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Drop flow in rectangular microchannels has been utilized extensively in microfluidics.
However, the pressure-gradient versus flow-rate relation is still not well understood.
We study the motion of a long drop in a rectangular microchannel in the limit the
capillary number Ca→ 0 (Ca= µU/σ , where U is the constant drop velocity, µ is
the viscosity of the carrier liquid and σ is the interfacial tension). In this limit, the
moving drop looks like the static drop and has two end caps connected by a long
column, which is surrounded by thin films on the microchannel wall and by menisci
along the microchannel corners. Integral axial force balances on the drop fluid and on
the carrier liquid surrounding the drop relate the carrier-liquid pressure gradient to the
drop-fluid pressure gradient and the contact-line drag. The contact-line drag is argued
to be the same as that for a long bubble (which has been determined by Wong et al.
(J. Fluid Mech., vol. 292, 1995b, pp. 95–110)) if the viscosity ratio λ� Ca−1/3 and
λ�L, where λ= µ̄/µ, µ̄ is the drop viscosity and L (� 1) is the dimensionless drop
length. Thus, the force balances yield one equation relating the two pressure gradients.
The two pressure gradients also drive unidirectional flows in the drop and in the corner
channels along the long middle column. These coupled flows are solved by a finite-
element method to yield another equation relating the two pressure gradients. From the
two equations, we determine the pressure gradients and thus the unidirectional velocity
fields inside and outside the drop for λ=0–100 and various microchannel aspect ratios.
We find that in the limit LCa1/3

→ 0, the contact-line drag dominates and the carrier
liquid bypasses the drop through the corner channels alongside the drop. For LCa1/3

�

1, the contact-line drag is negligible and the corner fluid is stationary. Thus, the drop
moves as a leaky piston. We extend our model to a train of long drops, and compare
our model predictions with published experiments.

Key words: drops, microfluidics, multiphase flow

1. Introduction

Living organisms often involve large numbers, such as the tens of thousands of
genes encoding the genome or the plethora of proteins regulating the expression
of these genes or the millions of cells comprising a tissue microenvironment.

† Email address for correspondence: hwong@lsu.edu
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Motion of long drops in rectangular microchannels at low capillary numbers 61

To analyse such a large number of biomolecules or cells, it is essential to develop
a reliable lab-on-a-chip technology based on droplet microfluidics (Stone, Stroock &
Ajdari 2004; Huebner et al. 2008; Teh et al. 2008; Anna 2016). Droplets provide a
convenient means to isolate individual biomolecules or cells, enabling single entity
analysis. Furthermore, nearly identical droplets can be generated at rates of 1–10 kHz
with volumes as low as picolitres, allowing millions of droplets to be produced in
less than an hour for analysis. Droplets have also been applied in the pharmaceutical
and fine chemical industries as individual nanovolume batch reactors. Microfluidic
devices can be used to aid the quick determination of chemical stoichiokinetics, and
heat and mass transfer parameters (Song, Chen & Ismagilov 2006; Baroud, Gallaire &
Dangla 2010). Moreover, the ease of drop-size control leads to levels of mass transfer
and reaction regulation otherwise unachievable in stirred batch reactors (Jovanović
et al. 2010). Microreactors could also be the preferred choice for expensive and toxic
reactants due to the small volume of the droplets. Furthermore, when the droplet
velocity is known, the reaction time inside the droplet grows linearly with the distance
moved by the droplet, making it easier to measure chemical kinetics (Sarrazin et al.
2006). Two-phase flows in microfluidic devices have also been successfully employed
in creating emulsions that are commonly used in the chemical, textile and food
industries, which require precise control of the drop size and the polydispersity (Tan
et al. 2008).

Despite these compelling advantages of droplet-based microfluidics, fundamental
challenges remain to transform current droplet-based devices to next-generation fluidic
processors that are capable of characterizing the large-scale complexity inherent in
biological and chemical systems. Currently, there is no rigorous model that predicts
the relation between pressure gradient and flow rate for drop flow in rectangular
microchannels, implying that the throughput of a device is unknown. Development of
a rigorous model would improve our understanding of drop flow in microchannels,
which might lead to better design of large-scale two-phase fluidic processors.

Although gas–liquid two-phase flows in capillaries have been modelled extensively
(Vladimir & Homsy 2006), there are only a few studies on the flow patterns and
pressure drop in liquid–liquid flows (Baroud et al. 2010). Early studies of the
immiscible liquid–liquid flow patterns use predominantly circular tubes (Lac &
Sherwood 2009; Soares & Thompson 2009; Jovanović et al. 2011). However, drop
flow in rectangular microchannels is different from that in circular capillaries because
the carrier liquid can bypass the drop through corner channels. The corner flow can
alter the flow characteristics and pressure drop, as shown theoretically by Wong,
Radke & Morris (1995b) in their study of the motion of long bubbles in polygonal
capillaries.

Two-phase flow in rectangular microchannels has been investigated numerically
using most commonly the volume of fluid method (Sarrazin et al. 2008; Cherlo,
Kariveti & Pushpavanam 2010; Raj, Mathur & Buwa 2010; Yong et al. 2011; Hoang
et al. 2013). While the numerical method is well suited for studying the motion of
short drops (L < 5) moving at capillary number Ca ≈ 0.01, it has been challenging
to simulate the motion of longer drops moving at smaller capillary numbers. Long
moving drops deposit thin films on the wall, the thickness of which varies with Ca.
For most experimental systems, Ca� 1, and the thickness of the thin film is much
smaller than the width of the capillary. Resolving the physics in this thin-film region is
necessary to accurately capture the velocity and pressure fields. Furthermore, spurious
currents can arise from inaccurate calculations of the curvature of the interface and
must be suppressed. These numerical challenges make the simulation of long drops
at low capillary numbers computationally expensive.
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62 S. S. Rao and H. Wong

Here, we model the motion of long drops in rectangular microchannels at low
capillary numbers. The microchannel geometry, drop velocity, and fluid physical
properties are first labelled in § 2 and then used to make all variables dimensionless.
An integral force balance is performed on a column of carrier liquid enclosing
the long moving drop in § 2.1, and on the drop fluid in § 2.2. The two integral
force balances are combined in § 2.3 to yield an equation relating the streamwise
carrier-liquid pressure gradient to the drop-fluid pressure gradient and the contact-line
drag. The previously derived contact-line drag for long bubbles can be applied to long
drops if the drop viscosity is not too high (§ 2.4). Thus, the two constant pressure
gradients are the only unknown parameters to be determined. The pressure gradients
also drive streamwise flows inside and outside the drop, as described in § 3. Since the
drop is long, the drop-fluid and carrier-liquid flows can be taken as unidirectional and
obey the Poisson equation. The carrier-liquid pressure gradient is eliminated using
the integral-balance equation, and the only unknown parameter left is the drop-fluid
pressure gradient. The streamwise velocities inside and outside the drop are expanded
as linear functions of two parameters to extract their dependence explicitly, and the
expansion coefficients are solved by a finite-element method in § 4.1. These velocities
are integrated over the cross-sectional areas of their respective flow domains to give
the volume flow rates in § 4.2. Since the drop volume flow rate is simply the drop
velocity times the drop cross-sectional area, it is prescribed. Equating this prescribed
flow rate to the numerically integrated value leads to a solution of the drop-fluid
pressure gradient in § 4.2. The carrier-liquid pressure gradient is then determined
from the integral force balance in § 4.3. The streamwise velocity fields inside and
outside the drop are presented in § 4.4. We apply these results in § 5 to determine
the pressure-velocity relation (§ 5.1), the coefficient of mobility (§ 5.2), the excess
pressure gradient (§ 5.3), the velocity ratio for two drops of unequal lengths (§ 5.4),
and the pressure gradient for a train of drops (§ 5.5). We compare with published
experimental results in § 6. We discuss the assumptions made in our model and some
details in § 7. The work is concluded in § 8.

2. The problem definition
Consider a long Newtonian drop of length LW (L � 1) moving with constant

velocity U in a rectangular microchannel of width 2W and height 2BW, as
shown in figure 1(a). The drop with viscosity µ̄ is carried by an immiscible
Newtonian liquid with viscosity µ. The drop is surrounded by a clean interface
with interfacial tension σ . We study the drop motion in the limit the capillary
number Ca (=µU/σ)→ 0. In this limit, capillary forces dominate and the shape of
the moving drop resembles that of the static drop; it has two end caps connected by
a long column with approximately uniform cross-sections (Wong, Morris & Radke
1992). The carrier liquid is taken to be perfectly wetting so that the column is
surrounded by thin liquid films on the microchannel wall and by liquid menisci
along the microchannel corners (figure 1b). As the carrier liquid is driven through
the microchannel by a pressure gradient, it can either push the drop (plug flow) or
bypass the drop through the corner channels (corner flow). The main objective of this
work is to determine the pressure-gradient versus flow-rate relation for the carrier
liquid as it drives the drop to move at velocity U.

For the rest of this paper, all lengths are made dimensionless by W, areas by W2,
pressures by σ/W, streamwise pressure gradients by σ/W2, velocities by σ/µ, volume
flow rates by σW2/µ, the contact-line drag by σW, the contact-line-drag density by
σ/W2, and the hydraulic resistances by µ/W4. We use σ/µ as the velocity scale

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

52
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.521


Motion of long drops in rectangular microchannels at low capillary numbers 63

Thin liquid films

(a)

(b) (c)
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FIGURE 1. (a) Stationary control volume enclosing a non-wetting drop of dimensionless
length L moving with steady dimensionless velocity Ca carried by a wetting liquid in a
rectangular microchannel of width 2 and aspect ratio B (> 1) (the case of B= 1 is shown).
A dimensionless Cartesian coordinate system (x, y, z) is defined at the nose of the drop
with x pointing downstream. The dimensionless carrier-liquid pressure pb at the back end
of the drop is higher than the pressure pf at the front, and the difference drives the drop
and can push the carrier liquid to bypass the drop through corner channels. (b) Cross-
section of a moving long drop far from the ends. The drop (unshaded region with cross-
sectional area Ad) is surrounded by the carrier liquid (shaded region) in thin films with
cross-sectional area Af and in corner channels. The film thickness has been exaggerated
for clarity. The interface between the drop and the carrier liquid is separated into a corner
part with area Sc and a film part with area Sf . The microchannel wall area covered by
the thin films is denoted by Sw. The unit vectors m and n are normal to the wall and
interface, respectively, and are pointing outwards. (c) Cross-section of a static long drop
far from the ends. The bubble (unshaded region) has cross-sectional area Ā.

because it is independent of whether the corner or plug flow dominates (see discussion
in § 7). After non-dimensionalization, the drop velocity becomes Ca, as shown in
figure 1(a). All drop variables are denoted by an overbar, and all dimensional variables
by an asterisk.

2.1. An integral force balance on the carrier liquid surrounding the drop
A stationary control volume is defined that encloses the moving drop and the carrier
liquid at a particular instant in time, as shown in figure 1(a). Since the drop motion is
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64 S. S. Rao and H. Wong

steady, the normal forces exerted on the carrier liquid at the two ends of the control
volume must balance the streamwise shear forces on the sides of the control volume
applied by the microchannel wall on the carrier liquid:

(pb − pf )AT =

∫∫
ST

∇u ·m dS, (2.1)

where pf and pb are the carrier-liquid pressures at the front and back ends of the
drop, respectively. Because the drop is long (L� 1), the variation in liquid pressure
over each end plane is small compared with the pressure difference across the drop.
Thus, pf and pb are treated as constant and pb > pf (figure 1a). Normal viscous
stresses on the end planes are of the same order as the liquid-pressure variation in
the end regions, and are negligible compared with the pressure difference in (2.1).
The area AT (= 4B) is the cross-sectional area of the rectangular microchannel.
A Cartesian coordinate system (x, y, z) is defined at the nose of the drop with x
pointing downstream (figure 1a). The streamwise velocity component is denoted by u
and ∇= j∂/∂y+ k∂/∂z is the two-dimensional gradient operator. The unit vector m is
normal to the wall and points out of the control volume (figure 1b). The streamwise
viscous shear stress is integrated over the sidewall area ST = 4(B + 1)L (figure 1a).
Body forces such as inertia and gravity are neglected owing to the small size of the
microchannel.

The drop is surrounded by thin liquid films and corner menisci. The thin films,
once deposited by the front end, evolve slowly over a long streamwise length scale
because their thickness ∼Ca2/3 (Wong, Radke & Morris 1995a), and are therefore
taken to maintain the same profile over the length of the drop (see § 7). The corner
menisci are also assumed to have the same shape along the drop because the radius
of interfacial curvature varies by O(Ca2/3) along the drop (Wong et al. 1995b). We
divide the control volume into a drop and a corner region, and study the forces on
each control volume separately. The drop control volume consists of the drop and
the thin films surrounding the drop. It is taken to be a right cylinder with uniform
cross-sectional area Ad + Af , where Ad and Af are the cross-sectional areas of the
moving drop and thin films, respectively, as shown in figure 1(b). An integral force
balance on the drop control volume in the streamwise direction gives

(pb − pf )(Ad + Af )=

∫∫
Sc

∇u · n dS+
∫∫

Sw

∇u ·m dS. (2.2)

The left-hand side is the pressure force driving the drop control volume, whereas the
right-hand side is the total shear resistance. The first term of the shear resistance is the
corner drag exerted on the drop by the carrier liquid flowing in the corner channels,
where Sc represents the corner interfacial area. The unit vector n is normal to the
interface and points outwards from the drop. The second term is the shear force on
the drop exerted by the microchannel wall on the thin films surrounding the drop,
where Sw represents the wall area in contact with the thin films. The wall shear stress
peaks at the front and back ends of the drop near the curved contact lines, because
the wetting carrier liquid experiences the largest shear stress as it squeezes into or
out of the thin-film regions. These large shear forces at the two ends near the curved
contact lines were called the contact-line drag (DC) by Wong et al. (1995b) in their
theoretical study of drag on long bubbles. Away from the contact-line regions, the
shear stress is uniform across the thin films because the films are thin (∼Ca2/3) such
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Motion of long drops in rectangular microchannels at low capillary numbers 65

that the shear stress at the wall is maintained all the way to the interface. Thus, the
wall shear stress in (2.2) can be written as∫∫

Sw

∇u ·m dS=DC +

∫∫
Sf

∇u · n dS, (2.3)

where Sf represents the interfacial area between the drop and thin films, and the area
integral over Sf is called the film drag. Substituting (2.3) into (2.2) gives the integral
force balance as

(pb − pf )(Ad + Af )=DC +

∫∫
Sf+Sc

∇u · n dS. (2.4)

Shear forces on the control surface at the end-cap regions are negligible compared
with the listed shear forces because the cap regions are much shorter than the drop.

The corner control volume contains the corner channels shown in figure 1(b). Driven
by the pressure difference, the carrier liquid flows through the corner channels subject
to the no-slip condition at the wall and shear resistance at the corner interfaces. This
corner flow will be studied in § 3.

2.2. An integral force balance on the drop fluid
Since the drop is moving at constant speed, the forces on the drop fluid must balance.
An integral force balance in the streamwise direction on the drop fluid inside the drop
surface gives

(p̄b − p̄f )Ad =

∫∫
Sf+Sc

λ∇ū · n dS, (2.5)

where p̄f and p̄b are the drop-fluid pressures at, respectively, the front and back ends
of the drop. These pressures can be treated as constant because L�1 and the pressure
variation within the end region is small compared with (p̄b− p̄f ). The right-hand side
of (2.5) is the streamwise shear forces exerted by the carrier liquid on the drop at
the thin-film interfacial area Sf (film drag) and the corner interfacial area Sc (corner
drag), where λ= µ̄/µ is the viscosity ratio, and ū is the x-component of the drop-fluid
velocity (Sf and Sc are illustrated in figure 1b). The film drag always resists the motion
of the drop because the film is thin and the microchannel wall is stationary. The
corner drag will resist the drop motion if the carrier liquid in the corner channels
moves slower than the drop. Thus, every part of the drop surface experiences a shear
force opposing the drop motion. To balance these shear forces, the back pressure p̄b
must be higher than the front pressure p̄f . However, this pressure gradient can change
direction if the carrier liquid in the corner channels moves from the back towards
the front to bypass the drop. In that case, the corner drag reverses direction and
points in the direction of the moving drop. Hence, when the corner flow dominates,
the total streamwise shear force on the drop surface can point towards the front and
consequently p̄f > p̄b in (2.5). This pressure difference will drive the drop fluid along
the drop centre from the front towards the back of the drop, opposite to the drop-
moving direction. In the force balance (2.5), the drop is treated as a right cylinder with
cross-sectional area Ad, as shown in figure 1(b). This is possible because L� 1 and
the end-cap regions where the cross-sectional area differs from Ad are small compared
with the length of the drop. Further, the contact-line drag does not appear because
there is no length scale within the drop that is comparable to the thin-film thickness.
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Aspect ratio R b1 b2 Ā CD ks

B= 1.0 0.5302 0.4698 0.4698 3.759 13.35 1.778
B= 1.2 0.5780 0.4220 0.6220 4.513 14.92 1.254
B= 1.5 0.6346 0.3654 0.8654 5.654 17.89 0.8514
B= 2.0 0.7019 0.2981 1.298 7.577 23.87 0.5466

TABLE 1. Static drop dimensionless geometric parameters R, b1, b2 and Ā, drag coefficient
CD and dimensionless hydraulic resistance ks for various microchannel aspect ratio B. The
geometric parameters are illustrated in figures 1(c) and 2, and are calculated from the
analytic solutions derived by Wong et al. (1995a). The drag coefficient is introduced in
(2.8), and the equation for ks is given in (5.5b).

2.3. Combination of the two integral force balances
At the interface between the drop and the carrier liquid, a shear-stress balance in the
streamwise direction gives

∇u · n= λ∇ū · n. (2.6)

Substituting (2.6) into (2.5) and subsequent substitution into (2.4) yields

(pb − pf )Ā=DC + (p̄b − p̄f )Ā, (2.7)

where Ad and (Ad + Af ) have been replaced by Ā, which is the cross-sectional area
of the static drop depicted in figure 1(c) because Ad ∼ 1, and (Ad − Ā) and Af are
O(Ca2/3) (Wong et al. 1995b). The area Ā has been determined by Wong et al.
(1995b) for various rectangular microchannels and is listed in table 1. Thus, the
pressure force acting on the drop by the carrier liquid balances the contact-line drag
and the pressure force on the drop fluid. In the next subsection, the contact-line drag
DC is studied.

2.4. Contact-line drag
The contact-line drag for long bubbles in polygonal capillaries has been solved by
integrating the wall shear stress under the liquid film in the limit Ca→ 0 (Wong et al.
1995b):

DC =CDCa2/3, (2.8)

where the drag coefficient CD is a dimensionless constant that depends only on the
capillary geometry. The values of CD are listed in table 1 which are valid for L�
Ca−1. Within this bubble length, the deposited film does not rearrange (Wong et al.
1995a). The bubble contact-line drag holds also for drops if

λ�Ca−1/3. (2.9)

This is shown by the interfacial stress balance (2.6). Near the contact-line region,
the dimensional film thickness ∼Ca2/3W (Hodges, Jensen & Rallison 2004). Hence,
the dimensional shear stress within the thin film is O[µU/(Ca2/3W)]. When the plug
flow dominates, the drop-fluid velocity ∼U, and the largest dimensional shear stress
within the drop is O[µ̄U/(Ca1/3W)], because the axial length scale (Ca1/3W) in the
thin film induces a corresponding cross-stream (smallest) length scale in the drop
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fluid (Hodges et al. 2004). Thus, the shear stress exerted by the drop fluid on the
thin-film interface is negligible compared with the shear stress within the thin film if
λ�Ca−1/3. Therefore, the contact-line drag DC obtained by Wong et al. (1995b) for
long bubbles is applicable to our problem within this upper bound of viscosity ratio.
Consequently, our contact-line drag is independent of drop viscosity. Park & Homsy
(1984) studied two-phase flow in a Hele-Shaw cell and also find that the contact-line
drag for a bubble holds for a drop if the viscosity ratio λ� Ca−1/3. Hodges et al.
(2004) analysed the thin film deposited by a long drop moving in a circular tube, and
found that the film thickness is the same as that for a long bubble if λ� Ca−1/3.
(If the corner flow dominates, then the upper bound becomes λ�L, as derived in § 7.)

Substituting DC from (2.8) into (2.7) gives

(pb − pf )Ā=CDCa2/3
+ (p̄b − p̄f )Ā. (2.10)

The contact-line drag is a positive constant. The second term on the right-hand side
(the film and corner drags on the drop) is positive when the drop moves faster than
the corner flow. However, it may become negative if the corner flow moves faster
than the drop. No matter how negative it becomes, the magnitude can never exceed
the contact-line drag because pb > pf always.

3. Coupled streamwise flows
The pressure difference (pb − pf ) in the carrier liquid drives the liquid through the

corner channels. The pressure difference (p̄b− p̄f ) in the drop fluid drives a streamwise
flow inside the drop. The drop flow and the corner flow are coupled through boundary
conditions at the corner interfaces. This coupling leads to another relation between
(pb − pf ) and (p̄b − p̄f ) which, when combined with (2.10), will yield a solution for
the pressure differences.

3.1. Governing equations
A long drop has an extended middle region with approximately uniform cross-sections,
as shown in figure 1(a). The end regions where the cross-sectional area varies
significantly have O(1) length, which is much less than the length of the drop (Wong
et al. 1992). Thus, the fluids inside and outside the drop move unidirectionally along
the long middle region of the drop and obey

∇
2u= Px, (3.1)

∇
2ū=

1
λ

P̄x, (3.2)

where

Px =
(pb − pf )

L
, P̄x =

(p̄b − p̄f )

L
, (3.3a,b)

are streamwise pressure gradients. The integral force balance (2.10) can be written as

Px =D+ P̄x, (3.4)

where

D=
CD

Ā
Ca2/3

L
, (3.5)
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b1

Drop

B

b2

R

y

z

W = 1

n
Liquid

FIGURE 2. Unit cell of the static long drop in figure 1(c). The rectangular microchannel
has half-width W (= 1) and aspect ratio B (> 1). The carrier liquid (shaded region)
is perfectly wetting, resulting in zero contact angle between the interface and the
microchannel wall. The radius of curvature of the corner interface is denoted by R and
the unwetted wall lengths are denoted by b1 and b2, respectively. Analytic solutions of
these geometric parameters have been derived by Wong et al. (1995a), and their values
are listed in table 1 for B= 1, 1.2, 1.5 and 2. The unit vector n is normal to the interface
and points outwards.

is the dimensionless contact-line drag per unit drop volume and is called the contact-
line-drag density for the rest of the paper. From (2.10), D is a positive constant, P̄x
may be positive or negative, and Px is always positive. The carrier-liquid pressure
gradient Px is substituted into (3.1) to yield

∇
2u=D+ P̄x. (3.6)

Thus, P̄x is the only unknown parameter to be determined. For the rest of this paper,
we will use D and P̄x as driving forces for corner flow with the understanding that
each represents a part of Px.

3.2. Boundary conditions
The fluid-flow domains are shown in figure 2, which depicts a unit cell of the static
drop graphed in figure 1(c). The radius of curvature of the static interface is denoted
by R and the unwetted wall lengths are denoted by b1 and b2, respectively. Analytic
solutions of these geometric parameters have been derived using an axial integral force
balance by Wong et al. (1995a), and their values are listed in table 1 for rectangular
microchannels of aspect ratio B= 1, 1.2, 1.5 and 2. At the corner interface shown in
figure 2, the velocities are continuous:

u= ū (3.7)

and the streamwise shear stresses are balanced:

∇u · n= λ∇ū · n, (3.8)
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where n is a unit vector normal to the interface as shown in figure 2. This shear-stress
balance assumes a clean interface. The normal stress balance yields the static interface
shape in the limit of zero capillary number. Furthermore, the carrier liquid and the
drop fluid obey the no-slip condition at the wall:

u= ū= 0. (3.9)

The drop-fluid velocity ū has zero normal gradient at the symmetry planes of the unit
cell shown in figure 2.

3.3. Volume-flow-rate equations
Since the immiscible drop is a closed system, the streamwise volume flow rate at each
cross-sectional plane of the long middle column of the drop must equal the plug-flow
rate of the drop. Thus, the drop volume flow rate is

Q̄=
∫∫

Ā
ū dy dz=−ĀCa. (3.10)

This integral constraint will determine P̄x, which is the only unknown left in the
coupled-flow problem. The volume flow rate in the corner channels is

Q=
∫∫

A
u dy dz, (3.11)

where A = AT − Ā is the cross-sectional area of the corner channels shown in
figure 1(c), and is known since AT = 4B and Ā is listed in table 1. The sum of Q̄
and Q gives the total flow rate through the microchannel.

4. Solution of coupled unidirectional flows
4.1. Linear expansions

The streamwise velocities u and ū depend on four independent parameters: D, P̄x,
λ and B. Since D and P̄x appear linearly in (3.2) and (3.6), we can extract their
dependence by the following linear expansions:

u=UDD+UPP̄x, (4.1)

ū= ŪDD+ ŪP
P̄x

λ
, (4.2)

where the expansion coefficients UD, UP, ŪD, and ŪP depend only on λ and B.
Although D does not appear in (3.2), it does affect the drop flow through the
coupling with the corner flow at the corner interfaces, and ŪD reflects this induced
flow.

Substitution of (4.1) and (4.2) into the governing equations (3.2) and (3.6), and the
interfacial conditions (3.7) and (3.8) gives

∇
2UD = 1, ∇UD · n= λ∇ŪD · n, (4.3a,b)

∇
2ŪD = 0, ŪD =UD, (4.4a,b)

∇
2UP = 1, ∇UP · n=∇ŪP · n, (4.5a,b)

∇
2ŪP = 1, ŪP = λUP. (4.6a,b)
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The no-slip boundary condition at the wall in (3.9) yields

UD =UP = ŪD = ŪP = 0. (4.7)

Along the symmetry planes shown in figure 2, ŪD and ŪP have zero normal gradient.
The above equations show that UD and ŪD, and UP and ŪP are coupled through

the boundary conditions at the corner interface. The coupled systems are solved
by a finite-element method using the Matlab partial differential equation toolbox
(Mathworks 2017), as described in § A.1. The numerical code is validated in several
ways (§ A.2). Contours of the velocity coefficients UD, UP, ŪD and ŪP are shown in
figure 3 for λ= 0.1, 1, and 10 in a square microchannel. A detailed explanation of the
contours is provided in § A.3. The velocity coefficients are expanded in asymptotic
series in the limit λ→ 0 in appendix B to reveal the effects of drop viscosity.

4.2. Volume flow rates
4.2.1. Drop and corner volume flow rates

The drop velocity ū in (4.2) is substituted into (3.10) to yield the drop volume flow
rate as

Q̄=DQ̄D +
P̄x

λ
Q̄P =−ĀCa, (4.8a)

where

Q̄D =

∫∫
Ā

ŪD dy dz, Q̄P =

∫∫
Ā

ŪP dy dz, (4.8b,c)

and −ĀCa is the drop plug-flow rate, which is specified. Since Q̄D and Q̄P depend
only on B and λ, this integral constraint determines the drop-fluid pressure gradient:

P̄x =
λ

Q̄P
(−ĀCa−DQ̄D). (4.9)

The carrier-liquid velocity u in (4.1) is substituted into (3.11) to give the corner-flow
volume flow rate as

Q=DQD + P̄xQP, (4.10a)

where

QD =

∫∫
A

UD dy dz, QP =

∫∫
A

UP dy dz. (4.10b,c)

The coefficients Q̄D, Q̄P, QD and QP are calculated numerically as detailed in §§ A.1
and A.2; they depend on the aspect ratio B and the viscosity ratio λ, and are plotted
in figure 4 and presented in table 2 for B= 1, 1.2, 1.5 and 2, with λ= 0–100. The
coefficients are all negative, and their behaviour in figure 4 is discussed in § A.3. The
coefficients are expanded in asymptotic series in the limit λ→ 0 in § B.3, and the first
two terms of the series are also plotted in figure 4. They agree with the full solution
for 0 6 λ< 0.2.

4.2.2. Total volume flow rate in the microchannel
The total volume flow rate in the drop-moving direction is

QT =−(Q̄+Q). (4.11)
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FIGURE 3. (Colour online) Contours of the velocity expansion coefficients ŪD, ŪP, UD,
and UP in a square microchannel for viscosity ratio λ= 0.1 (a–d), 1 (e–h) and 10 (i–l).
The coefficients are defined in (4.1) and (4.2).

From (4.8a), the drop volume flow rate Q̄=−ĀCa. The corner volume flow rate Q
is also determined when P̄x in (4.9) is substituted into (4.10). Thus, the total volume
flow rate is found as

QT =

(
qD

LCa1/3 + qU

)
Ca, (4.12a)

where

qD =

(
λ

Q̄DQP

Q̄P
−QD

)
CD

Ā
, qU =

(
1+ λ

QP

Q̄P

)
Ā, (4.12b,c)

depend only on λ and B. If λ= 0, the solution reduces to that of an inviscid bubble
obtained by Wong et al. (1995b) (see the validation discussion in § A.2).
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FIGURE 4. Volume-flow-rate coefficients QD (a), Q̄D (b), QP (c), and Q̄P (d), defined
in (4.8) and (4.10), versus viscosity ratio λ for various aspect ratio B. The asymptotic
solutions in the limit λ→ 0 in (B 13)–(B 16) are also plotted for comparison.

The coefficients qD and qU are listed in table 3 and plotted in figures 5(a) and 5(b),
respectively, as a function of λ for various aspect ratio B. The coefficient qD comes
from a part of the corner flow driven by the contact-line-drag density D. We will
call the qD term the ‘drag component’ for the rest of this paper. The drag component
represents a major portion of the corner flow, and is simply called the corner flow
sometimes in this paper. For fixed B, qD approaches a constant as λ→ 0, as shown
in figure 5(a), because in this limit the drop becomes inviscid and the corner flow
sees zero shear stress at the corner interface. As λ increases, the resistance to corner
flow increases and qD decreases. As λ→∞, the corner flow experiences no slip at
the drop surface and qD again becomes uniform. For fixed λ, the corner flow increases
with B because of the larger flow area.

The coefficient qU in (4.12c) consists of the drop plug flow (first term) and a minor
portion of the corner flow (second term). The second term approaches zero as λ→ 0,
and increases linearly with λ as λ→∞ because both QP and Q̄P become constant
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FIGURE 5. Coefficients qD (a) and qU (b) of the total volume flow rate defined in
(4.12b,c) versus viscosity ratio λ for various aspect ratio B.

as λ→∞ (figures 4c and 4d). However, this increase in flow rate is small compared
with the first term within the range of λ studied (λ6 100), as shown in figure 5(b),
where qU = Ā for λ� 1 and increases only slightly with λ for fixed B. Thus, we call
the qU term the ‘plug component’ for the rest of this paper.

Equation (4.12a) shows that the value of LCa1/3 determines whether the drag or
plug component dominates. For LCa1/3

→ 0, the drag component dominates and

QT→
qD

L
Ca2/3. (4.13)

Thus, for moderately long drops (1 � L � Ca−1/3), the total flow rate varies
nonlinearly with the drop velocity. The carrier liquid bypasses the drop through
the corner channels, leading to a total volume flow rate that is much higher than that
of the drop plug-flow rate (∼Ca). For LCa1/3

� 1, the plug component dominates
and

QT→ qUCa. (4.14)
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Thus, for extremely long drops (L�Ca−1/3), the total flow rate varies linearly with
the drop velocity. There is negligible corner flow and the drop moves as a leaky
piston.

4.3. Pressure gradients
4.3.1. Pressure gradient in the drop

The pressure gradient in the drop in (4.9) can be written as

P̄x =

(
−

k̄D

LCa1/3 + k̄U

)
Ca, (4.15a)

where

k̄D = λ

(
Q̄D

Q̄P

)
CD

Ā
, k̄U =−

λĀ
Q̄P

(4.15b,c)

are positive constants that depend only on B and λ. The coefficients k̄D and k̄U are
plotted in figures 6(a) and 6(b), respectively, as a function of λ for B = 1, 1.2, 1.5
and 2. Since k̄D is proportional to CD, the first term in (4.15a) is the drag component.
For fixed B, k̄D follows the behaviour of λQ̄D because Q̄P does not vary widely over
06 λ6 100, as shown in figure 4(d). Thus, k̄D∼ λ as λ→ 0 and reaches a plateau as
λ→∞. The drop flow Q̄D is induced by the corner flow QD, which is driven by the
contact-line-drag density D. The corner flow QD bypasses the drop and induces a drop
flow (Q̄D) towards the front of the drop. Since the drop is closed, this induced flow
will be stopped at the front end of the drop and raise the pressure there. Thus, the
drag component of P̄x in (4.15a) is negative.

The k̄U term comes from the drop plug flow specified in (4.8a). Hence, this term is
the plug component, which drives the drop fluid forwards and is positive. Figure 6(b)
shows that k̄U increases almost linearly with λ, because Q̄P is insensitive to variation
in λ (figure 4d).

4.3.2. Pressure gradient in the carrier liquid
The pressure gradient in the carrier liquid is found by substituting P̄x in (4.15a) into

the integral force balance (3.4):

Px =

(
kD

LCa1/3 + kU

)
Ca, (4.16a)

where

kD =
CD

Ā
− k̄D =

CD

Ā

(
1− λ

Q̄D

Q̄P

)
, kU = k̄U (4.16b,c)

are positive constants that depend only on B and λ. The coefficients kD and kU are
listed in table 3, and kD is plotted in figure 7 as a function of λ for B= 1, 1.2, 1.5
and 2 (kU = k̄U, which is plotted in figure 6b). The kD term in (4.16a) represents the
pressure gradient required to overcome the contact-line-drag density D and is therefore
the drag component. The coefficient kD is positive since λQ̄D/Q̄P < 1 always. As λ→
0, λQ̄D/Q̄P→ 0 because both Q̄D and Q̄P become constant, as shown in figures 4(b)
and 4(d). As λ→∞, λQ̄D/Q̄P is finite because Q̄D ∼ 1/λ as λ→∞ (figure 4b).
Furthermore, λQ̄D/Q̄P < 1 in the limit λ→∞, so that kD > 0 always.

The kU term represents the pressure gradient that balances the film and corner drags
on the drop and is the plug component. Since kU = k̄U, both Px and P̄x have the same
plug component.
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FIGURE 6. Coefficients k̄D (a) and k̄U (b) of the drop-fluid pressure gradient defined in
(4.15b,c) versus viscosity ratio λ for various aspect ratio B. Coefficient kU of the carrier-
liquid pressure gradient defined in (4.16a) is the same as k̄U .

4.3.3. Summary of pressure-gradient results
To summarize the results for pressure gradients, when LCa1/3

� 1, the drag
component (corner flow) dominates and

P̄x ∼ Px ∼
Ca2/3

L
, (4.17)

although P̄x is negative and Px is positive. When LCa1/3
� 1, the plug component

dominates and

P̄x = Px ∼ λCa. (4.18)

When L= k̄D/(k̄UCa1/3), P̄x= 0 because its two components cancel. When λ= 0, k̄D=

k̄U = kU = 0 and we recover the solution of Wong et al. (1995b) for long bubbles.
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FIGURE 7. Coefficient kD of the carrier-liquid pressure gradient defined in (4.16b) versus
viscosity ratio λ for various aspect ratio B.

4.4. Velocity fields

Substituting P̄x in (4.9) into (4.1) and (4.2) gives the velocity fields in the carrier
liquid and drop as

u=

[(
UD −

λQ̄D

Q̄P
UP

)
CD/Ā
LCa1/3 −

λĀ
Q̄P

UP

]
Ca, (4.19)

ū=

[(
ŪD −

Q̄D

Q̄P
ŪP

)
CD/Ā
LCa1/3 −

Ā
Q̄P

ŪP

]
Ca. (4.20)

Both u and ū can be separated into a drag component, which dominates as LCa1/3
→0

(or 1� L� Ca−1/3), and a plug component, which dominates as LCa1/3
→∞ (or

L�Ca−1/3). The drag component of u is dominated by UD, because λQ̄D/Q̄P� 1 for
all λ and B studied, and UP ∼ UD, as shown by QP and QD in figure 4. The plug
component of u follows UP, and has the same sign as UP because Q̄P is negative.
Since both UD and UP are negative (figure 3), the drag and plug components of u are
negative, i.e., the corner flow always moves in the same direction as the drop.

4.4.1. The drag component of drop-fluid flow
The drag component of ū can be positive over part of the drop domain and, in

these positive regions, the drop fluid is moving opposite to the direction of the drop.
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To identify these positive flow regions, we define

ūD = ŪD −
Q̄D

Q̄P
ŪP, (4.21)

and plot it for a square microchannel in figure 8 for λ = 0.1 (a), 1 (b) and 10 (c).
It shows that ūD is positive at the centre of the drop for all the λ values considered,
and its magnitude decreases as λ increases. Thus, when the drag component (corner
flow) dominates, the drop fluid is dragged by the corner flow from the back of the
drop towards the front next to the corner interface, and moves from the front towards
the back along the drop centre.

4.4.2. The plug component of drop-fluid flow
The plug component of ū is always negative because ŪP (figure 3) is everywhere

negative and Q̄P is obtained by integrating ŪP over the drop area as defined in (4.8c).
Thus, when the plug component dominates, the drop fluid flows in the direction of
the drop at every point of the drop domain. It is instructive to view this drop flow in
a reference frame moving with the drop. Thus, we define

ūU = 1−
Ā

Q̄P
ŪP. (4.22)

This shifted plug component is plotted for a square microchannel in figure 8 for λ=
0.1 (d), 1 (e) and 10 ( f ). The velocity contours show that for λ� 1, the drop fluid
circulates in an almost axisymmetric roll, similar to a drop in a circular microchannel.
For λ� 1, the drop fluid circulates in four planar rolls, one on each sidewall. This
viscous-drop velocity profile has higher velocity gradients and therefore would allow
better mixing of the drop fluid.

5. Practical applications
Our model assumes a drop moving at a dimensionless velocity Ca and obtains

pressure gradients, flow rates and velocity fields that depend on Ca. In practice,
usually a pressure difference is imposed between the two ends of a microchannel
and the resulting flow rates measured. Thus, in this section, we apply our flow-field
solutions to derive the pressure-gradient versus flow-rate relation (§ 5.1). Furthermore,
we will also derive results that are of practical interest, such as the coefficient of
mobility (§ 5.2), the excess pressure gradient (§ 5.3), the velocity ratio for two drops
of unequal lengths (§ 5.4), and the pressure gradient for a train of drops (§ 5.5).

5.1. Pressure-gradient versus flow-rate relation
The primary objective of this work is to determine the relation between the total
volume flow rate and the carrier-liquid pressure gradient needed to drive the steadily
moving long drop. Dividing Px in (4.16a) by QT in (4.12a) gives

Px =HQT, (5.1a)

where we define

H =
kD + kULCa1/3

qD + qULCa1/3 (5.1b)
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FIGURE 8. (Colour online) Velocity contours of the normalized drag component ūD (a–c)
and the shifted plug component ūU (d–f ) of the drop-fluid flow in a square microchannel
for λ= 0.1 (a,d), λ= 1 (b,e), and λ= 10 (c, f ). The velocity ūD is defined in (4.21), and
ūU in (4.22). In each plot, the thick line indicates zero velocity, and the net volume flow
is zero.
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as the dimensionless hydraulic resistance for drop flow. When the drag component
(corner flow) dominates, LCa1/3

→ 0 and

H→
kD

qD
≡HD. (5.2)

When the plug component dominates, LCa1/3
→∞ and

H→
kU

qU
≡HU. (5.3)

Thus, in both limits, H is constant and Px varies linearly with QT . Note that in the
limit LCa1/3

→ 0, both Px and QT vary nonlinearly with drop speed (Px ∼ Ca2/3

and QT ∼ Ca2/3). Away from the two limits, H varies with LCa1/3, and Px varies
nonlinearly with QT because QT = QT(Ca), as shown in (4.12a). In appendix C, we
find Px = Px(QT) by eliminating Ca in H.

The hydraulic resistances HD and HU are plotted as a function of λ for various B
in figures 9(a) and 9(b), respectively. It shows that HD increases with λ for fixed B,
despite that both kD and qD decrease as λ increases (figures 7 and 5a). Figure 9(b)
shows that HU ∼ λ for fixed B. Thus, the drop viscosity has much stronger effect
on the plug flow than on the corner flow. In figure 10, H is plotted as a function
of LCa1/3 for λ= 0 and 100 and B= 1 and 2. It shows that H decreases as LCa1/3

increases. Thus, the hydraulic resistance is highest when the drag component (or
corner flow) dominates.

5.2. Coefficient of mobility
The ratio of drop velocity to average velocity of the channel flow is commonly
known as the coefficient of mobility and is usually measured in drop-flow experiments
(Jakiela et al. 2011):

β =
Ca AT

QT
=

4B
qD

L Ca1/3 + qU

. (5.4)

In figure 11, β is plotted as a function of LCa1/3 for viscosity ratio λ= 0 and 100,
and aspect ratio B = 1 and 2. It shows that for constant LCa1/3 and B, β increases
with λ if LCa1/3

� 1, and β decreases as λ increases if LCa1/3
� 1. This is because

qD and qU in (4.12b,c) vary differently with λ, as shown in figure 5. Thus, when the
drag component (corner flow) dominates, more viscous drops are more mobile; when
the plug component (plug flow) dominates, less viscous drops are more mobile. For
fixed λ and LCa1/3, β decreases as B increases for all LCa1/3. This is because the
corner-flow area increases with B, leading to a higher corner flow that reduces β.

5.3. Excess pressure gradient
We have determined the pressure gradient Px required to drive a long drop surrounded
by a carrier liquid through a rectangular microchannel at the volume flow rate QT .
The carrier liquid in the microchannel far away from the drop is also moving with
the volume flow rate QT and is driven by a dimensionless pressure gradient Pxs:

Pxs = ksQT (5.5a)
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FIGURE 9. Dimensionless hydraulic resistance HD (a) and HU (b) defined, respectively, in
(5.2) and (5.3) versus viscosity ratio λ for various aspect ratio B.

ks =
3

4B

[
1−

192
π5B

∞∑
n=1,3,5,...

tanh(nπB/2)
n5

]−1

, (5.5b)

where ks is the dimensionless hydraulic resistance for a single-phase fluid flowing
unidirectionally in a rectangular duct of aspect ratio B (White 1991). Values of ks

are presented in table 1. Thus, we define an excess pressure gradient as

1Px = Px − Pxs =

[
eD

LCa1/3 + eU

]
Ca, (5.6a)

where

eD = kD − ksqD, (5.6b)
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10010-110-2

¬ = 100, B = 2

¬ = 100, B = 1
¬ = 0, B = 2

ı

¬ = 0, B = 1

10-3

LCa1/3
10-410-510-610-60

0.2

0.4

0.6

0.8

1.0

1.2

FIGURE 11. (Colour online) Mobility β defined in (5.4) versus LCa1/3 for λ= 0 and
100, and B= 1 and 2.

eU = kU − ksqU. (5.6c)

The coefficient eD follows kD because ksqD < 1.4 × 10−3kD for all λ and B studied
(see figures 5a and 7). Thus, eD is always positive. This means that when the drag
component (corner flow) dominates, the drop-flow pressure gradient always exceeds
the single-phase carrier-liquid pressure gradient, assuming that both are moving at the
same volume flow rate. This is because the carrier liquid must move at a higher speed
in bypassing the drop through the narrow corner channels. The higher liquid speed and
the narrower flow area lead to a higher pressure gradient, resulting in a positive excess
pressure gradient. The coefficient eU is plotted in figure 12 as a function of λ for
various B. It shows that eU is positive for λ> 1 and negative for λ< 1, independent
of B. Thus, the excess pressure gradient is negative when the plug flow dominates
and λ < 1. This is because when the plug flow dominates, the resistance to drop
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FIGURE 12. Coefficient eU of the excess pressure gradient defined in (5.6c) versus
viscosity ratio λ for various aspect ratio B.

motion comes from the shear forces on the drop. If λ < 1, then the drop is less
viscous compared with the carrier liquid, and the shear forces on the drop will also be
comparatively smaller. Thus, the drop can be driven by a smaller pressure gradient and
the excess pressure gradient is negative. The result of eU = 0 at λ= 1 further confirms
the accuracy of kU and qU.

5.4. Velocity ratio for two drops of unequal lengths

Consider two long drops of lengths L1 and L2 (>L1) moving in a rectangular
microchannel at velocities U1 and U2, respectively. The two drops contain the same
fluid and are sufficiently far apart that they do not influence each other. We study
the velocity ratio U2/U1 when both drops are driven by either (i) the same channel
volume flow rate or (ii) the same channel pressure gradient.

5.4.1. Constant channel volume flow rate
If both drops are flowing in the same channel one after another, then the channel

volume flow rate QT is the same, and (4.12a) gives

(
qD

L1Ca1
1/3 + qU

)
U1 =

(
qD

L2Ca2
1/3 + qU

)
U2, (5.7)
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FIGURE 13. Drop-velocity ratio versus drop-length ratio for various TQ (or TP) defined
in (5.8a) (or (5.12a)). The asymptotic solution is listed in (5.9).

where Ca1 = µU1/σ , Ca2 = µU2/σ , and qD and qU are the same for both drops
(figure 5). The above equation can be written as

Ur = 1+
LrU1/3

r − 1

TQLrU
1/3
r + 1

, (5.8a)

where

Ur =
U2

U1
, Lr =

L2

L1
, TQ =

qU

qD
L1Ca1/3

1 . (5.8b−d)

Here, TQ is a positive dimensionless parameter that depends only on the first drop.
When the corner flow dominates, L1Ca1/3

1 → 0, so that TQ→ 0, and (5.8a) yields

Ur→ L3/2
r . (5.9)

Thus, the velocity ratio increases nonlinearly with the length ratio. When the plug flow
dominates, L1Ca1/3

1 →∞ and therefore TQ→∞, so that (5.8a) reduces to

Ur→ 1. (5.10)

The asymptotic relations in (5.9) and (5.10) are independent of B and λ.
In figure 13, Ur is plotted against Lr for various TQ. It shows that for a given Lr,

Ur decreases as TQ increases or as the plug flow becomes dominant. For fixed TQ, Ur

increases with Lr, and according to (5.8a), as Lr→∞, Ur→ 1+ 1/TQ. Thus, when
the first-drop length and speed are fixed, the second drop moves faster as its length
increases. This is because a longer drop has reduced corner flow, which leads to a
higher drop speed so as to maintain a constant total volume flow rate. As Lr→∞,
the corner flow ceases completely, leading to a constant speed for the second drop.
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5.4.2. Constant channel pressure gradient
If two identical microchannels are arranged in parallel, and each contains a drop,

then the pressure gradient Px is the same in both systems, and (4.16a) gives[
kU

L1Ca1
1/3 + kD

]
U1 =

[
kU

L2Ca2
1/3 + kD

]
U2, (5.11)

where kU and kD are the same for both drops (figures 6b and 7). The above equation
can be written as

Ur = 1+
LrU1/3

r − 1

TPLrU
1/3
r + 1

, TP =
kU

kD
L1Ca1/3

1 , (5.12a,b)

where TP is a positive dimensionless parameter that relies solely on the first drop.
Since (5.12a) is the same as (5.8a), the results in § 5.4.1 also hold here when TQ
is replaced by TP (figure 13).

In summary, if a drop of length L1 in a microchannel is followed by another drop
of length L2 (> L1), the longer drop will move faster and catch up with the first drop
if the drag component (corner flow) dominates. Further, if the two drops merge, the
resulting drop, which is even longer, will move faster than the original drops. For a
train of drops in a microchannel, the drops will have a higher tendency to coalesce
because of the possible non-uniformity in drop length if the drag component (corner
flow) dominates. If the plug component dominates, the drops will stay separated.

5.5. Train of drops
5.5.1. Pressure gradient

Consider a steady train of uniform drops of dimensionless length L with uniform
dimensionless spacing LS between them. If the spacing Ls(� 1) is large compared to
the channel width, then the carrier liquid flows mainly unidirectionally between drops
and obeys (5.5a): Pxs= ksQT . The dimensionless pressure gradient in the carrier liquid
across a drop is given in (5.1a): Px=HQT . Thus, the dimensionless pressure gradient
across a unit cell of the drop train is

PxT =
L
LT

Px +
LS

LT
Pxs =HTQT, (5.13)

HT = αH + (1− α)ks, (5.14)

where LT = L+ LS is the total length of the unit cell, α= L/LT is the dispersed phase
length fraction, and HT is the dimensionless hydraulic resistance of the drop train.
Hence, the pressure-gradient versus flow-rate relation for various drop-train systems
may be analysed. The length fraction α is the only additional parameter needed to
define a drop-train system compared with a single-drop system.

5.5.2. Continuous injection of drop fluid and carrier liquid
A drop train is usually generated by injecting the carrier liquid and the drop fluid

continuously from separate fluid reservoirs at the inlet of the test section. If the
carrier-liquid injection flow rate Q∗iC and the drop-fluid injection flow rate Q∗iD are
made dimensionless to give QiC = Q∗iCµ/σW2 and QiD = Q∗iDµ/σW2, then their sum
is equal to the dimensionless total flow rate:

QiC +QiD =QT . (5.15)
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The total flow rate is also equal to the sum of corner flow and drop flows, i.e., QT =

|Q| + |Q̄|, according to (4.11). However, |Q| 6=QiC and |Q̄| 6=QiD in general. To derive
their relations, we consider a control volume that encloses the injection ports and the
test section. Although the drop fluid enters the control volume continuously, it exits
discretely, and the usual mass-balance equation cannot be applied. Instead, a discrete
time interval 1t must be considered during which a unit cell of the drop train leaves
the control volume:

1t=
LT

Ca
, (5.16)

where 1t has been non-dimensionalized by µW/σ . Then, the mass of the control
volume will remain constant at successive times separated by 1t. Thus, over an
interval 1t, the volume of drop fluid entering the control volume must equal the
volume of a single drop:

QiD1t= LĀ (5.17a)

or

QiD =
LĀCa

LT
= α|Q̄|. (5.17b)

Consequently,
QiC = |Q| + (1− α)|Q̄|. (5.18)

Thus, once QiC, QiD, and α are specified, we can find |Q̄| and |Q|. Since Ca= |Q̄|/Ā,
and L, B and λ are known for a particular drop-train system, the pressure gradient
for the drop train can be calculated using (5.13). The mobility in (5.4) can also be
computed. Thus, the drop-train system is completely characterized.

6. Comparison with experiments

Several experimental studies on drop flow in rectangular microchannels have been
published. Since these studies emphasized different aspects of drop flow, the results
were presented using different parameters. We will convert their parameters into the
ones defined in this paper for comparison.

6.1. Comparison with Kim et al. (2014)
6.1.1. Parameter conversion

Kim et al. (2014) studied the motion of deionized water drops in perfluorocarbon
containing 10 % (v/v) of a nonionic fluoro-soluble surfactant in rectangular
microchannels machined in polycarbonate. The drop to carrier-liquid viscosity ratio
λ = 0.534, as determined from their table 2. The channel walls were treated to
improve wettability by the carrier liquid. We compare with the experiments performed
on the ER4 chip described in their paper because the data presented are the most
complete. The rectangular test channel for the ER4 chip has half-width W = 92.3 µm
and B = 1.05, as shown in their table 1. The carrier and drop liquids are injected
continuously at the inlet of the system. For each set of experiments, the carrier-liquid
flow rate Q∗iC is held constant, and different drop liquid flow rate Q∗iD is set. Based
on these flow rates, the authors defined two superficial velocities:

J∗C =
Q∗iC
A∗T
, J∗D =

Q∗iD
A∗T
, (6.1a,b)
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and a carrier-liquid volumetric flow ratio:

βC =
Q∗iC

Q∗iC +Q∗iD
=

J∗C
J∗C + J∗D

. (6.2)

The dimensionless drop length L/2B and drop spacing Ls/2B are then plotted as a
function of βC for various J∗C in their figures 7(a) and 7(b), respectively. Since the
capillary number is not presented in their paper, we find it by the following method.
For each data point in figure 7(a) in their paper, we get L/2B, βC and J∗C. We then
calculate J∗D from (6.2) and subsequently QiD = Q∗iDµ/σW2

= J∗DA∗Tµ/σW2 with A∗T ,
µ and σ values listed in their table 2. From their figure 7(b), we get Ls/2B for the
corresponding values of βC and J∗C in their figure 7(a). Thus, we obtain the dispersed
phase length fraction α = L/(L+ Ls). Hence, we can find Ca=QiD/αĀ from (5.17b)
with Ā= 3.948 for B= 1.05 as calculated by interpolating between the values listed in
table 1. Thus, we have all the five parameters (B, λ, L, Ca, α) needed to completely
characterize a drop-train system.

6.1.2. Comparison of mobility
From the definition of mobility in (5.4),

β =
Ca AT

QT
=

σ Ca
µ(J∗C + J∗D)

. (6.3)

This determines the experimental value of β. Our model in (5.4) gives β = β(LCa1/3)
with qD= 2.486× 10−3 and qU = 3.961 for B= 1.05 and λ= 0.534. The comparison is
presented in table 4. We limit the comparison for drop trains with L> 5 as our model
holds only for long drops, and drops with L> 5 have a well-defined middle section.
The comparison shows that β(model)= 1.06 for all the cases considered and β(exp)<
β(model). The comparison improves for longer drops, in general. The experimental
value of LCa1/3 suggests that the plug flow dominates, resulting in β ≈ 1.

6.1.3. Comparison of pressure gradient
The pressure difference across the test section was measured by differential pressure

transducers (Kim et al. 2014). The pressure difference divided by the channel length
gives the pressure gradient. Since the channel is filled by a train of drops with uniform
length and spacing, the pressure gradient in the channel is the same as that over a unit
cell of the drop train. Kim et al. (2014) reported in their figure 9(b) the ratio of this
pressure gradient (PxT in (5.13)) to the single-phase pressure gradient based on the
carrier-liquid volume flow rate, PxC = ksQiC, as a function of βC. In our model, this
pressure-gradient ratio is

PxT

PxC
=

HTQT

ksQiC
=

[
αH
ks
+ (1− α)

]
QT

QT − α|Q̄|
, (6.4)

where HT in (5.14) and QiC in (5.18) have been substituted. The drop-flow rate |Q̄| =
ĀCa according to (4.8a), the total volume flow rate QT = QT(B, λ, L, Ca) as shown
in (4.12a), the hydraulics resistance H = H(B, λ, LCa1/3) following (5.1b), and the
single-phase dimensionless hydraulic resistance ks = ks(B) based on (5.5b). For the
experiments, B= 1.05 and λ= 0.534. Hence, the experimental values of L, α, and Ca
in table 4A are sufficient to evaluate the pressure-gradient ratio.
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A comparison of the pressure-gradient ratio is shown in table 4B. The model
predicted values increase with α, the same as in the experiments, and are lower on
average by 22.4 %, except in one experiment (Kim (b)1). One possible explanation
is the presence of surfactants in the experiments. If a drop moves as a plug, the
surfactant at the thin-film interface is swept from the front towards the back end.
Thus, the surface tension is higher at the front and lower at the back. The resulting
Marangoni stress will oppose the motion of the drop and a higher pressure gradient
is required to drive the drop at the same velocity, leading to the smaller mobilities
shown in table 4. Mobility reduction by surfactants has been observed for bubble
flow in rectangular microchannels (Fuerstman et al. 2007).

6.2. Comparison with Vanapalli et al. (2009)
Vanapalli et al. (2009) studied the hydrodynamic resistance of a single moving drop
in a rectangular microchannel fabricated in polydimethylsiloxane (PDMS). The carrier
liquid is mineral oil and the drop consists of a mixture of water and glycerol, the ratio
of which is varied to achieve different viscosities. After their drop length and capillary
number are converted to ours, their experiments yield LCa1/3

= 0.780–10.2, suggesting
that the plug flow dominates. In their figure 7, the drop velocity is plotted against the
mean velocity for λ= 0.03 and 0.88 and various L, and the slope gives the mobility
as β = 1.28. This value is higher than our predicted value shown in figure 11. Also,
their mobility is independent of drop length, viscosity ratio and capillary number
for the range of parameters studied, similar to our model prediction in figure 11.
They compared the pressure difference across a single drop with that across the
single-phase carrier liquid by a microfluidic comparator. Their figure 6B shows that
the pressure difference decreases with increase in drop viscosity, whereas our model
predicts that the pressure difference increases with drop viscosity. Furthermore, their
excess pressure difference is positive for λ� 1, whereas our model predicts that the
excess pressure difference should be negative for λ� 1 and positive for λ> 1 when
the plug flow dominates. The reason for the disagreement is not clear.

6.3. Comparison with Jakiela et al. (2011, 2012)
6.3.1. Jakiela et al. (2011)

Jakiela et al. (2011) measured the mobility of individual water droplets in
hexadecane in a square microchannel micro-milled in polycarbonate. The channel
walls were treated with dodecylamine to guarantee complete wetting by hexadecane.
Great care was taken to ensure that the system is free of surfactant. The viscosity
ratio was varied in the range λ= 0.3–33 by adding glycerine to water, and the drop
length was varied from L = 2 to 56. The carrier-liquid pressure difference across
the system is varied to generate Ca= 1.5× 10−4–1.1× 10−1. The experimental data
for λ = 0.3 and 1 show that when LCa1/3

≈ 1 or higher, the mobility β ≈ 1, in
agreement with our model (figure 11). For λ = 3 and 33.2, the mobility is found
to decrease significantly with increasing LCa1/3. Thus, longer drops lead to higher
corner flow, resulting in lower mobility, which is opposite to our model predictions.
Jin et al. (2012) measured the curvature of the end caps of long drops moving with
Ca= 0.003 in a rectangular microchannel with λ= 0.3. They found that as L increases
from 7 to 23, the radius of curvature at the tip of the front end stays constant, but
that of the back end increases by approximately 20 %. It is clear from their figure 8
that the apparent contact angle at the back end increases with L, and that for L= 23,
the angle ≈45◦. These increases can result from moving contact lines at the back end
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(Davis 1980; Shikhmurzaev 1997), which will increase the contact-line drag at the
back end significantly (Wong et al. 1995b). Our model assumes that the deposited
film is intact, the viscosity ratio λ�Ca−1/3 when LCa1/3

∼ 1 or � 1, and the moving
drop deviates infinitesimally from the static drop shape (§ 7). These conditions seem
to be violated for long viscous drops in Jakiela et al. (2011), and thus the results are
not comparable.

6.3.2. Jakiela et al. (2012)
Jakiela et al. (2012) presented the velocity field inside a moving long drop

for the same system studied in Jakiela et al. (2011). Their figure 4 shows two
velocity fields for Ca = 5 × 10−4 and 2 × 10−3, respectively, and L ≈ 5, λ = 0.33
(private communication). The carrier liquid flows through the corner channels in both
cases. However, the drop with Ca = 5 × 10−4 exhibits streamwise drop-fluid motion
adjacent to the corner interface induced by the corner flow, whereas the drop with
Ca = 2 × 10−3 does not. The observation of corner-induced drop flow when Ca is
low is in general agreement with our model predictions. Our model reveals that when
the drag component dominates, there is fast corner-induced fluid motion inside the
drop (figure 8a). This corner-induced motion is absent when the plug component
dominates (figure 8d). The drag component dominates when LCa1/3

� 1. However,
the presence of moving contact lines will increase the contact-line drag significantly
and may enhance the drag component at higher LCa1/3. The corner-induced drop flow
has also been observed by Kinoshita et al. (2007).

The difficulty in characterizing drop flow in microchannels is reflected by the
scatter in the experimental mobility data as described by Jakiela et al. (2011). We
hope that this work provides an improved analytical understanding of the physics of
drop motion.

7. Discussion
7.1. Velocity scales and limits on viscosity ratio λ

A long drop in a rectangular microchannel is driven by the carrier liquid, which
can either push the drop (plug flow) or bypass the drop through the corner channels
(corner flow). These two flows have different velocity scales. When the plug flow
dominates, both the drop-fluid and carrier-liquid velocities scale with the drop velocity
as

δū∗ ∼ δu∗ ∼U, (7.1)

according to (4.19) and (4.20). These scales hold for LCa1/3
∼ 1 and �1. When the

corner flow dominates, LCa1/3
→ 0, and (4.19) and (4.20) give the velocity scales as

δū∗ ∼ δu∗ ∼
U

LCa1/3 . (7.2)

The shear stress in the thin film at the contact-line region is µ∂u∗/∂y∗ ∼µU/Ca2/3W,
because the no-slip condition at the wall gives δu∗ ∼ U at the contact-line region
even when the corner flow dominates and because the film thickness ∼Ca2/3W. The
contact-line region occupies an axial distance ∼Ca1/3W (Hodges et al. 2004). This
axial length scale is transmitted to the drop fluid and establishes a small region in
the drop fluid scaled by δy∗ ∼ Ca1/3W (Hodges et al. 2004). Thus, the shear stress
exerted by the drop fluid on the interface at the contact-line region is µ̄∂ ū∗/∂y∗ ∼
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µ̄δū∗/δy∗ ∼ µ̄δū∗/(Ca1/3W). This interfacial shear stress is negligible compared with
the film shear stress if

λ�Ca−1/3, (7.3)

when the plug flow dominates or if

λ� L, (7.4)

when the corner flow dominates. (Since LCa1/3
� 1 when the corner flow dominates,

L�Ca−1/3, so that the second upper bound is much smaller than the first one.) When
these conditions are satisfied, the contact-line drag for bubbles derived by Wong et al.
(1995b) can be applied for drops.

7.2. Thin-film profiles
Under conditions (7.3) and (7.4), the thin-film profiles derived for long bubbles by
Wong et al. (1995a) also hold for long drops, because again the interfacial shear
stress is negligible. Thin films are deposited by the front end of a long moving
bubble (figure 1a). The microchannel wall drags liquid away from the front cap
because of no slip. The liquid pressure ahead of the cap is lower than that in the
relatively planar thin film, owing to capillarity, and this pressure gradient sucks liquid
from the film back to the cap. A balance between these two forces determines the
film thickness (Wong et al. 1995a). Since the contact line is curved (figure 1a),
the drag force normal to the contact line decreases from the front to zero at the
side, but the capillary-pressure gradient stays about the same normal to the contact
line everywhere along the contact line. Consequently, the deposited film thickness
decreases from O(Ca2/3) at the front to O(Ca) at the side. This film profile is frozen
in a downstream distance x� Ca−1. For x ∼ Ca−1, the film at the centre rearranges
into a parabolic shape whereas the film at the side thins to O(Ca4/3). The deposited
non-uniform film profile and subsequent evolution have been observed in experiments
(Chen, Li & Li 2016). The same film profiles should also hold for long drops if
conditions (7.3) and (7.4) are satisfied.

The thin films deposited by a long drop may disintegrate if the drop is very long.
At the side of the film, the film thickness is O(Ca). For Ca= 10−3 and W = 100 µm,
the film can be as thin as O(100 nm). Given the roughness of the channel walls
(see, for example, figure S1 in Jakiela et al. 2012), it is likely that the deposited film
will disintegrate before reaching the back end (Wong, Fatt & Radke 1996). Thus, the
drop will be in direct contact with the wall, and the moving contact lines at the back
end will increase the contact-line drag significantly (Wong et al. 1995b; Thompson
& Troian 1997; Snoeijer & Andreotti 2013). Hence, the drag component (corner
flow) will be important at higher LCa1/3 than the predicted range in our model. This
will lead to lower mobility and higher corner flow at higher LCa1/3, as observed
in experiments. Hence, it is critical to monitor the stability of deposited thin films,
which unfortunately has not been performed in published drop-flow experiments.
Since the thinnest film thickness ∼Ca in rectangular microchannels (as opposed to
O(Ca2/3) in circular microchannels), it would be difficult to numerically simulate
drop or bubble flow in rectangular microchannels, as resolving the thin-film regions
is computationally expensive.
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7.3. Assumptions of our model
The assumptions made in developing our model are summarized below. Our model
holds in the limit the capillary number Ca → 0. As Ca decreases, the thin films
deposited by a long drop become thinner because their thickness varies from O(Ca2/3)
at the film centre to O(Ca) at the film side. For extremely small capillary numbers,
disjoining pressure can become important (Chaudhury, Acharya & Chakraborty 2014;
Hammoud et al. 2017). Further, wall roughness can be significant for microchannels
(for example, if they are machined in polycarbonate or etched in PDMS) and can
cause the thin film to break. In this work, we assume that the film is intact and is
sufficiently thick so that disjoining pressure plays no role. In using the solution of
contact-line drag derived by Wong et al. (1995b) for long bubbles, we assume that
λ�Ca−1/3 when the plug flow dominates, and λ�L when the corner flow dominates.
Further, we assume that the corners of the microchannel are sharp, and the interface
is clean. The length of the drop needs to be long (L� 1). However, the contact-line
drag used in this paper holds for L�Ca−1, i.e. the deposited film does not rearrange.

Another assumption of our model is that the shape of the moving drop deviates
insignificantly from that of the static drop. This allows the static drop cross-sectional
areas to be used in the fluid-flow calculations. When the corner flow dominates
(LCa1/3

� 1), both the drop fluid and the carrier liquid are moving at O[1/(LCa1/3)]
times faster than the drop, as shown by (7.1) and (7.2). This fast corner flow is driven
by a positive pressure gradient, whereas the induced drop flow establishes a negative
pressure gradient, as indicated by (4.16a) and (4.15a). Thus, the carrier-liquid pressure
decreases from the back end of the drop towards the front, whereas the drop-fluid
pressure increases from the back towards the front. Consequently, the pressure jump
across the interface increases along the drop. Will this pressure-jump increase over the
length of the drop be sufficient to alter the curvatures of the end caps significantly?
To answer this question, we examine (2.10). By rearranging the terms, we get

(p̄b − pb)− (p̄f − pf )=−
CD

Ā
Ca2/3. (7.5)

Thus, the pressure jump across the interface varies by O(Ca2/3) over the length of the
drop, which is much smaller than (p̄b − pb) or (p̄f − pf ) because each is of O(1).

7.4. Speculations on surfactant effects
Although the long moving drop is assumed free of surfactant in this work, the
calculated velocity fields can predict qualitatively the effects of surfactant. For
simplicity, we will consider a trace amount of an insoluble surfactant. When the
plug flow dominates (figure 8d–f ), there is negligible corner flow and the surfactant
is swept from the front of the drop towards the back along the thin-film interfaces.
The surfactant-concentration gradient will generate a surface-tension gradient, which
can immobilize the film interface and lead to a higher film drag on the drop. The
surface-tension difference between the two ends of the drop will drive a corner
flow in the direction of the moving drop, because the corner channel area is O(1)
and is much larger than the film cross-section area (∼Ca2/3). This corner flow will
reduce the streamwise surfactant-concentration gradient, and lead to a cross-stream
surfactant-concentration gradient between the film and corner interfaces. The enhanced
film drag will make the drop less mobile.

When the corner flow dominates (figure 8a–c), the surfactant is swept from the back
of the drop towards the front along the corner interfaces. Since the drop is moving

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

52
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.521


Motion of long drops in rectangular microchannels at low capillary numbers 95

much slower than the corner flow, the deposited thin films will remove negligible
amount of surfactant. Thus, the surfactant will accumulate at the front cap and be
depleted at the back cap. The resulting surface-tension gradient will immobilize the
corner interfaces and reduce the corner flow. This will increase the mobility of the
drop.

7.5. Comparison between drop and bubble flows
It is instructive to compare the results for long drops with those for long bubbles. The
total volume flow rate QT in (4.12a) has two components, the same as in the bubble
flow, and the coefficients qD and qU do not vary significantly from the bubble case
of λ= 0 (figure 5). However, the pressure gradient of drop flow is different from that
of bubble flow. The pressure gradient Px in (4.16a) also has two components. The
drag-component coefficient kD is insensitive to λ (figure 7), but the plug component
vanishes for λ= 0 and increases almost linearly with λ (figure 6b). Hence, the plug
component is absent in bubble flow, but plays a significant role in drop flow when
λLCa1/3

∼ 1 or �1.

8. Conclusions
A long drop moving steadily in a rectangular microchannel filled otherwise with

a carrier liquid is driven by the pressure gradient in the carrier liquid. The carrier-
liquid pressure force PxLĀ on the drop balances the film drag, the corner drag and
the contact-line drag. The film and corner drags are found to equal to the drop-fluid
pressure force P̄xLĀ across the drop. Furthermore, the previously derived contact-line
drag DC in (2.8) for long bubbles can be applied to long drops if the viscosity ratio
λ�Ca−1/3 and λ� L. Hence, the carrier-liquid pressure gradient is given in (3.4) as

Px = P̄x +D, (8.1)

where D = DC/ĀL is the contact-line-drag density. The pressure gradients also
drive unidirectional flows inside and outside the long drop. After Px is eliminated
using (8.1), the coupled flows depend linearly on P̄x and D. Hence, the fluid velocities
are expanded as linear functions of P̄x and D. The velocity expansion coefficients are
solved using a finite-element method, and they depend on the viscosity ratio λ and
aspect ratio B. The drop-fluid velocity is integrated across the drop cross-sectional area
to yield the drop plug-flow rate, which is specified. This determines P̄x. Substitution
into (8.1) yields Px, which after converting back to dimensional form becomes

P∗x =
(

kD

LCa1/3 + kU

)
µU
W
, (8.2)

and

Q∗T =
(

qD

LCa1/3 + qU

)
W2U, (8.3)

where Q∗T is the dimensional total volume flow rate through the microchannel, and kD,
kU, qD and qU are dimensionless constants that depend only on the viscosity ratio λ
and the channel aspect ratio B, and are listed in table 3 and plotted in figures 5–7.
The results show that if LCa1/3

� 1, then the contact-line drag dominates and the
drop is retarded significantly so that the carrier liquid bypasses the drop through the
corner channels. This corner flow drags the drop fluid forwards next to the corner
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interface at a speed that is much faster than drop. This forward moving drop fluid
returns along the drop centre towards the back end to satisfy the constant volume-flow-
rate condition. If LCa1/3

� 1, then the contact-line drag is negligible, and the corner
flow is basically stationary; the drop then moves as a leaky piston. We have obtained
solutions for rectangular microchannels with B= 1, 1.2, 1.5 and 2, and fluid systems
with λ= 0 to 100. We apply our model to study the motion of a train of long drops,
and compare our model predictions with published experiments with mixed results.
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Appendix A. Coupled streamwise flows
A.1. Numerical methods

The coupled system of equations (4.3)–(4.6) is solved by a finite-element method
(FEM) using the Matlab partial differential equation (PDE) toolbox (Mathworks
2017). First, the flow-domain shapes are specified (figure 2). Then, a mesh is laid
on each domain using the mesh generating and refining capabilities of the toolbox.
For better accuracy and to prevent ill-conditioning, the meshing algorithm tries to
generate equilateral triangular elements. Thus, even near the contact-line region, we
obtain reasonably shaped triangles. The drop-fluid and carrier-liquid domains are
meshed separately. However, the mesh is controlled so as to have common nodes
(vertices) at the interface by initiating the mesh generation from the interface. This
simplifies the sharing of velocities and velocity gradients between the two fluids at
the interface. After a mesh is generated, the weak form of the governing equation
is discretized with piecewise-linear basis functions to yield a linear system, which
is inverted by a Matlab solver. The method is second-order accurate. Details of the
mesh generation, discretization, and solution process have been documented for the
Matlab PDE toolbox (Mathworks 2017).

The system of equations (4.3)–(4.6) can be separated into two sets of coupled
equations: (4.3) and (4.4) for UD and ŪD, and (4.5) and (4.6) for UP and ŪP. The
coupled system (4.3) and (4.4) is solved numerically in the following iterative
sequence. The corner flow UD governed by (4.3a) is first solved by imposing
zero-stress boundary condition at the interface. The drop velocity ŪD is then found
from (4.4) with the calculated UD values at the interface. The corner flow UD is
computed again from (4.3) with the newly calculated gradient of ŪD at the interface.
The iterative process continues until the velocity values in both domains converge
to 8 significant digits. The same iterative procedure is used to solve the coupled
system (4.5) and (4.6). We use an under-relaxation method to improve numerical
stability during the iteration process for higher values of viscosity ratio λ.

The iterative procedure allows full utilization of the toolbox functions. The toolbox
can impose either the Dirichlet or the Neumann boundary condition. Thus, each step
in the iteration can simply utilize the standard toolbox function to arrive at a solution.
The only modification is in calculating the normal gradient at the interface in the drop
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in (4.3b) or (4.5b). This is achieved by fitting a second-order bi-polynomial to the
drop velocities at a boundary node and four nearest nodes. This gives five equations.
The sixth equation is obtained by requiring the bi-polynomial to satisfy the governing
equation (4.4a) for ŪD or (4.6a) for ŪP. Thus, we determine the six coefficients of
the bi-polynomial. The velocity gradient at the boundary node is found by taking
the derivative of the bi-polynomial in the direction normal to the interface. Once the
normal velocity gradients are known in (4.3b) and (4.5b), the Neumann boundary
condition in the toolbox can be directly implemented. The second-order bi-polynomial
yields a second-order accurate solution for the velocity gradients, which matches the
order of accuracy of FEM (Rao 2015).

The volume-flow-rate coefficients Q̄D, Q̄P, QD, and QP defined in (4.8) and (4.10)
are computed as follows. For each coefficient, the velocity is integrated over the
corresponding cross-sectional domain area, which has been discretized into triangular
elements. Since the velocity has been solved by FEM, its values are known at the
three nodes of each triangular element. The three node values are averaged and
multiplied by the area of that element to give the elemental volume flow rate. (This
is the 2D equivalent of the trapezoidal rule, and is second-order accurate.) Summing
the elemental volume flow rates of all the elements in a unit cell and then multiplying
the sum by four yields the volume-flow-rate coefficient. The coefficient is found to
an accuracy of four significant digits, as verified by mesh refinement (Rao 2015).
Similar numerical schemes have been used in solving coupled vapour and liquid
unidirectional flows in polygonal micro heat pipes (Rao & Wong 2015).

A.2. Validation of the numerical methods

The computer programs are checked by verifying Green’s theorem, which states that
the area integral of the Laplacian of velocity over a flow domain is equal to the
line integral of the normal velocity gradient around that domain boundary. The area
integral agrees with the line integral to four significant digits for UD, ŪD, UP and
ŪP for all λ and B studied. This not only validates the numerical scheme for solving
the velocity coefficients, but also confirms the correctness of the numerical integration
procedure. The numerical results are also validated for the cases λ= 1 and 0. When
λ= 1, the governing equations and boundary conditions for UP and ŪP in (4.5) and
(4.6) reduce to those for a single-phase flow in a rectangular channel for which an
analytic solution is available (White 1991). Comparing with the analytic solution, we
find that the numerical solutions for the maximum velocity and the total volume flow
rate (QP + Q̄P) are accurate to four significant digits for all B cases studied. When
λ = 0, the drop becomes a bubble, and our calculated carrier-liquid flow rate QD in
the corners is compared with the values listed by Wong et al. (1995b), where they
cited the results computed by Ransohoff & Radke (1988). Our solution agrees to one
significant digit for B=1 and to two significant digits for B=1.2, 1.5, and 2. However,
the results computed by Ransohoff & Radke (1988) are not accurate because of the
coarser grid used at that time, as pointed out by Patzek & Kristensen (2001), who
presented more accurate data. Our QD values agree with Patzek & Kristensen (2001)
to three significant digits for B=1 and to four significant digits for B=1.2, 1.5, and 2.
Patzek & Kristensen (2001) used approximately 3000 triangular elements in the corner
domain, whereas we use 170 000 elements. Thus, our solutions listed in table 2 are
accurate to at least four significant digits (Rao 2015).
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A.3. Explanation of results

The coupled system (4.3) and (4.4) governs the corner flow UD and the drop flow ŪD.
The corner flow UD is driven by a unit source in (4.3a) and the resulting shear stress
and velocity at the interface drives ŪD, according to (4.3b) and (4.4). The interfacial
boundary conditions show that the velocities are continuous at the interface, but the
normal velocity gradients differ by a factor λ. When λ = 0.1, the corner flow UD
senses minimal shear stresses from the drop, as indicated by (4.3b), and the velocity
contours are almost normal to the corner interface (figure 3c). As λ increases, UD
decreases as it is driven by the same unit source, but suffers higher shear resistance
at the corner interface (figure 3g). At λ= 10, the drop is so viscous that it behaves
like solid, and the corner flow sees almost no slip at the drop surface (figure 3k).
The induced drop flow ŪD decreases its magnitude as λ increases (figure 3a,e,i). This
is because the driving shear stress at the interface decreases as 1/λ following (4.3b),
resulting in smaller induced velocities.

Integrating UD and ŪD over their corresponding flow areas yields QD and Q̄D,
respectively, as defined in (4.10b) and (4.8b). Thus, QD and Q̄D in figure 4 can
also be explained. As λ → 0, the drop becomes inviscid and the corner flow QD
sees zero shear resistance at the interface according to (4.3b). Thus, QD approaches
a constant, as shown in figure 4(a). The induced drop flow Q̄D is driven by the
interfacial velocity following (4.4b) and also approaches a constant (figure 4b). As
λ increases, both |QD| and |Q̄D| decrease because of the increasing shear resistance
at the interface. As λ → ∞, the drop behaves like solid and the corner flow QD
sees no slip at the interface. Thus, QD again approaches a constant, as indicated in
figure 4(a). The induced corner flow Q̄D is driven by the velocity gradient at the
interface, which varies as 1/λ, as prescribed by (4.3b). Thus, Q̄D ∼ 1/λ as λ→∞,
as shown in figure 4(b).

The second coupled system (4.5) and (4.6) governs the corner flow UP and the
drop flow ŪP. Both flows are driven by a unit source, and are coupled through the
shear-stress balance and the kinematic condition at the interface. The shear-stress
balance yields the same normal velocity gradients at the interface, whereas the
kinematic condition states that the velocities at the interface differ by a factor λ.
When λ = 0.1, ŪP ≈ 0 at the corner interface according to (4.6b) because UP ∼ 1
based on (4.5a). Thus, ŪP seems to obey the no-slip condition at the corner interface,
as shown in figure 3(b). The figure also reveals that the streamwise shear stress is
almost uniform at the corner interface, as indicated by the uniformly spaced velocity
contours adjacent to the interface. This uniform shear stress is then imposed on the
corner flow following (4.5b), resulting in the uniformly spaced velocity contours near
the corner interface in figure 3(d). When λ= 1, the governing equations and boundary
conditions in (4.5) and (4.6) can be combined, and the interface disappears to yield
a single fluid. When λ= 10, the corner flow UP is much weaker than the drop flow
ŪP based on (i) the kinematic boundary condition (4.6b) at the corner interface,
and (ii) the corner channel area is much smaller than the drop area (Poiseuille flow
depends sensitively on flow area). Thus, the corner flow velocity gradient is also
much weaker. Consequently, the velocity contours of ŪP in figure 3( j) are almost
normal to the corner surface.

The corner flow QP and the drop flow Q̄P are found by integrating UP and ŪP,
respectively, according to (4.10c) and (4.8c). Thus, their behaviour in figure 4 can
also be explained. As λ→ 0, the drop flow Q̄P sees zero velocity at the interface,
as given by (4.6b). Thus, Q̄P approaches a constant, and so does QP, as shown in
figures 4(c) and 4(d). As λ increases, |Q̄P| increases because it is allowed higher
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velocity at the interface following (4.6b). Conversely, |QP| decreases because its
velocity at the interface must decrease. As λ → ∞, both Q̄P and QP will reach
another plateau. As shown in figure 4, all coefficients increase their magnitudes as B
increases for a fixed λ, because the drop and corner-flow areas increase with B.

Appendix B. Asymptotic expansions of the velocity coefficients in the limit λ→ 0

B.1. Governing equations
We expand the velocity coefficients in (4.1) and (4.2) as asymptotic series in λ:

UD =U1 + λU2 + · · · , (B 1)
UP = V1 + λV2 + · · · , (B 2)
ŪD = Ū1 + λŪ2 + · · · , (B 3)
ŪP = V̄1 + λV̄2 + · · · . (B 4)

The expansions U1, U2, V1, V2, Ū1, Ū2, V̄1 and V̄2 depend only on B and obey the
following differential equations and interfacial conditions:

∇
2U1 = 1, ∇U1 · n= 0, (B 5a,b)

∇
2Ū1 = 0, Ū1 =U1, (B 6a,b)

∇
2U2 = 0, ∇U2 · n=∇Ū1 · n, (B 7a,b)

∇
2Ū2 = 0, Ū2 =U2, (B 8a,b)

∇
2V̄1 = 1, V̄1 = 0, (B 9a,b)

∇
2V1 = 1, ∇V1 · n=∇V̄1 · n, (B 10a,b)

∇
2V̄2 = 0, V̄2 = V1, (B 11a,b)

∇
2V2 = 0, ∇V2 · n=∇V̄2 · n. (B 12a,b)

Further, the expansions also satisfy the no-slip condition at the wall and zero normal
gradient at the symmetry boundaries. The above equations can be separated into two
decoupled systems of equations: (B 5)–(B 8) and (B 9)–(B 12). Each system is solved
sequentially using a numerical method similar to the one described in § A.1. Contours
of the velocity expansions U1, U2, V1, V2, Ū1, Ū2, V̄1 and V̄2 in a square microchannel
are shown in figure 14.

B.2. Explanation of the velocity contours
The first system of equations (B 5)–(B 8) shows that the leading-order corner flow
U1 is driven by a unit source and sees zero shear stress at the corner interface
(figure 14a). This corner flow moves in the same direction as the drop and drags a
drop flow Ū1 through the kinematic boundary condition (B 6b) at the corner interface
(figure 14c). This dragged drop flow, therefore, is fastest at the corner interface and
slows progressively towards the drop centre. This dragged drop flow Ū1 then induces
a corner flow U2 through the shear-stress balance (B 7b) at the corner interface
(figure 14b). Since Ū1 is fastest at the interface, the shear stress at the interface
induces U2 to move in the opposite direction to Ū1 (except in a small region near
the contact line, as shown by the velocity contours in figure 14b). The corner flow

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

52
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.521


100 S. S. Rao and H. Wong

0
-2

-4

-6

4
3
2
1
0
-1

0

-0.02
0.020
0.015
0.010
0.005
0

-0.04

-0.06

0

-1

-2

-3

-4

-5

-6

-7

0

-0.05

-0.10

-0.15

-0.20

-0.25

0

-0.01

-0.02

-0.03

-0.04

-0.05

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
-0.5

(÷10-3)

(÷10-3)

(÷10-3)

(÷10-3)

U1 U2 V1 V2

U1 V1

V2U2

(a) (b) (e) (f)

(c) (g)

(d) (h)

FIGURE 14. (Colour online) Contours of the velocity asymptotic expansions U1 (a), U2
(b), Ū1 (c), Ū2 (d), V1 (e), V2 ( f ), V̄1 (g), and V̄2 (h) in a square microchannel. The
asymptotic expansions are defined in (B 1)–(B 4). Negative values indicate flowing in the
same direction as the drop.

U2 subsequently generates a drop flow Ū2 through the kinematic boundary condition
(B 8b) at the corner interface (figure 14d). Thus, both U2 and Ū2 are positive for
most of the flow domain, whereas U1 and Ū1 are everywhere negative. Hence, the
first-order effect of drop viscosity (λ) is to reduce UD and ŪD.

The second system of equations (B 9)–(B 12) shows that the leading-order drop
and corner flows V̄1 and V1 are both driven by a unit source. The drop flow V̄1
shown in figure 14(g) moves in the same direction as the drop and satisfies the
no-slip condition at the corner interface according to (B 9b). The corner flow V1 in
figure 14(e) also moves in the direction of the drop. From (B 10), V1 is driven by both
the unit source and the shear stress at the corner interface exerted by V̄1. This corner
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Coefficients Aspect ratio
(×10−3) B= 1.0 B= 1.2 B= 1.5 B= 2.0

QD1 −0.7422 −1.049 −1.523 −2.280
QD2 0.2094 0.2959 0.4295 0.6416
QP1 −4.046 −5.692 −8.133 −11.79
QP2 1.383 1.945 2.776 4.011
Q̄D1 −3.303 −4.643 −6.609 −9.514
Q̄D2 1.174 1.650 2.347 3.369
Q̄P1 −534.8 −758.9 −1121 −1754
Q̄P2 −30.59 −42.78 −59.80 −83.07

TABLE 5. Numerical solution of the asymptotic expansions QD1, QD2, QP1, QP2, Q̄D1, Q̄D2,
Q̄P1 and Q̄P2 of the volume-flow-rate coefficients defined in (B 17)–(B 20) for different
aspect ratio B.

flow V1 then drags a drop flow V̄2 through the kinematic boundary condition (B 11b)
at the corner interface (figure 14h). Thus, V̄2 moves in the same direction as V1, is
fastest at the corner interface, and slows towards the drop centre. Its shear stress at
the corner interface points in the opposite direction to V̄2 and induces through the
shear-stress balance (B 12b) a corner flow V2 (figure 14f ). Thus, V2 moves in the
opposite direction to V̄2 or V1. Hence, the first-order effect of drop viscosity (λ) is
to reduce UP and enhance ŪP.

B.3. Volume-flow-rate coefficients

The asymptotic expansions of UD, UP, ŪD and ŪP in (B 1)–(B 4) are substituted into
(4.8b,c) and (4.10b,c) to yield

Q̄D = Q̄D1 + λQ̄D2, (B 13)
Q̄P = Q̄P1 + λQ̄P2, (B 14)
QD =QD1 + λQD2, (B 15)
QP =QP1 + λQP2, (B 16)

where
Q̄D1 =

∫∫
Ā

Ū1 dy dz, Q̄D2 =

∫∫
Ā

Ū2 dy dz, (B 17a,b)

Q̄P1 =

∫∫
Ā

V̄1 dy dz, Q̄P2 =

∫∫
Ā

V̄2 dy dz, (B 18a,b)

QD1 =

∫∫
A

U1 dy dz, QD2 =

∫∫
A

U2 dy dz, (B 19a,b)

QP1 =

∫∫
A

V1 dy dz, QP2 =

∫∫
A

V2 dy dz. (B 20a,b)

These volume-flow-rate coefficients are determined numerically following the method
described in § A.1. The expansions depend only on the aspect ratio B and are listed
in table 5 for B = 1, 1.2, 1.5, and 2. The asymptotic solutions are also plotted in
figure 4, which shows that they are accurate for 06 λ< 0.2. The comparison validates
both the numerical solutions and the asymptotic expansions. The asymptotic solutions
reveal the first-order effects of λ on the volume-flow-rate coefficients.
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FIGURE 15. Pressure-flow rate relation for drop flow in a square microchannel for L= 10
and various λ. The insert shows an expanded view near QT = 0. The dashed line is for
the single-phase carrier-liquid flow.

Appendix C. Pressure-flow rate relation: Px = Px(QT)

Elimination of Ca from equations (4.12a) and (4.16a) gives

P3
x + hP2

x + rPx + s= 0, (C 1a)

where

h=
(qDkU − qUkD)q2

D

L3q3
U

−
3kU

qU
QT, (C 1b)

r=
2qD(qUkD − qDkU)kD

L3q3
U

QT +
3k2

U

q2
U

Q2
T, (C 1c)

s=
k2

D(qDkU − qUkD)

L3q3
U

Q2
T −

k3
U

q3
U

Q3
T . (C 1d)

The only real root of (C 1a) is

Px =
1
3

(
c+

h2
− 3r
c
− h
)
, (C 2a)

where

c=
{

1
2 [3
√

3(27s2
+ 4h3s+ 4r3

− 18hrs− h2r2)1/2 + 9hr− 2h3
− 27s]

}1/3
. (C 2b)

Figure 15 shows the pressure-flow rate relation in (C 2) for L= 10, B= 1, and various
λ. The dotted line represents the pressure-flow rate relation for single-phase flow of
the carrier liquid. As QT → 0, the pressure gradient required to drive drop flow is
always higher than that required to drive single-phase flow, as seen in the insert in
figure 15. As QT increases, the pressure gradient required to drive drop flow may be
higher or lower than that for single-phase flow depending on λ, as seen in figure 15.
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