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We study numerically a sequence of eddies in two-dimensional electrohydrodynamics
(EHD) flows of a dielectric liquid, driven by an electric potential difference between a
hyperbolic blade electrode and a flat plate electrode (or the blade—plate configuration). The
electrically driven flow impinges on the plate to generate vortices, which resemble Moffatt
eddies (Moffatt, J. Fluid Mech., vol. 18, 1964, pp. 1-18). Such a phenomenon in EHD was
first reported in the experimental work of Perri et al. (J. Fluid Mech., vol. 900, 2020, A12).
We conduct direct numerical simulations of the EHD flow with three Moffatt-type eddies
in a large computational domain at moderate electric Rayleigh numbers (7, quantifying
the strength of the electric field). The ratios of size and intensity of the adjacent eddies are
examined, and they can be compared favourably to the theoretical prediction of Moffatt;
interestingly, the quantitative comparison is remarkably accurate for the two eddies in the
far field. Our investigation also shows that a larger T strengthens the vortex intensity, and a
stronger charge diffusion effect enlarges the vortex size. A sufficiently large T can further
result in an oscillating flow, consistent with the experimental observation. In addition, a
global stability analysis of the steady blade—plate EHD flow is conducted. The global mode
is characterised in detail at different values of 7. When T is large, the confinement effect
of the geometry in the centre region may lead to an increased oscillation frequency. This
work contributes to the quantitative characterisation of the Moffatt-type eddies in EHD
flows.
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1. Introduction

The formation and evolution of vortices in fluid flows have long been of great interest
to fluid dynamicists. In a Stokes flow, Moffatt (1964) first theoretically determined and
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characterised a sequence of counter-rotating vortices in the corner flow between two
planes (at least one of which is a solid boundary). Moffatt calculated analytically the size
ratio and the intensity ratio of successive vortices. After this seminal work, Moffatt-like
eddies have been observed and studied in many other flow settings, such as the flow in
a sudden expansion (Alleborn et al. 1997), backward-facing step flows (Biswas, Breuer
& Durst 2004) and lid-driven cavity flows (Biswas & Kalita 2018). In the context of
electrohydrodynamics (EHD) flows, the Moffatt-like eddies were observed only very
recently by Perri et al. (2020, 2021) in their experiments. Their experimental device
consists of a grounded plate and a needle electrode placed vertically above it. Their
results showed that the Moffatt-like vortices appeared when a sufficiently high voltage
was applied, and the experimental results agreed with the theoretical predictions of the
Moffatt-type vortices between two concentric conical surfaces (Malhotra, Weidman &
Davis 2005). Inspired by their work, we are interested in exploring numerically and
characterising the Moffatt-type eddies in the EHD flow between a hyperbolic blade
electrode and a flat plate electrode. In the following, we will first review works on Moffatt
eddies in general, and then summarise studies on the EHD flow in a blade/needle—plate
configuration. Finally, we will explain the motivation of this work and define its position
in the literature.

1.1. Moffatt eddies

Moffatt eddies refer to a sequence of eddies that develop in a corner between two planes
as a result of an arbitrary disturbance imposed at a large distance or near the corner
(Moffatt 1964). Moffatt showed that such eddies in a Stokes flow will form when the angle
between the two planes is less than about 146°. The formation of these eddies has also been
explained mathematically from the perspective of flow singularities in the Navier—Stokes
equations at the perfectly sharp corner (Moffatt & Mak 1999; Moffatt 2019). The
existence of these vortices was verified in flow visualisation experiments by Taneda
(1979). Meanwhile, the Moffatt-type eddies in different geometries have been observed
and studied. A sequence of viscous eddies was found and studied between two spherical
surfaces (Davis et al. 1976), and between a cylinder and a plane (Davis & O’Neill 1977).
The axisymmetric flow of a viscous fluid within rigid conical surfaces was investigated
by Wakiya (1976), and the largest semi-angle of the cone generating Moffatt-like eddies
was found to be 80.9°. Moffatt & Duffy (1980) examined the pressure-driven flow along a
duct with a sharp corner and found that when the corner angle is larger than 90°, the local
similarity solution is valid. Weidman & Calmidi (1999) studied the Stokes flow in a cone
bounded by stress-free surfaces and driven by gravity parallel to the conical axis. More
recently, Shankar conducted a series of work on the Moffatt-type eddies in a cylindrical
container (Shankar 1997, 1998), a semi-infinite wedge (Shankar 2000) and a cone (Shankar
2005). The Moffatt eddies in a circular cone were also examined by Malyuga (2005), where
the flow is driven by a non-zero velocity applied to the boundary. Malhotra ef al. (2005)
investigated the Moffatt vortices in an asymmetric double-cone geometry. Later, Scott
(2013) explored the three-dimensional Moffatt eddies in a trihedral cone formed by three
orthogonal planes. Kirkinis & Davis (2014) predicted the presence of Moffatt vortices in
a moving liquid wedge between a gas—liquid interface and a rigid boundary. It can be
summarised that theoretical analyses of the Moffatt eddies in different geometries have
been of interest for fluid dynamicists for a long time.

In addition to the theoretical work, numerical simulation techniques have also been
adopted to study Moffatt eddies. The first numerical computation mentioning Moffatt
vortices, to the best of our knowledge, was the work of Burggraf (1966) on the lid-driven
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cavity flow at a moderate Reynolds number (quantifying the ratio of inertia to viscosity).
Much later, Magalhdes et al. (2013) performed the numerical simulations of lid-driven
cavity flows and found that the small eddies in the corner of a creeping flow agreed
well quantitatively with the theory of Moffatt (1964). In the numerical simulations of
the lid-driven cavity flow by Biswas & Kalita (2016, 2018), three eddies of Moffatt type
were observed, and their size and intensity ratios corroborated the theoretical values
in Moffatt (1964). In addition, the Moffatt eddies were also observed and discussed in
other numerically simulated flows. Biswas et al. (2004) investigated numerically two- and
three-dimensional laminar backward-facing step flows within a wide range of Reynolds
numbers. For the two Moffatt eddies that the authors simulated at a finite Reynolds
number, their size ratio agreed well with the theoretical value in Moffatt (1964). Moreover,
Moffatt eddies have also been observed in a sudden expansion by Alleborn er al. (1997)
(in the limit of creeping flows). Their numerical results of the streamfunction field showed
a high degree of resemblance with the theoretical result in Moffatt (1964). Additionally,
Moffatt vortices can also exist in some multi-physical flows. For example, the Moffatt-type
vortices in thermocapillary convection were analysed by Davis (1989) and Kuhlmann,
Nienhiiser & Rath (1999). As mentioned above, the Moffatt-like eddies in EHD flows
have been reported by Perri et al. (2020, 2021) in their experiments and simulations. In
order to help the reader to understand the EHD flows in general, we will introduce below a
literature survey of the EHD flows and then discuss in detail the work of Perri et al. (2020,
2021).

1.2. EHD flows in a blade/needle—plate configuration

Electrohydrodynamics (EHD) studies the complex interaction between an electric field and
a flow field; the flow field is driven by the electric force and at the same time influences
the latter. This is an interdisciplinary subject of electromagnetism and hydrodynamics
(Castellanos 1998). It has broad prospects of applications in many scientific and industrial
fields. In the study of EHD, the characteristics of the electric field play an important role
in determining the dynamics of the electrified flow, such as the geometry of the electrodes
and their arrangement. Accordingly, the research on EHD flow can be divided roughly
into two categories: uniform electric fields (including parallel plates, concentric rings and
balls) and non-uniform electric fields (including needle—plate, blade—plate, wire—plate,
needle—ring and sphere—plane) (Suh 2012). The configuration of a uniform electric field
is beneficial for fundamental studies as it peels off unnecessary components that may
complicate the theoretical treatment. This line of research has been followed by many
researchers in the past decades, including, most notably, Castellanos and co-workers (Pérez
& Castellanos 1989; Castellanos 1991, 1998; Vazquez, Pérez & Castellanos 1996; Chicén,
Castellanos & Martin 1997) and Atten and co-workers (Lacroix, Atten & Hopfinger 1975;
Atten & Lacroix 1979; Malraison & Atten 1982; McCluskey & Atten 1988). However,
although much useful flow information has been extracted in studying this (geometrically)
simple EHD flow, when it comes to the practical applications of EHD, the non-uniform
electric field electrode configuration is more relevant. For example, the needle—plate EHD
configuration is widely used in electrospray techniques (Fenn et al. 1989). In fact, it is
easier for the ions to overcome the potential energy barrier and be pushed to the collector
using a sharp electrode (Grassi & Testi 2006). In the electrode structure with a non-uniform
electric field, the flow will be strongly non-parallel and non-stationary. In this work, we
will focus on the blade—plate configuration, as illustrated in figure 1. We summarise in the
following the research on the EHD flow in the blade—plate and needle—plate configurations.
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Figure 1. (a) Sketch of the blade—plate electrodes in our EHD flow problem. (b) Streamlines in a
two-dimensional cross-section (shaded green in (a)).

The blade—plate EHD flow has been studied in some early experiments by Tobazeon,
Haidara & Atten (1984) and Haidara & Atten (1985). Atten, Malraison & Zahn
(1997) investigated the EHD flow in a needle—plate geometry both experimentally and
theoretically. The electrical current versus the tip—plate distance and the applied voltage
were determined experimentally. In addition, their theoretical analysis estimated the axial
velocity, although at variance with the experimental results. The linear stability of a
laminar EHD flow between a blade and a plate has been analysed using a small-disturbance
method by Pérez, Vazquez & Castellanos (1995), and the results indicated that a smaller
charged layer thickness renders the flow more unstable. Their experimental results were
consistent qualitatively with their stability analysis, but quantitative differences existed.
In the blade/needle—plate EHD flow, the so-called EHD plume structure will emerge,
similar to the thermal plumes in the natural convection. Vazquez et al. (1996) studied and
compared the dynamics of the thermal plumes and the EHD plumes. Their results showed
that the equations describing the EHD plumes and the thermal plumes are equivalent
under some assumptions at very large Prandtl number (ratio of momentum diffusivity
to thermal diffusivity). Later, Pérez et al. (2009) analysed the blade—plate EHD flow
driven by the charge injection from a grid point. They found that with the increase of
electric Rayleigh number (7, quantifying the ratio between the Coulomb force and the
viscous force), three different regimes could be observed: steady laminar, periodic and
fully turbulent. Moreover, their results showed that the parameter M (which is the ratio
between the hydrodynamic mobility to the ionic mobility) did not affect the dynamics of
the EHD plume. Wu et al. (2013) and Traore et al. (2014) studied numerically the EHD
flow between a hyperbolic blade and a plate electrode. In their work, a non-autonomous
injection law was considered and was compared with the classical autonomous injection
law. It is noted that all the above numerical work ignored the effect of charge diffusion.

Experimental research on the blade/needle—plate EHD flow has been conducted in
recent years. Daaboul et al. (2017) carried out experiments to investigate the EHD flow of
blade—plate geometry based on a particle image velocimetry system. The transition from
conduction to injection with the increase of a DC (direct current) voltage was studied, and
complex flow patterns related to different charge generation mechanisms were observed.
Sankaran et al. (2018) examined the kinetic mechanism of the electrode Faradaic reaction
in a vegetable oil between a needle and a plate electrode. Their experiment showed that
redox reactions occurred on the needle electrode at a high voltage (about 4 kV), leading
to the emergence of a Coulomb force acting on the charged oil and the EHD plume.
In addition, the needle—plate EHD flow under a DC or alternating current (AC) electric
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field was investigated in detail by Sun ez al. (2020). The velocity field and current voltage
characteristics were discussed and analysed.

In the aforementioned works on the blade—plate or needle—plate EHD configuration, the
Moffatt eddies have not been mentioned or characterised. It was Perri et al. (2020, 2021)
who first discussed the Moffatt eddies in the needle—plate EHD flow. In their experiment,
the flow was induced in a canola oil between a high-voltage needle electrode and a
grounded plate. Three consecutive counter-rotating Moffatt vortices were observed once
the voltage difference was above a threshold, determined to be between —8 and —12kV.
In addition, the position and structure of the vortices agreed well with the theoretical
solutions of the Moffatt vortices between two concentric conical surfaces (Malhotra ef al.
2005). They also observed transient flow phenomena, indicative of a flow bifurcation to
another state. Finally, Perri et al. (2020) also performed numerical simulations of the EHD
flow corresponding to their experimental set-up. They presented numerical results on the
electric field strength magnitude and charge density. This motivates the current work to
investigate further the Moffatt-like eddies in EHD flows by numerical means.

1.3. The current work

From the literature review above, we realise that the Moffatt-like eddies in the blade—plate
EHD flow have not been studied thoroughly from a numerical perspective. In this work, we
will characterise the intrinsic flow characteristics and properties of the Moffatt-like eddies
in the blade—plate EHD flow, supplementing the previous works of Perri e al. (2020,
2021) in a needle—plate configuration. More specifically, we will conduct direct numerical
simulations (DNS) and global stability analyses of two-dimensional EHD flows between a
high-voltage hyperbolic blade electrode and a grounded plate electrode.

In the first part of this work, the steady EHD flow, manifesting itself in the form of
Moffatt-like eddies, will be solved numerically using DNS. Different from most previous
numerical works reporting Moffatt-like eddies induced by a disturbance at a large distance
from the corner, our simulations pertain to the case where the eddies are engendered by
the disturbance near the corner. So the intensity of the eddies decreases with increasing
distance from the corner. We will compare our numerical results with the theoretical
predictions of Moffatt (1964). The effect of charge diffusion in the EHD flow will be
considered, which was omitted in the numerical simulations of Perri ef al. (2020). In the
second part of this work, we will conduct a global stability analysis of the blade—plate
EHD flow to probe its global linear dynamics. This is motivated by the consideration
of understanding how and when the steady flow may remain stable or become unstable
and thus transition to another flow state (Perri et al. 2020). We will show primarily the
eigenvectors that can indicate the most important flow region for the perturbative dynamics
in this flow. This has become our motivation particularly because we aim to present the
results in a more comprehensible manner for the experimentalists working on this flow
to explain, e.g. where the disturbances accumulate and develop. There seems to be no
previous work in the literature on the stability analysis of this steady EHD flow.

The remainder of this paper is organised as follows. In § 2, we describe the physical
problem, present the nonlinear governing equations with boundary conditions, and
formulate the framework of the global linear stability analysis. Section 3 introduces the
numerical methods. In § 4, we report the numerical results on the Moffatt-like eddies, and
analyse their global stability. The conclusion is drawn in § 5, with some discussions on the
flow physics. Appendices A and B detail the verification of our numerical simulation and
analysis. Appendix C provides a nomenclature of the symbols used in this work.
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Figure 2. (a) The computational domain in our numerical simulations. The white region is the physical flow
domain, and the hatching lines denote the sponge layer, which is used to damp the reflection of the outgoing
waves. (b) A sketch of the hyperbolic blade electrode. (c¢) Specification of the boundary conditions. See the
paragraph above (2.2) for the meanings of the variables.

2. Problem formulation

As shown in figure 2(a), we will consider in this work a two-dimensional EHD flow that
arises in a dielectric liquid between a flat plate and a blade electrode. The shape of the
blade electrode satisfies a hyperbolic equation:

x* = VR*H* sinh(t™),

" e R. (2.1)
y* = H" cosh(t¥),

This is a hyperbola with its centre being the original point O, as shown in figure 2(b).
In this paper, dimensional variables and parameters are denoted with a superscript *. In
the above equation, H* represents the distance from the blade tip to the plate electrode,
7* defines a particular point on the hyperbola, and R* (red line in figure 2b) is the
radius of curvature of the blade tip, which determines the sharpness of the hyperbolic
blade. Additionally, we label the angle between the asymptote of the hyperbolic blade and
the bottom plate as the inter-electrode angle, following Perri et al. (2021), as shown in
figure 2(b).

In the current work, the dielectric liquid is assumed to be incompressible and
Newtonian, which is characterised by constant permittivity £*, density o, and viscosity
w*. A constant electric potential ¢ is imposed on the blade electrode, and the plate
electrode is grounded, forming a non-uniform electric field between the blade and the
plate. Charges are injected from the blade electrode, with the ionic mobility K* and charge
diffusion constant D. In theory, there are two main mechanisms for charge generation,
i.e. the conduction mechanism and the injection mechanism. In the conduction scenario,
charges are generated in the liquid as a result of the dissociation—recombination process of
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a solute or impurity present in the liquid. When the electric field is stronger than a critical
value, charge injection can occur, where charges are produced by the electrochemical
reaction between the interface of the electrode and the neutral impurities (Atten 1996;
Daaboul et al. 2017). Thus in the case of a strong electric field, even though the conduction
mechanism may also be at work, the charge injection mechanism will play a leading role.
Since this paper considers a strong electric field, we assume an injection mechanism
only, that is, unipolar charges with strength Qf are issued from a fixed region on the
hyperbolic blade between points S; and S»; see the red portion in figure 2(a). This is
also the consideration in the numerical simulations of Perri et al. (2020).

In order to facilitate the subsequent presentation, we non-dimensionalise the governing
equations by appropriate physical scales. The length is non-dimensionalised by H*
(distance from the blade tip to the plate electrode), the time r* by H*?/(K* A¢g) (where
Agy is the potential difference applied to the electrodes), the electric potential ¢* by Agy,
the electric density Q* by Qj (injected charge density), the velocity U* by K* A¢y/H*,
the pressure P* by pj K *2 Agb(’)kz /H*2, and the electric field E* by A¢/H*. Therefore, the
non-dimensional equations for the EHD flow read (Castellanos 1998)

V.U=0, (2.2a)
AU M? _, )
5o (UV)U = —VP+ " VU + CMPQE + F,, (2.2b)
0 V. E+ U= V01 F (2.20)
ot ~ Fe S =
V¢ = —CQ, (2.2d)
E=_V¢. (2.2¢)
where
o/ oF &* Ad* *H*Z K*Ao*
m=YEP A% QT KA (2.3a-d)
K+ K0 Ay e Ds

The forcing terms Fy, and Fy, are considered due to the artificial viscosity in the sponge
layer. They damp the waves and their reflections near the outflow boundary, and will
not affect the flow dynamics in the physics domain, to be described shortly. Note that
these equations are in principle the same as those used by Perri ef al. (2020), except that
the geometries are different in the two works, and we additionally consider the charge
diffusion effect ((1/Fe) V2Q) in (2.2¢). More specifically, the first two equations are the
continuity equation and Navier—Stokes equations with additional Coulomb force terms.
The last three equations are the Maxwell’s equations in the so-called quasi-electrostatic
limit (which refers to the case where the charge relaxation time or the electromagnetic
waves’ transition time is much shorter than the flow characteristic time; see § 1.2 in
Castellanos 1998).

In the above equations, M is defined as the ratio between the hydrodynamic mobility
and the ionic mobility. The electric Rayleigh number 7' determines the ratio between the
Coulomb force and the viscous force, which quantifies the strength of the imposed electric
field. The parameter C measures the ion injection intensity, and Fe is the inverse of the
charge diffusion coefficient. The boundary conditions are summarised in figure 2(c) and
table 1. We will conduct DNS of these equations to solve for their steady solutions, which
are the Moffatt-like eddies in the EHD flow to be presented.
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Boundary conditions for velocity (U) charge density (Q) electric potential (¢)
Plate electrode U=0 00/dy =0 ¢ =0
Blade electrode (excluding injector) U=0 0=0 ¢=1
Injector (S1 < S < $72) U=0 0o=1 ¢=1

— —~ M2
Arc AC and arc BD P-n—7VU-n=O 00Q/on =0 ap/on =0

Table 1. Boundary conditions for numerical simulation of nonlinear blade—plate EHD flow.

2.1. Linearisation

We are also interested in the perturbative dynamics of the steady solution to the nonlinear
equations. We will apply the classical global linear stability theory (Theofilis 2003, 2011)
to study the linearised EHD flows in the blade—plate geometry.

In the linear stability analysis, we evoke Reynolds decomposition of the flow state, which
writes the total flow state as the sum of a base flow and a perturbative component, that is,
U=U+u,P=P+p,0=0+¢q,9 =¢ + ¢ and E = E + e. The base flow is steady
in the current analysis (for example, U = Ul(x, y) is not a function of time). Inserting
this decomposition into (2.2) and subtracting the base flow, we arrive at the linearised
equations for the perturbed variables f = (u, p, q, ¢, e)T:

V.eu=0, (2.4a)

0 _ _ M? o
a—l: @ VIU+ (U Vyu=-Vp+ o V2u+ CUMAGE + 00) + Fouy  (24D)

9 - - 1
TV AE+ D)+ e+ wdl = - Vg +Fy, (2.40)
V2p = —Cq, (2.4d)
e=—Vo. (2.4e)

The boundary conditions for the perturbations are listed in table 2. The above linearised
equations can be written in a compact form as

of
S =L 2.5)

where L represents the linearised operator in the blade—plate EHD flow. Since we consider
the steady state as the base flow, a wave-like solution for the perturbation can be assumed,
which reads

fly, 0 =fx,y)e”. (2.6)

This expression, inserted into the linear equation (2.5), leads to an eigenvalue problem

of = LF, 2.7)

where w is the complex eigenvalue, with its real part denoting the temporal growth rate
of perturbations (i.e. positive w means growth of the disturbance, and negative @ decay
of the disturbance), and its imaginary part representing the phase speed. Correspondingly,

the eigenvector is f.
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Boundary conditions for velocity (u) charge density (¢) electric potential (¢)
Plate electrode u=20 dq/dy =0 ¢=0
Blade electrode (excluding injector) u=0 qg=0 =0
Injector (S1 < S < $72) u=>0 q=0 ¢=0

—_ — MZ
Arc AC and arc BD p-n—7Vu-n=0 dq/on =0 dp/on =0

Table 2. Boundary conditions for numerical simulation of linear blade—plate EHD flow.

Waves are generated because of the impingement of the charged flow on the plate
electrode, and they propagate towards the outer boundary in the computational domain.
In order to minimise the reflections of outgoing disturbances from the boundary, a sponge
region is applied, shown as hatching lines in figure 2(a). There are different ways to
implement the sponge region, and we follow the method of Chevalier, Lundbladh &
Henningson (2007). An additional volume force is added to the governing equations

Fg,=—Aru and F,=—A(r)q. (2.8a,b)
The parameter A is defined by

AGF) = A + S (l) , 2.9)
Arise

where A4y 1S the maximum strength of the damping, ry,,+ is the radial position where the
sponge region starts, and A, corresponds to the rise distance of the damping function.
The smooth step function S, using x as the argument, reads

0, x <0,
S()=11/(1+exp(1/(x—1)+1/x), 0<x<]1, (2.10)
I, x> 1.

3. Numerical methods

In this paper, the computational flow solver Nek5000 (Fischer, Lottes & Kerkemeier
2008) is used to perform the numerical simulations, which is based on the Legendre
polynomial-based spectral-element method (Patera 1984). This method has the advantages
of both geometrical flexibility of finite-element methods and accuracy of spectral methods.
The Py — Py—; formulation is used for the spatial discretisation, that is, within each
element, the velocity is expressed as a linear combination of Lagrangian basis functions
of order N on the Gauss—Lobatto-Legendre nodes, whereas the pressure is discretised
by Lagrangian interpolants of order N — 2 on the Gauss-Legendre quadrature points.
In the current work, we take N = 7 for most cases. The time discretisation scheme
adopted in Nek5000 is the semi-implicit scheme BDF}/EXTy, in which the viscous terms
are discretised implicitly based on a backward differential formula of order k, and the
nonlinear convection term is advanced explicitly by an extrapolation scheme of order k. In
this work, k = 2 is applied.

For the linear stability analysis, the implicitly restarted Arnoldi method (IRAM;
Lehoucq & Sorensen 1996) is adopted to compute the eigenpairs of the linear system.
IRAM is an iterative eigenvalue solver based on the projection of the problem on an
orthogonal basis, in which process a Krylov subspace K, of dimension 7 is created. The
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Krylov subspace of the exponential propagator M and the initial vector f, is defined
as K,(M, fo) = {fo. Mfo..... M"" ! fu}. This Krylov subspace converges at the
eigenvector corresponding to the eigenvalue with the largest modulus. This simple iteration
is known as the power method, which is simple to perform, but converges slowly and can
obtain only the leading eigenpair of the problem. In order to obtain more eigen-information
from the iteration, a Gram—Schmidt orthogonalisation process is applied, and the residual
information is collected. Eventually, a small-dimensional Hessenberg matrix H is formed
to approximate the eigen-information of the exponential propagator M, and its eigenpairs
can be calculated easily. We use the LAPACK package (Anderson et al. 1999) for IRAM.

4. Results and discussions

In this section, we present the results of DNS and global stability analysis of EHD flows
in the blade—plate configuration. At this point, it is instructive to specify the parameter
range considered in this work. The typical value of Fe (inverse of charge diffusion) for
the real dielectric fluids lies within the range 103-10* (Pérez & Castellanos 1989), thus
we choose an intermediate value Fe = 5 x 10% in this work, except in the section where
we study its effect. Previous works often neglected this charge diffusion term (Pérez et al.
2009; Wu et al. 2013; Perri et al. 2020), but it has been shown that the charge diffusion has
a non-negligible effect on the linear stability and bifurcation in EHD flows (Zhang et al.
2015; Zhang 2016; Feng et al. 2021). Since a strong injection regime has been considered
in this work, we take C = 5. The typical value of M is higher than 3 for most dielectric
liquids (Pérez & Castellanos 1989), and M = 50 is used in the following. The remaining
parameters will be specified in each case to be presented. We also mention that we have
used many symbols to denote various flow parameters and define the geometry. For a
clearer understanding of the results below, it is useful to consult table 11 in Appendix C
for the nomenclature.

4.1. Moffatt eddies

Inspired by the experimental work on the EHD flow in the needle—plate configuration,
where the Moffatt-like vortices were observed (Perri et al. 2020, 2021), we will explore
the Moffatt-like eddies in the two-dimensional blade—plate EHD flow. As our flow is in a
Cartesian coordinate, the results can be compared to the theoretical prediction by Moffatt
(1964) for the vortices in a wedge formed by two flat plates and induced by a disturbance
near the corner. For a better presentation of the results, in the following, we will first
summarise the theoretical results of Moffatt (1964).

According to the theory developed in Moffatt (1964), the flow field in the case of corner
angle 2a = 61.3° is plotted in figure 3. A sequence of geometrically and dynamically
similar vortices is formed, and their centres all fall on the corner bisector. We mark their
centres as O, 02, O3 (counted from the corner), and denote the distances from the centre
to the corner as rq, 1, r3, respectively. Theoretically, the radial coordinates of the vortex
centres of Moffatt are in an equal ratio sequence and satisty the relationship (Moffatt 1964)

T'n42 _ Intl _ T'n+2 — I'nt1 = p, 4.1
In+1 I'n 'n+1 —'n

where p is the ratio dependent only on the angle 2«, and r, is the distance between the
corner and the centre of the nth eddy, counting from the corner. For the case 2o = 61.3°,
it can be calculated from (3.6) in Moffatt (1964) that p = 5.22. Therefore, we have in this
case 1’3/1’2 = }’2/1”1 = (1’3 — I’z)/(rz — r1) =5.22.
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Figure 3. (a) Theoretically predicted streamlines in corner eddies for the corner angle 2«x = 61.3°, based on
the theory of Moffatt (1964). The flow is induced by a disturbance near the corner. (b) A close-up view of the
corner.

Besides, the intensity of two successive eddies follows a constant ratio as well, which
according to Moffatt (1964) reads

[olnt1/2

- Q. 4.2)
[vgln+3/2

where §2 is also dependent only on the angle 2, and vy is the azimuthal velocity. We
use |vg|u+1/2 to denote the absolute value of the local maximum azimuthal velocity of the
nth vortex (which can represent the intensity of the vortex). Similarly, the value of £2 can
be obtained theoretically (Moffatt 1964), and it is equal to 710.56 in the case 2«0 = 61.3°,
that is, |vgl14+1/2/|vel2+1/2 = [vala41/2/lvel3+1/2 = 710.56. These equations summarise
the flow quantities that we will probe and compare to in our numerical simulations of
EHD flows.

4.1.1. Formation of the eddies in the blade—plate EHD flow

In the following, we present and characterise the Moffatt-like eddies in the blade—plate
EHD flow. Appendix A furnishes a detailed verification step of the domain size and grid
resolution in our computations. We focus on characterising the generation and evolution
of the Moffatt eddies in this subsubsection. The parameters here are 7 = 500, C =5,
M =50, Fe = 5 x 10% and R = 0.05.

Figures 4(a—d) show that charges are injected from the blade tip and move towards the
plate electrode driven by the potential difference, then impinge on the flat plate, leading
to the formation of two steady symmetrical vortices in the central region; see figure 4(e).
This result is similar to previous numerical simulations in Wu ef al. (2013) and Pan, He &
Pan (2021). It is noted that the flow pattern of the EHD flow here resembles the thermal
plume (Vazquez et al. 1996; Lesshafft 2015) and the impinging jet flow (Park ez al. 2004;
Meliga & Chomaz 2011).

Figure 5(a) shows the distribution of the vertical velocity V at the final steady state in the
case T = 500. Figure 5(b) displays the profile of V for different electric Rayleigh numbers
T probed at the middle horizontal line between the blade and the plate, as shown by the
red dashed line in figure 5(a). It indicates that the vertical velocity is symmetrical with
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Figure 4. Evolution of the charge density distribution between the blade injector and the plate electrode at (a)
t=0.1,0b)t=0.2,(c) t =04, (d) t = 1.0. (¢) The velocity field at final steady state, and the streamlines.
The white region in the middle is due to the clustering of the streamlines. The parameters are 7 = 500, C = 5,
M =50, Fe =5 x 10° and R = 0.05.

respect to the central vertical axis. Its absolute value is largest at the central vertical axis
and then rapidly decreases towards both sides. Somewhere around x = 0.5 at the centre
of the vortices, the velocity amplitude reaches another local maximum and then gradually
decreases to zero with increasing x. In figure 5(c), the vertical velocity V along the central
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Figure 5. (a) Contour of vertical velocity at final steady state (V) at T = 500. Vertical velocity profiles at
different 7" versus (b) x aty = 0.5, (¢) y at x = 0. The other parameters are the same as in figure 4.

vertical axis (the solid red line in figure 5a) is plotted. We find that the fluid accelerates
rapidly near the blade injector (y = 1) and decelerates due to the impingement on the plate.
In addition, as expected, increasing 7T increases the absolute vertical velocity because the
Coulomb force is proportional to the potential difference, leading to a larger velocity, as
shown in both figures 5(b,c).

In order to obtain a global view of the velocity amplitude in the flow, figure 6(a) presents
the evolution of the maximum velocity magnitude |U]|;,, in the whole domain. As we can
see, its value also increases with increasing 7' € [500, 2900]. The typical characteristics of
the EHD flow structure discussed above are consistent with those obtained from previous
numerical simulations (Park et al. 2004; Wu et al. 2013) and experiments in the injection
regime (Yan et al. 2013; Daaboul et al. 2017; Sun et al. 2020). Figure 6(b) depicts |U|}, ...
(where the superscript ‘s’ represents the saturated |Ulq, of the final steady state; see
figure 6a) as a function of T from 500 to 10000. We find that with the increase of T,

|U|},., increases monotonically in this range of 7. The growth of |U|} .. gradually slows

max
down when T is large.

In Perri et al. (2020), the authors observed transient EHD flows, suggestive of flow
bifurcation to another state. In our numerical simulations, we can also observe an
unsteady flow when increasing 7 in the blade—plate EHD flow. We present the oscillation
behaviour at 7 = 3 x 10* in figures 7(a—d) and T = 4 x 10* in figures 7(e—h). As shown
in figure 7(a), the time evolution of U, sampled at a point (0,0.5) at a large T =
3 x 10* transitions from stable to periodic oscillation. The corresponding charge density
distributions at different times in the half-period, namely 71, #; and 3 (see bottom inset of

figure 7a), are depicted in figures 7(b—d). Note that the magnitude of the oscillating Uy
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Figure 6. (a) Evolution of the maximum velocity norm. (b) Saturated maximum velocity magnitude at the
steady state versus 7. The other parameters are the same as in figure 4.

is small in this case. Figures 7(b—d) at first sight look the same. Nevertheless, one has to
look at them closely to observe that the vertical structure of the charge jet swings from
left to right by scrutinising its position relative to the central axis. At larger T = 4 x 10%,
the oscillation becomes more violent. It can be seen from figure 7(e) that the amplitude
of the oscillating U, at the point (0, 0.5) increases (note the range of the y-axis). The
oscillation also seems to deviate from a single-frequency behaviour (unlike the smaller
T = 3 x 10* in figure 7a) due to the stronger nonlinearity at the larger 7. In addition, the
swing of the charge jet is more obvious, which can be seen in figures 7( f—h). Additionally,
we display the result of the FFT of U, in the stable oscillation stage, as shown in the
insets of figures 7(a,e). One can see that the dominant frequencies are 1.36 and 9.89 for
T =3 x 10* and T = 4 x 10, respectively. In the latter case, there is another spike at the
frequency ~30. Note that when we calculated the FFT of the velocity signal at (0.5, 0.1)
for T = 4 x 10*, we observed two frequencies at around 10 and 20 (not shown), which is
more consistent with the weakly nonlinear phenomenon (that the dominant frequency f
interacts with itself to generate 2f).

4.1.2. Characteristics of the Moffatt-like eddies in the blade—plate EHD flow, compared
to Moffatt (1964)

After a pair of small vortices is formed near the tip due to the charge injection (in the range
x € [1,2]), two larger pairs of vortices are formed further away from the corner region,
driven by the viscous force. (Note that the viscous force includes both flow viscosity
and charge diffusion, to be discussed shortly.) Now we take the case R = 0.3, T = 500,
Fe =5 x 10° as an example to illustrate the properties of the Moffatt-like eddies in our
blade—plate EHD flow. Figure 8 shows the streamline patterns in the nonlinear simulations
of the steady EHD flow. It can be observed from the velocity vectors on the streamlines that
the adjacent vortices are counter-rotating. We draw the asymptote of the hyperbola passing
the origin O (i.e. (0, 0)), labelled as OM (seen more clearly in figure 8b). The half-line
denoting the plate electrode is labelled as ON. We connect the origin O to the centre of
the third vortex O3 and mark the half-line OP. With these notations, /MON = 61.3° is
the inter-electrode angle (as denoted in figure 2b), which can be calculated exactly by
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Figure 7. Evolution of the x-velocity of the point (0, 0.5) (a,e) and charge density distribution at different times
in blade—plate EHD flow at 7 = 3 x 10* (a—d) and T = 4 x 10* (e—h). For the two insets in each of () and
(e), the bottom one zooms in to the oscillation period, and the top one shows the fast Fourier transform (FFT)
of the oscillation signal when its amplitude is stable. Distribution of charge density at (b) t = 11, (¢) t = t2, (d)
t=r1atT =3 x 10* and at NHt=u,(@t=t5, (h)t=tcatT =4 x 10* (where ;¢ are denoted in the
insets of (a,e)). One has to look very closely to notice the small oscillation in (b—d). The other parameters are
the same as those in figure 4. Full videos are provided in the supplementary material https://doi.org/10.1017/

jfm.2022.943.
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(b)

Figure 8. Streamlines in blade—plate EHD flows with R = 0.3 (2o = 61.3°): (a) the whole flow domain; (b)

zoom-in around the near field. The other parameters are 7' = 500, Fe = 5 x 103, C = 5 and M = 50. Points
01, Oz, O3 are the centres of the three vortex structures. The red dashed half-line OP connects points O and
Os.

/MON = arctan(1/ VR). To some extent, these vortices resemble those in Moffatt (1964)
with the included angle 2o = 61.3° between two rigid boundaries, but differences exist,
especially, in the ‘corner’ area around the original point, due to the specific configuration
of the blade—plate electrodes.

It can be seen from figure 8(b) that the centre O; of the second vortex falls almost on the
line OP with a slight deviation, and the centre of the vortex 1 (point O1) does not locate
on the line OP, but above it. It can be extracted that the coordinates of the three vortex
centres are O (0.278, 0.544), O, (2.794, 1.764), O3 (14.908, 8.853) in this case. In our
blade—plate EHD flow, the distances between the centres of the three vortices and the
original point O are respectively denoted as ry, r2 and r3 (counted from the corner). Even
though these notations are the same as those in (4.1) for the Moffatt eddies, confusion can
be dispelled easily within the context. We obtain their values as r; = 0.611, rp = 3.304,
r3 = 17.339. We find that r3/r, = 5.25, which is close to the theoretical prediction 5.22.
However, r2/r1 = 5.41, discernibly different from the theoretical solution. This is mainly
because of the geometrical differences mentioned above in the ‘corner’ region. Besides, it
is noted that in the theory of Moffatt eddies (Moffatt 1964), the calculated flow is a solution
of the Navier—Stokes equations in the absence of volume forces. However, in the EHD case,
there is a Coulomb force concentrated around the axis of symmetry of the geometry. The
off-axis extension of the Coulomb force by diffusion and Coulomb repulsion generates
a finite region where the volume force is non-zero. These are not the assumptions of the
solution of Moffatt eddies, which may also contribute to the discrepancy for the first vortex
between our result and that in Moffatt eddies.

As shown in figures 9(a—c), we present the values of the azimuthal velocity vy on the
line OP. Note that the direction of vy is perpendicular to OP. The local maximum of the
amplitude of vy is denoted as |vg|,+1/2, Where n means the number of the vortex counting
from the corner. The r-axis measures the radial distance from the original point on the OP
line. We can find the ratios of eddy intensity (the theoretical value is 710.56) as

lvolit12 0496
lvglo+1/2 0.00306
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Figure 9. The azimuthal velocity distribution along the line OP in the section near the local maximum value.
The inter-electrode angle is 61.3°. (a) Vortex 1; (b) vortex 2; (c) vortex 3; (d) a full view of vy along the line
OP. The parameters are the same as in figure 8.

Similar to the size ratio, the intensity ratio of vortices 2 and 3 is closer to the theoretical
solution, while the ratio of vortices 1 and 2 is noticeably different. It is also noted that in
figure 9(c), the position corresponding to vg = 0 is the position of the centre of vortex 3.
Figure 9(d) presents the whole view of vy along OP. The value of vy first decreases (and
its amplitude increases) due to the potential difference between the plate and the blade
electrodes, then increases and reaches the first local maximum in the first vortex. The
remaining two local maxima can be understood similarly with the help of the flow field
shown in figure 8.

4.1.3. Effects of parameters: inter-electrode angle, intensity of the electric field, charge
diffusion

In order to characterise the Moffatt-like eddies in the EHD flow in detail, we study the

effects of several parameters in this subsubsection.

We first change the inter-electrode angle to see the change in the Moffatt-like eddies
in the blade—plate EHD flows. The inter-electrode angle can be adjusted by changing the
radius of curvature R. The investigated values of the inter-electrode angles are 77.4°, 72.5°
and 66°, which correspond to the radii of the hyperbolic function R = 0.05, R = 0.1
and R = 0.2 (as in (2.1)), respectively. The comparison between the results of numerical
simulations and theoretical analyses is presented in table 3. It can be seen that with the
decrease of the inter-electrode angle (or larger R), 1, r» and r3 all decrease, indicating that
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R =0.05 R=0.1 R=02 R=023
Qo =774°)  (QQu=725° Qo = 66°) Qo = 61.3°)
Moffatt (1964) P 9.37 773 6.12 5.22
Q 1195.39 995.71 808.76 710.56
/PON 38.7° 36.25° 33° 30.65°
Present [Uy 13,0 7.067 7.319 7.488 7.611
0, (0.312,0.599)  (0.295,0.574)  (0.278,0.555)  (0.278,0.544)
0, (4.181,3.433)  (3.638,2.756)  (3.003,2.049)  (2.794,1.764)
03 (39.358,31.475) (28.381,20.83) (18.631,12.103) (14.908, 8.853)
r 0.675 0.645 0.621 0.611
" 5.410 4564 3.635 3.304
3 50.384 35.205 22.217 17.339
r/r 8.01 7.08 5.85 5.41
r3/r 9.31 771 6.11 5.25
lvel141/2 0.563 0.556 0.528 0.496
g l2+1/2 0.00137 0.00186 0.00266 0.00306
v 13412 1.051 x 107¢  1.903 x 107° 3370 x 1070 4.436 x 107°©
[voli+1/2/1v0|2+1/2 410.95 298.92 198.90 162.09
[vala+1/2/1v013+1/2 1303.5 928.39 789.31 689.81
/PON 38.6° 36.2° 330 30.7°

Table 3. Properties of Moffatt vortices at different R for 7 = 500 and Fe = 5 x 10%. The other parameters
are C =5 and M = 50.

the sizes of vortices shrink. Besides, the local maximum azimuthal velocities of vortices
2 and 3 (|vgl241/2 and |vg|341/2, respectively) increase with decreasing 2o, and that of
vortex 1 (Jvgl141/2) decreases as 2« decreases. We suspect that these trends of the local
maximum azimuthal velocity may not be generalisable since the results may depend on
the specific setting in our flow configuration; especially, we fix the y-coordinates of S
and Sy (depicted in figure 2) for the ion injection. From table 3, we can also see that
the maximum vertical velocity |Uyl} . increases as R increases. In addition, the results
show that the size and intensity ratio of the second vortex over the third vortex at different
inter-electrode angles have good agreement with the theoretical solutions, which are at a
large distance from the corner (so less affected by the corner geometry), indicating that
the Moffatt-like eddies observed in the (relative) far field of blade—plate EHD flow closely
obey the similarity solutions presented by Moffatt (1964). Furthermore, Z/PON is close
to o for all R, meaning that the centre of vortex 3 falls almost on the bisector of the
inter-electrode angle.

Next, we study the effect of the electric Rayleigh number 7, which quantifies the
strength of the electric field. In table 4, we summarise the numerical results of R = 0.3
and T = 500, 1000, 1500, respectively. We can observe that rq, r and r3 all decrease as T
increases, meaning that the vortex centres are approaching the corner as we increase the
intensity of the electric field. In addition, |vgl141/2, [vel2+1/2 and |vg|341/2 all increase
with the increase of T', which has the same trend as |U, |3, indicating that a higher electric
field leads to stronger intensity of the eddies. Furthermore, one can see that the size and
intensity ratio of vortices 2 and 3 do not change significantly and conform to the law of
Moffatt eddies as we change 7 from 500 to 1500. Also, in all the cases, the angle Z/PON
approaches half of the inter-electrode angle «.
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T =500 T = 1000 T = 1500 Moffatt (1964)
1Uy 80 7.611 11.373 14.241
0, (0.278,0.544)  (0.276,0.542)  (0.274,0.533)
0, (2.794,1.764)  (2.793,1.748)  (2.785, 1.726)
03 (14.908, 8.853)  (14.846, 8.807)  (14.780, 8.775)
r 0.611 0.608 0.599
r 3.304 3.295 3.276
r3 17.339 17.262 17.189
r/r 5.41 5.42 5.47 5.22
r3/r 5.25 5.24 5.25 5.22
Vgl 1412 0.496 0.720 0.909
[volo+1/2 0.00306 0.00441 0.00545
[vgl3+41/2 4.436 x 10° 6.386 x 1070 7.942 x 10°°
[veli+1/2/1vel2+1/2 162.09 163.27 166.79 710.56
[volo+1/2/1v0|3+41/2 689.81 690.57 686.23 710.56
/PON 30.7° 30.7° 30.5° 30.65°

Table 4. Properties of Moffatt vortices at different 7' for Fe = 5 x 103 and R = 0.3 (2 = 61.3°). The other
parameters are C = 5 and M = 50.

Finally, we investigate the influence of charge diffusion on the viscous eddies by
changing Fe (note that smaller Fe means stronger charge diffusion effect). In the above
sections, we take Fe = 5 x 103, corresponding to a relatively small charge diffusion effect.
Three additional values of Fe (Fe = 500, 200, 100) are considered, to observe more clearly
the effect of charge diffusion. As shown in table 5, from the coordinates of the vortex
centres in the table, we find that even though the y-coordinates of the centres of the vortices
remain almost the same, the x-abscissas of the centres of the vortices tend to move away
from the original point, when we decrease the value of Fe. This can be explained by the
fact that the stronger diffusion motion of the charges from the centre towards the two
sides drives the fluid to move to both sides (to be discussed with figure 10), so that the
vortex extends farther away, resulting in a larger vortex size. Similar to the observation in
the previous cases, the ratios of size and intensity between vortices 2 and 3 are in good
agreement with those in Moffatt (1964), especially when the charge diffusion effect is
strong (or Fe is small). We present the distribution of charge density in figure 10, where
the diffusion motion of charges can be observed clearly. From figures 10(a—d), we find that
at smaller Fe, more charges diffuse from the centre to both sides. Figure 10(e) displays the
charge density distribution at the horizontal line y = 0.1, and it further illustrates that with
the decrease of Fe, the charge density in the centre reduces, and it expands towards both
sides.

In terms of vortex intensity vy in table 5, it seems that the value of vy first increases from
Fe = 100 to Fe = 500, and then decreases from Fe = 500 to Fe = 5 x 10°, which has a
similar trend with the maximum vertical velocity |Uyl;, ... We then plot the maximum
vertical velocity |U,l;,,. versus Fe in a larger range of Fe at T = 500, as shown in
figure 10(e). We can observe from the figure that when Fe is large (or small charge
diffusion effect), Fe has an insignificant effect on the velocity. When Fe is small (say
from Fe = 100 to Fe = 1000), |U,|;,,, increases with increasing Fe, corresponding to the
decreasing charge diffusion effect. Physically, since charge diffusion is a diffusive force
after all, a small charge diffusion effect will hinder the flow motion less. So we observe a
large |Uyl,.. when the charge diffusion is small (or large Fe). On the other hand, charge
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Figure 10. Distribution of the charge density of final steady state between the blade injector and the plate
electrode at 7 = 500, R = 0.3, and (@) Fe = 5 x 103, (b) Fe = 500, (¢) Fe = 200, (d) Fe = 100, and (¢) along
the horizontal line y = 0.1. (f) Maximum vertical velocity magnitude |U,[;,,. at the steady state versus Fe.
The other parameters are C = 5 and M = 50.

diffusion can also contribute to the movement of the charges in the flow domain. A stronger
charge diffusion effect will dispense the charged ions more to the other parts of the flow
domain, leaving fewer charges in the centre region where the |U,|[;,,. happens. That is
probably why we observe a smaller |U,|;,,. when Fe is small (or the charge diffusion
effect is strong). Thus the effect of charge diffusion is complex, and we indeed observe
a maximal effect at an intermediate value of Fe for |Uyl;,,.. In general, the variation of

|Uy [3ax (from 7.53 to 7.62) in a large range of Fe (from 100 to 5000) is small.
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Fe = 100 Fe = 200 Fe = 500 Fe=5x 10> Moffatt (1964)
[Uy | max 7.532 7.590 7.615 7.611
0, (0.296,0.544)  (0.289,0.544)  (0.283,0.544)  (0.278,0.544)
0 (5.001,3.027)  (3.160,1.980)  (2.811,1.74)  (2.794,1.764)
03 (26.263, 15.550) (16.767,9.890) (15.088,8.938) (14.908, 8.853)
r 0.686 0.616 0.613 0.611
" 5.846 3.729 3.306 3.304
r 30.521 19.466 17.532 17.339
ra/r 8.51 6.05 5.39 5.41 5.22
r3/r 5.22 5.22 5.27 5.25 5.22
lvel1+1/2 0.439 0.537 0.545 0.496
[vgl2+1/2 0.000578 0.00222 0.00311 0.00306
[vo13+1,2 8339 x 1077 3210 107° 4.501 x 107  4.436 x 107
lveli+1/2/1vel2+1/2 759.52 241.89 175.24 162.09 710.56
v la+1/2/1vel3+1/2 693.13 691.59 690.95 689.81 710.56
/PON 30.63° 30.5° 30.7° 30.7° 30.65°

Table 5. Properties of Moffatt vortices at different Fe for 7 = 500 and R = 0.3 (2« = 61.3°). The other
parameters are C = 5 and M = 50.

In a nutshell, the effect of charge diffusion can influence the formation and evolution of
the Moffatt eddies. This is an additional factor compared to the situation in the original
Stokes flows. The charge diffusion term was neglected in the numerical simulations of
Perri et al. (2021). Our results indicate the generic existence of Moffatt-like eddies in
multi-physical flows (EHD flow in our case) and their complex dependence on those
parameters.

4.2. Linear global stability analysis of the blade—plate EHD flows

The previous subsection detailed the numerical results of Moffatt-like eddies in the
blade—plate EHD flow using DNS. Next, we will conduct global stability analyses of
these steady solutions. Since the main flow motion occurs in the central region near the
blade tip, where the eigenmodes also concentrate (to be presented), a small computational
domain is adopted in this subsection in order to gain higher computational efficiency.
More specifically, we set H, =5 and AH; =2 for T € [500, 2900], and H, = 20 and
AH,; = 10 for T € [10000, 40000]; see figure 2(a) for the definitions of H, and AH;.
Additionally, in the linear stability analysis, the disturbance generated near the blade tip
and the original point will propagate to the far field. Because of the finite size of the
domain and the imposition of the boundary conditions, reflection of the linear waves at
the domain boundary is inevitable. In order to minimise the reflection effect, we consider
a sponge zone in the far field; see again figure 2(a), following Chevalier et al. (2007) and
Appelquist et al. (2015). A series of validation cases has been carried out and the results
are shown in Appendix B, including verifying the mesh independence and ensuring that
the computational domain and the sponge region are large enough to not affect the results
in the physical region around the origin. In this subsection, the parameters are R = 0.05,
C=5,M=50and Fe = 5 x 103 for most cases.

We use the steady state of the nonlinear simulation of the blade—plate EHD flow

discussed above as the base flow (U, Q, ¢, E), and carry out its global linear stability
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analyses by adding small disturbances on the base flow (§2.1). We will present below
the eigenvalues w and eigenvectors ]" introduced in (2.7). We first plot the least stable
eigenvalues at T = 500 obtained using the IRAM, as shown in figure 11(a). The first seven
least stable modes are presented, and they are symmetric with respect to the line w; = 0.
Figure 11(b) presents the growth rate (w,) of the least stable eigenvalue as a function of
T. All the growth rates are negative, indicating that perturbations decay within the range
T =500 ~ 2900 for the steady base state. In this range, the imaginary part of the least
stable eigenvalue is zero, indicating that this mode is non-oscillating. It can also be seen
from the figure that with the increase of 7, the decay rate decreases. This means that
increasing 7T renders the linear system less stable, but the destabilising effect of increasing
T becomes weaker at larger 7. Moreover, we note that in the global stability analysis
of the confined impinging jet reported by Meliga & Chomaz (2011), the variation of
the disturbance growth rate by increasing Reynolds number (their governing parameter)
follows a trend similar to the one that we observe here. This may be related to the similar
flow phenomenon (impingement of the flow field) in the two cases. Then we investigate
the influence of Fe (the inverse of the charge diffusion coefficient) on the global stability
of the EHD plume. As shown in figure 11(c), increasing Fe (decreasing charge diffusion)
destabilises the linearised flow in the blade—plate EHD geometry. We mention in passing
that for each data point in figures 11(b,c), a nonlinear DNS was first performed to obtain
the base state, and then a global linear stability analysis of the base state was conducted.
This is because the base state is dependent on the parameters.

The eigenvectors u, v and g of the leading mode in the blade—plate EHD flow are
presented in figure 12. In figures 12(b.d,f), we compare the leading eigenvectors at
a certain line obtained by the power iteration method and the IRAM. The two agree
with each other, which further validates our linear computations. We can see from
figures 12(a,c,e) that the perturbations are symmetric with respect to the central line x = 0.
This is a trivial observation because of the symmetry of the base flow in our case. In other
flows, a self-excited axisymmetric mode was observed in the confined thermal plume by
Lesshafft (2015). In addition, it has been found that the leading mode of the confined
impinging jet is antisymmetric (Meliga & Chomaz 2011). In figure 12(e), it is worth noting
that in addition to the perturbation of charge density distribution in the central region
resembling the nonlinear structure (figure 4d), there are also two tadpole-shaped structures
on the sides. This special structure may stem from the strong convection nature of the
charge density equation (2.4c). We find that the positions of the heads of the ‘tadpole’
([£0.42, 0.65]) are approximately the same as the maximum values of the positive vertical
velocity in the base flow, that is, the positions where the fluids move up the fastest after
impinging the plate; see figure 5(b). Additionally, in figures 12(c) and 12(d), we notice that
the vertical velocity disturbance also has a local large absolute value. By examining the
pressure perturbation, we find that this position is where the positive and negative pressure
convert, as shown in figure 13(a). Furthermore, the distribution of electric potential
perturbation ¢ is shown in figure 13(b), which is related to the perturbation ¢. Note that
in all the eigenvectors that we have studied here, the most important structures are located
near the blade tip region, validating the consideration of using a smaller computational
domain in the linear analysis.

Figure 14 displays the charge density eigenvectors of mode 2 to mode 5 at 7' = 500.
It can be seen that the second and third eigenmodes are similar to the leading one
(figure 12¢), which are all stationary eigenmodes (see figure 11a), and the difference is
only in the positive and negative regions around the heads of the tadpoles. Figures 14(c,d)
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Figure 11. (a) Least stable eigenvalues of the blade—plate EHD flow at T' = 500, Fe = 5 x 103. Growth rate

of leading global mode in the blade—plate EHD flow versus (b) T at Fe = 5 x 103, (¢) Fe at T = 500. The other
parameters are C = 5, M = 50 and R = 0.05.

show the eigenvectors of charge density for a pair of complex conjugate eigenvalues with
equal real parts and opposite imaginary parts. It is interesting to see that these oscillating
eigenmodes (with non-zero imaginary part) possess two symmetrical tai chi shapes on
both sides of the central axis.

Next, we also discuss an unstable flow at a higher T = 4 x 10*. This is the oscillating
flow as we have analysed in figure 7. To enable stability analysis, we solve for its
steady unstable solution of the nonlinear governing equation using the selective frequency
damping method (Akervik et al. 2006), which damps the high-frequency content in the
equation to stabilise the flow. The unsteady base flow and the base charge density are
presented in figure 15. We can see that now the charge density is a single steady jet
impinging on the plate electrode, unlike the oscillating behaviour in figure 7. One can
understand that this unstable flow will transition to another flow state, which can be
analysed by a stability analysis. Such a methodology can also be applied to analyse the
transient flow phenomenon in Perri ef al. (2020). We present its eigenvectors of the leading
mode in figure 16. It can be seen that the patterns of eigenvectors of the leading mode in
this case are quite different from those in the low T case. The eigenvalues for the leading
modes at T = 4 x 10* are calculated as 3.364 + 61.592i, meaning that the linear growth
rate is 3.364 and the flow is indeed unstable. In addition, the eigenfrequency (which is the
imaginary part of the eigenvalue) is 61.592. This value can also be approximately related
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Figure 12. Eigenvectors of most unstable mode for blade—plate EHD flow at 7 = 500, for (a) horizontal
velocity u, (c¢) vertical velocity v, (e) charge density ¢g. The eigenvectors can be arbitrarily scaled. Comparison
between the results obtained by the power method (symbols) and IRAM (solid lines) for (b) u at y = 0.5, (d)
vaty = 0.65, (f) g at y = 0.65, with the maximum values of the eigenvectors scaled to unity. The parameters
are the same as in figure 11(a).

to the DNS results in figure 7(b), which indicated that the dominant circle frequency of
the flow oscillation is 9.89 ~ 61.592/(2m).

Finally, we present in figure 17 the results of linear stability analysis at large T €
[10 000, 40 000] to showcase the variation of the growth rate and the eigenfrequency in a
large range of T covering the linear critical condition. The growth rate versus 7 is displayed
in figure 17(a), which shows that the critical T, for the onset of global linear instability is
between 15000 and 20000, and very close to 7 = 20000. When T is larger than this
critical condition, the time-periodic oscillation occurs (see also figure 17b). Figure 17(b)
depicts the frequency of the leading global mode at different 7', obtained by both nonlinear
simulations and linear stability analyses. Note that the eigenfrequency is 27 times the
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Figure 13. Eigenvectors of most unstable mode for blade—plate EHD flow at 7 = 500, for (a) pressure
perturbation p, (b) electric potential perturbation ¢. The parameters are the same as in figure 11(a).
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Figure 14. Eigenvectors of charge density of mode 2 to mode 5 for blade—plate EHD flow at 7' = 500.
The eigenvalues are (a) —0.0883 + 0i, (b) —0.245 + 0i, (¢) —0.333 + 0.252i, and (d) —0.333 — 0.252i. The
parameters are the same as in figure 11(a).
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Figure 15. The steady unstable base flow for blade—plate EHD flow at T = 4 x 10*, for (a) the velocity field,
(b) the charge density distribution. The other parameters are the same as those in figure 11(a).
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Figure 16. Eigenvectors of most unstable mode (imaginary part of the eigenvalue is positive) for blade—plate

EHD flow at T = 4 x 10%, for (a) horizontal velocity u, (b) vertical velocity v, (c¢) charge density g. The other
parameters are the same as those in figure 11(a).

actual frequency of oscillation. We can observe that the two methods generate consistent
results. A peculiar phenomenon occurs of a sudden increase of the frequency when T
is varied from 30000 to 35000. To explain this, we resort to figure 7, where we have
plotted the time series of the flow oscillation at a point (0, 0.5) and the representative flow
snapshots. We can observe clearly that when 7" = 30 000, the oscillation is slow and almost
monotonic with a single frequency, from figure 7(a). The amplitude of the oscillation is
also small. On the other hand, when 7 is increased to 40 000, from figure 7(b), we can
see that the oscillation is featured by two dominant frequencies and is also more drastic.
The charge beam strikes the flat plate forcefully and triggers nonlinear effects in the flow,
as evidenced by the second spike in the FFT result in the inset of figure 7(b). From these
observations, we conclude that the sudden increase of the frequency seems to more likely
stem from the confinement effect in the centre region. That is, at a larger 7, the stronger
charge jet will hit the flat plate more violently and get reflected, leading to the more
drastic oscillation with an increased frequency. This phenomenon may deserve further
investigation in the future.

5. Conclusions

In this work, we performed numerical simulations and conducted linear global stability
analyses of the Moffatt-like eddies in two-dimensional blade—plate EHD flows, motivated
by the recent experimental and numerical work of Perri et al. (2020, 2021) in a different
setting. Driven by a unipolar strong injection, an impinging flow motion occurs, issuing
from the blade tip (subjected to a high voltage) to the grounded flat plate electrode due to
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Figure 17. (a) Growth rate and () frequency of the leading global mode in the blade—plate EHD flow of 7" in
the interval [10 000, 40 000]. The other parameters are C = 5, M = 50, R = 0.05 and Fe = 5 x 10.

the Coulomb force. The impingement of the EHD flow on the plate helps to form vortices
in the space between the two electrodes. The vortices are studied and compared to the
theoretical results of Moffatt (1964), despite the different geometries and the additional
Coulomb force in our EHD flow. The existence of the Moffatt-like eddies in the EHD flow
has been proven, and their characteristics have been investigated.

We first presented the evolution of the EHD flow and its nonlinear behaviour. The
results show that the first pair of vortices near the tip is formed due to the charge injection
under the effect of the Coulomb force, and two larger pairs of vortices further away from
the corner are formed because of the viscous force in the flow. We then analysed the
sequence of eddies (in the current work, three vortices are resolved) using the case of the
inter-electrode angle being 61.3° as an example. Our quantitative results indicate that the
ratios of size and intensity of the two successive eddies in the far field (the second and
third vortices) can be compared favourably to the theoretical results of Moffatt (1964).
Differences exist for the ratios of size and intensity of the two successive eddies in the
near field, which is due to the unclosed corner in our geometry.

We also studied the influence of the inter-electrode angle by changing the radius of the
curvature of the hyperbolic blade to further validate the properties of EHD Moffatt-like
eddies. We found that the above conclusion (that the ratios of size and intensity between
the second and third vortices agree well with the results in Moffatt 1964) is generally
valid for all the inter-electrode angles investigated in this work. In addition, we also
investigated the effect of the electric field intensity (7)) on the Moffatt-like eddies. Our
results show that increasing 7 renders the centres of the vortices closer to the corner and
increases the intensity of vortices. In addition, at a sufficiently large 7', a (periodic) flow
oscillation occurs, meaning that the flow may transition to another type of state. This result
is qualitatively consistent with the experimental observation of Perri et al. (2020), who also
reported a transient flow experiencing bifurcation. Furthermore, we found that increasing
the charge diffusion effect can increase the size of vortices in this EHD flow. It can be
explained that the charge diffusion drives the lateral movement of the fluid towards the far
field, thus extending the vortex. This effect was not studied in the numerical simulations
of Perri et al. (2020).

In the end, we investigated the linear global stability of the steady flows in this EHD flow
by adopting the implicitly restarted Arnoldi method. In order to improve the computational
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efficiency, a smaller computational domain was chosen, and a sponge layer was applied
to damp the reflection of the outgoing waves. The eigenvectors of the leading mode at the
steady flow (7" = 500) and the periodic oscillatory flow (T = 40000) are presented, and
they show evidently different patterns. Furthermore, it is interesting to find that with the
increase of charge diffusion, the flow becomes more stable. The leading global eigenvector
of the charge density field shows a tadpole-shaped structure whose amplitude is consistent
with the base flow characteristics. Finally, linear stability analyses on high-7 EHD flows
have been conducted to investigate the flow instability, and the critical 7, is found to be
slightly smaller than 20 000. When T is sufficiently large, we also observe a strong flow
oscillation with an increased frequency, which might be due to the confinement effect of
the geometry in the centre region.

Future work can consider investigating numerically the EHD Moffatt-like eddies in the
needle—plate configuration (in a cylindrical coordinate), which is the geometry adopted
in the experiments of Perri et al. (2020, 2021). This will enable a more consistent and
quantitative comparison to their results. Another future work can consider determining
more accurately the linear instability criterion and bifurcation diagram in the transition
process of this EHD flow. The stability analysis of the oscillating flow can be further
refined by analysing the time-averaged flow of the oscillating jet at a large 7, which may
be compared favourably to the experimental results (following the previous research on
the cylindrical wake flow, e.g. Barkley 2006).

To sum up, our work takes a step further to characterise quantitatively and in detail the
Moffatt-like eddies in blade—plate EHD flow, with favourable comparisons with Moffatt’s
original result, supplementing the recent work of Perri et al. (2020, 2021) to study this new
phenomenon in EHD. It demonstrates numerically the relevance of Moffatt’s theoretical
results in multi-physical flows. We hope that the current work can facilitate the observation
of Moffatt-like eddies in other multi-physical flows in the future.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.943.
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Appendix A. Verification of the domain size and the grid resolution in the
simulations of Moffatt-like eddies

This appendix determines the size of the computational domain in our numerical
simulations of the Moffatt-like eddies. We take R = 0.05 (corresponding to 2o = 77.4°)
and T = 500, Fe = 5 x 103, C =5, M = 50 to verify that the computational domain is
large enough to obtain accurate results. We investigate three vortices, requiring a large
computational domain that needs to be resolved. In addition, the inter-electrode angle
is also a factor influencing the computational domain. We consider three sizes of the
computational domain, namely G70, G80 and G90, corresponding to H,, = 70, 80, 90,
respectively; see figure 2(a) for H,,. The ratio r3/r; is evaluated in three different geometry
sizes, as shown in table 6. We can see that the results calculated in G70, G80 and G90 are
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Geometry size G70 G80 G90
H,, 70 80 90

Numerical r3/r, (present results) 9.30 9.31 9.31
Theoretical r3/r, (Moffatt 1964) 9.37 9.37 9.37

Error relative to the theoretical results  0.75%  0.64%  0.64 %

Table 6. Independence of computational domain size validation at Fe = 5 x 10°, T = 500, R = 0.05
Qa =77.4°),C=5and M = 50.
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Figure 18. (a) Distribution of the Legendre spectral elements for the numerical simulation of Moffatt eddies
in the blade—plate EHD flow. (b) Zoom-in display of the mesh refinement in the central region.

Mesh MMI1 MM2 MM3 MM4 MM5 MM6
N 3 5 7 7 7 9
N, 5056 5056 3432 5056 6660 5056
Numerical r3/r, (present results) 5.31 5.26 5.25 5.25 5.25 5.25
Theoretical r3/r, (Moffatt 1964) 5.22 5.22 5.22 5.22 5.22 5.22
Error relative to the theoretical solution 1.72 % 0.77 % 0.57 % 0.57 % 0.57 % 0.57 %

Table 7. Grid independence validation at Fe = 5 x 103, T =500, R = 0.3 (2 = 61.3°), C = 5 and M = 50.

close to the theoretical solution, and the errors relative to the theoretical solution are all
lower than 1 %. Considering the calculation efficiency and the accuracy of the results, we
choose G80 to perform the numerical simulations in this part.

We then perform the mesh independence test for the simulations. It is noted that the
spectral elements mesh depends on two factors, one being the number of spectral elements
N,, and the other the polynomial order N. We test six sets of grid sizes, as shown in
table 7. The ratio r3/rp at R=0.3, T = 500 and Fe =5 x 103 has been calculated for
different meshes. We can see that relative errors of MM2-MMB6 to the theoretical solution
are all less than 1 %, and MM4 is adopted in this section. In addition, the distribution of
the Legendre spectral elements is shown in figure 18.

Since we use an electrode configuration (blade—plate) similar to that of the experiment
of Perri et al. (2020) (needle—plate), we perform a comparison with experimentally
reported values on peak vertical velocity here. The liquid used in the experiment
(Perri et al. 2020) was food-grade canola oil, and its physical properties were listed in

their table 1: kinematic viscosity v* =9 x 107> m?s~!, mass density p* = 900kgm™3,
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Geometry size Gl G2 G3 G4 G5
H, 3 4 5 6 7
(U3 ax 17.8054 18.0383 18.0596 18.0738 18.1163

Relative error 1.72 % 0.43 % 0.31 % 0.23 %

Table 8. Independence of computational domain size validation at T = 2900. The other parameters are
C=5,M=50,R=0.05and Fe = 5 x 10°.

relative dielectric permittivity € = 3.14, and conductivity o* =4 x 107°Sm~!. The
diffusion coefficient for the charges is D =1 x 107" m?s~!. The distance between
the needle tip and the plate in the experiment was H* = 1.8 mm. In addition, the
experiments were performed at 300 K, and the inter-electrode angle is 76°. Therefore,
the corresponding values of the non-dimensional parameters in our scaling method for
&5 = 12kV (that is, a typical value in the experiment) can be calculated as Co = 10,

M =500, T = 10000, R = 0.06 and Fe = 5 x 10°. The maximum vertical velocity in

our numerical results is 48.43, corresponding to the dimensional value 125mms™'.

The maximum vertical velocity is about 45mms~!, indicated from figure 5 in Perri
et al. (2020). The discrepancy may be due mainly to the different geometry of the two
works as well as the three-dimensional effect in the experiments (whereas we conducted
two-dimensional simulations).

Appendix B. Verification of the domain size and the grid resolution in the global
stability analysis

When conducting linear global stability analysis for the blade—plate EHD flow, we adopt
a smaller computational domain, and a sponge layer is used to prevent the reflections of
the outgoing disturbances from the far field boundary. Here, we perform the verification of
the domain size and the grid independence to ensure the credibility of the results. In this
appendix, the value of 7" is 2900, which is the largest value studied in our linear stability
analysis. The other parameters are C = 5, M = 50, R = 0.05 and Fe = 5 x 103. Note that
in the global stability analysis, two steps are involved: one should first obtain the nonlinear
steady base flow and then conduct its stability analysis. We present below the verification
of both steps.

We first consider the computational domain size, which should be sufficiently large. This
is confirmed by examining the saturated maximum velocity magnitude |U|;,,, appearing
in the flow for five different geometry sizes, as shown in table 8. The notation H,
(controlling the size of the physical domain) can be found in figure 2(a). In addition, the
size of the sponge region remains the same, namely AH; = 2 (also see figure 2a). From
table 8, we can see that the relative error between G3 and GS5 is less than 0.5 %. Thus we
choose G3 as our computational domain, that is, H, = 5.

We then determine the size of the sponge region. The strategy is to keep the size and
the grid resolution of the physical area unchanged (H,, = 5), and test four values of sponge
region with different sizes, i.e. different AH, as shown in table 9, and the number of
elements in the sponge area changes in proportion to the size. The saturated maximum
velocity magnitudes |U];,,. of nonlinear EHD flow with different sponge layers are shown
in table 9; we can see that the size of the sponge layer has almost no effect on the nonlinear
results. Since the sponge region acts mainly on the linear wave, we compare the energy
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Figure 19. Energy evolution of linear blade—plate EHD flow with different sponge zones at 7 = 2900. The
parameters are the same as in table 8.

Geometry size S1 S2 S3 S4
AH; 1 2 3 4
[UIS 18.0489 18.0596 18.0586 18.0585

Relative error 0.053%  0.0061 %  0.00055 %

Table 9. Independence of sponge region size validation at 7 = 2900. The parameters are the same as in

table 8.
Mesh M1 M2 M3 M4 M5 M6 M7
N 3 7 5 7 9 7 11
N, 2816 1944 2816 2816 2816 3710 2816
|u|? 19.0105 18.1302  18.0628  18.0596  18.0027  17.9966  17.9700

max

Relative error  5.79 % 0.89 % 0.52% 0.50 % 0.18 % 0.15 %

Table 10. Grid independence validation at 7 = 2900. The parameters are the same as in table 8.

evolution of the linear EHD plume with different sponge regions, as shown in figure 19.
According to the results presented in table 9 and figure 19, S2 is adopted. To summarise,
we have decided a proper computational domain with H, = 5 and AH; = 2.

We next verify the independence of numerical results with respect to the grid resolution.
We test seven sets of grid sizes, as shown in table 10. The saturated maximum velocity
magnitude |U|;,, inside the flow domain has been calculated for different meshes. It can
be seen that relative errors of M2-M7 compared to M7 are all less than 1 %, indicating that
results converge at these mesh sizes. Thus, considering both the computational accuracy
and efficiency, we generate results with the mesh M4 in most cases in the results section.
We note that when calculating the results for larger T, a larger computational domain is
adopted (H), = 20 and AH, = 10), and a refined mesh (N, = 2950, N = 9) is used.
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Symbol Definition

C Dimensionless charge injection intensity

Fe Inverse of the charge diffusion coefficient

M Dimensionless charge mobility

T Electric Rayleigh number

H* (m) Distance from the blade tip to the plate electrode, used for non-dimensionalisation
H), Height of the physics domain

H,, Height of the whole domain

AHj{ Height of the sponge layer

0 Original point of the Cartesian coordinate

01, 02,03 Centre of vortex 1, 2, 3

I, T2, 13 Distance from the centre of vortex 1, 2, 3 to the corner

R Radius of curvature of the blade tip

Vg Azimuthal velocity

[volnt1/2 Absolute value of the local maximum azimuthal velocity of the nth vortex
2a Inter-electrode angle

0 Size ratio of adjacent vortices

w Eigenvalue

2 Intensity ratio of adjacent vortices

Table 11. Symbols used in this paper for the parameters and geometry.

Appendix C. Nomenclature

This work deals with a multi-physical flow with many different symbols to denote flow
parameters and the geometry. They are summarised in table 11.
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