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We consider the unit root testing problem with errors being nonlinear transforms
of linear processes+When the linear processes are long-range dependent, the asymp-
totic distributions in the unit root testing problem are shown to be functionals of
Hermite processes+ Functional limit theorems for nonlinear transforms of linear
processes are established+ The obtained results differ sharply from the classical
cases where asymptotic distributions are functionals of Brownian motions+

1. INTRODUCTION

The unit root testing problem has been extensively studied in the econometrics
literature+ In the paper we consider the following model:

yt � ryt�1 � ut , with r� 1, y0 � 0, (1)

and

ut � K~xt !, xt �(
i�0

`

ai «t�i , (2)

where ~«t !t�Z are independent and identically distributed ~i+i+d+! random vari-
ables with mean zero and finite variance, the real coefficients ~ai !i�0

` are
square summable, and K is a measurable function such that E @K~xt !# � 0 and
E @K 2~xt !# � `+ Here ~xt ! can be autoregressive moving average ~ARMA! or
fractional autoregressive integrated moving average ~ARIMA! processes and K
can be nonlinear functions+ See Granger and Joyeux ~1980! and Hosking ~1981!
for an introduction to fractionally integrated processes+ Dittmann and Granger
~2002! recently discussed nonlinear transforms of fractionally integrated pro-
cesses and found some very interesting properties+ We are interested in testing
the hypothesis H0 : r � 1 versus the alternative HA : r � 1+ Given the observa-
tions y0, + + + , yn, the least squares slope estimate has the form

The author thanks the referee and Professor B+ Hansen for their valuable suggestions+ The work is supported in
part by NSF grant DMS-04478704+ Address correspondence to Wei Biao Wu, Department of Statistics, Univer-
sity of Chicago, 5734 S+ University Avenue, Chicago, IL 60637, USA; e-mail: wbwu@galton+uchicago+edu+

Econometric Theory, 22, 2006, 1–14+ Printed in the United States of America+
DOI: 10+10170S0266466606060014

© 2006 Cambridge University Press 0266-4666006 $12+00 1

https://doi.org/10.1017/S0266466606060014 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060014


[rn �
(
t�1

n

yt yt�1

(
t�1

n

yt�1
2

+ (3)

In the classical unit root testing problem, ut are often assumed to be i+i+d+; see,
for example, Dickey and Fuller ~1979, 1981!+ In this case, it can be shown that

n~ [rn � 1!n
IB2~1!� 1

2�
0

1

IB2~t ! dt

, (4)

where IB is a standard Brownian motion and n denotes convergence in distri-
bution+ The i+i+d+ assumption is very restrictive in practice+ Various generaliza-
tions to dependent random variables have been extensively pursued for processes
with special dependence structures+ For a partial list, see Phillips ~1987! for
strong mixing processes, Phillips and Xiao ~1998! and Wang, Lin, and Gulati
~2002! for linear processes in which K~x!� x, and Chan and Terrin ~1995! for
Gaussian processes+ The limiting distributions can be similarly expressed as
functionals of Brownian motions+ In an important paper, Sowell ~1990! consid-
ers the unit root testing problem for long-memory processes+ In particular, Sow-
ell considers the special case of ~1! with the identity function K~x!� x and the
fractionally integrated series ut ; I ~d !, where � 1

2
_ , d , 1

2
_ + Namely,

ut � ~1 � B!�d«t �(
i�0

`

ai «t�i , where ak �
G~ j � d !

G~�d !G~ j � 1!
+ (5)

If 0 � d � 1
2
_ , then the covariance function of ut satisfies gu~k! � E~u0uk! ;

k 2d�1c for some constant c � 0, which is not summable because 2d � 1 � �1+
Such property is usually referred to as long-range dependence or long memory+
In this case, the limiting distribution is strikingly different from ~4!+ Sowell
~1990! proves that

n~ [rn � 1!n
IBH

2 ~1!

2�
0

1

IBH
2 ~t ! dt

, (6)

where IBH is the fractional Brownian motion with Hurst index H � d � 1
2
_ +

Namely, IBH is a mean zero Gaussian process with covariance function
cov@IBH ~s!, IBH ~t !# � ~t 2H � s 2H � 6 t � s62H !02, s, t � 0 ~cf+ Mandelbrot
and Van Ness, 1969!+ See also Wang, Lin, and Gulati ~2003! for some recent
developments+

Long-memory processes have received considerable attention in the econo-
metrics literature+ It would be impossible to compile a complete list+ See Baillie
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~1996! for an excellent survey and Robinson ~2003!, Doukhan, Oppenheim, and
Taqqu ~2003!, and Caporale and Gil-Alana ~2004!, among others, for some recent
contributions+ In this paper we shall generalize previous results on unit root
problems in two directions, namely, by allowing general nonlinear transforms
K and general forms of linear processes that include ARMA and fractional
ARIMA processes as special cases+ It turns out that, because of nonlinearity,
the asymptotic problem becomes considerably more challenging when K assumes
a general form than that in special cases such as K~w!� w+ On the other hand,
the limiting distributions have more interesting structures that appear rather atyp-
ical in the sense that they may no longer be functionals of Brownian motions+
Instead, under suitable conditions, the asymptotic distributions are functionals
of Hermite processes+ Dittmann and Granger ~2002! discuss nonlinear trans-
forms of fractionally integrated processes and show that the dependence struc-
ture of the transformed sequence ut � K~xt ! may be significantly different from
that of the input sequence xt +

The paper is structured as follows+ Section 2 presents functional limit theo-
rems for the partial sum process Sn � u1 � {{{ � un+ The latter problem has a
rich literature, and it plays an important role in unit root problems+ Our asymp-
totic results go beyond existing ones by allowing non-Gaussian processes and
general functionals K; see the discussion in Section 2+ Applications to the unit
root testing problem ~1! are made in Section 3+ Proofs are given in the Appendix+

2. FUNCTIONAL LIMIT THEOREMS

Functional limit theorems are powerful tools for asymptotic distributions of [rn

~Phillips, 1987!+ In this section we shall present a functional limit theory for
Sn � Sn~K !� u1 � {{{� un+ For t � 0 let St � S{t }� ~t � {t } !u{t }�1, where {t }
is the integer part of t+ Then St is a continuous function in t � 0+ Let C @0,1# be
the collection of all continuous functions defined on @0,1# and define the met-
ric d~ f, g!� sup0�t�16 f ~t !� g~t !6 for f, g � C @0,1# + For jn,j � C @0,1# , denote
by jn~t !n j~t ! the weak convergence of jn to j in the space C @0,1# under the
metric d+ See Billingsley ~1968! for an extensive treatment of the weak conver-
gence theory in C @0,1# + Under mild conditions, the limiting distributions of
$Snu,0 � u � 1% under proper scaling are shown to be either Hermite processes
or Brownian motions, depending on whether the process is long- or short-
memory and a quantity ~power rank! related to K+

Let 7j7 � @E~j 2!#102 be the L2 norm of the random variable j+ Define the
shift process Ft � ~ + + + ,«t�1,«t ! and the truncated processes xt, k � E~xt 6Fk!+
Then for n � 1, xn,0 � (i�n

` ai «n�i is independent of xn � xn,0 � (i�0
n�1 ai «n�i +

Now define functions

Kn~w! � E @K~w � xn � xn,0 !# and K`~w!� E @K~w � xn !# + (7)

Write kr for the r th derivative K`
~r!~0! if it exists+ We say that K has power

rank p if kp � 0 and kr � 0 for 1 � r � p � 1 ~Ho and Hsing, 1997!+ In the
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case of Gaussian processes, p is the Hermite rank ~Taqqu, 1975, 1979; Ditt-
mann and Granger, 2002!+ For a function g let g~w;l!� sup6y 6�l6g~w � y!6 be
the local maximal function+ Let C

p~R! ~ p � 0! be the collection of functions f
with pth-order partial derivatives+ To state our main results, we need the fol-
lowing condition+

Condition 1+ Let E~6«16q! � ` for some 2 � q � 4 and Kn � C
p�1~R! for

all large n+ Assume that for some l � 0,

(
a�0

p�1

7Kn�1
~a! ~xn,0 ;l!7� (

a�0

p�1

7 6«16q02Kn�1
~a! ~xn,1!7� 7«1 Kn�1

~ p! ~xn,1!7 � O~1!+ (8)

Condition 1 is actually quite mild; see Remark 1 in the Appendix and Exam-
ple 1 in Section 3 for more discussion+ This condition and relations ~12! and
~14!, which follow, impose certain smoothness requirements on Kn�1+ They are
easily verifiable+

Let $IB~u!, u � R% be a standard two-sided Brownian motion; let the sim-
plex St � $~u1, + + + ,ur ! � R

r :�` � u1 � {{{ � ur � t % + For 1
2
_ � b � 1

2
_ �

10~2r!, define the Hermite process ~cf+ Surgailis, 1982;Avram and Taqqu, 1987!

Zr,b~t ! ��
St

�
0

t

)
i�1

r

@max~v� ui ,0!#�b dv dIB~u1! + + +dIB~ur !+ (9)

When r � 1, Zr,b~t ! is the fractional Brownian motion with Hurst index 3
2
_ � b;

Zr,b~1! is called the multiple Wiener–Ito integral+ Throughout the paper the nota-
tion �~n! denotes a slowly varying function, namely, limnr`�~ln!0�~n! � 1
for all l � 0 ~Bingham, Goldie, and Teugels, 1987!+

THEOREM 1+ Assume that Condition 1 holds with q � 4 and that K has
power rank p � 1. Let an � n�b�~n! with 1

2
_ � b� 1, n � 1. (i) If p~2b�1!� 1,

then

$Snt 0sn, p , 0 � t � 1%n $kp Zp,b~t !, 0 � t � 1% (10)

in the space C @0,1# , where sn, p � n1�p~b�102!� p~n! . (ii) If p~2b � 1! � 1 or
p~2b � 1! � 1 and (n�1

` 6� p~n!60n � `, then

$Snt 0Mn , 0 � t � 1%n $sIB~t !, 0 � t � 1% (11)

in the space C @0,1# for some s � `.

THEOREM 2+ Assume (k�1
` 6ak 6 � ` and

7Kn�1~xn,1!� Kn�1~xn,0 !7 � O~6an�16!+ (12)
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Then

$Snt 0Mn , 0 � t � 1%n $sIB~t !, 0 � t � 1% (13)

in the space C @0,1# for some s � `. A sufficient condition for (12) is

7Kn�1
' ~xn,0 ;1!7� 7Kn�1~xn,1!«17 � O~1!+ (14)

Theorems 1 and 2 improve previous results in several aspects+We shall com-
pare our results with earlier ones that are based on strong mixing processes
and near-epoch dependence ~NED!+ The concept of strong mixing is proposed
by Rosenblatt ~1956!; see the review by Bradley ~1986! for various strong
mixing conditions+ Gallant and White ~1988! apply NED to characterize weak
dependence+

Functional central limit theorems for strongly mixing processes have been
widely discussed in the literature; see Peligrad ~1986! for an excellent survey+
However, for linear processes very restrictive conditions on the decay rate of
an are needed to ensure the strong mixing property; see Withers ~1981!,Andrews
~1984!, Pham and Tran ~1985!, Gorodetskii ~1977!, and Doukhan ~1994! for
more discussion about mixing properties of linear processes+ Withers ~1981!
shows that, if E~«i

2! � `, then under certain regularity conditions on the den-
sity function of «i and the inequality

(
n�1

`

max~An
103 ,MAn 6log An 6! � `,

the process xt is strong mixing+ Here An � (i�n
` ai

2+ In the case that an � n�d ,
n � 1, the preceding inequality requires d � 2 and the strong mixing coeffi-
cients ak � O@(n�k

` max~An
103 ,MAn 6log An 6!# � O~k ~4�2d!03! ~Withers, 1981!+

For strong mixing processes, the celebrated central limit theorem by
Ibragimov and Linnik ~1971! asserts that Sn 0Mn is asymptotically normal if
(k�1
` ak

g0~2�g! � ` and E @6K~xt !62�g# � ` hold for some g � 0+ See Theo-
rem 18+5+3 in Ibragimov and Linnik ~1971!+ Therefore, even under the stronger
moment condition E @6K~xt !63# � ` ~namely, g � 1!, one needs to impose
@~4 � 2d!03# ~ 1

3
_ ! � �1, or d � 13

2
_ , to ensure the asymptotic normality of

Sn 0Mn + In comparison, our natural summability condition (k�1
` 6ak 6 � ` only

needs d � 1+
We now compare our Theorems 1 and 2 with limit theorems for linear pro-

cesses based on NED+ De Jong and Davidson ~2000! recently developed new
conditions for functional limit theorems for near-epoch dependent sequences;
see Theorem 3+1 therein+ In particular, we consider the weak convergence of
$Snu 0Mn , 0 � u � 1% for two special cases ~i! K~x! � x and ~ii! K~x! � x 2 �
E~xt

2!+
Generally speaking, limit theorems for transforms of linear processes based

on NED require stronger conditions on the decay rate of ~an! toward 0, espe-
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cially when the function K is nonlinear+ In comparison, our results impose min-
imal conditions on an+A key condition in Theorem 3+1 of De Jong and Davidson
~2000! is that K~xt !0Mn is L2-NED of size � 1

2
_ on «t ; namely, there exists an

h � 0 such that

7K~xt !0Mn � E @K~xt !0Mn 6«t�m ,«t�m�1, + + + ,«t�m #7 � n�102O~m�102�h !+ (15)

See Definition 1 and Assumption 1 in De Jong and Davidson ~2000! for more
details+ Under ~i!, namely, K~x! � x, the NED condition ~15! requires that
Am�1

102 � M(i�m�1
` ai

2 � O~m�102�h!+ The latter relation implies (k�1
` 6ak 6 � `

in view of

(
k�2

`

6ak 6 � (
j�0

`

(
l�2 j�1

2 j�1

6aj 6

� (
j�0

`

2 j02� (
l�2 j�1

2 j�1

aj
2�102

� (
j�0

`

2 j02MA2 j�1 �(
j�0

`

2 j02O~2 j~�102�h! ! � `+

It is easily seen that the summability condition (k�1
` 6ak 6 � ` does not imply

the NED condition Am�1
102 � O~m�102�h!+ To see this, let an � 10~n log2 n!,

n � 2+ Then the NED condition is violated, and our summability condition of
Theorem 2 is weaker+ On the other hand, De Jong and Davidson’s result has its
advantage in that it can be applied to nonstationary processes+

Consider case ~ii!+ In this case K is an Appell polynomial+ Let E~«i
4! � `,

E~«i
2! � 1, and an � n�d , n � 1 with some d � 1

2
_ + Then the NED condition

~15! requires d � 1+ To this end, let ym �(i�0
m ai «m�i and zm � xm � ym+ Then

E~xm
2 6«0 ,«1, + + + ,«2m ! � E~zm

2 ! � ym
2 and xm

2 � E~xm
2 6«0 ,«1, + + + ,«2m ! � zm

2 �
E~zm

2 ! � 2ym zm+ Elementary calculations show that there is a c � 0 such that
7zm

2 � E~zm
2 ! � 2ym zm7 ; cm102�d as m r `, which by ~15! implies d � 1 �

h � 1+ However, by ~ii! of Theorem 1, the functional limit theorem ~11! holds
under the weaker condition d � 3

4
_ because K~x! � x 2 � E~xt

2! has power
rank 2 in view of K`~w! � E~w � xt !

2 � E~xt
2! � w 2 , K`

' ~0! � 0, and
K`
''~0! � 0+ The condition d � 3

4
_ is much weaker, and it allows some long-

range dependent sequences+ It is optimal in the sense that the limiting distribu-
tion is the Rosenblatt process if 1

2
_ � d � 3

4
_ , as asserted by ~i! of Theorem 1 or

Avram and Taqqu ~1987!+ Dittmann and Granger ~2002! point out the similar
phenomenon that the square of a Gaussian I ~d ! process shows less dependence
than the input process+

There is a substantial history regarding the asymptotic distributions of Sn �
Sn~K !+ Our results extend earlier ones in several aspects+ Central and non-
central limit theorems for Sn~K ! have been established for stationary Gaussian
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processes ~xt ! by Sun ~1963!, Taqqu ~1975, 1979!, and Breuer and Major ~1983!,
among others+ In particular, Taqqu ~1975! established ~10! for functionals of
Gaussian processes+ For non-Gaussian processes, the functional convergence
~10! has been established for K with special forms+ For example, Davydov ~1970!
considers K~x!� x, and Surgailis ~1982! assumes that K is analytic and «0 has
moments of all order+ Appell polynomials are discussed in Avram and Taqqu
~1987! and Giraitis and Surgailis ~1986!+ Surgailis ~2000! considers the finite-
dimensional convergence of ~10! and assumes that either K is a polynomial or
~xt ! is associated with some Gaussian processes+ It is a difficult problem to
derive limit theorems for Sn if K is not analytic and the linear process ~xt ! is
non-Gaussian+ The difficulty is partly due to the fact that, in the non-Gaussian
case, the associated Appell polynomials are no longer orthogonal+ In the Gauss-
ian case, they are Hermite polynomials and, hence, orthogonal ~Taqqu, 1975,
1979; Granger and Newbold, 1976; Giraitis and Surgailis, 1986!+ Ho and Hsing
~1997! made a breakthrough and proved that Sn0sn, p n kp Zp,b~1!, a marginal
version of ~10!+ See the latter paper for further references+ The functional con-
vergence is needed in unit root problems+ Our Theorem 1 shows functional con-
vergence for non-Gaussian processes under mild conditions on K+ For other
contributions see Wu ~2002, 2003b!, where noninstantaneous transforms and
infinite variance linear processes are discussed+

3. ASYMPTOTICS OF THE UNIT ROOT STATISTICS

The functional limit theorems 1 and 2 easily lead to the asymptotic distribu-
tions of the unit root statistic [rn, which are functionals of Hermite processes or
Brownian motions as asserted by Theorems 3 and 4, respectively+ We omit the
proofs of the latter theorems because they routinely follow from the argument
in Phillips ~1987!+ Unfortunately, we know very little about the analytical prop-
erties of the limiting distribution in ~iii! of Theorem 3+ In comparison, Dickey
and Fuller ~1979! show that ~4! has a nice representation+ For statistical testing,
quantiles of the limiting distribution in ~iii! of Theorem 3 can be obtained by
extensive simulations+

THEOREM 3+ Under assumption (i) of Theorem 1, we have as n r ` that

(i) ~nsn, p
2 !�1 (i�1

n yi�1
2 n kp

2*0
1 Zp,b

2 ~u! du;

(ii) sn, p
�2(i�1

n ui yi�1 n
1
2
_kp

2 Zp,b
2 ~1!;

(iii) n~ [rn � 1! n 1
2
_ Zp,b

2 ~1!0*0
1 Zp,b

2 ~u! du.

THEOREM 4+ Under the assumptions of Theorem 2 or (ii) of Theorem 1,
we have
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(i) n�2 (i�1
n yi�1

2 n s 2*0
1 IB2~u! du;

(ii) n�1 (i�1
n ui yi�1 n

1
2
_s 2 @IB2~1! � g# , where g � E~u0

2!0s 2;
(iii) n~ [rn � 1! n 1

2
_ @IB2~1! � g#0*0

1 IB2~u! du.

If k1 � 0, then the power rank of K is 1+ Hence the asymptotic distribution
asserted by Theorem 3 with p � 1 is the same as Sowell’s result if 1

2
_ � b � 1+

In this case, the asymptotic distributions are expressed as functionals of frac-
tional Brownian motions+ An interesting phenomenon happens when p � 2, as
shown by Example 1+

Example 1

Let K~w!� 6w 6� E6xt 6+ Assume that the density function f of xt is symmetric,
namely, f ~x! � f ~�x!+ Then

K`~w! ��
R

6w � x 6 f ~x! dx ��
R

6x 6 f ~x! dx ��
R

6x 6@ f ~x � w!� f ~x!# dx+

Assume that *R6xf '~x!6dx �`, *R6xf ''~x!6dx �`, and k2 � *R6x 6 f ''~x! dx � 0+
Then the power rank of K is 2 because k1 � *R6x 6 f '~x! dx � 0 in view of the
symmetry of K+ If 1

2
_ � b � 3

4
_ , then Theorem 3 and ~i! of Theorem 1 are appli-

cable+ In this case, the limiting distribution is called the Rosenblatt process
~Taqqu, 1975!+ On the other hand, if 3

4
_ � b � 1, then as in the classical cases,

the limiting distributions are functionals of Brownian motions ~Theorem 4!+
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APPENDIX

We shall apply the central limit theory for Markov chains to prove our main results+ Let
~jn!n�Z be a stationary and ergodic Markov chain; let Fi � ~ + + + ,ji�1,ji ! and define the
projection operator

Pi X � E~X 6Fi !� E~X 6Fi�1!+

By the Markovian property, Pk g~ji ! � E @g~ji !6jk# � E @g~ji !6jk�1# if k � i +

LEMMA 1+ Assume that the Markov chain ~jn!n�Z is stationary and ergodic and the
function g satisfies E @g~j1!# � 0 and E @g2~j1!# � `. Let Sn � (i�1

n g~ji ! . Further
assume that

s0 :� (
i�0

`

7P0 g~ji !7 � `+ (A.1)

Then 7Sn7 � s0Mn and $Snu 0Mn, 0 � u � 1% n $sIB~u!, 0 � u � 1% in C @0,1# , where
s � 7(i�0

` P0 g~ji !7.

Lemma 1 is adapted from Hannan ~1979!, and it provides a useful tool for functional
limit theorems for stationary processes+ We shall apply it to g~ji ! � ui � K~xi !, where
the shift process ji � Fi � ~ + + + ,«j�1,«j ! is clearly a Markov chain+ In such cases we are
able to obtain bounds for 7P0 g~ji !7 ~cf+ Theorem 5, which follows!, and thus condition
~A+1! is verifiable+

Asymptotic Expansions. For j � 2 let An~ j ! � (t�n
` 6at 6 j , An � An~2!, un �

6an�16@6an�16 � An
102~q! � An

p02# , Qn �(k�1
n un , and Jn, p � nQn

2 �(i�1
` ~Qn�i � Qi !

2 +
Define

Sn~L
~ p! ! � (

i�1

n

L~ p! ~Fi !,

where

L~ p! ~Fn ! � K~xn !�(
r�0

p

kr Un, r and Un, r � (
0�j1�{{{�jr�`

)
s�1

r

ajs«n�js + (A.2)
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LEMMA 2+ Condition 1 implies that

E @Kn
~a!~xn,0 !6F�1# � Kn�1

~a! ~xn,�1! almost surely, a� 0,1, + + + , p; (A.3)

7Kn�1
~a! ~xn,1!� Kn

~a!~xn,0 !� Kn
~a�1!~xn,0 !an�1«17 � O~6an�16q02 !,

a� 0,1, + + + , p � 1; (A.4)

and

7Kn
~ p!~xn,0 !� K`

~ p!~0!72 � O~An !+ (A.5)

Remark 1. If a � 0, then ~A+3! is valid by the smoothing property of conditional
expectations+ For larger a, differentiation under the expectation sign is required+ A sim-
ple recursion yields that E @Kn

~a!~xn,0 !6F�i # � Kn�i
~a!~xn,�i ! almost surely for all i � 0+

Roughly speaking, ~A+4! is a first-order Taylor’s expansion+

Proof of Lemma 2. Assume without loss of generality that l� 1+ For a � p let d�
an�1«1, Rn

~a! � Kn�1
~a! ~xn,1! � Kn�1

~a! ~xn,0 !, and Tn
~a! � Rn

~a! � Kn�1
~1�a!~xn,0 !d+ By Taylor’s

expansion, 6Tn
~a!16d6�16 �

1
2
_ 6d6q02Kn�1

~a�2!~xn,0 ;1! because d216d6�1 � 6d6q02 + On the other
hand,

6Tn
~a! 616d6�1 � 6Rn

~a! 616d6�1 � 6Kn�1
~1�a!~xn,0 !d616d6�1 � 6Rn

~a!6 6d6q02 � 6Kn�1
~1�a!~xn,0 !6 6d6q02+

Hence 7Tn
~a!7 � O~6an�16q02! by ~8! and the independence between «1 and F0, and

7Rn
~a!7 � O~6an�16!+ For ~A+3!, it suffices to show that

E @Kn�1
~a! ~xn,1!6F0 # � Kn

~a!~xn,0 ! (A.6)

holds for a � p+ We shall use an induction argument+ The case in which a� 0 trivially
follows+ By letting w r 0 in the identity

1

w
E @Kn�1~w � xn,1!� Kn�1~xn,1!6F0 # �

1

w
@Kn~w � xn,0 !� Kn~xn,0 !# ,

we have ~A+6! with a � 1 by the first term of ~8! and the Lebesgue dominated conver-
gence theorem+ The general case a � 2 follows recursively+ Observe that for a � p, by
~A+6!,

7Kn�1
~a! ~xn,0 !� Kn

~a!~xn,0 !7 � 7E~Tn
~a! 6F0 !7� 7Tn

~a!7� O~6an�16q02 !

and similarly 7Kn�1
~ p! ~xn,0 ! � Kn

~ p!~xn,0 !7 � O~6an�16!+ Relation ~A+4! follows from
7Tn
~a!7 � O~6an�16q02!, as does 7Kn�1

~a! ~xn,1! � Kn
~a!~xn,0 !7 � O~6an�16!+ Finally,

7Kn
~a!~xn,0 !� K`

~a!~0!72 � (
i��`

0

7Kn�i
~a!~xn, i !� Kn�i�1

~a! ~xn, i�1!72 � (
i��`

0

O~an�i
2 !

entails ~A+5! via the stationarity of xn+ �
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THEOREM 5 (Reduction principle). Suppose that Condition 1 holds with p � 1+ Then

7P1 L~ p! ~Fn !7 � O~un !+ (A.7)

Proof. Let Nn
~a!~F0 !� K`

~a!~0!�(r�1
p�aK`

~r�a!~0!E~Un, r 6F0 ! and define Mn
~a!~F0 !�

Kn
~a!~xn,0 ! � Nn

~a!~F0 !+ Then E @L~ p!~Fn!6F0# � Mn
~0!~F0 !+ Observe that for i � �1,

Pi�1 Nn
~a!~F0 ! � K`

~a�1!~0!an�i�1«i�1 � (
r�2

p�a

K`
~r�a!~0!E~Un, r�16Fi !an�i�1«i�1, (A.8)

which has the same distribution as Nn�i
~a�1!~F0 !an�i�1«1 via stationarity of Fn+ Now we

claim by backward induction that for all p � a � 0,

7Mn
~a!~F0 !72 � O@An~q!� An

p�a�1# + (A.9)

When a� p, ~A+9! follows from ~A+5! because Mn
~a!~F0 !� Kn

~a!~xn,0 !� K`
~a!~0!+ Sup-

pose ~A+9! holds for a� m, where 1 � m � p, and consider the case a� m � 1+ So for
i � �1,

7Kn�i
~a�1!~xn,�i !an�i�1«i�1 � Pi�1 Nn

~a!~F0 !72 � an�i�1
2 O@An�i ~q!� An�i

p�m�1# (A.10)

by the induction hypothesis and ~A+8!+ By Lemma 2,

7Pi�1 Kn
~a!~xn,0 !� Kn�i

~a�1!~xn,�i !an�i�1«i�17 � O~6an�i�16q02 ! (A.11)

because E @Kn
~a!~xn,0 !6Fi # � Kn�i

~a!~xn,�i !+ By ~A+10!, ~A+11!, and the orthogonality
of Pi ,

7Mn
~a!~F0 !72 � (

i��`

�1

7Pi�1 Mn
~a!~F0 !72

� (
i��`

�1

O~6an�i�16q � an�i�1
2 @An�i ~q!� An�i

p�m�1# !

� O@An~q!� An
p�m�2# +

Thus the induction is finished, and ~A+7! follows by setting a � 0 and i � �1+ �

Central and Noncentral Limit Theorems

COROLLARY 1+ Suppose that Condition 1 holds with p � 1. Then

7Sn~L
~ p! !72 � O~Jn, p !+ (A.12)

In particular, let 6an6� O@n�b�~n!# with 1
2
_ � b � 1 and q � 4. Then (i) Jn, p � O~n! if

~ p � 1!~2b� 1! � 1; (ii) Jn, p � O@n2�~ p�1!~1�2b!�2~ p�1!~n!# if ~ p � 1!~2b� 1! � 1;
(iii) Jn, p � O$n@(m�1

n � p�1~m!0m# 2% if ~ p � 1!~2b � 1! � 1.
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Proof. Observe that 7Pi�1 L~ p!~Fj !7 � 7P1 L~ p!~Fj�i !7, which is zero if j � i + Hence

7Sn~L
~ p! !72 � (

i��`

n�1

7Pi�1 Sn~L
~ p! !72

� (
i��`

n�1 � (
j�1�max~i,0!

n

7Pi�1 L~ p! ~Fj !7�2

,

by the orthogonality of Pk{+ So ~A+12! follows from ~A+7!+ If 6an6 � O@n�b�~n!# , then
~i!–~iii! follow from Lemma 5 in Wu ~2003a! as easy applications of Karamata’s theorem+

�

Remark 2. Corollary 1 goes beyond the important results by Ho and Hsing ~1997!
in several aspects+ In particular, the imposed condition ~8! is weaker and an is allowed
to have forms other than n�b�~n!+ Moreover, if 6an6 � O@n�b�~n!# , then Corollary 1
gives a sharper bound+ Ho and Hsing obtain the bound max~n, n2�~ p�1!~2b�1!�z! for
any z � 0+ At a technical level, our induction argument appears much simpler, and it
can be easily generalized to multiple linear processes+ In addition, ~A+12! does not require
the finiteness of the fourth moment of «1, whereas E~«1

8! � ` is needed in Ho and
Hsing+

Proof of Theorem 1. ~i! We generically say that ~10! is a noncentral limit theorem
because the asymptotic distribution is non-Gaussian if p � 2 and because the norming
sequence sn, p grows faster than Mn , the norming sequence used in the class central
limit theorem for i+i+d+ random variables with finite variances+ To prove ~10!, let Wm �

(i�1
m Ui, p , where Un, r is defined in ~A+2!+ Because p~2b � 1! � 1, by Lemma 5 in

Surgailis ~1982! or Theorem 2 in Avram and Taqqu ~1987!, $Wnt 0sn, p, 0 � t � 1% n
$Zp,b~t !, 0 � t � 1% in C @0,1# + Note that Sm~L~ p! !� Sm~K !� kpWm+ Recall Corollary 1
for the bound of Jn, p+ By considering three cases ~ p � 1!~2b � 1! � 1, ~ p � 1!
~2b � 1! � 1, and ~ p � 1!~2b � 1! � 1 separately, it is easily seen that maxk�nJk, p �
o~sn, p

2 ! because p~2b� 1! � 1+ Thus the finite-dimensional convergence of Snt 0sn, p to
K`
~ p!~0!Zp,b~t ! holds+ It remains to verify the tightness+ By Theorem 12+3 in Billingsley
~1968!, we need to show that there exist C � ` and g � 1 such that

7Sk72

sn, p
2

� C
kg

ng
(A.13)

holds for all n � 1 and 1 � k � n+ Because Jn, p � o~sn, p
2 !, 7Sm7; 6km6sm, p as mr `+

Let g� 3
2
_ � p~b� 1

2
_ ! � 1+ Then by elementary properties of slowly varying functions,

lim
nr`

max
k�n

ngsk, p
2

kgsn, p
2

� lim
nr`

max
k�n

kg�1�2p~k!

ng�1�2p~n!
� 1,

which entails ~A+13! and completes the proof of part ~i!+
~ii! In this case it is interesting to observe that the limiting distribution in ~11! is

Brownian motion even though ~xt ! is long-range dependent+ To prove ~11!, by Lemma 1,
it suffices to show that (n�1

` 7P0 L~ p! ~Fn !7 � ` and (n�1
` 7P0 Un, p7 � ` because

g~xn! � L~ p!~Fn! � kpUn, p+ The former easily follows from Theorem 5 under the pro-
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posed conditions of ~an!+ As to the latter, observe that 7P0Un, p72 � an
2 An

p�1~E~«1
2!! p +

Hence 7P0Un, p7 � O@n�b�~1�2b!~ p�1!02� p~n!# is also summable over n+ �

Proof of Theorem 2. Let ~«n
' ! be an i+i+d+ copy of ~«n! and xn,1

' � xn,1 �
an�1~«1

' � «1!+ Then E @Kn�1~xn,1
' !6F0 # � Kn~xn,0! and ~13! follows from Lemma 1 in

view of

7P1 K~xn !7 � 7Kn�1~xn,1!� Kn~xn,0 !7� 7E @Kn�1~xn,1!� Kn�1~xn,1
' !6F0 #7

� 7Kn�1~xn,1!� Kn�1~xn,1
' !7� 27Kn�1~xn,1!� Kn�1~xn,0 !7

� O~6an�16!+

That ~14! entails ~12! follows from the argument in the proof of Lemma 2+ �
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