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UNIT ROOT TESTING FOR
FUNCTIONALS OF
LINEAR PROCESSES

WEI Biao Wu

University of Chicago

We consider the unit root testing problem with errors being nonlinear transforms
of linear processes. When the linear processes are long-range dependent, the asymp-
totic distributions in the unit root testing problem are shown to be functionals of
Hermite processes. Functional limit theorems for nonlinear transforms of linear
processes are established. The obtained results differ sharply from the classical
cases where asymptotic distributions are functionals of Brownian motions.

1. INTRODUCTION

The unit root testing problem has been extensively studied in the econometrics
literature. In the paper we consider the following model:

Ve = PYi—1 + U, with P = 1’ Yo = 0’ (1)
and
u, = K(xr)’ X = 2 a; & (2)

i=0

where (g,),ez are independent and identically distributed (i.i.d.) random vari-
ables with mean zero and finite variance, the real coefficients (a;)i~, are
square summable, and K is a measurable function such that E[K(x,)] = 0 and
E[K?(x,)] < co. Here (x,) can be autoregressive moving average (ARMA) or
fractional autoregressive integrated moving average (ARIMA) processes and K
can be nonlinear functions. See Granger and Joyeux (1980) and Hosking (1981)
for an introduction to fractionally integrated processes. Dittmann and Granger
(2002) recently discussed nonlinear transforms of fractionally integrated pro-
cesses and found some very interesting properties. We are interested in testing
the hypothesis Hy: p = 1 versus the alternative H,: p # 1. Given the observa-
tions yy, ..., y,, the least squares slope estimate has the form
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pu= " A3)

In the classical unit root testing problem, u, are often assumed to be i.i.d.; see,
for example, Dickey and Fuller (1979, 1981). In this case, it can be shown that

B3(1) —1
w1 —2 WL @

f IB? (t)dt

where IB is a standard Brownian motion and = denotes convergence in distri-
bution. The i.i.d. assumption is very restrictive in practice. Various generaliza-
tions to dependent random variables have been extensively pursued for processes
with special dependence structures. For a partial list, see Phillips (1987) for
strong mixing processes, Phillips and Xiao (1998) and Wang, Lin, and Gulati
(2002) for linear processes in which K(x) = x, and Chan and Terrin (1995) for
Gaussian processes. The limiting distributions can be similarly expressed as
functionals of Brownian motions. In an important paper, Sowell (1990) consid-
ers the unit root testing problem for long-memory processes. In particular, Sow-
ell considers the special case of (1) with the identity function K(x) = x and the
fractionally integrated series u, ~ I(d), where —1 < d < 3. Namely,

i r'(j—d)
u,=(1—B)"%,= D ae,_;,, whereaq,= ————. (5)
2 CrEarG+

If 0 < d < 3, then the covariance function of u, satisfies y,(k) = E(uou;) ~
k29~ ¢ for some constant ¢ > 0, which is not summable because 2d — 1 > —1.
Such property is usually referred to as long-range dependence or long memory.
In this case, the limiting distribution is strikingly different from (4). Sowell
(1990) proves that

n(p, = (6)

where By is the fractional Brownian motion with Hurst index H = d + 1
Namely, By is a mean zero Gaussian process with covariance function
cov[By(s),By(t)] = (t* + s2H — |t — s|*)/2, 5,t = 0 (cf. Mandelbrot
and Van Ness, 1969). See also Wang, Lin, and Gulati (2003) for some recent
developments.

Long-memory processes have received considerable attention in the econo-
metrics literature. It would be impossible to compile a complete list. See Baillie
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(1996) for an excellent survey and Robinson (2003), Doukhan, Oppenheim, and
Taqqu (2003), and Caporale and Gil-Alana (2004), among others, for some recent
contributions. In this paper we shall generalize previous results on unit root
problems in two directions, namely, by allowing general nonlinear transforms
K and general forms of linear processes that include ARMA and fractional
ARIMA processes as special cases. It turns out that, because of nonlinearity,
the asymptotic problem becomes considerably more challenging when K assumes
a general form than that in special cases such as K(w) = w. On the other hand,
the limiting distributions have more interesting structures that appear rather atyp-
ical in the sense that they may no longer be functionals of Brownian motions.
Instead, under suitable conditions, the asymptotic distributions are functionals
of Hermite processes. Dittmann and Granger (2002) discuss nonlinear trans-
forms of fractionally integrated processes and show that the dependence struc-
ture of the transformed sequence u, = K(x,) may be significantly different from
that of the input sequence x;.

The paper is structured as follows. Section 2 presents functional limit theo-
rems for the partial sum process S, = u; + --- + u,. The latter problem has a
rich literature, and it plays an important role in unit root problems. Our asymp-
totic results go beyond existing ones by allowing non-Gaussian processes and
general functionals K; see the discussion in Section 2. Applications to the unit
root testing problem (1) are made in Section 3. Proofs are given in the Appendix.

2. FUNCTIONAL LIMIT THEOREMS

Functional limit theorems are powerful tools for asymptotic distributions of p,
(Phillips, 1987). In this section we shall present a functional limit theory for
S, =S,(K)=u+ -+ +u, Fort=01letS, =58, + (t — [1])u;)+1, where [ 7]
is the integer part of ¢. Then S, is a continuous function in ¢ = 0. Let C[0,1] be
the collection of all continuous functions defined on [0,1] and define the met-
ric d( f, g) = supo=,=1| f(t) — g(t)| for f, g € C[0,1]. For &,,& € C[0,1], denote
by &,(1) = &(r) the weak convergence of &, to £ in the space C[0,1] under the
metric d. See Billingsley (1968) for an extensive treatment of the weak conver-
gence theory in C[0,1]. Under mild conditions, the limiting distributions of
{S,4,0 = u = 1} under proper scaling are shown to be either Hermite processes
or Brownian motions, depending on whether the process is long- or short-
memory and a quantity (power rank) related to K.

Let | &] = [E(£2)]"? be the L?> norm of the random variable &. Define the
shift process F; = (...,&,_1,¢,) and the truncated processes x,, = E(x;|F).
Then for n =1, x,0 = 2", a;8&,_; is independent of x,, — X, 0 = 27— d; &,_;.
Now define functions

K,(w) = E[K(w+x,—x,0)] and K,(w)=E[K(w+x,)]. 7

Write «, for the rth derivative K (0) if it exists. We say that K has power
rank p if k, # 0 and k, = 0 for 1 = r = p — 1 (Ho and Hsing, 1997). In the
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case of Gaussian processes, p is the Hermite rank (Taqqu, 1975, 1979; Ditt-
mann and Granger, 2002). For a function g let g(w;A) = sup),=,|g(w + y)| be
the local maximal function. Let C”(R) (p = 0) be the collection of functions f
with pth-order partial derivatives. To state our main results, we need the fol-
lowing condition.

Condition 1. Let E(|&]?) < co for some 2 < g = 4 and K,, € C**!(R) for
all large n. Assume that for some A > 0,

pt1 p—1
Z HKysi)l(xn,o;/\)H + 2 I |81|q/2Krfg)l(xn,l)” + ||81Krff)1(xn,1)” = O(1). 8)
a=0 a=0

Condition 1 is actually quite mild; see Remark 1 in the Appendix and Exam-
ple 1 in Section 3 for more discussion. This condition and relations (12) and
(14), which follow, impose certain smoothness requirements on K,,_;. They are
easily verifiable.

Let {IB(u), u € R} be a standard two-sided Brownian motion; let the sim-
plex S, = {(uy,...,u,) ER": =0 < uy < -+ <u, <t}.For3 <B <3+
1/(2r), define the Hermite process (cf. Surgailis, 1982; Avram and Taqqu, 1987)

Z, 5(1) = L Jotﬁ [max (v — u;,0)] # dvdB(u,)...dIB(u,). 9)

i=1

When r =1, Z, 5(t) is the fractional Brownian motion with Hurst index - pB;
Z, 5(1) is called the multiple Wiener—lIto integral. Throughout the paper the nota-
tion €(n) denotes a slowly varying function, namely, lim,_, . €(An)/€(n) = 1
for all A > 0 (Bingham, Goldie, and Teugels, 1987).

THEOREM 1. Assume that Condition 1 holds with ¢ = 4 and that K has
powerrankp=1. Leta,=n"Pe(n) withs <B<1L,n=1. (i) Ifp2B —1) <1,
then
1Sulo, ,, 0=t=1}={k,Z, 5(1),0=1=1} (10)

in the space C[0,1], where o, , = n'PB=V2¢r(n). (ii) If p2B — 1) > 1 or
p(2B —1)=1and 2 ,|€7(n)|/n < oo, then

{Sm/\/ﬁ,oStsl}:{oB(t),OStsl} 11

in the space C[0,1] for some o < co.

THEOREM 2. Assume 2 ,|a,| < oo and

”Kn—l(xn,l) - Kn—l(xn,())” = O(|an—1 |) 12)
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Then

{S,/\Nn,0=t=1}={cB(1),0=t=1} (13)
in the space C[0,1] for some o < oo. A sufficient condition for (12) is
|K— 1 (x0: DI+ 1K= (x, ) & | = O(1). (14)

Theorems 1 and 2 improve previous results in several aspects. We shall com-
pare our results with earlier ones that are based on strong mixing processes
and near-epoch dependence (NED). The concept of strong mixing is proposed
by Rosenblatt (1956); see the review by Bradley (1986) for various strong
mixing conditions. Gallant and White (1988) apply NED to characterize weak
dependence.

Functional central limit theorems for strongly mixing processes have been
widely discussed in the literature; see Peligrad (1986) for an excellent survey.
However, for linear processes very restrictive conditions on the decay rate of
a,, are needed to ensure the strong mixing property; see Withers (1981), Andrews
(1984), Pham and Tran (1985), Gorodetskii (1977), and Doukhan (1994) for
more discussion about mixing properties of linear processes. Withers (1981)
shows that, if E(g?) < oo, then under certain regularity conditions on the den-
sity function of &; and the inequality

n=1
> 2 S

the process x, is strong mixing. Here A, = 22, a?. In the case that a, = n"°,

n = 1, the preceding inequality requires § > 2 and the strong mixing coeffi-
cients a, = O[22 max (A3 VA, |logA,|)] = O(k“ 29/3) (Withers, 1981).
For strong mixing processes, the celebrated central limit theorem by
Ibragimov and Linnik (1971) asserts that S,/ Vn is asymptotically normal if
> ) < o and E[|K(x,)|**"] < oo hold for some y > 0. See Theo-
rem 18.5.3 in Ibragimov and Linnik (1971). Therefore, even under the stronger
moment condition E[|K(x,)|?] < oo (namely, y = 1), one needs to impose
[(4 — 28)/3](3) < —1, or 8 > 3, to ensure the asymptotic normality of
S,/ Vn. In comparison, our natural summability condition >~ |a,| < co only
needs 6 > 1.

We now compare our Theorems 1 and 2 with limit theorems for linear pro-
cesses based on NED. De Jong and Davidson (2000) recently developed new
conditions for functional limit theorems for near-epoch dependent sequences;
see Theorem 3.1 therein. In particular, we consider the weak convergence of
{S,./Nn, 0 = u = 1} for two special cases (i) K(x) = x and (i) K(x) = x? —
E(x?).

Generally speaking, limit theorems for transforms of linear processes based
on NED require stronger conditions on the decay rate of (a,) toward 0, espe-
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cially when the function K is nonlinear. In comparison, our results impose min-
imal conditions on a,,. A key condition in Theorem 3.1 of De Jong and Davidson
(2000) is that K(x,)/Nn is L,-NED of size —1 on ¢,; namely, there exists an
1n > 0 such that

K (x)/Nn = E[K(x)/NBl &, s & mitseees&romll = n720(m=1277). (15)

See Definition 1 and Assumption 1 in De Jong and Davidson (2000) for more
details. Under (i), namely, K(x) = x, the NED condition (15) requires that

A2 = NX” . a? = 0(m/>77). The latter relation implies ;- ,|a,| < oo

in view of
%) e’} 2/+1
Dlad=2 > lal
k=2 J=071=2741
- Qi+l 1/2
=> 2j/2< > af)
Jj=0 1=27+1

= 2 2/’/2%42_rl = E 202021127 < oo,
j=0

It is easily seen that the summability condition >;_,|a,| < co does not imply
the NED condition A2, = O(m~'/?>""). To see this, let a, = 1/(nlog?n),
n = 2. Then the NED condition is violated, and our summability condition of
Theorem 2 is weaker. On the other hand, De Jong and Davidson’s result has its
advantage in that it can be applied to nonstationary processes.

Consider case (ii). In this case K is an Appell polynomial. Let E(&}') < oo,
E(g?) =1, and a, = n %, n = 1 with some & > 1. Then the NED condition
(15) requires 8 > 1. To this end, let y,, = >/~ a,¢€,,_; and z,, = X,, — y,,. Then
E(x2|&9,&15..0580,) = E(z2) + y2 and x2 — E(x2|eg,&1,...,8,,) = 22 —
E(z2) + 2¥,,2,». Elementary calculations show that there is a ¢ > 0 such that
lz2 — E(z2) + 2Ym2m| ~ cm'/>7% as m — oo, which by (15) implies § =1 +
1n > 1. However, by (ii) of Theorem 1, the functional limit theorem (11) holds
under the weaker condition 8 > 3 because K(x) = x> — E(x?) has power
rank 2 in view of K (w) = E(w + x,)> — E(x?) = w?, K,,(0) = 0, and
K!(0) # 0. The condition 8 > 3 is much weaker, and it allows some long-
range dependent sequences. It is optimal in the sense that the limiting distribu-
tion is the Rosenblatt process if 3 < 8 < 3, as asserted by (i) of Theorem 1 or
Avram and Taqqu (1987). Dittmann and Granger (2002) point out the similar
phenomenon that the square of a Gaussian /(d) process shows less dependence
than the input process.

There is a substantial history regarding the asymptotic distributions of S, =
S,(K). Our results extend earlier ones in several aspects. Central and non-
central limit theorems for S, (K) have been established for stationary Gaussian
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processes (x,) by Sun (1963), Tagqu (1975, 1979), and Breuer and Major (1983),
among others. In particular, Taqqu (1975) established (10) for functionals of
Gaussian processes. For non-Gaussian processes, the functional convergence
(10) has been established for K with special forms. For example, Davydov (1970)
considers K (x) = x, and Surgailis (1982) assumes that K is analytic and &, has
moments of all order. Appell polynomials are discussed in Avram and Taqqu
(1987) and Giraitis and Surgailis (1986). Surgailis (2000) considers the finite-
dimensional convergence of (10) and assumes that either K is a polynomial or
(x,) is associated with some Gaussian processes. It is a difficult problem to
derive limit theorems for S, if K is not analytic and the linear process (x,) is
non-Gaussian. The difficulty is partly due to the fact that, in the non-Gaussian
case, the associated Appell polynomials are no longer orthogonal. In the Gauss-
ian case, they are Hermite polynomials and, hence, orthogonal (Taqqu, 1975,
1979; Granger and Newbold, 1976; Giraitis and Surgailis, 1986). Ho and Hsing
(1997) made a breakthrough and proved that S, /o, , = «,Z, z(1), a marginal
version of (10). See the latter paper for further references. The functional con-
vergence is needed in unit root problems. Our Theorem 1 shows functional con-
vergence for non-Gaussian processes under mild conditions on K. For other
contributions see Wu (2002, 2003b), where noninstantaneous transforms and
infinite variance linear processes are discussed.

3. ASYMPTOTICS OF THE UNIT ROOT STATISTICS

The functional limit theorems 1 and 2 easily lead to the asymptotic distribu-
tions of the unit root statistic p,,, which are functionals of Hermite processes or
Brownian motions as asserted by Theorems 3 and 4, respectively. We omit the
proofs of the latter theorems because they routinely follow from the argument
in Phillips (1987). Unfortunately, we know very little about the analytical prop-
erties of the limiting distribution in (iii) of Theorem 3. In comparison, Dickey
and Fuller (1979) show that (4) has a nice representation. For statistical testing,
quantiles of the limiting distribution in (iii) of Theorem 3 can be obtained by
extensive simulations.

THEOREM 3. Under assumption (i) of Theorem I, we have as n — oo that

(l) (na-nz,p - ;IZI yiz—l = K;fol Z;,B(u) dl/t,'
(ii) 0,5 2y ;i1 = 36,7 5(1);
(iii) n(p, — 1) = 322 s(1)/fy Z2 5(u) du.

THEOREM 4. Under the assumptions of Theorem 2 or (ii) of Theorem I,
we have
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(i) N2 32 y2 = o2y B*(u) du;
(ii) n! 2?21 U yi—1 = %UZ[BZ(I) - ’}’], where y = E(M(Z))/O'z;
(iii) n(p, — 1) = 3[B*(1) — y1/f, B*(u) du.

If k; # 0, then the power rank of K is 1. Hence the asymptotic distribution
asserted by Theorem 3 with p = 1 is the same as Sowell’s result if 3 < 8 < 1.
In this case, the asymptotic distributions are expressed as functionals of frac-
tional Brownian motions. An interesting phenomenon happens when p = 2, as
shown by Example 1.

Example 1

Let K(w) = |w| — E|x,|. Assume that the density function f of x, is symmetric,
namely, f(x) = f(—x). Then

KOO(W)=JRw+xf(x)dx—lexf(x)dx=JRIXI[f(x—W)—f(x)]dX-

Assume that [p|xf’'(x)|dx < oo, [g|xf"(x)|dx < oo, and K, = [p|x|f"(x) dx # 0.
Then the power rank of K is 2 because k; = [g|x|f'(x) dx = 0 in view of the
symmetry of K. If 5 < 8 < 2, then Theorem 3 and (i) of Theorem 1 are appli-
cable. In this case, the limiting distribution is called the Rosenblatt process
(Tagqu, 1975). On the other hand, if 3 < 8 < 1, then as in the classical cases,
the limiting distributions are functionals of Brownian motions (Theorem 4).
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APPENDIX

We shall apply the central limit theory for Markov chains to prove our main results. Let
(&,)nez be a stationary and ergodic Markov chain; let 7 = (..., &;—1,&;) and define the
projection operator

P X = E(X|F) — E(X[Fi-y).

By the Markovian property, P,g(é;) = E[g(é)|é] — E[g(é)1ér1]if k= i.

LEMMA 1. Assume that the Markov chain (&,,),ez is stationary and ergodic and the
function g satisfies E[g(&,)] = 0 and E[g*(&¢))] < co. Let S, = 27—, g(&;). Further
assume that

o0 = 2 [Pyg(&)] < oo (A1)
i=0

Then |S,| = aoNn and {S,,/Nn, 0 = u =1} = {oB(u), 0 = u = 1} in C[0,1], where
g = I\E?iopog(fi)l\-

Lemma 1 is adapted from Hannan (1979), and it provides a useful tool for functional
limit theorems for stationary processes. We shall apply it to g(&;) = u; = K(x;), where
the shift process &; = F; = (...,&;_1,&;) is clearly a Markov chain. In such cases we are
able to obtain bounds for |Pyg(&;)| (cf. Theorem 5, which follows), and thus condition
(A.1) is verifiable.

Asymptotic Expansions. For j = 2 let A,(j) = 22,la,|’, A, = A,2), 6, =
‘anf1|[|anf1| + A:z/Z(q) + A5/2]7 ®n = 22:1 07” and E'l,p = ’1@% + E?il(e)nﬂ' - ®i)2~
Define

S,,(L(p)) = 2 L(p)(‘Fi)’
i=1
where

[1 r
L'"(F,) =K(x,) — X« U,, and U,,= > [Ma e, ;. (A.2)

r=0 0=j;<---<j,<oo s=1
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LEMMA 2. Condition 1 implies that
E[K“(x,0)|F 1= K,Eﬁ)l(x,,,,l) almost surely, a=0,1,...,p; (A.3)
1K (o) = K (0x0) = KL D 0)a, 1] = O] 72),

a=0,1,...,p—1; (A4

and
IKA" (x,,0) = K2 O)> = O(A,). (A.5)

Remark 1. If @ = 0, then (A.3) is valid by the smoothing property of conditional
expectations. For larger «, differentiation under the expectation sign is required. A sim-

ple recursion yields that E[K{*(x, )| F ;] = K,fﬂ(x,,,,,-) almost surely for all i = 0.
Roughly speaking, (A.4) is a first-order Taylor’s expansion.

Proof of Lemma 2. Assume without loss of generality that A = 1. Fora = p let 6 =
ayre1, RS = K9 (x,1) = K, % (x,0), and T, = R\ — K" (x,,4)8. By Taylor’s

n—1

expansion, [T,/ 15-,| = H8]92K T (x,.0;1) because 8215=; = |8]%/2. On the other
hand,

T 5y = (R 521 + KT (0,0) 8 121 = [RE][8]9% + | Ky (x,.0)1 18]/

Hence |T/¥| = O(]a,_,|?*) by (8) and the independence between &, and F, and
IR\ | = O(la,_+]). For (A.3), it suffices to show that

E[K (x, ) Fo] = K\ (x,,0) (A.6)

holds for & = p. We shall use an induction argument. The case in which @ = 0 trivially
follows. By letting w — 0 in the identity

1
;E[ l(w+xn1) n l(xn1)|‘7:0] - [Kn(w-"_xn,()) _Kn(xn,o)]y

we have (A.6) with @ = 1 by the first term of (8) and the Lebesgue dominated conver-
gence theorem. The general case @ = 2 follows recursively. Observe that for a < p, by
(A.6),

IKA) (x,00) = K\ (x,0) = |E(T | F)|

IN

17 = O(la,-,|*?)

and similarly HK“)](X,, o) — KP(x,0) = O(la,—|). Relation (A.4) follows from
1T = Olan—1]?), as does K\ (x,,1) = K (x,,0)| = O] @,1]). Finally,

0 0
1K (x,0) = KON = 3 1K %, 0) = Ky (e DIP = > Oa2)

i=—o00 i=—o00

entails (A.5) via the stationarity of x,,. u
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THEOREM 5 (Reduction principle). Suppose that Condition 1 holds with p = 1. Then
|7 LP(F)] = O(6,). (A7)
Proof. Let N\ (%) = K.(0) + - K" (0)E(U, | F,) and define M(®(F,) =

Ky (x,,0) = N (F). Then E[LW(F,)| Fy] = M7 (F,). Observe that for i = —1,

p—a
Pi+1Nn(a)(]:0) = K;oaﬂ)(o)an—i—lsiﬂ + E K¥+Q)(0)E(Un,r—1|]:i)an—i—18i+1’ (A.8)

r=2

which has the same distribution as N,ff,ﬂ) (Fy)a,_;_ &, via stationarity of F,. Now we
claim by backward induction that for all p = @ = 0,

|M{“(F)I? = O[A,(g) + AL (A.9)

When @ = p, (A.9) follows from (A.5) because M\ (F) = K\ (x,4) — K.(0). Sup-
pose (A.9) holds for @ = m, where 1 = m = p, and consider the case @« = m — 1. So for
i=-1,

HKrfg?])(xn,—i)an—i—l5i+1 - Pi+1Nrfﬂ)(‘7-—())|‘2 = aﬁ—i—lo[An—i(‘I) +A5:im+l] (A.10)
by the induction hypothesis and (A.8). By Lemma 2,

P K,E“)(xmo) - Kigi?l)(xn,—i)an—i—l gl = O(la,_i—117?) (A.11)
because E[K®(x,0)|F] = K\(x,_;). By (A.10), (A.11), and the orthogonality
of P,',

—1

IM 2 (F)I? = 2 [P My (F)I?

i=—o0

—1
S O, |" + a2 \[A, (g) + AL

= O[A,(9) +A; "]
Thus the induction is finished, and (A.7) follows by setting @« = 0 and i = —1. n
Central and Noncentral Limit Theorems
COROLLARY 1. Suppose that Condition 1 holds with p = 1. Then

IS, (L) = O(E, ). (A.12)

=
In particular, let |a,| = O[n~PL(n)] with 5 < B < 1 and q = 4. Then (i) E, , = O(n) if

(p+ 1B =1)> 1 (ii) B, , = O[n> PV D ()] if (p + (2B — 1) < 1;
(i) B, p = Otn[ 25 €77 (m)/m]?Hif (p + DB — 1) = 1.
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Proof. Observe that | P, LW (F)| = [P, L% (F-,;)|, which is zero if j =< i. Hence

n—1

1S, (LPY? = 2 [Py S,(LP)]?

i=—o0

Si{ > ||7>,-+.L<P>(f,-)\|},

i=—oo U j=1+max(i,0)

by the orthogonality of P;-. So (A.12) follows from (A.7). If |a,| = O[n~#€(n)], then
(i)—(iii) follow from Lemma 5 in Wu (2003a) as easy applications of Karamata’s theorem.
|

Remark 2. Corollary 1 goes beyond the important results by Ho and Hsing (1997)
in several aspects. In particular, the imposed condition (8) is weaker and a, is allowed
to have forms other than n~#€(n). Moreover, if |a,| = O[n"#€(n)], then Corollary 1
gives a sharper bound. Ho and Hsing obtain the bound max (n, n2~(P+DCE=D+{) for
any ¢ > 0. At a technical level, our induction argument appears much simpler, and it
can be easily generalized to multiple linear processes. In addition, (A.12) does not require
the finiteness of the fourth moment of &, whereas E(e¥) < co is needed in Ho and
Hsing.

Proof of Theorem 1. (i) We generically say that (10) is a noncentral limit theorem
because the asymptotic distribution is non-Gaussian if p = 2 and because the norming
sequence o, , grows faster than Vn, the norming sequence used in the class central
limit theorem for i.i.d. random variables with finite variances. To prove (10), let W,, =
2L, U, ,, where U, , is defined in (A.2). Because p(2B8 — 1) < 1, by Lemma 5 in
Surgailis (1982) or Theorem 2 in Avram and Taqqu (1987), {W, /0, ,, 0 =t =1} =
{z, (1), 0 =t =1} in C[0,1]. Note that S,,(L?) = S,,(K) — k,W,,. Recall Corollary 1
for the bound of E, ,. By considering three cases (p + )28 — 1) < 1, (p + 1)
(2B —1)>1,and (p + 1)(2B — 1) = 1 separately, it is easily seen that max;=, Sy, , =
oo} ,») because p(28 — 1) < 1. Thus the finite-dimensional convergence of S,,/a,, , to
Kéo")(O)Zp,B(t) holds. It remains to verify the tightness. By Theorem 12.3 in Billingsley
(1968), we need to show that there exist C < co and y > 1 such that

ISd? _ K
—<c— (A.13)

T n”
holds for all n = 1 and 1 = k < n. Because 2, , = 0(0;; ), |Sul ~ [kl 03, , as m — o0,
Lety =32 — p(B — %) > 1. Then by elementary properties of slowly varying functions,

o, kY1 (k)
lim max ——— = lim max —————— =1,
n—oo k=n kyo-nz,p n—oo k=n n}/*l{Z}?(n)
which entails (A.13) and completes the proof of part (i).

(i) In this case it is interesting to observe that the limiting distribution in (11) is
Brownian motion even though (x,) is long-range dependent. To prove (11), by Lemma 1,
it suffices to show that 2, |P,L”(F,)| < oo and 2;,[P,U, | < oo because

g(x,) = L'Y(F,) + k,U, ,. The former easily follows from Theorem 5 under the pro-
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posed conditions of (a,). As to the latter, observe that [PyU,, ,|* = azA? ' (E(ef))?.
Hence |PyU, ,| = O[n A+1=28(p=1/2¢ P ()] is also summable over n. u

Proof of Theorem 2. Let (g,) be an iid. copy of (g,) and x,, = x,; +
a,— (g} — €1). Then E[K,_,(x,,,)| F] = K,(x,0) and (13) follows from Lemma 1 in
view of

”P1 K(xn)“ = ” Kn—l(xn,l) - Kn(xn,o)” = ”E[anl(xn,l) - K;rl(xr’,,l)|~7:()]”
= HKn—l(xn,l) - Ku—l(xr’,,l)u = 2”Kn—1(xn,1) - Kn—l(xn,o)”
= O(|an—1|)~

That (14) entails (12) follows from the argument in the proof of Lemma 2. u
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