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We study the propagation of nonlinear waves in non-relativistic electron–positron
plasmas. The waves are assumed to propagate at small angles with respect to the
equilibrium magnetic field. We derive the equation describing the wave propagation
under the assumption that the waves are weakly dispersive and also can weakly
depend on spatial variables orthogonal to the equilibrium magnetic field. We obtain
solutions of the derived equation describing solitons. Then we study the stability of
solitons with respect to transverse perturbations.
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1. Introduction
The problem of wave propagation in electron–positron plasmas attracted the

attention of theorists for a few decades, first of all in relation to astrophysical
applications. It is believed that in astrophysics electron–positron plasmas exist in
pulsar magnetospheres (Sturrock 1971; Ruderman & Sutherland 1975; Chian &
Kennel 1983; Arons & Barnard 1986; Aharonian, Bogovalov & Khangulyan 2012;
Cerutti & Beloborodov 2017), active galactic nuclei (Ruffini, Vereshchagin & Xue
2010; El-Labany et al. 2013; Kawakatu, Kino & Takahara 2016) and the early
universe (Gailis, Frankel & Dettmann 1995; Shukla 2003; Tatsuno et al. 2003). It is
believed that large-amplitude low-frequency waves play and important role in such
astrophysical processes as slowing down of pulsars, pulsar radiation and cosmic ray
acceleration.

The linear theory of wave propagation in electron–positron plasmas was developed
using both a hydrodynamic as well as a kinetic description (Sakai & Kawata 1980a;
Arons & Barnard 1986; Stewart & Laing 1992). The nonlinear theory of waves in
electron–positron plasmas has been also developed. The nonlinear Schrödinger equation
was derived and used to study the modulational instability and envelope solitons
(Chian & Kennel 1983; Cattaert, Kourakis & Shukla 2005; Rajib, Sultana & Mamun
2015). The Korteweg–de Vries (KdV) and modified Korteweg–de Vries (mKdV)
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equations were obtained and the dependence of the width and amplitude of solitons
described by these equations on parameters of an unperturbed state was studied
(Verheest & Lakhina 1996; Lakhina & Verheest 1997; Rajib et al. 2015).

We aim to study the propagation of nonlinear waves that is quasi-parallel with
respect to the equilibrium magnetic field. In the case of electron–ion plasmas
this problem was intensively studied during a few decades. It was shown that the
one-dimensional quasi-parallel propagation of nonlinear waves is described by the
derivative nonlinear Schrödinger (DNLS) equation (Rogister 1971; Mio et al. 1976a;
Mjølhus 1976; Ruderman 2002). This equation was used to study the modulational
instability of circularly polarised Alfvén waves (Mio et al. 1976b; Mjølhus 1976).
The DNLS equation describes a few kinds of solitons as well as the generation of
rogue waves (Ichikawa et al. 1980; Mjølhus & Hada 1997; Fedun, Ruderman &
Erdélyi 2008). It was shown that the DNLS equation is completely integrable, the
Lax pair for this equation was found and the inverse scattering method was used to
obtain exact solutions (Kaup & Newell 1978; Kawata & Inoue 1978).

Later, an extension of the DNLS equations to two and three dimensions (three-
dimensional DNLS) was derived (Mjølhus & Wyller 1986; Ruderman 1987; Mjølhus
& Hada 1997). This extension is similar to that obtained by Kadomtsev & Petviashvili
(1970) (the KP equation) for the KdV equation. The three-dimensional (3-D) DNLS
was used to study the stability of solitons of the DNLS equation with respect to
transvers perturbations (Ruderman 1987; Mjølhus & Hada 1997).

The propagation of large-amplitude Alfvén waves parallel to the external magnetic
field has been also studied in an electron–positron plasma (Sakai & Kawata 1980a,b;
Mikhailovskii, Onishchenko & Smolyakov 1985a; Mikhailovskii, Onishchenko &
Tatarinov 1985b,c; Verheest 1996; Lakhina & Verheest 1997). It was shown that, in
contrast to the electron–proton plasma, nonlinear waves propagating parallel to the
magnetic field are described by the vector form of the mKdV equation.

In this paper we aim to extend this vector mKdV equation to two and three
dimensions. First studies of waves in electron–positron plasmas were related to
astrophysical applications. However, the progress of experimental physics then
opened the possibility of creation of electron–positron plasmas in the laboratory
(Surko, Leventhal & Passner 1989; Surko & Murphy 1990; Greaves, Tinkle & Surko
1994; Liang, Wilks & Tabak 1998; Gahn et al. 2000; Bell & Kirk 2008; Chen et al.
2009; Sarri et al. 2013). Another example is the semi-conductor plasma, where holes
behave like positive charges with a mass equal to that of the electrons (Shukla et al.
1986). Although in astrophysical applications an electron–positron plasma is almost
always relativistic, a non-relativistic electron–positron plasma is also of astrophysical
interest. It can radiate very effectively by cyclotron emission. As a result, it cools
and eventually becomes non-relativistic. As for laboratory plasmas, in many cases
they can be described in the non-relativistic approximation. This observation inspired
Iwamoto (1993) and Zank & Greaves (1995) to study waves in non-relativistic
electron–positron plasmas.

The propagation of nonlinear waves and, in particular, solitons, for electron–ion
plasmas were extensively studied in laboratory experiments (e.g. Ikezi 1973; Tran
1979; Lonngren 1983). To our knowledge up to now there have been no experimental
studies of waves in electron–positron plasmas. Apparently, this is related to the
substantial difficulty of creating electron–positron plasmas in the laboratory. Hence,
theorists are ahead of experimentalists in studying waves in these plasmas. The state
of affairs here is the same as was in the case of electron–ion plasmas, where nonlinear
waves were studied theoretically much earlier than experimentally. There is no doubt
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that waves in electron–positron plasmas will be studied experimentally because they
are of great importance for understanding physical phenomena both in astrophysical
as well as in laboratory plasmas.

In this article we also use the non-relativistic approximation that strongly
simplifies the derivation of the multi-dimensional generalisation of the mKdV
equation. The article is organised as follows. In the next section we formulate
the problem and present the governing equations. In § 3 we briefly discuss the linear
theory. In § 4 we derive the equation describing small-amplitude weakly dispersive
quasi-three-dimensional nonlinear waves. In § 5 we obtain the solutions describing
planar one-dimensional solitons. In § 6 we study the soliton stability with respect to
transvers perturbations. Section 7 contains the summary of the obtained results and
conclusion.

2. Problem formulation and governing equations
We consider the propagation of nonlinear waves along the equilibrium magnetic

field in a plasma that consists of electrons and positrons. We treat the electron and
positron components as two charged fluids. We do not consider the annihilation or pair
creation, meaning that the particle number is conserved. We use the non-relativistic
approximation, meaning that the velocities of the two fluids are much smaller than
the speed of light c, and the pressure of each fluid is much smaller than the density
times c2. We also assume that the phase speed of propagation of small perturbations
is much smaller than c. The plasma motion is described by the mass conservation and
momentum equations

∂ns

∂t
+∇ · (nsvs)= 0, (2.1a)

∂vs

∂t
+ (vs · ∇)vs +

∇ps

mns
=

qs

m
(E+ vs ×B). (2.1b)

In these equations ns is the number density, vs the velocity, ps the pressure, m the
electron mass and s=+ and s=− refers to the positrons and electrons, respectively;
E is the electrical field, B is the magnetic field, q+ = q, q− = −q and q is the
elementary charge. We assume that the motion is adiabatic and take

ps = p0

(
ns

n0

)κ
, (2.2)

where n0 and p0 are the unperturbed number density and pressure (the same for the
electrons and positrons), and κ(= 5/3) is the adiabatic exponent. Equations (2.1a)–
(2.2) must be supplemented with the Maxwell equations. Since we use the non-
relativistic approximation, we can neglect the displacement current and write the
Maxwell equations as

∇ ·E=
ρ

ε 0
, (2.3a)

∇ ·B= 0, (2.3b)

∇×E=−
∂B
∂t
, (2.3c)

∇×B=µ0 j, (2.3d)
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where ε0 is the permittivity of free space, µ0 is the permeability of free space and
the total electrical charge and current densities are determined by

ρ = ρ+ + ρ− = q(n+ − n−), (2.4a)
j= j

+
+ j
−
= q(n+v+ − n−v−). (2.4b)

Recall that ε0µ0 = c−2.
We assume that in the equilibrium n+ = n− = n0, v+ = v− = 0, E= 0 and B= B0ex,

where ex is the unit vector along the x-axis of Cartesian coordinates x, y, z.

3. Linear theory
Here, we briefly describe the linear theory of wave propagation because below we

use it as a guide for scaling when deriving the equation governing the propagation
of nonlinear waves. Since below we study the nonlinear wave propagation along
the magnetic field, we only consider linear wave propagation in the equilibrium
magnetic field direction. We linearise (2.1) and (2.2) and then take perturbations of
all quantities proportional to exp[i(kx−ωt)]. As a result, we obtain two disconnected
systems of algebraic equations. The first system is for the perturbations of the number
density, pressure and x-components of the velocity and electric field. It describes the
longitudinal wave mode. We do not study this mode in detail and only state that, in
the long wavelength approximation, its phase speed is a0 = (κp0/mn0)

1/2. This speed
can be considered as the sound speed.

The second system is for the y and z-components of the velocity, electric field and
magnetic field perturbation. It describes transversal wave modes. Below we derive the
equation describing the nonlinear transverse waves. Hence, here we present a more
detailed study of this wave mode. The transverse waves are described by

ωmv⊥s = iqs(E⊥ − B0ex × v⊥s), (3.1a)
kE⊥ =−ωex ×B⊥, (3.1b)

ikex ×B⊥ =µ0qn0(v⊥+ − v⊥−), (3.1c)

where

v⊥s = (0, vys, vzs), (3.2a)
E⊥ = (0, Ey, Ez), B⊥ = (0, By, Bz). (3.2b)

Introducing the plasma bulk velocity and electrical current,

v⊥ =
1
2(v⊥+ + v⊥−), j= qn0(v⊥+ − v⊥−), (3.3a,b)

we obtain from (3.1a) and (3.1c)

ωmn0v⊥ =−
i
2

B0ex × j, (3.4)

E⊥ = B0ex × v⊥ −
iωm j
2n0q2

, (3.5)

ikex ×B⊥ =µ0 j. (3.6)

Equation (3.5) is Ohm’s law. The second term on the right-hand side is similar to
the Hall term in the Ohm’s law for the electron–ion plasma. However, the Hall term
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would be proportional to ex × j rather than j as in (3.5). This difference is related to
the fact that the masses of positively and negatively charged particles are the same in
the electron–positron plasma, while the mass of positively charged particles is much
larger than the mass of negatively charged particles in the electron–ion plasma. The
dispersion of waves propagating along the magnetic field in an electron–ion plasma is
related to the account of ion inertia in the induction equation, while the electron inertia
is neglected. In contrast, in an electron–positron plasma the inertia of both electrons
and positrons is accounted for.

Equations (3.1b) and (3.4)–(3.6) constitute the system of linear homogeneous
algebraic equations. It only has non-trivial solutions when its determinant is zero.
This condition gives the dispersion equation

mω2(mk2
+ 2µ0q2n0)= q2k2B2

0. (3.7)

For small values of k this dispersion equation reduces to the approximate form

ω= kV(1− k2`2), (3.8)

where

V =
B0

√
2µ0mn0

, `=
1
2q

√
m
µ0n0

. (3.9a,b)

The wave dispersion is related to the presence of the second term in (3.5). If we
neglect this term, then the dispersion relation reduces to ω= kV .

The condition that k is small is written as k` � 1. In the non-relativistic
approximation we must have a phase speed much smaller than the speed of light,
V� c. This condition reduces to B2/µ0�mn0c2, that is, the magnetic energy density
is much smaller than the rest density of the plasma. We note that the term describing
the wave dispersion (the second term in the brackets in (3.8)) is proportional to k2.
In the case of an electron–ion plasma it is proportional to k.

4. Derivation of equation for small-amplitude nonlinear waves
We consider nonlinear waves propagating along the equilibrium magnetic field. We

expect that the equation describing the nonlinear wave propagation will be similar to
the 3-D DNLS equation describing quasi-parallel propagation of nonlinear waves in
an ion–electron plasma with the only difference being that the term describing the
wave dispersion will be different. This difference arises from the fact that, as we
have already seen, the term describing the dispersion of waves in an electron–positron
plasma is proportional to k2, while it is proportional to k in the electron–ion plasma.

To derive the nonlinear equation describing the longitudinal propagation of nonlinear
waves we use the reductive perturbation method (Kakutani et al. 1968; Taniuti &
Wei 1968). In accordance with this method we introduce a dimensionless amplitude
of the order of ε � 1. In the linear theory the characteristic time is L/V , where L
is the characteristic length of perturbation and V is the phase speed of very long
waves. We assume that the ratio L/` is ε−1. The characteristic time of variation of
the perturbation shape caused by the nonlinearity and dispersion is ε−2L/V . We also
consider a weak dependence of the perturbations on y and z with the characteristic
scale ε−2L. On a time scale much smaller than ε−2L/V a perturbation propagates as a
wave with permanent shape with all variables only depending on x−Vt. In accordance
with the above analysis we introduce stretched variables

ξ = ε(x− Vt), η= ε2y, ζ = ε2z, τ = ε3t. (4.1a−d)
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With the aid of (2.4) we transform (2.1) and (2.3) in the new variables to

ε2 ∂ns

∂τ
− V

∂ns

∂ξ
+
∂(nsvxs)

∂ξ
+ ε∇⊥ · (nsv⊥s)= 0, (4.2a)

ε2 ∂vxs

∂τ
− V

∂vxs

∂ξ
+ vxs

∂vxs

∂ξ
+ εv⊥s · ∇⊥vxs

+
1

mns

∂ps

∂ξ
= ε−1 qs

m
[Ex + ex · (v⊥s ×B⊥)], (4.2b)

ε2 ∂v⊥s

∂τ
− V

∂v⊥s

∂ξ
+ vxs

∂v⊥s

∂ξ
+ ε(v⊥s · ∇⊥)v⊥s + ε

∇⊥ps

mns

= ε−1 qs

m
[E⊥ + ex × (vxsB⊥ − Bxv⊥s)], (4.2c)

∂Ex

∂ξ
+ ε∇⊥ ·E⊥ = ε−1 q

ε0
(n+ − n−), (4.2d)

∂Bx

∂ξ
+ ε∇⊥ ·B⊥ = 0, (4.2e)

ε2 ∂Bx

∂τ
− V

∂Bx

∂ξ
=−ε ex · ∇⊥ ×E⊥, (4.2f )

ε2 ∂B⊥
∂τ
− V

∂B⊥
∂ξ
=−ex ×

(
∂E⊥
∂ξ
− ε∇⊥Ex

)
, (4.2g)

εex · (∇⊥ ×B⊥)= ε−1qµ0(n+vx+ − n−vx−), (4.2h)

ex ×

(
∂B⊥
∂ξ
− ε∇⊥Bx

)
= ε−1qµ0(n+v⊥+ − n−v⊥−), (4.2i)

where

∇⊥ =

(
0,
∂

∂η
,
∂

∂ζ

)
. (4.3)

Now we look for the solution in the form of expansions in power series with respect
to ε,

ps = p0 + εp(1)s + ε
2p(2)s + ε

3p(3)s + · · · ,

ns = n0 + εn(1)s + ε
2n(2)s + ε

3n(3)s + · · · ,

vxs = εv
(1)
xs + ε

2v(2)xs + ε
3v(3)xs + · · · ,

v⊥s = εv
(1)
⊥s + ε

2v
(2)
⊥s + ε

3v
(3)
⊥s + · · · ,

Bx = B0 + εB(1)x + ε
2B(2)x + ε

3B(3)x + · · · ,

B⊥ = εB(1)
⊥ + ε

2B(2)
⊥ + ε

3B(3)
⊥ + · · ·

Ex = εE(1)x + ε
2E(2)x + ε

3E(3)x + · · · ,

E⊥ = εE(1)
⊥ + ε

2E(2)
⊥ + ε

3E(3)
⊥ + · · ·


(4.4)

We impose the boundary conditions at ξ→∞,

ns→ n0, ps→ p0, vxs→ 0, Bx→ B0,

Ex→ 0, v⊥s→ 0, B⊥→ 0, E⊥→ 0.

}
(4.5)

It follows from (4.5) that all quantities with the upper indices 1, 2 and so on tend to
zero as ξ→∞.
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4.1. The zero-order approximation
Substituting the expansions given by (4.4) in (4.2) and collecting terms of the order
of unity in (4.2b)–(4.2d), (4.2h) and (4.2i) we easily obtain

n(1)
+
= n(1)

−
= n(1), v(1)x+ = v

(1)
x− = v

(1)
x , (4.6a)

v
(1)
⊥+ = v

(1)
⊥− = v

(1)
⊥ , (4.6b)

E(1)x = 0, E(1)
⊥ = B0 ex × v

(1)
⊥ . (4.6c)

4.2. The first-order approximation
Collecting terms of the order of ε in (2.4a) and (4.2), and using (4.6) yields

V
∂n(1)

∂ξ
= n0

∂v(1)x

∂ξ
, p(1)s = κp0

n(1)

n0
, (4.7a)

1
mn0

∂p(1)s

∂ξ
− V

∂v(1)x

∂ξ
=

qs

m
[E(2)x + ex · (v

(1)
⊥ ×B(1)

⊥ )], (4.7b)

V
∂v

(1)
⊥

∂ξ
=−

qs

m
[E(2)
⊥ + ex × (v

(1)
x B(1)

⊥ − B(1)x v
(1)
⊥ − B0v

(2)
⊥s)], (4.7c)

n(2)
+
= n(2)

−
= n(2), v(2)x+ = v

(2)
x− = v

(2)
x , (4.7d)

V
∂B(1)
⊥

∂ξ
= ex ×

∂E(1)
⊥

∂ξ
,

∂B(1)x

∂ξ
= 0, (4.7e)

ex ×
∂B(1)
⊥

∂ξ
= qn0µ0(v

(2)
⊥+ − v

(2)
⊥−). (4.7f )

Equation (4.7b) represents two equations, one for s = +, and the other for s = −.
Adding and subtracting these equations we obtain

1
mn0

∂p(1)s

∂ξ
= V

∂v(1)x

∂ξ
, (4.8a)

E(2)x =−ex · (v
(1)
⊥ ×B(1)

⊥ ). (4.8b)

It follows from (4.7a), (4.8a), the second equation in (4.7e) and the boundary
conditions (4.5) that

n(1) = 0, p(1)s = 0, v(1)x = 0, B(1)x = 0. (4.9a−d)

Equation (4.7c) also represents two equations, one for s=+, and the other for s=−.
Adding and subtracting these equations and using (4.9) we obtain

∂v
(1)
⊥

∂ξ
=

qB0

2mV
ex × (v

(2)
⊥+ − v

(2)
⊥−), (4.10a)

2E(2)
⊥ = B0ex × (v

(2)
⊥+ + v

(2)
⊥−). (4.10b)

It follows from the first equation in (4.7e) and the last boundary condition in (4.5)
that

E(1)
⊥ =−Vex ×B(1)

⊥ . (4.11)
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Using the second equation in (4.6c) and (4.11) yields

B0v
(1)
⊥ + VB(1)

⊥ = 0. (4.12)

Substituting (4.12) in (4.8b) and (4.10a) yields

E(2)x = 0, v
(2)
⊥+ − v

(2)
⊥− =

2mV2

qB2
0

ex ×
∂B(1)
⊥

∂ξ
. (4.13a,b)

Equation (4.7f ) and the second equation in (4.13) constitute a linear homogeneous
system of equations for ∂B(1)

⊥ /∂ξ and v
(2)
⊥+−v

(2)
⊥−. It only has non-trivial solutions when

its determinant is zero. This condition determines that V is given by (3.9).

4.3. The second-order approximation

Now we collect terms of the order of ε2 in (2.2) and (4.2). As a result, we obtain

p(2)s = κp0
n(2)

n0
, V

∂n(2)

∂ξ
= n0

∂v(2)x

∂ξ
+ n0∇⊥ · v

(1)
⊥ , (4.14a)

a2
0

n0

∂n(2)

∂ξ
− V

∂v(2)x

∂ξ
=

qs

m
[E(3)3 + ex · (v

(1)
⊥ ×B(2)

⊥ + v
(2)
⊥s ×B(1)

⊥ )], (4.14b)

V
∂v

(2)
⊥s

∂ξ
=−

qs

m
[E(3)
⊥ − ex × (B0v

(3)
⊥s − v

(2)
x B(1)

⊥ + B(2)x v
(1)
⊥ )], (4.14c)

∂E(2)x

∂ξ
+∇⊥ ·E(1)

⊥ =
q
ε0
(n(3)
+
− n(3)

−
), (4.14d)

∂B(2)x

∂ξ
+∇⊥ ·B(1)

⊥ = 0, V
∂B(2)x

∂ξ
= ex · ∇⊥ ×E(1)

⊥ , (4.14e)

V
∂B(2)
⊥

∂ξ
= ex ×

∂E(2)
⊥

∂ξ
, (4.14f )

ex · ∇⊥ ×B(1)
⊥ = qµ0n0(v

(3)
x+ − v

(3)
x−) (4.14g)

ex ×
∂B(2)
⊥

∂ξ
= qµ0n0(v

(3)
⊥+ − v

(3)
⊥−). (4.14h)

Using (4.12) we transform the second equation in (4.14a) to

∂v(2)x

∂ξ
−

V
n0

∂n(2)

∂ξ
=

V
B0
∇⊥ ·B(1)

⊥ . (4.15)

Equation (4.14b) represents two equations, one for s = +, and the other for s = −.
Adding these equations we obtain

a2
0

n0

∂n(2)

∂ξ
− V

∂v(2)x

∂ξ
=

q
2m

ex · (v
(2)
⊥+ − v

(2)
⊥−)×B(1)

⊥ . (4.16)

Using (4.13) we transform this equation to

a2
0

n0

∂n(2)

∂ξ
− V

∂v(2)x

∂ξ
=−

V2

2B2
0

∂|B(1)
⊥ |

2

∂ξ
. (4.17)
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We find from (4.15) and (4.17)

∂n(2)

∂ξ
=

n0V2

B0(V2 − a2
0)

(
1

2B0

∂|B(1)
⊥ |

2

∂ξ
−∇⊥ ·B(1)

⊥

)
, (4.18a)

∂v(2)x

∂ξ
=

V
V2 − a2

0

(
V2

2B2
0

∂|B(1)
⊥ |

2

∂ξ
−

a2
0

B0
∇⊥ ·B(1)

⊥

)
. (4.18b)

Using (4.11) and the first equation in (4.13) we obtain from (4.14d)

q(n(3)
+
− n(3)

−
)= ε0Vex · ∇⊥ ×B(1)

⊥ . (4.19)

Finally, (4.14c) represents two equations, one for s = +, and the other for s = −.
Subtracting the second equation from the first one yields

2E(3)
⊥ − ex × [B0(v

(3)
⊥+ + v

(3)
⊥−)− 2v(2)x B(1)

⊥ + 2B(2)x v
(1)
⊥ ] =−

mV
q
∂(v

(2)
⊥+ − v

(2)
⊥−)

∂ξ
. (4.20)

4.4. The third-order approximation

In the third-order approximation we collect the terms of the order of ε3 in (4.2c),
(4.2g) and (4.2i) to obtain

∂v
(1)
⊥

∂τ
+ v(2)x

∂v
(1)
⊥

∂ξ
− V

∂v
(3)
⊥s

∂ξ
+ (v

(1)
⊥ · ∇⊥)v

(1)
⊥ +

a2
0

n0
∇⊥n(2)

=
qs

m
[E(4)
⊥ + ex × (v

(2)
x B(2)

⊥ + v
(3)
xs B(1)

⊥ − B0v
(4)
⊥s − B(2)x v

(2)
⊥s − B(3)x v

(1)
⊥ )], (4.21a)

∂E(3)
⊥

∂ξ
= ex ×

(
∂B(1)
⊥

∂τ
− V

∂B(3)
⊥

∂ξ

)
+∇⊥E(2)x , (4.21b)

ex ×

(
∂B(3)
⊥

∂ξ
−∇⊥B(2)x

)
= qµ0[n0(v

(4)
⊥+ − v

(4)
⊥−)+ n(2)(v(2)⊥+ − v

(2)
⊥−)]. (4.21c)

Equation (4.21a) represents two equations, one for s = +, and the other for s = −.
Adding these equations we obtain

∂v
(1)
⊥

∂τ
+ v(2)x

∂v
(1)
⊥

∂ξ
−

V
2
∂(v

(3)
⊥+ + v

(3)
⊥−)

∂ξ
+

a2
0

n0
∇⊥n(2) + (v(1)⊥ · ∇⊥)v

(1)
⊥

=
q

2m
ex × [B(1)

⊥ (v
(3)
x+ − v

(3)
x−)− B(2)x (v

(2)
⊥+ − v

(2)
⊥−)− B0(v

(4)
⊥+ − v

(4)
⊥−)]. (4.22)

Using (4.7f ), (4.11), (4.13) and (4.14g) we transform (4.20) and (4.21b)–(4.22) to

2ex ×
∂E(3)
⊥

∂ξ
+ B0

∂(v
(3)
⊥+ + v

(3)
⊥−)

∂ξ
=

mV
qn0µ0

∂3B(1)
⊥

∂ξ 3
+

2
B0

∂

∂ξ
[B(1)
⊥ (VB(2)x + B0v

(2)
x )], (4.23a)

∂E(3)
⊥

∂ξ
+ Vex ×

∂B(3)
⊥

∂ξ
= ex ×

∂B(1)
⊥

∂τ
, (4.23b)
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10 M. S. Ruderman

∂B(3)
⊥

∂ξ
+ qµ0n0ex × (v

(4)
⊥+ − v

(4)
⊥−)=

n(2)

n0

∂B(1)
⊥

∂ξ
+∇⊥B(2)x , (4.23c)

qB0

2m
ex × (v

(4)
⊥+ − v

(4)
⊥−)−

V
2
∂(v

(3)
⊥+ + v

(3)
⊥−)

∂ξ

=
V2

B2
0

[
B(2)x

∂B(1)
⊥

∂ξ
+ (ex ×B(1)

⊥ )ex · ∇⊥ ×B(1)
⊥

]
+

V
B0

∂B(1)
⊥

∂τ
+

Vv(2)x

B0

∂B(1)
⊥

∂ξ

−
a2

0

n0
∇⊥n(2) −

V2

B2
0
(B(1)
⊥ · ∇⊥)B

(1)
⊥ . (4.23d)

The system of (4.23) is the system of linear inhomogeneous algebraic equations for
∂E(3)
⊥ /∂ξ , ∂B(3)

⊥ /∂ξ , ∂(v(3)⊥+ + v
(3)
⊥−)/∂ξ and v

(4)
⊥+ − v

(4)
⊥−. Using the expression for V

it is straightforward to show that the determinant of this system is zero. Then the
system of (4.23) has non-trivial solution only if the compatibility condition is satisfied.
This condition is

∂B(1)
⊥

∂τ
+ V`2 ∂

3B(1)
⊥

∂ξ 3
+

1
2

B(1)
⊥

(
∂v(2)x

∂ξ
+

V
B0

∂B(2)x

∂ξ

)
+
∂B(1)
⊥

∂ξ

(
V
B0

B(2)x −
Vn(2)

2n0
+ v(2)x

)
−

V
2
∇⊥B(2)x −

a2
0B0

2n0V
∇⊥n(2) +

V
2B0

(ex ×B(1)
⊥ )ex · ∇⊥ ×B(1)

⊥ −
V

2B0
(B(1)
⊥ · ∇⊥)B

(1)
⊥ = 0.

(4.24)

The following identities can be verified by the direct calculation

(ex ×B(1)
⊥ )ex · ∇⊥ ×B(1)

⊥ =−B(1)
⊥ × (∇⊥ ×B(1)

⊥ ), (4.25a)

(B(1)
⊥ · ∇⊥)B

(1)
⊥ =

1
2∇⊥|B

(1)
⊥ |

2
−B(1)

⊥ × (∇⊥ ×B(1)
⊥ ). (4.25b)

Using (4.14e), (4.18a) and (4.18b) we obtain

∂v(2)x

∂ξ
+

V
B0

∂B(2)x

∂ξ
=

V3

B0(V2 − a2
0)

(
1

2B0

∂|B(1)
⊥ |

2

∂ξ
−∇⊥ ·B(1)

⊥

)
, (4.26a)

v(2)x −
Vn(2)

2n0
+

V
B0

B(2)x =
V3
|B(1)
⊥ |

2

4B2
0(V2 − a2

0)
−

V3Φ

2B0(V2 − a2
0)
, (4.26b)

where Φ is defined by

∂Φ

∂ξ
=∇⊥ ·B(1)

⊥ , Φ→ 0 as ξ→∞. (4.27)

Using (4.25)–(4.27) we transform (4.24) to

∂B(1)
⊥

∂τ
+ α

∂

∂ξ
[B(1)
⊥ (|B

(1)
⊥ |

2
− 2B0Φ)] − αB0∇⊥(|B(1)

⊥ |
2
− 2B0Φ)+ V`2 ∂

3B(1)
⊥

∂ξ 3
= 0, (4.28)

where

α =
V3

4B2
0(V2 − a2

0)
. (4.29)

https://doi.org/10.1017/S0022377820000483 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000483


Solitons in electron–positron plasmas 11

Introducing the notation

b= εB(1)
⊥ , ∇̃⊥ =

(
0,
∂

∂y
,
∂

∂z

)
, ϕ = ε2Φ, (4.30a−c)

returning to the original independent variables and dropping the tilde we rewrite (4.27)
and (4.28) as

∂ϕ

∂x
=∇⊥ · b, ϕ→ 0 as x→∞, (4.31)

∂b
∂t
+ V

∂b
∂x
+ α

∂

∂x
[b(b2

− 2B0ϕ)] − αB0∇⊥(b2
− 2B0ϕ)+ V`2 ∂

3b
∂x3
= 0. (4.32)

This equation only differs from the 3-D DNLS equation describing quasi-parallel
propagation of magnetohydrodynamic (MHD) waves in an ion–electron plasma derived
by Mjølhus & Wyller (1986) and Ruderman (1987) by the last term describing the
dispersion. This difference is related to the difference in the dispersion relations for
ion–electron and electron–positron plasmas as was pointed out in § 3.

When b is independent of y and z (4.32) reduces to the vector mKdV equation
in a complete agreement with the result obtained by Verheest (1996) and Lakhina &
Verheest (1997). In this equation the coefficient at the nonlinear term is α. Khanna
& Rajaram (1982) derived the DNLS equation in a collisionless electron–ion plasma
with anisotropic pressure. They used the Chew, Goldberger and Low equations (Chew,
Goldberger & Low 1956) modified by including the account of the Hall current in the
induction equations and terms related to the finite Larmor radius in the momentum
equation (Yajima 1966). While the general form of the equation remains the same,
the expressions for its coefficients are quite different. In particular, while α < 0 when
a0>V , in the case of plasma with anisotropic pressure the coefficient at the nonlinear
term is negative only in a relatively narrow interval of parameters. It is possible that
the account of plasma pressure anisotropy can cause a similar modification of the
coefficient at the nonlinear term in the vector mKdV equation.

We emphasise that the system of (4.31) and (4.32) was derived under the
assumption that the perturbations decay as |x| → ∞. A natural question that arises
is if this system of equations also describes perturbations periodic with respect to
x. One-dimensional nonlinear sound waves are described by a very simple equation
sometimes called the inviscid Burgers equation (e.g. Whitham 1974; Rudenko &
Soluyan 1977). This equation also describes magnetosonic waves propagating at not
very small angles with respect to the equilibrium magnetic field. It is valid both for
perturbations decaying at infinity as well as for periodic perturbations. The same is
true for its multi-dimensional generalisation, the Khokhlov–Zabolotskaya equation
(Zabolotskaya & Khokhlov 1969). The generalisations of the inviscid Burgers and
Khokhlov–Zabolotskaya equation taking into account either dissipation or dispersion,
which are the Burgers, KdV and KP equation, also describe both perturbations
decaying at infinity as well as spatially periodic perturbations. The general and very
important property of all these equations is that the nonlinearity that they describe is
quadratic.

In contrast, magnetohydrodynamic waves propagating either along or at small angles
with respect to the equilibrium magnetic field are characterised by cubic nonlinearity.
In the one-dimensional case they are described in the framework of ideal MHD by the
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Cohen–Kulsrud equation (Cohen & Kulsrud 1974). Although this equation describing
periodic waves is slightly different from that describing waves decaying at infinity,
the former equation is easily reduced to the latter by a simple change of independent
variables. The situation is the same with the extension of this equation to dissipative
media, the so-called Cohen–Kulsrud–Burgers equation, and to dispersive media, which
is the DNLS equation. Hence, we conclude that in the one-dimensional case both the
periodic waves as well as the waves decaying at infinity are described by the same
equation.

The situation is drastically different in the multi-dimensional case. Ruderman (1986)
studied the quasi-longitudinal propagation of MHD waves in the multi-dimensional
case. In this case the mean over the period of the transverse magnetic field
magnitude squared cannot be eliminated from the equation describing the evolution
of the magnetic field perturbation because, in general, this mean varies in the
transverse direction. As a result, the equation describing periodic perturbations differs
substantially from that describing perturbations decaying at infinity. Passot & Sulem
(1993) investigated a similar problem, but using the Hall MHD. As a result they
obtained the analogue of the 3-D DNLS equation valid for periodic perturbations.
If we neglect the last term in the equation derived by Passot & Sulem (1993) (see
their equation (2.33)), then their equation can be reduced to the equation similar
to one derived by Ruderman (1986). However, this reduction is not straightforward.
The problem is that Ruderman (1986) considered the spatial variation of waves.
He assumed that they are driven at x = 0 and propagate in the positive x-direction.
Passot & Sulem (1993) considered the temporal evolution of the waves. However,
the equation derived by them with the term describing dispersion dropped looks very
similar to the equation derived by Ruderman (1986). On the basis of this similarity
we can make a conjecture that we can obtain an analogue of (4.32) by changing the
term describing dispersion in equation (2.33) in the paper by Passot & Sulem (1993).
However, to prove this conjecture a formal derivation is needed.

5. Obliquely propagating solitary waves
We look for solitary waves propagating at a small angle with respect to the

equilibrium magnetic field. In accordance with this we look for solutions to (4.32)
that depends of X= x+ kyy+ kzz− (C+V)t, where C is a constant, and |ky|� 1 and
|kz| � 1. It follows from (4.31) that

ϕ = k⊥ · b, k⊥ = (0, ky, kz). (5.1)

Using this result and the condition that b→ 0 as X→∞ we obtain from (4.32)

V`2b′′ =Cb− α(b2
− 2B0k⊥ · b)(b− B0k⊥), (5.2)

where the prime indicates the derivative with respect to X. We can write down this
equation in the Hamiltonian form,

g′y =−
∂H
∂by

, g′z =−
∂H
∂bz

, h′y =
∂H
∂gy

, h′z =
∂H
∂gz

, (5.3a−d)

where b= (by, bz), gy = b′y, gz = b′z and the Hamiltonian H is given by

H=
1
2
(g2

y + g2
z )+

1
4V`2
[α(b2

− 2B0k⊥ · b)2 − 2Cb2
]. (5.4)
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Below we only consider solutions to the system of (5.3) describing planar solitary
waves. In these solutions b ‖ k⊥. In accordance with this we write

b=
k⊥
k⊥

h. (5.5)

Since H is independent of X it follows that the energy equal to H is conserved. Since
b→ 0 and b′→ 0 as X→∞, the energy conservation law is H= 0. Then in the case
of plane solitary waves we obtain

2V`2h′2 = h2
[2C− α(h− 2B0k⊥)2]. (5.6)

In the one-dimensional planar case (4.32) reduces to the modified Korteweg–de Vries
equation, which is completely integrable. This implies that planar solitary waves
are solitons (recall that solitons are solitary waves that are solutions of completely
integrable nonlinear equations). The integral curves of (5.4) corresponding to solitons
must start and end at h= 0, which is a critical point in the phase plane. In addition,
h must take either a maximum or minimum value, which implies that there should
be the second critical point where the right-hand side of (5.4) is zero. The necessary
condition of the existence of a solution to (5.6) describing a soliton is that its
right-hand side must be non-negative when |h| varies from zero to its maximum,
which is defined by the condition that the right-hand side is zero. When α > 0 this
condition reduces to

C> 2αB2
0k2
⊥
, α > 0, (5.7)

while when α < 0 it reduces to

2αB2
0k2
⊥
<C< 0, α < 0. (5.8)

For α> 0 there are two solitons. In one of them h>0 and we call it the bright soliton,
while in the other h< 0 and we call it the dark soliton. These solitons are described
by

h=
±2(C− 2αB2

0k2
⊥
)

√
2αC cosh(X/L+Θ)∓ 2αB0k⊥

, (5.9)

where the upper and lower signs correspond to the bright and dark solitons,
respectively. When α < 0 there is only one soliton, so we do not use the notion
‘bright’ or ‘dark’ in this case. It is described by (5.9) with the upper sign. The
characteristic soliton thickness is given by

L= `

√
V

C− 2αB2
0k2
⊥

. (5.10)

Equation (5.10) is valid both for α > 0 as well as for α < 0. The phase shift Θ is
defined by

tanhΘ =



√
1−

2αB2
0k2
⊥

C
, α > 0,√

1−
C

2αB2
0k2
⊥

, α < 0.

(5.11)
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The soliton amplitude is given by

A=max |h| =

∣∣∣∣∣
√

2C
α
± 2B0k⊥

∣∣∣∣∣ , (5.12)

where for α > 0 the upper and lower signs correspond to the bright and dark solitons,
respectively. For α < 0 the bright soliton amplitude is given by (5.12) with the lower
sign.

In this section we only obtained the solutions describing planar solitons. Although,
at present, there is no rigorous study of the existence of non-planar solitary waves,
we expect that there should be a whole three-parametric family of non-planar solitary
waves. The two parameters are the same as in the planar solitons, that are C and
k⊥. The third parameter is the angle between the plane defined by k⊥ and ex and the
integral curve near the critical point corresponding to |X|→∞.

Verheest (1996) studied solitary waves of the vector mKdV equation with α > 0.
He showed that only a planar soliton exists. Below, we will call this soliton the
standard mKdV soliton. However, Verheest considered solitary waves propagating
exactly along the equilibrium magnetic field. His proof is not valid in the case of
oblique propagation. It is straightforward to verify that both bright and dark solitons
tend to the standard mKdV soliton as k⊥→ 0.

Since the vector mKdV equation has some similarities to the DNLS equation it
is expedient to compare solitons of the two equation. The DNLS equation possesses
not only solitons that only depend on the linear combination of the spatial variable
and time, but also solitons in the form of an envelope with the magnetic field
vector rotating inside this envelope with constant angular velocity. Below, we only
consider the first type of solitons. There are no solitons of this type propagating
exactly along the equilibrium magnetic field. All of them propagate at some angle
with respect to this field. And, in addition, all these solutions are non-planar. The
family of solitons is three parametric (Ruderman 1987). The two parameters are
k⊥, determining the propagation direction, and the propagation velocity C. The third
parameter, ϑ , determines the type of soliton. When 0 < ϑ < π/2 the component
of the magnetic field orthogonal to the equilibrium magnetic field makes one full
turn about the equilibrium magnetic field direction in the positive direction when
α > 0 and in the negative direction when α < 0. In accordance with the nomenclature
introduced by Ruderman this soliton is called the compression Alfvén soliton. When
π/2 < ϑ < 2π/3 the component of the magnetic field orthogonal to the equilibrium
magnetic field makes one full turn about the equilibrium magnetic field direction
in the negative direction when α > 0 and in the positive direction when α < 0. In
accordance with the nomenclature introduced by Ruderman this soliton is called
the rarefaction Alfvén soliton. Finally, when 2π/3 < ϑ < π the component of the
magnetic field orthogonal to the equilibrium magnetic field rotates by some angle
and then returns back to the initial position. This soliton is called magnetosonic, fast
when α > 0 and slow when α < 0.

We see that the properties of solitons of the DNLS equation are very much different
from those of solitons of the vector mKdV equation. Ruderman (1987) showed that
compression Alfvén solitons are stable with respect to transverse perturbations, while
rarefaction Alfvén solitons and magnetosonic solitons are unstable.
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6. Soliton stability

In this section we study the stability of solitons described in the previous section
with respect to transverse perturbations. This study is similar to those carried out for
the stability of the KdV solitons by Kadomtsev & Petviashvili (1970) and for the
stability of the DNLS solitons by Ruderman (1987). We write

b= bs + b̃, ϕ = k⊥ · bs + ϕ̃, (6.1)

where bs corresponds to the soliton defined by (5.5) and (5.9). It describes either the
bright or dark soliton. We substitute (6.1) in (4.32) and then linearise the obtained
equation with respect to b̃ and ϕ̃. This gives

∂ b̃
∂t
+ V

∂ b̃
∂x
+ α

∂

∂x

[
b̃(h2
− 2B0k⊥h)+

2h
k⊥

k⊥
(

h
k⊥

k⊥ · b̃− B0ϕ̃

)]
− 2αB0∇⊥

(
h
k⊥

k⊥ · b̃− B0ϕ̃

)
+ V`2 ∂

3b̃
∂x3
= 0. (6.2)

Equation (4.31) is transformed to

∂ϕ̃

∂x
=∇⊥ · b̃, ϕ̃→ 0 as x→∞. (6.3)

Equation (4.32) was derived under the assumption that the ratio of characteristic
spatial scale in the y and z-directions to that in the x-direction is ε−1. Now we
assume that this ratio is even larger and is equal to (εδ)−1, where δ � 1. We also
study the stability with respect to normal modes and take b̃∝ exp(λt+ iδKyy+ iδKzz).
Finally, we use the variable X instead of x. As a result, we transform (6.2) and (6.3)
to

d
dX

L(b̃) = −λb̃+ 2αB0

{
k⊥
[

d
dX

(
h
k⊥
(ϕ̃ − k⊥ · b̃)

)
− iδB0(K · b̃)

]
+iδK

(
h
k⊥
(k⊥ · b̃)− B0ϕ̃

)}
, (6.4)

dϕ̃
dX
= iδK · b̃+ k⊥ ·

db̃
dX
, (6.5)

where K= (0,Ky,Kz), and

L(b̃)= b̃[αh(h− 2k⊥B0)−C] +
2α
k2
⊥

k⊥(k⊥ · b̃)(h− k⊥B0)
2
+ V`2 d2b̃

dX2
. (6.6)

We look for the solution to (6.4) and (6.5) in the form of expansions

b̃= b0 + δb1 + δ
2b2 + · · · , ϕ̃ = ϕ0 + δϕ1 + δ

2ϕ2 + · · · , λ= δλ1 + δ
2λ2 + · · ·

(6.7)
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6.1. The zero-order approximation

Substituting (6.7) in (6.4) and (6.5) and using the condition that b̃→ 0 as X→−∞
we obtain in the zero-order approximation

L(b0)= 0, ϕ0 = k⊥ · b0. (6.8a,b)

Differentiating (5.2) and using the second equation in (6.8) we obtain that

b0 = `
k⊥
k⊥

dh
dX
, ϕ0 = ` k⊥

dh
dX
. (6.9a,b)

The multiplier ` is introduced in the expression for b0 to have the same dimension of
the left and right sides. We obtain the general solution to the first equation in (6.8)
multiplying this expression by an arbitrary constant. Since we solve a linear problem
we can take this constant equal to unity without loss of generality.

6.2. The first-order approximation
Now we collect the terms of the order of δ in (6.4) and (6.5) to obtain

d
dX

L(b1) = −λ1b0 + 2αB0

{
k⊥
[

d
dX

(
h
k⊥
(ϕ1 − k⊥ · b1)

)
− iB0(K · b0)]+ iK

(
h
k⊥
(k⊥ · b0)− B0ϕ0

)}
, (6.10a)

dϕ1

dX
= iK · b0 + k⊥ ·

db1

dX
. (6.10b)

Using (6.9) we transform (6.10b) to

ϕ1 − k⊥ · b1 =
i`h
k⊥
(k⊥ ·K). (6.11)

With the aid of (6.9) and (6.11) we transform (6.10a) to

L(b1)=−`λ1h
k⊥
k⊥
+ i`αB0h

[
2k⊥
k2
⊥

(h− k⊥B0)(k⊥ ·K)+K(h− 2k⊥B0)

]
. (6.12)

Differentiating (5.2) with respect to C and k⊥ we obtain

L
(

k⊥
k⊥

∂h
∂C

)
=

k⊥
k⊥

h, (6.13a)

L
((

K ·
∂

∂k⊥

)
k⊥
k⊥

h
)
= αB0h

[
2k⊥
k2
⊥

(h− B0k⊥)(k⊥ ·K)+K(h− 2B0k⊥)
]
. (6.13b)

It follows from (6.13a) and (6.13b) that the solution to (6.12) is given by

b1 =−`λ1
k⊥
k⊥

∂h
∂C
+ i`

(
K ·

∂

∂k⊥

)
k⊥
k⊥

h. (6.14)
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6.3. The second-order approximation

Collecting the terms of the order of δ2 in (6.4) and (6.5), and using (6.9) and (6.11),
yields

d
dX

L(b2) = −λ1b1 − λ2`
k⊥
k⊥

dh
dX
+ 2αB0

{
k⊥
[

d
dX

(
h
k⊥
(ϕ2 − k⊥ · b2)

)
− iB0(K · b1)

]
+

K
k⊥
[i(h− B0k⊥)(k⊥ · b1)+ `B0h(k⊥ ·K)]

}
, (6.15a)

dϕ2

dX
= iK · b1 + k⊥ ·

db2

dX
. (6.15b)

The homogeneous counterpart of (6.15a) has a non-trivial solution

b2 = `
k⊥
k⊥

dh
dX
.

This implies that (6.15a) has solutions only if its right-hand side satisfies the
compatibility condition. To obtain this condition we take the scalar product of
(6.15a) with (k⊥/k⊥)h and integrate with respect to X. Using the integration by parts
we obtain that the left-hand side is zero, which implies that the right-hand side must
be equal to zero. Then, using (6.15b) and the integration by parts to transform the
term containing ϕ2 we obtain the compatibility condition

λ1

k⊥

∫
∞

−∞

h(k⊥ · b1) dX = αB0

∫
∞

−∞

h [i(h− 2k⊥B0)(K · b1)

+
2i
k2
⊥

(k⊥ ·K)(h− k⊥B0)(k⊥ · b1)+
2`
k2
⊥

B0(k⊥ ·K)2h
]

dX.

(6.16)

Now we introduce the notation

I1 =

∫
∞

−∞

h2 dX, I2 =

∫
∞

−∞

h3 dX. (6.17a,b)

Then, using (6.14) and the identity

K ·
∂

∂k⊥

[
k⊥ ·K

k⊥
(I2 − 2k⊥B0I1)

]
= (k⊥ ·K)

(
1
k⊥

K ·
∂I2

∂k⊥
− 2B0K ·

∂I1

∂k⊥

)
− 2B0K2I1 +

(
K2
−
(k⊥ ·K)2

k2
⊥

)
I2

k⊥
, (6.18)

we transform (6.16) to

λ2
1
∂I1

∂C
− iλ1

[
K ·

∂I1

∂k⊥
+

2α
k⊥

B0(k⊥ ·K)
(
∂I2

∂C
− 2k⊥B0

∂I1

∂C

)]
− 2αB0K ·

∂

∂k⊥

[
k⊥ ·K

k⊥
(I2 − 2k⊥B0I1)

]
= 0. (6.19)

When the discriminant of quadratic equation (6.19) is positive it has two complex
roots, and one of these roots has the positive real part. This implies that in this
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case the soliton is unstable. On the other hand, when the discriminant is negative,
equation (6.17) has two purely imaginary roots and the soliton is neutrally stable.
Hence, the instability condition is written as

8αB0
∂I1

∂C
K ·

∂

∂k⊥

[
k⊥ ·K

k⊥
(I2 − 2k⊥B0I1)

]
>

[
K ·

∂I1

∂k⊥
+

2α
k⊥

B0(k⊥ ·K)
(
∂I2

∂C
− 2k⊥B0

∂I1

∂C

)]2

. (6.20)

Now we consider two cases, one with α > 0, and the other with α < 0. First we
assume that α > 0. It is shown in appendix A that I1 and I2 are given by

I1 = 4`B0k⊥

√
2V
α

F1(σ ), I2 = 4`B2
0k2
⊥

√
2V
α

F2(σ ), (6.21a,b)

where σ =C(2αB2
0k2
⊥
)−1 and

F1(σ )=
√
σ − 1±

π

2
+ arctan

1
√
σ − 1

, (6.22a)

F2(σ )= (σ + 2)
(
±

π

2
+ arctan

1
√
σ − 1

)
+ 3
√
σ − 1. (6.22b)

Using (6.21) and (6.22) we transform (6.20) to

D± ≡ [k2
⊥

K2
− (k⊥ ·K)2]Q±(σ )− (k⊥ ·K)2S±(σ ) > 0, (6.23)

where

Q±(σ )= σ
(
±

π

2
+ arctan

1
√
σ − 1

)
+
√
σ − 1, (6.24a)

S±(σ )=
2σ
√
σ − 1

(
±

π

2
+ arctan

1
√
σ − 1

)2

+ 2
√
σ − 1. (6.24b)

Obviously Q+(σ ) > 0 meaning that D+ > 0 when k−1
⊥ K−1

|k⊥ ·K| is sufficiently small.
This implies that the bright soliton is unstable.

Now we note that Q−(0)= 0 and

dQ−
dσ
= arctan

1
√
σ − 1

−
π

2
< 0, (6.25)

which implies that Q−(σ ) < 0. Since S−(σ ) > 0 it follows that D− < 0 implying that
the dark soliton is stable.

Next, we proceed to the case where α < 0. It is shown in appendix A that, now, I1

and I2 are given by

I1 = 4`B0k⊥

√
2V
|α|

G1(σ ), I2 = 4`B2
0k2
⊥

√
2V
|α|

G2(σ ), (6.26a,b)
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where

G1(σ )=
1
2

ln
1+
√

1− σ
1−
√

1− σ
−
√

1− σ , (6.27a)

G2(σ )=
(

1+
σ

2

)
ln

1+
√

1− σ
1−
√

1− σ
− 3
√

1− σ . (6.27b)

Using (6.26) and (6.27) we transform (6.21) to

D≡ [k2
⊥

K2
− (k⊥ ·K)2]Q(σ )− (k⊥ ·K)2S(σ ) > 0, (6.28)

where

Q(σ )= σ ln
1−
√

1− σ
1+
√

1+ σ
+ 2
√

1− σ , (6.29a)

S(σ )=

(
ln

1−
√

1− σ
1+
√

1+ σ

)2

+ 4
√

1− σ . (6.29b)

Since Q(0)= 0 and
dQ
dσ
= ln

1−
√

1− σ
1+
√

1+ σ
< 0, (6.30)

it follows that Q(σ ) > 0. This implies that D> 0 when k−1
⊥ K−1

|k⊥ · K| is sufficiently
small. Consequently, the soliton existing when α < 0 is unstable.

As we have already pointed out in § 5, both the bright and dark solitons become the
standard mKdV soliton propagating exactly along the equilibrium magnetic field when
κ⊥→ 0. This soliton only exists when α > 0. It is obvious that the previous stability
analysis is not valid for κ⊥= 0. Hence, the stability of solitons propagating along the
equilibrium magnetic field must be studied separately. However, while the expression
describing the standard mKdV soliton is simpler than those describing the obliquely
propagating soliton, the study of stability of this soliton with respect to transverse
perturbations turns out to be much more involved. The complexity of this study is
related to the fact that, while obliquely propagating solitons are two parametric, the
standard soliton is only one parametric. As a result, while we can obtain the relation
similar to (6.13a) for the standard mKdV soliton, we cannot obtain an analogue of
(6.13b). Hence, we cannot get a relatively simple expression for b1 similar to one
given by (6.14). To calculate b1 we need to solve a second-order ordinary differential
equation with variable coefficients. At present it is even not clear that the analytical
expression for b1 can be obtained. Quite possible that this problem can be only solved
numerically.

7. Summary and conclusions
In this article we studied the propagation of nonlinear waves along the equilibrium

magnetic field in a non-relativistic electron–positron plasma. We assumed that the
waves can weakly depend on the spatial coordinates orthogonal to the equilibrium
magnetic field. Using the reductive perturbation method we derived the three-
dimensional generalisation of the vector modified Korteweg–de Vries equation. We
call this equation the 3-D vector mKdV equation.
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We obtained solutions to the 3-D vector mKdV equation in the form of one-
dimensional planar solitons propagating at a small angle with respect to the
equilibrium magnetic field. The propagation direction is defined by the vector ex+ k⊥,
where ex is the unit vector in the direction of the equilibrium magnetic field, k⊥⊥ ex

and k⊥ � 1. In planar solitons the magnetic field perturbation is everywhere in the
direction of k⊥. We found that in the case where the Alfvén speed V is larger than
the sound speed a0 there are two kinds of soliton, bright and dark. In the bright
solitons the magnetic field perturbation is parallel to k⊥, and in the dark solitons it
is antiparallel to k⊥. In the case where V < a0 there is only one kind of solitons with
the magnetic field parallel to k⊥.

We used the 3-D vector mKdV equation to study the soliton stability with respect to
transverse perturbations similar to that carried out by Kadomtsev & Petviashvili (1970)
for solitons described by the KdV equation. We found that only the dark solitons are
stable, while both the bright solitons in the case where V > a0 as well as solitons in
the case where V < a0 are unstable.

Appendix A. Calculation of I1 and I2

In this appendix we calculate I1 and I2. We start from the case where α > 0. Using
(5.9) we obtain

I1 =

∫
∞

−∞

4(C− 2αB2
0k2
⊥
)2 dX

[
√

2αC cosh(X/L+Θ)± 2αB0k⊥]2
. (A 1)

Using the variable substitution

u= exp(X/L+Θ)± B0k⊥
√

2α/C (A 2)

we transform (A 1) to

I1 =
8L(C− 2αB2

0k2
⊥
)2

αC

(∫
∞

±B0k⊥(2α/C)1/2

u du
(u2 + 1− 2αB2

0k2
⊥/C)2

∓ B0k⊥

√
2α
C

∫
∞

±B0k⊥(2α/C)1/2

du
(u2 + 1− 2αB2

0k2
⊥/C)2

)
. (A 3)

We easily obtain ∫
∞

±B0k⊥(2α/C)1/2

u du
(u2 + 1− 2αB2

0k2
⊥/C)2

=
1
2
. (A 4)

Next, we calculate the second integral in (A 3). Using the variable substitution

w= u

√
C

C− 2αB2
0k2
⊥

(A 5)
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we transform it to∫
∞

±B0k⊥(2α/C)1/2

du
(u2 + 1− 2αB2

0k2
⊥/C)2

=

(
C

C− 2αB2
0k2
⊥

)3/2 ∫ ∞
±B0k⊥
√

C/(C−2αB2
0k2
⊥
)

dw
(1+w2)2

. (A 6)

Then, the integration by parts yields∫
dw

(1+w2)2
=

∫
dw

1+w2
−

∫
w2 dw
(1+w2)2

=
w

2(1+w2)

−
1
2

∫
dw

1+w2
=

w
2(1+w2)

+
1
2

arctan w, (A 7)

where we dropped the arbitrary constant. Using (A 4), (A 6), and (A 7) we obtain from
(A 3)

I1 =
4L(C− 2αB2

0k2
⊥
)2

α

1∓

√
2αB2

0k2
⊥

C− 2αB2
0k2
⊥

π

2
∓ arctan

√
2αB2

0k2
⊥

C− 2αB2
0k2
⊥

 . (A 8)

Substituting C= 2ασB2
0k2
⊥

in this expression we eventually obtain the first expression
in (6.21).

Now we proceed to the calculation of I2. Using (5.9) we obtain

I2 =±

∫
∞

−∞

8(C− 2αB2
0k2
⊥
)3 dX

[
√

2αC cosh(X/L+Θ)∓ 2αb0k⊥]3
. (A 9)

Using the variable substitution defined by (A 2) we transform (A 9) to

I2 =±
64L(C− 2αB2

0k2
⊥
)3

(2αC)3/2

∫
∞

±B0k⊥(2α/C)1/2

u2
∓ 2uB0k⊥

√
2α/C+ 2αB2

0k2
⊥
/C

(u2 + 1− 2αB2
0k2
⊥/C)3

du. (A 10)

We easily obtain ∫
∞

±B0k⊥(2α/C)1/2

u du
(u2 + 1− 2αB2

0k2
⊥/C)3

=
1
4
. (A 11)

Using the variable substitution defined by (A 5) yields∫
∞

±B0k⊥(2α/C)1/2

u2
+ 2αB2

0k2
⊥
/C

(u2 + 1− 2αB2
0k2
⊥/C)3

du=
(

C
C− 2αB2

0k2
⊥

)3/2

×

∫
∞

±B0k⊥
√

C/(C−2αB2
0k2
⊥
)

w2
+ 2αB2

0k2
⊥
(C− 2αB2

0k2
⊥
)−1

(1+w2)3
dw. (A 12)
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Using integration by parts and (A 7) yields∫
w2
+ 2αB2

0k2
⊥
(C− 2αB2

0k2
⊥
)−1

(1+w2)3
dw=

2αB2
0k2
⊥

C− 2αB2
0k2
⊥

∫
dw

(1+w2)2

−
C− 4αB2

0k2
⊥

C− 2αB2
0k2
⊥

∫
w2 dw
(1+w2)3

=−
C− 4αB2

0k2
⊥

4(C− 2αB2
0k2
⊥)

w
(1+w2)2

+
C+ 4αB2

0k2
⊥

4(C− 2αB2
0k2
⊥)

∫
dw

(1+w2)2
=

C+ 4αB2
0k2
⊥

8(C− 2αB2
0k2
⊥)

arctan w

+
w[(C+ 4αB2

0k2
⊥
)w2
−C+ 12αB2

0k2
⊥
]

8(C− 2αB2
0k2
⊥)(1+w2)2

. (A 13)

With the aid of this result and (A 11)–(A 13) we obtain from (A 10)

I2 =
2`
α

√
2V
α

(C+ 4αB2
0k2
⊥
)

±π

2
− arctan

√
2αB2

0k2
⊥

C− 2αB2
0k2
⊥


− 3
√

2αB2
0k2
⊥(C− 2αB2

0k2
⊥)

 . (A 14)

Substituting C = 2ασB2
0k2
⊥

in this expression we arrive at the second expression in
(6.21).

Now we consider the case where α < 0. I1 is given by (A 1) with the upper sign.
Using the variable substitution

u= eX/L
+

1
√
σ

(A 15)

we transform the expression for I1 to

I1 =−
8ς 3
√
−VC
α

∫
∞

1/
√
σ

u− 1/
√
σ

(u2 − ς 2)2
du, (A 16)

where ς =
√

1/σ − 1. Using the expansion

u−
√
σ

(u2 − ς 2)2
=

1
4ς 3
√
σ

(
1

u− ς
−

1
u+ ς

)
+

(
1

4ς
−

1
4ς 3
√
σ

)
1

(u− ς)2

−

(
1

4ς
+

1
4ς 3
√
σ

)
1

(u+ ς)2
(A 17)

we obtain ∫
∞

1/
√
σ

u−
√
σ

(u2 − ς 2)2
du=

1
4ς 3
√
σ

ln
1+
√

1− σ
1−
√

1− σ
−

1
2ς 2

. (A 18)

Using (A 11), (A 16) and (A 18), and the expression for C and ς in terms of σ we
obtain the first expression in (6.26).

https://doi.org/10.1017/S0022377820000483 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000483


Solitons in electron–positron plasmas 23

Now we proceed to calculating I2; I2 is given by (A 9) with the upper sign. Using
the variable substitution defined by (A 15) we transform it to

I2 =
16`Cς 5

α

√
2V
|α|

∫
∞

1/
√
σ

(u− 1/
√
σ)2

(u2 − ς 2)3
du. (A 19)

Using the expansion

(u− 1/
√
σ)2

(u2 − ς 2)3
=

(
1−

3
ς 3
√
σ

)(
1

u+ ς
−

1
u− ς

)
+

1
16ς 2

(
1−

2
ς
√
σ
−

3
ς 2

)
×

1
(u+ ς)2

+
1

16ς 2

(
1+

2
ς
√
σ
−

3
ς 2

)
1

(u− ς)2

−
1

8ς

(
1+

1
ς
√
σ

)2 1
(u+ ς)3

+
1

8ς

(
1−

1
ς
√
σ

)2 1
(u− ς)3

(A 20)

we obtain ∫
∞

1/
√
σ

(u− 1/
√
σ)2

(u2 − ς 2)3
du =

1
16ς 3

(
1−

3
σς 2

)
ln

1− ς
√
σ

1+ ς
√
σ

+

√
σ

16ς 2

(
1−

2
ς
√
σ
−

3
ς 2

)
1

1+ ς
√
σ

+

√
σ

16ς 2

(
1+

2
ς
√
σ
−

3
ς 2

)
1

1− ς
√
σ

−
σ

16ς

(
1+

1
ς
√
σ

)2 1
(1+ ς

√
σ)2

+
σ

16ς

(
1−

1
ς
√
σ

)2 1
(1− ς

√
σ)2

. (A 21)

Using (A 19) and (A 21), and the expression for C and ς in terms of σ we obtain the
second expression in (6.26).
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