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The relation between quasi-convexity and k-quasi-convexity, k > 2, is investigated. It
is shown that every smooth strictly k-quasi-convex integrand with p-growth at
infinity, p > 1, is the restriction to kth-order symmetric tensors of a quasi-convex
function with the same growth. When the smoothness condition is dropped, it is
possible to prove an approximation result. As a consequence, lower semicontinuity
results for kth-order variational problems are deduced as corollaries of well-known
first-order theorems. This generalizes a previous work by Dal Maso et al., in which
the case where k = 2 was treated.

1. Introduction

We consider higher-order variational problems in which the energy functional is
expressed by

ul—>/ f(z,u,Vu,..., VFu)dz, (1.1)
Q

where £2 C RY is open and bounded, N, k > 2 are integer, and f is a scalar function
satisfying suitable growth conditions. Although our treatment can be extended to
the vectorial case, to keep the formulation as simple as possible we will treat the case
of scalar functions u: {2 — R. Functionals of this type appear in the study of elastic
materials of grade k [21], in the theory of second-order structured deformations [19],
in the Blake—Zisserman model for image segmentation in computer vision [4], in
gradient theories of phase transitions within elasticity regimes [6,13,18] and in the
description of equilibria of micromagnetic materials [5,8,18,20]. In order to study
lower semicontinuity of functionals of this type, Meyers [16] introduced the notion
of k-quasi-convexity (see also [3,11]), extending the definition of quasi-convexity
given by Morrey [17].
Let

k times

/_/% )
Ey CRY x ... x RN = RV

be the set of kth-order tensors of RV that are symmetric with respect to all permu-
tations of indices. In particular, F5 coincides with the set of the symmetric N x N

matrices. A function f € L (FE}) is said to be k-quasi-convez if

/Q[f(A +VFe) — f(A)]dz =0
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for every A € Ej, and every ¢ € C*(Q), where Q = (0,1)" is the open unit cube
in RN, and C¥(Q) is the set of functions of class C* with compact support in Q.
We recall that a function F € L{ (RN k) is said to be l-quasi-convex (or simply
quasi-convex) if

/ [F(A+ Vo) — F(A)dz > 0
Q

for every A € RM" and every ¢ € CCl(Q;RNkfl). In [16], Meyers proved that k-
quasi-convexity is a necessary and sufficient condition for sequential lower semicon-
tinuity of (1.1) with respect to weak convergence in the Sobolev space WP (2),
under appropriate p-growth and continuity conditions on the integrand f. This
result was later extended to the case where f is a Carathéodory integrand by
Fusco [11] and by Guidorzi and Poggiolini [12], for p = 1 and p > 1, respectively.

We investigate the relation between k-quasi-convexity and quasi-convexity. This
problem has been studied for the case when k& = 2 by Dal Maso et al. [7], who proved
that every strictly 2-quasi-convex function (see theorem 1.1(a)) of class C!, whose
gradient is locally Lipschitz continuous, is the restriction to symmetric matrices of
a l-quasi-convex function. Here we extend this result to the case when k > 2.

THEOREM 1.1. Letk € N, k > 2. Let f € C}(Ey), andlet1 <p <oo,u>0,L >0
and v > 0. Assume that

(a) (strict k-quasi-convexity)
/ [F(A+VF) = f(A) dz > v / (17 + AP + [VF[) =22 Vol do
Q Q

for every A € Ej, and every ¢ € C*(Q),
(b) (Lipschitz condition for gradients)
IVf(A+B) = Vf(A)| < L + AP + |B]*)»=2/%|B] (1.2)
for every A, B € Ej,.
Then there exists a 1-quasi-convex function F': RN" - R such that
F(A) = f(A) VA € Ey, (1.3)
IF(A)] < cp(1+|APP) VA eRN", (1.4)
for a suitable constant c; depending on f.

Note that the above conditions together imply L > v (see proposition 2.8). When
p = 2, we also give an explicit expression for the function F' (see formula (3.9)).

The proof of theorem 1.1 is based on two preliminary lemmas (lemma 3.1 for
the case when 1 < p < 2 and lemma 3.2 for the case when p > 2) which, roughly
speaking, show that every strictly j-quasi-convex function is the restriction to the
appropriate set of tensors of a strictly (j — 1)-quasi-convex function, for each j =
2, ..., k. The main feature of lemmas 3.1 and 3.2 is the fact that they can be applied
iteratively, since they preserve the strict quasi-convexity (up to a ‘perturbation’; in
the case where 1 < p < 2). Then, theorem 1.1 easily follows (see the end of §3).
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It is not clear whether the theorem still holds true when condition (1.2) is weak-
ened. However, if we substitute (1.2) with the milder (see proposition 2.9) condi-
tion (1.5), we obtain an approximation result for the function f. More precisely,
we show that a strictly k-quasi-convex function with p-growth at infinity can be
obtained as a pointwise limit of a sequence of 1-quasi-convex functions with the
same growth (see [7, theorem 2] for the case where k = 2).

THEOREM 1.2. Let k e N, k> 2. Letl <p<oo, u=>0,v >0, M >0, and let
f: Ex. — R be a measurable function such that

(a) (strict k-quasi-convexity)
J 1A+ T40) = f) oz v [ (4 14P + 460229 0 do
Q Q

for every A € Ej, and every ¢ € C*(Q),

(b) (p-growth condition)
(A < M(1+]AP) (1.5)
for every A € Ey.

Then there exists an increasing sequence {F;};en of 1-quasi-convex functions

F:RY SR
such that
Jim_F(4) = f(4) VA € Ey, (1.6)
|Fi(A)] < My(1+|A]P) VAeRN" vieN, (1.7)

where {M; }ien s a sequence of positive constants depending on i and on the con-
stants p, i, v and M, but not on the specific function f.

To show this, we use the property that every k-quasi-convex function with p-
growth is locally Lipschitz. Here we give a proof of this fact (see proposition 2.7)
that was already known for the cases k = 1 [15] and k& = 2 [12]. Due to theorem 1.2,
the study of lower semicontinuity of (1.1) reduces to a first-order problem. Thus,
when f is a k-quasi-convex normal integrand (see theorem 1.3(a)) we can prove
the following result (see [7, theorem 3] for the case where k = 2). Here we use the
notation

E1 = RN, E[k—l] =R x E1 X e+ X Ek—l

and
SBH® () := {u e WF11(2): VF'u € SBV(2; EBy_1)}.

THEOREM 1.3. Let k € N, k > 2. Let 2 C RN be a bounded open set and let
f:02x E[kfl] X B — [O,—I—oo)
be a measurable function such that

(a) f(z,-,-) is lower semicontinuous on Ey_q) x Ey for LY almost every (a.e.)
T € (2;

(b) f(z,v,-) is k-quasi-convex on Ej, for LN -a.e. x € 2 and every v € Epj_y);

https://doi.org/10.1017/50308210510000867 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210510000867

676 F. Cagnetti

(c) there exist a locally bounded function a: £2x Ey,_q) — [0,+00) and a constant
p > 1 such that
0< fz,v,4) <alz,v)(1+|A]P)

for LN -a.e. x € 2 and every (v, A) € Ejx_1) X Ej.
Then

/ f(z,u,Vu,...,VFu)de < Liminf/ flz,u;, Vu,, . .. ,Vkuj) dx
0 Jj—+oo 0

for every u € SBH(k)(.Q) and any sequence {u;} C SBH(k)(Q) converging to u in
WF=L1(2) and such that

sup (||Vkuj||m(fz) + /

9(|[Vk_1Uj]|)dHN_1> < 400,
J S(Vk—1uy)

where 0: [0, +00) — [0,400) is a concave, non-decreasing function such that

o(t
lim Q = 400,
t—0+ ¢
VFu is the density of the absolutely continuous part of D(VF~1u) with respect to
the N-dimensional Lebesgue measure and [Vk_luj] denotes the jump of Vk_luj on
the jump set S(VF~1u;).

This extends to the kth order a lower semicontinuity property of 1-quasi-convex
functions in SBV(£2;R%) due to Ambrosio [2], later generalized by Kristensen [14],
and a lower semicontinuity theorem for 2-quasi-convex integrands in SBH(£2; R%)
proven by Dal Maso et al. [7]. As a corollary, we recover [12, theorem 7.1].

COROLLARY 1.4. Let 2, f, k and p be as in theorem 1.3. Then

/ f(z,u,Vu,...,VFu)de < liminf/ flz,u;, Vu,, ..., Vkuj) dx
n I J

for every u € WFP(£2) and any sequence {u;} C WkEP(§2) weakly converging to u
in WkP(0).

We note that in [12], Guidorzi and Poggiolini require the function f to be locally
Lipschitz continuous with respect to the last variable. As previously mentioned, we
do not need this hypothesis, since we prove here that this is a direct consequence
of k-quasi-convexity and p-growth.

Finally, we mention that proof of the analogue of theorem 1.3 for the case p =1,
even when k& = 2, is still an open problem unless very special functions f are
considered [9]. This will probably require new and original ideas. Indeed, we think
that, for p = 1, the fundamental Korn-type inequalities (see lemmas 2.13 and 2.14)
used in the proofs of theorem 1.1 and theorem 1.2 fail, although we do not have
any explicit counter-example.

This paper is organized as follows. In §2 we give the setting of the problem.
Section 3 contains the proof of theorem 1.1, while theorems 1.2 and 1.3 are proved
in §4. Finally, some auxiliary results that are used extensively in the paper can be
found in Appendix A.
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2. Setting

Throughout the paper N and k are fixed integer numbers, with N,k > 2. For
this reason, we will often not indicate the explicit dependence on N and k. Also,
2 ¢ RY is an open bounded set, and @ = (0,1)" denotes the open unit cube
of RV,

DEFINITION 2.1. Let A € RYN". We say that A is a kth-order tensor in RY.
The components of a tensor A € RY " will be denoted by the symbols
Ai1---ika i1y...,0 =1,...,N.
Moreover, the scalar product of two tensors A, B € RV " s given by
N
i1yeeyip=1
Accordingly, the norm of a kth-order tensor A € RV " s

N 1/2
|A|:[ 3 |Aﬁ...ik|ﬂ .

i1, in=1

Now let s € {1,...,k—1} be fixed. For any ¢ € C’S(Q;RJ\'FS)7 we can regard the
sth-order gradient V*( of ¢ as a kth-order tensor in RV by setting

85@1...%75

V)i iy 1= e i =1,...,N.
( C)u ik axik,s+1"'axik 1 k

Note also that V?( is symmetric with respect to every permutation of the last s
indices. To take account of this property, we introduce some additional notation.
DEFINITION 2.2. Let A € R¥" be a kth-order tensor in RY, and let

jred{l,..., k}.

The (j,r)-transpose of A is the element AT of RN" such that (assuming, for
instance, j < )

T] o . . _
(A T)iliz"'ik - Ai1i2"'ij—1irij+1"-ir—liji7~+1“'ik’ i, =1,...,N.

We then set
BN = {AeRY A= A" forevery r,j =k —s+1,...,k}.

In particular, we will make the identification E,]CV U= RN In this way, for every
¢ € C*(Q;RN"7), we have
k—s
Vice BN .

To include the case where s = k, we define

E;} ::{AEIR{N]C:A:AT; for every r,j =1,...,k}.

https://doi.org/10.1017/50308210510000867 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210510000867

678 F. Cagnetti

Very often we will simply write Ej, instead of E.. Hence, we have that
V¢ € B

for every ¢ € C*(Q), using the notation

Fo ko)
VE)i iy = —— iy, ip=1,...,N.
( ¢>11 i 5961'1 . 855% 1 k
Now we define the symmetric part of an element of E}Y e
DEFINITION 2.3. The symmetrization operator Se41: E,ikas — E,ivkﬂgil is defined
by
k Tk73 kas
1 k—s A+ ATkt 4. Atk k—s
Sei1A = —— AT = for every A e EN .
A 2 1 roe ACH

We will say that S;41A4 is the symmetric part of A.

The subscript s + 1 denotes the fact that the tensor Sg41A is symmetric in the
last s + 1 entries.

DEl;:INITION 2.4. Accordingly, we kdeﬁne the antisymmetric part of a tensor A €
EN"" as the tensor A; 1A € EN° 7 given by

sA — (ATQ::+1 4+ +AT§_S)

A5+1A Z:A—SS+1A: s+ 1

We will use the notation
A1 BN = (A A Ae BN Y e BN

The next proposition generalizes the well-known fact that symmetric and anti-
symmetric matrices define orthogonal spaces. For the convenience of the reader, the
proof is given in Appendix A.

PROPOSITION 2.5. It holds that
A-B=0 forevery A€ E,]CVFS?1 and for every B € A,11Ey, o
We now give the definition of (higher-order) quasi-convexity.

DEFINITION 2.6. Let j € {1,...,k}. A function f e LL (EN") is said to be j-
quasi-convex if

/ [f(A+Vig) — f(A)]dz >0
Q
for every A € EY" and for every ¢ € CJ(Q:RV).

It is very well known that every convex function is locally Lipschitz. This property
still holds true for j-quasi-convex functions with p-growth. Here we give a proof of
this fact that is, in general, explicitly stated only for the case where j = 2 [12].
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PROPOSITION 2.7. Let j € {2,...,k}, and let f € Llloc(E,infj) be j-quasi-convex.
Assume, in addition, that

|f(A) < M(1+|AP) for every A € Efckaj (2.1)
for some M >0 and 1 < p < co. Then, there exists a constant
L=L(N,M,k,j,p) >0
such that
If(A+B) — f(A)| < L(1+ AP~ + |BP"Y)|B| for every A,Be EN" .

Proof. Let us set
j times
— - _
X={owe owbeRY " wesN1yc BN,

m=m(N,k,j):= dimE,]CVk_ .

Herke7 for every b € RV and w e S b®@w® --- ®w denotes the element of
RY" such that

(b®w® "'®w)i1,-.<,ik = bil"'ik—jwik—j+1 Wiy ULy, ik = 1,...,N.

It can be proven that the orthogonal complement of X in E,iv s zero, so that

span X = EN" 7.
Now let {w1,...,wn} C X be a (not necessarily orthonormal) basis for E,ivk_j, with

|wil| =1fori=1,...,m, and let ¢1,..., ¢, € R be such that

m
B= E CiWs.
i=1

We have
e+ 5) - 5] = |1 (4+ Y en) - 1(4)
=1
m m—1
< ‘f(A-FZCMi) —f<A+ Czwl)’
i=1 i=1
—1

+ -+ | f(A+ cwr) — f(A)].

It will be sufficient to prove that there exists C' = C(N, M, k, j,p) such that, for
every [ =1,...,m,

-1 -1
‘f(czwl +A+ Zcm—) — f(A - Zcm-)’ < C(L+|AP~ +|BPYHB|, (2.2)
=0

=0

https://doi.org/10.1017/50308210510000867 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210510000867

680 F. Cagnetti

where we set ¢y := 0 and wg := 0. Then, the conclusion will follow by defining
L:=mC. v
By [10, proposition 3.4 and example 3.10(d)], for every R € E,ﬁvkﬂ and every
w € X, the function
t — f(tw+ R)

is convex in R. Hence, defining

-1
Git):=f (tclwl + A+ Z Ciwi>

=0

and using (2.1), for every ¢ > 1 we have

-1 -1
‘f(clwl +A+Zciwi> - f(AJch,;wi)‘
i=0

i=0
= o) - 60y < A0-C0
] -1 -1
= <f(tclwl + A+ iz_%ciwi) —f(A+ ZZ_%Q%—))
M -1 -1 »
< t(2 + |tqw + A+ ;Ciwﬂp + ‘A—F Z;Ciwi >
M -1 p
<F(zrzoap e tan)as - )
< ¥(2 + 2P| BIP 4 2071 (207 + DA + 2071 (2P mP2||B1P),

where we set
m 1/2
5= () -
i=0

Let us now choose
(|AP=" + | B|P— 1)1/ 1)

t= >
1Bl
Noting that
_ - - AP - 181"
B = (AP IBIPOIBIL S <[APTHIBIL T < IBIP
and using the fact that || - || and | - | are equivalent norms, we obtain (2.2). O

The next proposition shows that conditions (a) and (b) of theorem 1.1 necessarily
imply L > v.

PROPOSITION 2.8. Let f € CY(Ey) satisfy conditions (a) and (b) of theorem 1.1
for some constants 4 >0, L,v >0 and 1 < p < oco. Then L > v.
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Proof. Let A € Ey, ¢ € C¥(Q), and let x € Q. By the mean-value theorem,
A+ V5 p(x)) = f(A) = [VF(A+ 1V ¢(x)) = V(A)] - VEb(z) + V[(A) - VEe(x)
for some ¢ € [0, 1]. Integrating the last equality, since ¢ € C*(Q), we get

/Q F(A+ V*6(x)) — F(A)] dz = /Q V(A + tV*()) — VI(A)] - VHo(z) de.

Hence, using property (b),
/Q (A +V*6(a) - f(A)]da
<L /Q (42 + A1 + 9% $(@)2) =2 2 V() ? da
<L /Q (42 + |A] + V() P)7~2/2 V()2 da,

since the function t — (u? + |A|? 4 t2|VF¢|?)(P=2)/2¢|V¥¢|? is increasing. Compar-
ing the last relation and condition (a), we conclude that L > v. O

We now prove that condition (1.2) is stronger than (1.5).

PROPOEITION 29. Let je€{2,...,k}, let L>0, >0, 1<p<oo and let f €
CYEYN"") be such that

J

IVF(A+ B) = Vf(A)| < L2+ |AP? + |B>)®*2/2|B|  for every A, B € E,JCVF .
(2.3)
Then, there exists a positive constant cy, depending on f, such that

IF(A) <er(1+]AP) VAe BN .

Proof. Let C' € EY o \ {0} be fixed. Then, by the mean-value theorem, for every
A€ EN we have

fA) = FO)+ [VF(C+H(A-C)) = V(O)- (A-C)+ V[(C)- (A= C),
for some t € [0, 1]. By (2.3),
S < FO) + Lk + |CP + 2|A = CP) P22 A — O + |V F(C)||A - O
|

FO+ L + O + 1A= C)=2/2|A - CP2 + [V f(O)||A ~ C|€ :
2.4

X
<

since the function t — (u? + |C|? + t2|A — C|?)P=2)/2¢|A — C|? is increasing. Con-
cerning the last term, using Young’s inequality we have

IVf(C)PP N |A —pC|p < |Vf;C)|p n 2p_1(‘A|p+|C|p), (2.5)

IVIAO)A=-C| < .

p/ /
where p’ = p/(p — 1). Since the function r — (2 + |C|? +)P~2)/2y is increasing
in R, using inequality

|A—C? <214 +2|CP,
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we have
(u* +1C)> +|A = CP)P=2/2 1A - C?
<2(p® +3|C17 + 2| AP) P22 (JAP + |CP)
< 2max{1, [C]*}(u® 4 3|CJ* + 2| AP)P=272 (1 + |AP)
<2KP 22 max{1,|CI*}(1 + |A]?)P/?,
where

K min{p? + 3|C%,2} fl<p<2,
| max{p? +3|C|%,2} ifp>2.

Thus, since
(1+ AP < Cp(1 + A7),

for some positive constant C}, depending only on p, we have
L(p?+|C)P+|A-C 1) P=D/2|A—C|? < 2LC, K P2/ 2 max{1, |C|2}(1+]AP). (2.6)
Combining (2.4)—(2.6), the conclusion follows. O
We now state some important results concerning periodic functions.

DEFINITION 2.10. A function w: RY — RV is said to be Q-periodic if w(z +
e;) = w(z) for a.e. z € RN and every i = 1,..., N, where {e1,...,en} is the
canonical basis of RV,

Let d,r € N. We will denote by C2° (R";R%) the space of Q-periodic functions

per

of C=(RY;R%). Moreover, we will use the notation C7(Q;R?) for the space of
functions of class C" from @ to R? with compact support in Q. The next lemma
will be used extensively in the paper.

LEMMA 2.11 (Helmholtz decomposition). For every ¢ € CSZI(Q;RNFS), there
exist two functions

0o . Nk—s—l o) . Nk—s
¢ G Oper(Q7 R ) and ,l/} E Cper(Qa R )
such that

Pigovigy_y = (V(b)il...ik_s + d}il"'ik—s foriy, ... ig_s=1,... N,

with
N Oy i 4
Z NIRRT — (O for every b€ {1,...,k — s}. (2.7)
i1 83;%

Proof. By applying the usual Helmholtz decomposition lemma [7, lemma 1] to each
component ¢;,...;, . of the function ¢, the lemma follows. O
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Before stating the next lemma, we need the following definition.
DEFINITION 2.12. The s-divergence is given by the operator
s-div: C*(Q;RNY) = C(Q; RN
defined by

N

(s-div&)s, iy, = Z

G—st1snyik=1

6s§i1i2"'ik

ﬁ, ’L.l,...,ikfsz].,...7N7
Lip_gpr " OTqy,

for every £ € C*(Q; RN k) The definition is analogous when £ is a Sobolev function.
We are now ready to state a fundamental Korn-type estimate.

LEMMA 2.13. For every p > 1 there exists a constant v = y(N,p,s) = 1 such that
[1vourar <o [ 4voupa
Q Q

for every Q-periodic function 1: RN — RN of class C*° satisfying condition
(2.7).

Proof. Note that, for every r =k —s+1,...,k, we have

N L
lz . (V)T iigein
B i\[: 0 { O Vi iy o 1dy }
= 0x;, | Oxyy_ -0, 0x;,_ Oxi ., -~ 0wy,
_ o° [ al 5¢i1-~-ik_s_1i,,]
0xiy_ .y -+ 0xy,_ 0wy O0xy, -+ O0xy, = 0x;,
=0.
Thus,
(s + )[s-div (A1 V) iy i,

N 9%
N Z axik—s+1 o axlk

[ N

X [Svsw - ((vsw)Tk:§+1 4+ (vsw)Tk*S)]iliQMik
N 9
=5 X g g (V¥aie
Tk —st15m-0k=1 th—s+1 ik
N
- O™y iy
= S Z (9 w L .

axik—s+1 T axik 6xik73+1 T axik

T—st1snsile=1

S
= SA 1/}i1...ik73,
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where by A® we denote the sth power of the Laplace operator. Hence,

. sl . -
Aty = S [ (At Vo0 i iyeeesims = 1o V.

The conclusion follows by applying theorem 10.5 and the following remark from [1].
O

We will also need the following generalization of lemma 2.13.

LEMMA 2.14. For every p > 1, there exists a constant 7 = 7(N,p,s) > 1 such that

[0+ [Py DR s < 7 [ A A T e
Q Q

for every constant y > 0 and every Q-periodic function : RN — RN of class

C satisfying condition (2.7).

Proof. The proof simply follows by adapting the proof of [7, lemma 11] and using
lemma 2.13. O

We conclude this section by giving some definitions of higher-order bounded
variation spaces. We set

BH® (02) := {u € WF11(2): D*u is a finite Radon measure}
={u e WFL(2): V"' e BV(; Ex_1)},
where DFu stands for the kth-order distributional gradient of u, and
SBHW () := {u e BH®(2): V*~lu € SBV(2; B, _1)}
= {ue WFb1(Q2): VF 'y € SBV(£2; Ej_1)} € BH® ().

3. Proof of theorem 1.1

To prove theorem 1.1 we will first show that, for every j = 2,... k, every strictly j-
quasi-convex function of class C! can be extended to a strictly (j — 1)-quasi-convex
function, provided we require the gradient to be Lipschitz continuous. In the case
when 1 < p < 2 that we present below, we actually have to consider a ‘perturbed’
strict j-quasi-convexity.

LEMMA 3.1. Let j € {2,...,k}, 1 <p<2p=0 and let MO, V) and ¢ be
positive constants. Let fU) e C1 (EY ') satisfy the following conditions:

(a) (strict j-quasi-convexity up to a perturbation)
[0+ v96) - 1) ds
Q
> —eh D) 4000 [ (24 AP+ [T162) 022 6P da
Q

for every A € E,ikaj and every ¢ € CI(Q;RN"™"), where

B . E,]Ckaj — [0, +00);
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(b) (Lipschitz condition for gradients)
VDA + B) - VD) < MO + 4] + BB
ki
for every A,B € EN" .

Then there exist a function FU e Cl(E,infjH) and a positive constant L) =
L9 (p, i, MO 9| §) such that

(a') (strict (j — 1)-quasi-convexity up to a perturbation)
/Q[F(j)(A + Vi) — FO(4)) da

> 00 [ AR+ 9T e
(LA AR DA AP - ehO) (S, 4)
for every A € E,]Cvk_]url and every p € CI~H(Q; RN,
(b") (Lipschitz condition for gradients)
VFO(4+ B) ~ TFO () < LO(2 + A + B2/ B

Nk—i+1

for every A,B € E}, ,
(¢) (FY) extends fU))
FO(A) = fD(4) vae BN,

Proof. Let 3 > 0 be a constant to be chosen at the end of the proof and define
FO . BN LR as

FO(A) := fOUS;A) + BI(k° + |4 APY? — ] = fO(S;A) + Blg(A;A) — p?],
where g is given by relation (A 2) with X = E,ﬁkajﬂ.

Relation (c) is clearly satisfied. Let us show that condition (a’) holds true for a

good choice of 5. Let
k—j+1
€ O QRN T,

By lemma 2.11 we can write
p=Vo+1,
where ¢ € C2.(Q; RN" ') satisfies condition (2.7) with s = j — 1, and

per
¢ € Cra (RN,
By differentiating the previous relation j — 1 times, we get
Vil =Vig+ViThy,
with

NE—i+1

Vil ViTly e C2(Q BN and Vg e O (Q BN,

per
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We have

/ [FO(A+VITlp) — FO(A)] dx
Q
= [P0S4+ V64 87710 = (S 4+ Vi) do
Q
+ [ 0S4+ 799) - 195 4) do
Q
48 [ [o(AA+ A1) - g(A; )] do
Q

=1+ I+ Is.

Note that Vf@)(S;4) € EN*™'. Then, by proposition 2.5 and using the fact that
1 is Q-periodic,

/Vf(j)(sjA)-sjvi—lwdx:/ V9(S;A) - VIl de = 0.

Q Q

Hence,

L :/[f<j>(sjA+vj¢+sjvjflw)—f<j>(sjA+vf¢)—Vf<j>($jA).sjvf*1¢] da.
Q

Applying lemma A.6 with € = %l/(j ), there exists a positive constant

such that

L> 10 /Q (12 + 1S AP + |VI6[2) 7212 vig[2 da

cl/Q(,ﬁHsjvj1¢|2)<P2>/2|5jvj1¢|2dx

>3 [ (1S AR £ V0D
. /Q<“2 A VI ) P22 4, P2 da

where 7 = T(N,p,j — 1) is given by lemma 2.14. The perturbed strict j-quasi-
convexity of fU) gives

B> o0 [ (2 4 |S;AR + [VI6P)0 290 da - ch)(S; ),
Q
so that

B> 300 [ (41847 4+ [V902) 02 2 W02 o — 2h)(S,4)
Q

o /Q(“Q + A,V ) D2 A0 ) da
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We now apply lemma A.3 to the first integral of the last expression with ji? =
p? +|S;AI%, © = Vig and y = V/~11p. Recalling that Vi¢ + Vi~lyp = Vi~ly we
get

LI > W /Q (W2 + 1S A1 + [V o) 0=/ 032 da — eh)(8,.4)
40 [ 5 IS AR + 9D
- /Qw + AV ) D240 ) d (3.1)
Using lemma 2.14 and the fact that 1 < p < 2,
40 [ G 1A [
> 30 [t 9
> 1) /Q (0 4+ LA )02 AT P de, (3.2)
Hence, collecting (3.1) and (3.2),
L+ 1) /Q(;ﬁ FIS,AP + [V o) PD/2 9 L2 i — ch)(S; A)
~ (e + ) /Q (b2 4+ LA, )02 2 A 09 da
> 00 [ AR+ 9T de 2k (5,)
~ren+ 400 [ (6 4 AT A g,

where we once again use the fact that 1 < p < 2. Since Vg(A;A) € .,éle,]chfjJrl and

1 is Q-periodic,
/QVg(.AjA) CAVIT N dr = /QVg(.AjA)-Vj_lwdx =0,
so that
I, =5 /Q [9(A;A + A, VI1) — g(A; A) — Vg(A;A) - 4,77 9] de.
Let 0 < § < 1 be chosen at the end of the proof. By lemma A.1,
L gep/Q(;ﬂ A AP + A,V ) 022 4,0y P da
> 3,0 [ (4 A0 e

— B0,0(1% + | A AP P22 4, AP,
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where, in the second inequality, we used lemma A.3 with X = Eékajﬂ, o=,

r=AjA and y = A;V/~14). Choosing 3 = 3U) > 0 and § = §U) € (0, 1) such that
ﬂ(]’)gp((g(j))(%zﬂ)/2 > 7(ey + %,/(J’))’ ﬂ(j)gp(;(j) <e,

we obtain
Lt bty > 10 / (12 + AP + |99 )22 g2 o
Q

— eh(S;4) - (i + | A4AR) DA AP,

so that (a’) holds. To check condition (b’), we observe that tge function g satisfies
-7

the hypotheses of lemma A.5. Then, for every A, B € E,ivk ,
IVg(A+ B) = Vg(A)| < Cp(p® + AP + |B])P~272|B,

where C), is a positive constant depending only on p. Using the above relation,
condition (b) and the fact that 3 depends on v¥), 7 and ¢;, we conclude that
(b’) holds for some positive constant L) = L) (p, u, M) 1) 5). O

We pass now to the case p > 2.

LEMMA 3.2. Let j € {2,...,k}, p>2, u > ), MW >0, v9) >0, and let 0, and
O, be given by lemma A.1. Let f9) e cHEY ') satisfy the following conditions:

(a) (strict j-quasi-convezity)
J O vi6) - fO ) de > 00 [ (4 |AR + 6D do
Q Q

for every A € E,ivk_j and every ¢ € CI(Q;RN"7);
(b) (Lipschitz condition for gradients)
V7O + B) - VFO(A)] < MO (2 + [P +|BR)P-27 B
for every A, B € E,ikaj.

Then there ezist a function F\) ¢ Cl(EiivkiHl) and a positive constant L) =
L) (p, pt, MD 10D 5) such that

(') (strict (j — 1)-quasi-convezity)
/Q[F(j)(A +ViTtp) — FO(4)] dz
>0 [ (2 4 AP+ [V P g
10, J,

for every A € E,ikajﬂ and every o € Cg_l(Q;RNFHI),
(b") (Lipschitz condition for gradients)
VEO(A+ B) ~ VFO (4)] < LO(? + AP + B~/ B

Nk—it+1
for every A, B € E}, ,
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(¢) (FY) extends fU9))

F(j)(A) :f(j)(A) VA € E,vakfj.

Proof. Let A € (0,49)/0,] and 3 > 0 be two constants to be determined at the
end of the proof. We define FU): EN 7 S Ras

FO(A) = fUN(S;A) = A(i® + [S;APYP? + Mp® + |S; AP + B2 A; AP/,
Let g and gg be defined by (A 2) and (A 3), respectively, with

i Nk—itL

X=EN" and Y =AE)

Setting
R(B) = f9(B) = xg(B)
for every B € Egk7j7 we have
FO(4) = £77(8;4) + Aga(S;4, A; 4).

Condition &c_) i? clear from the definition of FU). In order to check (a’), let ¢ €

Cper(@; RN ). By repeating the argument of the previous proof, we can write

Vil = Vg + VY,
with
VI, VTl € Co(@Q BN and Vg e CR(Q BN,
where ¢ € C3%.(Q; RN"7™) satisfies condition (2.7) with s = j — 1. Hence,
/Q [FO(A+VI71p) — FO(A)] da
= /Q[ VS A+8VITNe) = (S A+ 8,V o — 8,V )] da
+ [ US4+ 0 - 18] de
2 /Q (95(S,A+ 85,9970, AL A+ AV ) — g5(S;A, A A)] da
— L+ L+ 15

Concerning the second integral, since, by periodicity,

/ Vg(S;A) - Vigdr =0,
Q
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using condition (a) and lemma A.1 we have
B= [ (F(S4+976) = F(S;A)de =\ [ [9(S4+ V1) — o(S;4)] da
Q Q
= [ (A4 V0) — 58,4 de
= [ 008,44 970) —0(8,4) + Vol ) Vol

> (V9 —26,) / (17 + S A + [V g]) P22 V7 g da
Q
> 0. (3.3)

Let us pass to the first integral. Noting that Vfij)(SjA) € E,vakfj, due to proposi-
tion 2.5 and using the fact that ¥ is Q-periodic,

@ Q
=0.

Hence,

I = _/ F9(S;A + 8,V 1 — 5,79 1)
Q
— 1S A+ 8,V ) — VD (S;4) - 8,V 1y da.

As observed in the previous proof, the function g satisfies condition (A 6), and so
by lemma A.5, condition (b) still holds for the function f) for a suitable constant
M= M(p,M(j), \) in place of M), Thus, applying lemma A.6 with ¢ = %)\GP,
there exists a positive constant o = o(p, M), A) such that

Lz —%Mp/ (12 + [S;AP + 18,V ) P=2/218,v7 Lo da
Q
— o+ 1SR 22 [ 18,9 P o - o [ 15,97 e,
Q Q
Due to lemma 2.13 and using (3.3), we get
L+1> —%Aep/ (12 + |SjAP? + S, VI~ L) =22 |18, L2 dz
Q
(N2, = D IS AR [ s
Q

—oy(N,p,j— 1)/ |AjVj_11/J|p dz. (3.4)
Q
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Since ¢ is Q-periodic,
0= /QVg,@(SjA,AjA) Vit da
= [ (TS A A A) - T ViS4, A ) AT ] e
so that
I = A/Q[gﬁ(sjA 48V, A, A + AV )
—95(SjA, AjA) = V,g5(S;A, AjA) - 8,V g

—V,95(S;A, AjA) - A; VI gl da. (3.5)

We shall now split I3 into two terms. We will use the first term to balance the sum
I+ 15, and the remaining one to get the strict (j —1)-quasi-convexity. Relation (A 5)
of lemma A.2 gives

%13 > §>\9p/Q(M2 + |SjA|2 + |Sjvj71(p|2)(1772)/2‘Sjvjflw‘z dx
NP + 18,4807 [ 49 s
Q

+ iwpﬁp/ |A; VI~ ap|P da. (3.6)
Q
If we choose = 39 > 0 so large that
PA0(BV)? > 0y(N,2,j —1) and  {A0,(89)F > oy (N,p,j 1),
using relations (3.4) and (3.6), we have
L+L+1I3> 115

Let us estimate the last term. Without any loss of generality we can assume 3) > 1.
Then, recalling (3.5) and using inequality (A 4),

/ [FO(A4+ vi~lp) — FO(4)]de
¢ =L+1L+1I3
> 100, [ (1 +ISAP 18,77 P
T BOPIAAR + (894D
x (I8; V77 gl + (BYW)?|A; VI g]?) da

106, /Q (12 + |AP + [V pf2) =2/ 7i 1 o2 g

WV

9 ) .
=078 [ (2 AP 4 [T D2 P s,
40, Jo
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where we choose

A=
20,
One can show that F() satisfies condition (b') as in the proof of lemma 3.1. O

We can now pass to the proof of theorem 1.1.
Proof of theorem 1.1.
STEP 1 (1 < p < 2). To simplify the notation, for every B € RM" we set
PB) = (12 + [BR)PDPIBE,  G(B) = (4 + |BP)? - pr).

Let ¢ > 0 be fixed. We start the proof by applying lemma 3.1 with j = k, v(*) = v,
k) =0 and
FF(A) = f(A) for every A € Ej.

We again apply lemma 3.1 £ — 2 times with j = k — 1,k — 2,...,2, respectively,
with
- v
@) — L

and
, A K
f9A) = FUFD(A)  for every A e EY 7,

while the functions h(): EN*™ — [0, +00) will be chosen as

hE=D(4) = P(ALA),

k
hD(A) =P(Ajnd) + > P(AS 1+ Sjd), j=k—2,....2
r=j+2
In this way, after the last step, corresponding to j = 2, we obtain a function

F@  RN" 5 R given by

k
F@(A) = f(SkSho1++S2) + BPG(AA) + Y BIG(AS, 1+ S A). (3.7

r=3

Here, for every j = 2,...,k, the constant 8U) is given by the proof of lemma 3.1
with the corresponding index j. F®) has the following properties:

(a") (strict 1-quasi-convexity up to a perturbation)
/ [FO) (A + V) — FO(A)] da
Q
> —eP(AA) — ehP (S, A)

v _
g [+ IAR Vo) T

for every A € RY" and every ¢ € C’Cl(Q;]RNkfl);
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(b") (Lipschitz condition for the gradient)
VO (A4 B) ~ VEP(A) < L5 + AP + B2/
for every A, B € ]RNk, with L = L(p, u, M, v);

(¢) (F® extends f)
FA(A) = f(A) VAe€ E.

Now let us define

F(4) := inf { /QF<2> (A+ V() da: p € cgzr(Q;RN’“)}

for every A € RN, Property (a’) implies that, for every A € RNk,
FA(A) — eP(A2A) — eh®(S24) < F(A) < FP(A). (3.8)
Since, for every A € Ey,
P(AA) = hP(S,A) =0,

from property (c) and relation (3.8) equality (1.3) follows. Let us check (1.4). By
proposition 2.9, from condition (b’) we infer that there exists a positive constant c,
depending on the function F® and in turn on f, such that

IF@(A)| < (1 +|A]P) VAe RN,

Recalling the definitions of the functions P and h(?, the last relation and (3.8)
give (1.4).

STEP 2 (p > 2). Repeating the strategy used for the case where 1 < p < 2, we first
apply lemma 3.2 with j = k, v*) = v and

FHF(A) = f(A) for every A € Ej.

Then, we again apply lemma 3.2 k—2 times with j = k—1,k—2, ..., 2, respectively,

with
_ g, \E—itl
) — P
2 =o(i)

f9A4) = FUHD(A)  for every A € E,ikaj.

and

Finally, when j = 2, we obtain a function F(?) : RV 5 R given by
FO(A) = f(Sk---S2A) + LA (S, A, Ay A)

k
+Y LSSy S A AS, 1S A),  (3.9)
r=3
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where we set

(r) )
L (WP AP+ (2 AP+ (BT B2, =2, .k,

L7(A,B) = — %,

@

and for every j = 2,..., k, the constant ) is given by the proof of lemma 3.2 with
the corresponding index j. The function F®) just defined is such that

(a") (strict 1-quasi-convexity)

/ (F®(A+ V) — FO(A)] dz
Q

v (6 k .
> V(b / (12 + AP + [Vp2) P2 2|V da
4 @p 0

for every A € R¥N" and every ¢ € CH(Q; RN,
(b") (Lipschitz condition for the gradient)
IVF®(A+ B) - VF®(A)| < L(p® + AP + |BI)P~2/%|B|
for every A, B € RN with L = L(p, u, M, v),

(¢) (F® extends f)
FP(A) = f(A) VAe E,.

We claim that the proof is concluded by setting F := F(?). Indeed, condition (c)
gives (1.3), while (1.4) follows by applying proposition 2.9 to F(?). O

4. Proof of theorem 1.2
To prove the theorem, first we need two preliminary lemmas.

LEMMA 4.1. Let j € {2,...,k}, 1 <p < 2, u>0,v9 >0, and let {M(])}ZeN be a
sequence of positive constants Let {f }zeN be a sequence of functions

FO BN SR
satisfying the following conditions:

(a) (strict j-quasi-convexity up to a perturbation)
L s o) - 119 )
~h?(4) + 0O / (1 + AP + [V 0) 0272 9 da

for every A€ Ek , for every ¢ € CI(Q; RN*" ), and for every i € N, where
{h }ZGN 18 a sequence of functions

k—j

h ' BN [0, 400);
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(b) (p-growth condition)

A < MP(1+|AP) vAe EY' VieN.

Then there exist an increasing sequence {Fi(j)}ieN of functions
FO. BN SR

and two sequences {ng)}ieN and {/\Z(-j)}ieN of positive numbers, depending on v\9),
Mi(J), j, p, 1, such that

(a") (strict (j — 1)-quasi-convexity up to a perturbation)
[ IO vt - FO () o
Q

> 1000 [ (4 AP 4 7)o s

=5 = ISP = AP AAR = b (84)

for every A € Eékaﬁl, for every ¢ € C’g_l(Q;RNkfjH) and for every i € N,

(b") (p-growth condition)

J

IFD(A) < LY (14 4P) vAe EN ", vieN,

(c) (Fv(j) extends fi(j))

K2

FOA) = f94) vAeEN vieN

3

Proof. First we observe that, due to proposition 2.7, there exists a positive constant
L= L(Mﬁj),j,p) (we do not stress the dependence on N and k here), such that

19 (A+B)— f9(A)] < L(1+|A[P~'+|BPP~Y)|B| for every A,B€ EN" . (4.1)
Let 8 > 0 be a constant to be chosen at the end of the proof. For every A € E,iniHl ,
we define

Fi(j)(A) — fi(j)(SjA) + BlA AP (4.2)

Condition (c) is]c cl_izzlirly satisfied. In order to show (a’), let us consider a function
¢ € CL(Q;RN"77). We can write

Vil =Vig+ Vi hy,
with

NE—i+1

Vil ViTly e O QBN and Vg e O (@i BN,

per
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where ¢ € C'2.(Q; RN]%HI) satisfies condition (2.7) with s = j — 1. Hence,

per
[ O+ v - FO () o
Q
= / (S A+ V64877 1) = [7(S;A+ Vg)] do
Q
+ [ PS4+ 976) - 125, 4)] da
Q
8 [ A+ 471007 — | 4,4 da
Q
= I1 + IQ + Ig.
By (4.1) and Young’s inequality, for every § > 0 there exists a constant
such that
Iy > —L/ (1+[S;A+ VIigP~t + |8, VI~ ty|P~1)|S; VI "1y da
Q
> =6 —5|S; AP — 5/ |VIp|P do — C/ |S; VI~ P da.
Q Q
Using lemma 2.13,
I > =5 —§|S; AP — 5/ |V p|P do — Cv/ |A; VI )P da. (4.3)
Q Q
Due to lemma A.4, for every 0 < & < 1,
I > —6(1+epP) —6(1 +¢)[S; AP — Cv/ |A; VI 1y|P da
Q
— 8D [ (42 4 |S;AP + [TI0) DT
Q

Then, applying lemma A.3 with i =0, x = A;A and y = A; VI~ 1y,
I > =81+ &) — (1 + 2)|S; AP — Cyer/2 A; AP

= Cre DI [ (LAAP |9 ) AT do
Q

— 8§eP—2)/p /Q('u2 + |SjA|2 + ‘Vj¢|2)(p—2)/2|vj¢|2 de.
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697
Thus, there exists a sequence of positive numbers {)\Z(-j )}ieN such that, for every
i €N,
I > -3 /Q(;ﬁ + [S;AP + |V ¢|?) P22 )2 dw
0 [ (AR AT AT R
- 3= 31SAP = 2P14;4p.
Here, for every fixed i € N, )\gj) = )\Z(.j)(y(j),Mi(j),j,p, ). By condition (a),
B2 [ (2 1SAP 4 V600 D (8,4),
so that
LI > V) /Q (4 + ;AP + V96 2) 7D/ Vi g da
N [ (AR AT AT R
- == 2 AP - A4 AP — 1S 4), (14)

We focus now on the first term of the last expression. Applying lemma A.3‘with
fo=p?+ A 2 =Vigand y = VI~ and recalling that VIig+ Vi~ = Vilyp,

we obtain
50 [ (1241541 + V96290 da
Q
> 300 [ (2 AP + [T 602290 do
Q
> 400 [ (2 AP + [ 2) 02T da
Q

_ 1,0

1 / (42 + AP 4+ |99 1 2) =272 731y 2 da,
Q

where in the first line we used the fact that 1 < p < 2. By lemma 2.14, the last
inequality becomes

200 [ (18 AR 4 V0T
> 10 [ (AP £ [777 )/ e
307 [ G AR+ LA D A g
> 100 [ AR+ 9T e

L0, /Q (AAP + A, Vi) -2/2 A, vi 1y e, (45)
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again exploiting the fact that 1 < p < 2. Collecting (4.4) and (4.5), we have

I+ 1> iy(j) / (M2 + |A|2 + |vj71<p|2)(p72)/2‘vj71<p|2 da
Q

O+ 407) [ (A AR 4 LA D A

1 1
== IS AP = NP4 AP — 17 (S;4). (4.6)

Concerning I3, using the periodicity of ¥ and lemma A.1 with =0,
Iy = B/ [A;A+ AV 7P — [A;APP — plA;AP?A;A - AV 1) da
Q
> ﬂ%/ (A AP + |4 VI 2) P22 4,077 1 . (4.7)
Q

Choosing 8 = ﬁl-(j) > 0 such that
ﬂq;(j)gp > )\5]) + %V(j)T,

from (4.6) and (4.7) we obtain

Bt Tl 2 40 [ (4 AR 4 [0

1 . ,
-5 g|SjA\P — A4 AP = n(8;4),

so that (a’) holds. From (4.2), condition (b") follows. O

The second lemma addresses the case where p > 2.

LEMMA 4.2. Let j € {2,...,k}, p > >0, vY) >0, and let {M }zEN be a
sequence of positive constants Moreover let 0 and @ be given by lemma A.1, and

let {f( )}zeN be a sequence of functions f; @) EN " 5 R satisfying the following
conditions:

(a) (strict j-quasi-convezity up to a perturbation)

/Q 9 A+ Vig) - 19 () da

WV

_hz(j)(A)+V(j)/(M2_’_|A|2+‘Vj¢|2)(p72)/2|vj¢|2dx

for every A € EN " for every ¢ € CI(Q; RNkf_j) and for every i € N, where
{h(])}leN is a sequence of functions h( 7, E,iVH — [0, +00);

(b) (p-growth condition)

A < MDA+ AP) VYA€ BN VieN.
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Then there exist an increasing sequence {Fi(j)}ieN of functions Fi(j): E,JCVFHI —R
and a sequence {LE])}Z-GN of positive numbers depending on V(j),Mi]),j,p,,u such
that

(") (strict (j — 1)-quasi-convezity up to a perturbation)
JaSd vi—1 _ Wy d
Q[ (A ) — F7(A)] dz

: 11
> —h(8;A) = = — ZIS;AP

]

0 , ,
w0 [ AR V) D
p

revery A€ EN"T every p € CITHQ; RN and every i € N;
0 Ae BNTT CI—Y(@Q; RN and €N
(b") (p-growth condition)

J

EDA) < V(14 14P) vAeEY T, vien

(c) (Fi(j) extends fi(j))
F_(j)(A) _ f(])(A) VA e Ellc\fkij7 Vi € N.

K2

Proof. Let a € (0,v19)/6,] and 8 > 0 be determined at the end of the proof. We
define

FO(A) = fP(854) = ali® + 1S AP + a(i® + 1S, AP + B A AP, (4.8)

Condition (c) is clearly satisfied. Now let ¢ € C32.(Q; RY k7j+1). As usual, we can
write

Vil =Vig+ ViThy,
with

TN and Vg e C(@ BN,

p

VIl VIt € CR(Qs BY
where ¢ € Cpe,(Q; RNkin) satisfies condition (2.7) with s = j — 1. Setting

()a(B) = £ (B) = a® + By

for every B € EN" | we have
/Q FO (A + Vi) — F9(4)) de
- /Q ((FD)a(S5A + Ti6 4+ §VI710) — (£9)a(S;A4 + V7)) da
" /Q (D)l A+ V76) = (F9)a(S; A)) da

+ a/ [95(S;A+ 8,V o, AjA + AV 0) — g5(SA, AjA)] da
Q

=11 + Ir + I,

https://doi.org/10.1017/50308210510000867 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210510000867

700 F. Cagnetti
with gg defined by (A 3), with

i NE—it1

X=EM" and Y =AE)

By repeating the chain of inequalities (3.3), one can show that ( fi(j ))a is j-quasi-
convex. In addition, applying lemma A.5 and proposition 2.9 to the function

B~ a(u® + |BI*)"/2,
we have that ( fi(j ))a satisfies condition (b), for some positive constant

Mi(j) _ Mi(j)(oz,u,Mi(j))

in place of Mi(j ), Thus, by applying proposition 2.7, we can still conclude that
relation (4.1) holds true for the function ( fi(] ))a, for a suitable constant

L=L(N,MY k,j,p,a).

By repeating the same argument as in the previous proof, we get that, for every
0 > 0, there exists a positive constant

c=c(MPj,p, o, 1, 6)

such that
I > —6—6|S;AP — 5/ |VIp|P do — C'y/ |A; VI 1P da
Q Q
> =3 SR =8 [ (0 4 [SAP + (VI do
Q
— C'y/ |A; VI 1P da.
Q

Hence, we can find a sequence of positive numbers {)\Ej )}ieN such that, for every
1 €N,

I > -9 —a6,) / (1% + S;AP? + [VIg)P=2/21V |2 da
Q
() i1 1 1
= A AV P de = - — —[S; AP
Q 7 1

Here )\l(-j) = )\Ej)(Mi(j),j,p, a, ) for every fixed ¢ € N. Adapting inequality (3.3) to
the present situation, we get

I = / (FD)a(SA + Vig) — (f9)a(S;4)] da
Q

> —h(8;4) + (WD) — a6, /Q (12 + [S; AP + [V ¢]2) =272 |77 ¢ 2 da.
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Moreover, assuming without any loss of generality that 8 > 1,
Iy > ot /Q (2 + JAP? + |99 pf2)P=2/2 93 g2 do
+ ;ae,,/Q(,ﬂ + |8 A2+ |8,V L) P2/ 8, v o2 da
+ 100,87 (1 + |SjA|2)<P2>/2/Q|Ajvj1¢2dx
+ ioﬂpﬁp/ |A; VI~ )P da
Q
> 1ad, /Q (2 + JAJ? + |99 f2) P22 931 g2 do
+ 50@,5?/ |A; VI~ |P da,
Q

Now, choosing
()
NG B a
a=« 20,
and = ﬁi(j) > 0 such that
100,577 >\,

we obtain
[+ v) - F ) s
Q
) . _
R R o KV R o Ll A
40, Jq
) 1 1
—hi(§54) = - = S 1SAP
so that (a’) holds. Finally, condition (b’) follows by (4.8). O
We are now ready to prove theorem 1.2.
Proof of theorem 1.2.
STEP 1 (1 < p < 2). We start by applying lemma 4.1 with j = k, v*) = v and
FPA) = f4), B (A)=0 forevery A€ Ey, i €N.

Then we again apply theorem 4.1 k—2 times with j = k—1,k—2,...,2, respectively,
where

and, for every A € E,]ka_j and 7 € N,

1(4) = Y (4.
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Accordingly, the functions hl(-j ) will be chosen as

1 1

BETIA) = < 4 ISAP + A AcAP

7

and, for j=k—2,...,2,

. k
. ke — 1 .
B (A4) = =L 4 = 3 1SS Sy AP+ AT 1A AP
r=j+1

k
+ 3 NS S AP,
r=j+2

where the sequences {)\Ej)}ieN are given by lemma 4.1. In this way, after the
last, step,kcorresponding to j = 2, we obtain a sequence {Fl-(Q)}ieN of functions
FZ-(Q) :RM" — R given by

k
Fi(2) (A) = f(Sp--- Sy A) + ﬁl,(2)|,42A|p + Z ﬂi(r) |ASp1 - S2 AJP.

r=3

Here, for r = 2,..., k, the sequence {ﬁfr)}ieN is as given in the proof of lemma 4.1.
The functions Fi(2 just defined have the following properties:

(a") (strict 1-quasi-convexity up to a perturbation)

/ FO (4 + V) - F?(A)] de
Q

1 1
> =1 (SA) = 5 — 2 1SAP

+

= / (1 + AP + V)P D2V di = AP A AP
Q

> ~h(S4) - 7 = 1S4 ~ X |4, Ap
for every A € RN every ¢ € CH(Q;RN"™") and every i € N;
(b") (growth condition)
IFPA) < LP(1+|4P) VAeRN VieN,
with L§2) = L§2)(1/, M,p, ) for every fixed i € N;
(c) (F-(Q) extends f)

K2

F®(A) = f(A) VA€ E,, VieN.
Now, for every A € RN and i € N, we set

Fi(A) := inf { /QFi(Z) (A+Vo(z))de: ¢ € C’;gr(Q;RNkl)}.
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From property (a') it follows that, for every A € RV " and for every i € N,

1 1
FP(A) = hP(824) = = = ZISAP = AP AAP < F(4) < FP(4). (49)

7

Noting that, for every A € Ej,

1—+00 1—+oo Z

-2 1¢
lim AP (S4) = lim [ +_Z|ST~-~82A|”} =0,
¢ r=3

from property (c) and (4.9) we have (1.6). Finally, (1.7) follows from (b’) and (4.9).
STEP 2 (p = 2). We first apply lemma 4.2 with j = k, v*) = v and
FRA) = fa), B (A)=0 forevery A€ Ey, i €N.

At this point, we again apply lemma 4.2 k — 2 times with j =k —1, k —2,...,2,

respectively, where
0 9.\t
J) — P
=)

and, for every A € E,]Cvk_j and 7 € N,

. k
. ; . — 1
[0y = FOTI ), pay =S L= 3 1SS S AP
r=j5+1

Finally, when j = 2, we obtain a sequence {Fi@)}iEN of functions Fi@) ‘RN SR
given by

k
FP(A) = f(Sk...SA) + D LS80 S2A, ASo1 - S2A)

r=3
+LP(8,4,A,4),  (4.10)
where we set

()

EET)(A, B) = 7@
P

e
(u2+\Alz)p/%@(u%\A|2+(ﬁ§’">)2|B|2)P/2, r=2.. ..k
p

The functions Fi(z) just defined have the following properties:

(a") (strict 1-quasi-convexity up to a perturbation)

/ FP(A+ V) - F2(A)] da
Q

1 1
> 0P (S24) — - — Z|S:AP

v (6, _
tx(@) Lo 4142 4190 2v g2 da
P Q

1 1
> —h{P(8,4) - 7~ 71524

for every A € RN every ¢ € C’Cl(Q;RNkfl) and every i € N;

https://doi.org/10.1017/50308210510000867 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210510000867

704 F. Cagnetti
(b") (growth condition)

FPA)) < LP+]4P) vAeRY, ieN;

(3

(c) (F-(Q) extends f)

K2

FP(A) = f(A) VA€ E,, ieN.

K2

For every i € N, we now define F; as the quasi-convexification of the function F. ;2):
Fi(A) == inf { / FP(A+ V() dz: ¢ € ngr(Q;RN“)}
Q

for every A € RN " From property (a’) and by the definition of F;, we have

FPA) - h?(8,4) — % - %|82A\P <F(A) <FP4) vAeRM . (411)
Noting that
lim h{?(S,4) =0 forall Ac RN,

1—+00
from property (c¢) and (4.11) we have (1.6). Finally, (1.7) follows from (b’) and
(4.11). O

4.1. Proof of theorem 1.3

To conclude the section, we give the proof of theorem 1.3.

Proof of theorem 1.5. Tt is sufficient to adapt the proof of [7, theorem 3] and to use
theorem 1.3. O
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Appendix A.

This section contains some auxiliary results that are used in the rest of the paper.
First, we give the proof of proposition 2.5.

Proof of proposition 2.5. Since A € E,ikakl and B € As+1E,in75, we can write
A=8s11A and B = A;41C, for some C € E,JCV “". As a first step, let us prove
that, for every r,l € {k —s+1,...,k} with r # [, we have

k—s k—s k—s k—s
Attt =40 = AT O (A1)
To fix the ideas, let us assume r < [. By definition of transpose operators,
Tk Ty
Ai17i2~-~ikci1i2~-ik = Aili2"'ik—s—lirik—s+1"'irflik—siri»l'”ik

XCZ‘

192k —s—100k—s4+1 1 —10k—sti4+1" Tk
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. . . k—s—1
for every iy,is,...,ir = 1,..., N. In the above expression, since A € E}¥ and
r,l > k — s, we can exchange the indices in rth and [th positions in the ﬁrst factor,
obtaining

kas T;cfs
A“ng ;\Cilirzmik = AiliQ"'ik—s—lirik—.s+1"'irflil,irJrl"'il—lik—sil,+1"'ik

X Oi1i2"'ik—s—1ilik—s+l"'il—lik—sil+1"'ik'
Summing the last relation with respect to ¢1,...,%; and renumbering the indices,
LN k K
kas T;cfs _ ’:[‘T'*S Tl —s
Ao C - Ai1i2"'ikci1i2"'ik
11,0050k
1,N
= Ai1i2'"ikfs—lirik—s+l"'irflili'r'#»l"'ilflik—sil#»l”'ik
(2R
X CiliQ"'ik—s—lilik—s+1"'il—lik—siH»l"'ik
1,N
= Air ikCiliZ"'ik—s—li'r-ik—s+l"'iv-—likfsir«#l'”ik
11,50k
1,N .
Z ks
- AiliQ"'ikCi1i2~“ik
11,50k
k—
=A.C"r

One can prove the second equality in (A 1) in the same way.
Let us now prove the proposition. We have

(S + 1)214 -B= (S + 1)2(85+1A . .AS+1C)
= (A+ ATE S o ATV ) L [sC — (O o O]

k k
=sA-C— > AT N a0
r=k—s+1 r=k—s+1
k k k
+s > AT o Y Y Am . om
r=k—s+1 lI=k—s+1 r#l

r=k—s+1

Since the sum of the first two terms is zero, using relation (A1) we get

(s+1)?A-B=(s—1) Z A.CT - i i AT

r=k—s+1 l=k—s5+1 r#l
r=k—s+1
Tk Tk:—a
=(s—1) g A-C (s—1) E A-C =
r=k—s+1 r=k—s+1

In the remainder of the section we state some lemmas that are proved in [7].
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LEMMA A.1. Let X be a Hilbert space, and let g: X — R be given by
g(x) = (1® + x|/, (A2)

For every p > 1, there exist two constants 0, > 0 and 6, > 0 such that, for every
= 0, the function g defined in (A 2) satisfies the following inequalities:

Op(1® + J2* + |y1*) =22 |yl? < g(@ +y) — g(x) = Vg(z) -y
< Op(® + |z + [y?) =22y ?
for every x,y € X.
LEMMA A.2. Let X,Y be Hilbert spaces and let p>1, p >0, > 0. Let
gg: X xY =R

be given by
g(w,y) = (1 + [ + By *)P/2. (A3)
Then

gslx+&y+n) —gs(x,y) — Vags(z,y) - £ — Vygs(z,y) -1
> 0,12 + |l + €2 + B2ly* + B2 PD 2 + B2 nl?) (A4

foreveryz, £ € X, y,n €Y, where 0 is the first constant in lemma A.1. Therefore,
if p > 2, we have

gp(x+&y+n) —gp(w,y) — Vags(x,y) - § — Vygs(z,y) -1
> 0,(1% + |af* + [¢P) P22
+ 30,67 (1® + [2*) P22 | + 6,67 |n|? (A5)
for everyx, £ € X, yyneyY.

LEMMA A.3. Let X be a Hilbert space and let 1 < p < 2. Then, for every i > 0
and every 0 < § < 1, we have

(B2 + |z +y) P22z 4y <2087 + ) P22 2 + 2(5% + |y) P22y,
SBR[y P )P Ry 2 < (% + Jaf + [yP) 7D 2y
+ 5 +]af?) D2 af?
for every x,;y € X.
LEMMA A4, Let 1 <p<2. Then
b < 8P A/P(p? 4 o + b7) P D22 4 eqP + epi?
foreverya>0,6>20, p>0and0<e<1.

LEMMA A.5. Let X be a Hilbert space, and let f € C1(X)NC?(X \ {0}). Assume
that there exist p > 1, C > 0 and p > 0 such that

IV2f(@)] < C(u? + o) P~/ (A6)
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for every x € X \ {0}. Then
IVF(@ +y) = V@) < KO + |af” + [y1) =22y (A7)
for every x,y € X, where K, > 1 is a constant depending only on p.

LEMMA A.6. Let X be a Hilbert space and let f € C'(X). Assume that there exist
p>1 and p = 0 such that

IVf(z+y) — V@) < (12 + |z + [y2) @22yl

for every x,y € X. If 1 < p < 2, then for every € > 0 there exists a constant
¢1 = c1(g,p) > 0 depending only on € and p such that

[fx+y+2) - flzt+y) - Vi) 2
<e(? + al? +lyP) P2y + e (i + o) P22 22

for every x,y,z € X.
If p > 2, then for every € > 0 there exists a constant ca = ca(e,p) > 0, depending
only on € and p, such that

l[f(x+y+2z)— fle+y) - Vf(r)- 2
<e(p® + |z + [y P2y 2 + o (1® + |2?) P2 |22 + o2

for every x,y,z € X.
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