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Abstract Let X be a smooth rational surface. We calculate a differential graded (DG) quiver of a
full exceptional collection of line bundles on X obtained by an augmentation from a strong exceptional
collection on the minimal model of X. In particular, we calculate canonical DG algebras of smooth toric
surfaces.
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1. Introduction

Derived categories of coherent sheaves have become one of the main research areas in
modern algebraic geometry. An important tool allowing one to work with such compli-
cated categories is given by full exceptional collections. Let X be a smooth projective
variety and let Db(X) denote the bounded derived category of coherent sheaves on X. It
was proved in [2] that a full strong exceptional collection σ yields an equivalence between
Db(X) and the bounded derived category of modules over a finite quiver with relations.
By a result of Bondal and Kapranov (see [3]), if σ is not strong, then Db(X) is equivalent
to the derived category of modules over some differential graded (DG) category Cσ. It
was proved in [1] that in the latter case the DG category Cσ is a path algebra of a finite
DG quiver with relations Qσ.

Calculating the quiver of a strong exceptional collection is equivalent to understanding
endomorphisms of some sheaf. On the other hand, in order to calculate the DG quiver a
priori one has to use injective resolutions. In [1] more comprehensive methods were given
for determining DG quivers for two types of exceptional collections. Firstly, if a collection
σ can be mutated to a strong one τ , then the DG quiver Qσ of σ can be calculated by
means of the quiver of τ . On the other hand, if a collection σ = 〈E1, . . . , En〉 is almost
strong, i.e. Exti(Ej , Ek) = 0 for i �= 0, 1, then one can construct a tilting object Eσ using
universal extensions and coextensions defined in [7]. In this case endomorphisms of Eσ

allow one to calculate the DG quiver of σ.
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Many examples of almost strong exceptional collections are given by exceptional col-
lections of line bundles on rational surfaces. Recall that every rational surface X, not
isomorphic to the projective plane P2, is obtained from some Hirzebruch surface Fa by a
sequence of blow-ups:

X = Xn
πn−−→ Xn−1 → · · · → X1

π1−→ X0 = Fa.

In [6] Hille and Perling described an augmentation process that allows one to construct
full exceptional collections of line bundles on X starting from a full exceptional collection
on X0. Moreover, in [7] it was proved that collections obtained by augmentation are
almost strong.

The main purpose of this paper is to calculate the DG quiver of a full exceptional
collection σ on a smooth rational surface obtained via augmentation from a strong full
exceptional collection on X0. To do this we first present σ in the canonical form (see
Proposition 3.1). Using this presentation we calculate the tilting object Eσ (see Propo-
sition 3.4) and its endomorphisms. Then, using twisted complexes, we can calculate the
DG quiver of σ and any of its mutations.

In § 4 we apply these methods to a smooth toric surface Y with T -invariant divisors
D1, . . . , Dn, which correspond to the rays in the fan ΣY ⊂ N ⊗Z Q � Q2 of Y . If the
order of Di is induced by an orientation of Q2, then the collection

〈OY ,OY (D1),OY (D1 + D2), . . . ,OY (D1 + · · · + Dn−1)〉

is full and exceptional on Y . For any k ∈ {1, . . . , n} the same remains true for the
collection

〈OY ,OY (Dk),OY (Dk + Dk+1), . . . ,OY (Dk + · · · + Dk+n−2)〉

if the indices are considered as elements of Z/nZ. We consider all collections of such a
form at once. Namely, let Z = Tot ωY be the total space of the canonical bundle on Y

and let p : Z → Y denote the canonical projection. As the vector bundle

E = OY ⊕ OY (D1) ⊕ · · · ⊕ OY (D1 + · · · + Dn−1)

is a generator of Db(Y ), the sheaf p∗(E) is a generator of Db(Z). Moreover,

HomZ(p∗(E), p∗(E)) = HomY (E , p∗p
∗(E))

= HomY (E , E ⊗ p∗(OZ))

=
⊕
n�0

HomY (E , E ⊗ OY (−nKY )).

On Y we can consider an infinite sequence (Ak)∞
k=0 of line bundles defined by

Ak = OY (sKY + D1 + · · · + Dr),

where k = sn + r for 0 � r < n. Denote by AY =
⊕

Ak the sum of all elements in this
sequence. We define the canonical algebra of Y to be the DG algebra of endomorphisms of
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p∗(E) or equivalently of AY . Methods described in § 3 allow us to calculate the canonical
DG algebra of any smooth toric surface.

The structure of the paper is as follows. Definitions of quivers and DG quivers, twisted
complexes and exceptional collections together with mutations, universal extensions and
coextensions are contained in § 2. We also recall basic facts about rational surfaces. In
§ 3 we recall after [6] the construction of full exceptional collections on smooth rational
surfaces. We present any such exceptional collection in the canonical form and describe its
Ext-quiver. Then, using universal coextensions, we calculate the associated tilting object
and we describe its endomorphisms. These data allow us to calculate the DG quiver
of the collection. In § 4 we apply these methods to smooth toric surfaces. We start by
recalling basic facts about toric surfaces and full exceptional collections on them. Then
we define the canonical DG algebra of a toric surface and we show how to use the results
of § 3 to calculate it. We conclude with examples of the canonical DG algebras for the
first and second Hirzebruch surfaces and for surfaces obtained from the first Hirzebruch
surface by blowing up one point.

2. Background

2.1. Quivers

A quiver Q consists of finite sets Q0, Q1 and two maps h, t : Q1 → Q0. Elements of Q0

are vertices of Q and elements of Q1 are arrows of Q. The maps h and t indicate the
head and the tail of an arrow, respectively. A path in Q is a sequence p = an · · · a1 of
arrows such that h(ai) = t(ai+1) for 1 � i � n−1; we put h(p) = h(an) and t(p) = t(a1).
A path algebra CQ of a quiver Q is an algebra with a basis consisting of paths in Q;
the product p ◦ p′ of two basis elements is defined by means of concatenation of paths
if t(p) = h(p′), and is set to zero otherwise. We also assume that for any vertex i ∈ Q0

there is a trivial path ei ∈ Q1 with t(ei) = i = h(ei). Then the element
∑

i∈Q0
ei is the

identity of CQ.
A quiver with relations (Q, S) is a quiver Q together with a set S ⊂ CQ. Let I =

〈S〉 ⊂ CQ be an ideal generated by S. Then the path algebra C(Q, S) of a quiver with
relations is defined to be CQ/I.

If arrows in Q are Z-graded in such a way that deg(ei) = 0 for any i ∈ Q0, the
path algebra CQ becomes a graded algebra; for a path p = an · · · a1 we put deg(p) =
deg(a1) + · · · + deg(an).

A DG quiver is a quiver Q together with a Z-grading on Q1 and a structure of a DG
algebra on CQ such that ∂(ei) = 0 for any i ∈ Q0. The Leibniz rule guarantees that
h(∂(p)) = h(p) and t(∂(p)) = t(p) as soon as ∂(p) �= 0. If the set S ⊂ CQ consists of
homogeneous elements, one can analogously define a DG quiver with relations (Q, S).

2.2. DG categories

A DG category is a preadditive category C in which abelian groups HomC(A, B) are
endowed with a Z-grading and a differential ∂ of degree 1. Moreover, the composition of
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morphisms
HomC(A, B) ⊗ HomC(B, C) → HomC(A, C)

is a morphism of complexes and for any object C ∈ C the identity morphism idC is a
closed morphism of degree 0.

The homotopy category H(C) of a DG category C is the category with the same objects
as C and

HomH(C)(A, B) = H0(HomC(A, B)).

For a DG category C, Bondal and Kapranov [3] defined the category Cpre-tr of one-sided
twisted complexes. It is the smallest DG category containing C such that H(Cpre-tr) is
triangulated. Objects of Cpre-tr are expressions of the form (

⊕n
i=1 Ci[ri], qi,j) for Ci ∈ C

and ri ∈ Z. We refer the reader to the original paper [3] for further details.

2.3. Exceptional collections

Let T be a C-linear Ext-finite triangulated category such that T � H0(Cpre-tr) for
some DG category C. Recall that an object E ∈ T is exceptional if Hom(E , E) = C

and Exti(E , E) = 0 for i �= 0. A sequence σ = 〈E1, . . . , En〉 of exceptional objects is an
exceptional collection if Exti(Ej , Ek) = 0 for j > k and any i. For an exceptional collection
σ, let Tσ be the smallest strictly full subcategory of T containing elements of σ. We say
that σ is full if Tσ is equivalent to T . Finally, the collection σ is strong if Exti(Ej , Ek) = 0
for i �= 0 and any j, k.

In [2] it was proved that a strong exceptional collection σ leads to an equivalence
between Tσ and Db(mod-Aσ) for a finite-dimensional algebra Aσ. The algebra Aσ is a
path algebra of a quiver with relations obtained from objects E1, . . . , En.

When the collection σ is not strong the category Tσ is equivalent to Db(Cσ) for some
DG algebra Cσ (see [3]). It was proved in [1] that Cσ can be chosen to be a path algebra
of a finite DG quiver with relations Qσ. If the collection σ is strong, the DG algebra Cσ

is quasi-isomorphic to Aσ.
In [2] mutations of exceptional collections were defined. If a pair 〈E ,F〉 is exceptional,

then so are the pairs 〈LEF , E〉 and 〈F , RFE〉 for LEF and RFE defined by distinguished
triangles in T

LEF → E ⊗ Hom(E ,F) → F → LEF [1],

RFE [−1] → E → Hom(E ,F)∗ ⊗ F → RFE .

For an exceptional collection σ = 〈E1, . . . , En〉, the ith left mutation Liσ and the ith
right mutation Riσ are exceptional collections defined by

Liσ = 〈E1, . . . , Ei−1, LEiEi+1, Ei, Ei+2, . . . , En〉,
Riσ = 〈E1, . . . , Ei−1, Ei+1, REi+1Ei, Ei+2, . . . , En〉.

Mutations of DG quivers can be defined in such a way that QLiσ = LiQσ and QRiσ =
RiQσ (see [1]). In particular, it is relatively easy to calculate a DG quiver of a collection
that can be mutated to a strong one.
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2.4. Universal extensions and coextensions

We say that σ is almost strong if Exti(Ej , Ek) = 0 for i �= 0, 1 and for all j, k.
In [7] Hille and Perling described how to construct a tilting object in Tσ from an

almost strong exceptional collection. The main tools in their construction are universal
extension and coextension. For a pair (E ,F) a universal extension Ē of E by F is defined
by means of a distinguished triangle

E [−1] can−−→ F ⊗ Ext1(E ,F)∗ → Ē → E .

Dually, a universal coextension of F by E is an object F̄ defined by a distinguished
triangle

F → F̄ → E ⊗ Ext1(E ,F) can−−→ F [1].

If F is exceptional and Exti(F , E) = 0 for all i, then Ext1(E ,F)∗ is naturally isomorphic
to Hom(F , Ē), and thus E is the cone of the canonical map

F ⊗ Hom(F , Ē) can−−→ Ē → E .

Dually, if E is exceptional and Exti(F , E) = 0 for all i, then Ext1(E ,F) is naturally
isomorphic to Hom(F̄ , E) and, up to a shift, F is the cone of the canonical map

F̄ can−−→ E ⊗ Hom(F̄ , E) → F [1].

Universal extensions and coextensions allow us to calculate a DG quiver of any almost
strong exceptional collection in a category T � H0(Cpre-tr) (see [1]).

2.5. Rational surfaces

Let X be a smooth rational surface. X is obtained by a sequence of blow-ups from the
projective plane P2 or a Hirzebruch surface Fa. We have a sequence of maps

X = Xn
πn �� Xn−1

πn−1 �� · · · �� X1
π1 �� X0,

where X0 = P2 or Fa. We can also assume that every πi is a blow-up of one point
xi−1 ∈ Xi−1.

Let Fi ⊂ Xi be the exceptional divisor of πi. Denote by Ei ⊂ X the strict transform
of Fi, and by Ri ⊂ X its pullback under πi+1 · · ·πn.

The divisors Ri are mutually orthogonal and R2
i = −1. Hille and Perling [6] introduced

a partial order on the set of indices {1, . . . , n}; i � j if i > j and πj−1 · · ·πi−1(xi−1) =
xj−1. Then

Hom(OX(Ri),OX(Rj)) �
{

C if i � j,

0, otherwise;

Ext1(OX(Ri),OX(Rj)) �
{

C if i 
 j,

0, otherwise.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.1)

Moreover, H0(OX(Ri)) = C, Hj(OX(Ri)) = 0 for j > 0 and Hk(OX(−Ri)) = 0 for
all k.
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3. DG quivers of exceptional collections on rational surfaces

3.1. Exceptional collections on rational surfaces

Again, let X be a smooth rational surface. We recall the augmentation procedure given
in [6] that allows us to construct full exceptional collections of line bundles on X from
an exceptional collection on X0. To simplify the notation we identify a line bundle L on
Xi with its pullback via πjs and denote them by the same letter.

Let σ = 〈L1, . . . ,Ls〉 be a full exceptional collection of line bundles on Xi. The augmen-
tation of σ is σ′ = 〈L1(Ri+1), . . . ,Lk−1(Ri+1),Lk,Lk(Ri+1),Lk+1, . . . ,Ls〉—an excep-
tional collection on Xi+1.

It follows from a result of Orlov [8] that collections obtained via augmentation are full.
It was proved in [7] that they are almost strong.

Mutations allow one to present each of the above described collections in the following
form.

Proposition 3.1. Any exceptional collection of line bundles on X obtained via aug-
mentation can be mutated to 〈ORn(Rn)[−1], . . . ,OR1(R1)[−1],OX ,N1, . . . ,Nt〉, where
〈OX0 = N0,N1, . . . ,Nt〉 is an exceptional collection on X0.

Proof. The collection on X obtained via augmentation is of the form

〈L1(Rn), . . . ,Li−1(Rn),Li,Li(Rn),Li+1, . . . ,Ls〉,

where the Ljs are pull-backs of line bundles on Xn−1. In particular, Lj |Rn
� ORn

for
any j.

Isomorphisms
Hom(Li,Li(Rn)) � Hom(OX ,OX(Rn)) � C

and the short exact sequence

0 → Li → Li(Rn) → ORn(Rn) → 0 (3.1)

show that this collection can be mutated to

〈L1(Rn), . . . ,Li−1(Rn),ORn
(Rn)[−1],Li,Li+1, . . .Ls〉.

Then

Hom(Lk(Rn),ORn(Rn)) � Hom(OX(Rn),ORn(Rn)) � Hom(OX ,ORn) � C

and the exact sequence (3.1) for Li−1, . . . ,L1 provides further mutations to

〈ORn
(Rn)[−1],L1, . . . ,Ls〉.

The collection 〈L1, . . . ,Ls〉 is a pull-back of a collection on Xn−1 and it again has the
form 〈L′

1(Rn−1), . . . ,L′
k−1(Rn−1),L′

k,L′
k(Rn−1),L′

k+1, . . . ,L′
s−1〉 for some k. As before,

it can be mutated to 〈L′
1(Rn−1), . . . ,L′

k−1(Rn−1),ORn−1(Rn−1)[−1],L′
k, . . . ,L′

s−1〉 and
then to 〈ORn−1(Rn−1)[−1],L′

1, . . . ,L′
s−1〉. Continuing, we can mutate the collection on

X to 〈ORn(Rn)[−1], . . . ,OR1(R1)[−1],OX ,N1, . . . ,Nt〉. �

From now on we will assume that the collection 〈OX0 ,N1, . . . ,Nt〉 on X0 is strong.
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3.2. Ext-quiver of 〈ORn
(Rn)[−1], . . . , OR1(R1)[−1], OX , N1, . . . , Nt〉.

To compute the Ext-quiver of the above collection one needs to understand the com-
positions

Ext1(ORj
(Rj),ORk

(Rk)) ⊗ Hom(ORi
(Ri),ORj

(Rj)) → Ext1(ORi
(Ri),ORk

(Rk)),

Hom(ORj (Rj),ORk
(Rk)) ⊗ Ext1(ORi(Ri),ORj (Rj)) → Ext1(ORi(Ri),ORk

(Rk))

for i � j � k.
Denote by C the subcategory of Db(X) generated by objects ORn(Rn), . . . ,OR1(R1),

and denote by C′ the subcategory of Db(X) generated by O(Rn), . . . ,O(R1). Then C
is a mutation of C′ over OX , and hence understanding morphisms between generators
of C is equivalent to understanding morphisms between generators of C′. In particular,
it follows from (2.1) that Hom(ORi

(Ri),ORj
(Rj)) is one dimensional if i � j and 0

otherwise. Similarly, dimCExt1(ORi(Ri),ORj (Rj)) is 1 if i 
 j and 0 otherwise.

Lemma 3.2. Let i 
 j 
 k. The composition

Ext1(OX(Rj),OX(Rk)) ⊗ Hom(OX(Ri),OX(Rj)) → Ext1(OX(Ri),OX(Rk))

is an isomorphism.

Proof. The exact sequence

0 → OX(Ri) → OX(Rj) → ORj−Ri
(Rj) → 0

gives

0 → Hom(ORj−Ri(Rj),OX(Rk)) → Hom(OX(Rj),OX(Rk)) α−→ Hom(OX(Ri),OX(Rk))

→ Ext1(ORj−Ri
(Rj),OX(Rk)) → Ext1(OX(Rj),OX(Rk))

β−→ Ext1(OX(Ri),OX(Rk))

→ Ext2(ORj−Ri
(Rj),OX(Rk)) → 0.

The morphism α : Hom(OX(Rj),OX(Rk)) → Hom(OX(Ri),OX(Rk)) is an isomorphism
because its kernel is 0 and both spaces are one dimensional.

Since both Ext1(OX(Rj),OX(Rk)) and Ext1(OX(Ri),OX(Rk)) are of dimension 1, β

is an isomorphism if and only if Ext1(ORj−Ri(Rj),OX(Rk)) is 0.
Applying Hom(·,OX(Rk)) to the short exact sequence

0 → ORj−Ri
(Rj) → ORj (Rj + Ri) → ORi(Rj + Ri) � ORi(Ri) → 0

gives an exact sequence

0 → Ext1(ORi(Ri),OX(Rk)) → Ext1(ORj (Rj + Ri),OX(Rk))

→ Ext1(ORj−Ri(Rj),OX(Rk))

→ 0.
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Indeed, Hom(ORj−Ri
(Rj),OX(Rk)) = 0 because OX(Rk) is a torsion-free sheaf and

Ext2(ORi
(Ri),OX(Rk)) � Ext2(ORi

(Ri),OX) � Hom(OX ,ORi
(Ri + KX))∨ � 0, by

Serre duality.
It follows from (2.1) that Ext1(ORi(Ri),ORk

(Rk)) = C. Thus, β is an isomorphism if
and only if Ext1(ORj−Ri(Rj),OX(Rk)) � 0, if and only if Ext1(ORj (Rj+Ri),OX(Rk)) �
C. Since j 
 k, we have an isomorphism ORj (−Rk) � ORj . It follows that Ext1(ORj (Rj+
Ri),OX(Rk)) � Ext1(ORj

(Rj + Ri),OX).
From short exact sequences

0 → OX(Ri) → OX(Ri + Rj) → ORj
(Ri + Rj) → 0,

0 → OX(Rj) → OX(Ri + Rj) → ORi(Ri + Rj) � ORi(Ri) → 0

and vanishing of Hom(OX(Ri),OX) and Ext1(OX(Ri),OX), we deduce that

Ext1(ORj (Rj + Ri),OX) � Ext1(OX(Rj + Ri),OX) � Ext1(ORi
(Rj),OX) � C,

which proves that β is an isomorphism. �

Remark 3.3. If i � j � k, the composition

Hom(OX(Rj),OX(Rk)) ⊗ Ext1(OX(Ri),OX(Rj)) → Ext1(OX(Ri),OX(Rk))

does not have to be an isomorphism. Indeed, consider a surface X obtained from its
minimal model by three blow-ups such that E2

1 = −3, E2
2 = −2, E2

3 = −1, E1E2 = 0,
E1E3 = 1 and E2E3 = 1. Then R1 = E1 + E2 + 2E3, R2 = E2 + E3 and R3 = E3. Let
ᾱ ∈ Ext1(OX(R3),OX(R2)) and β ∈ Hom(OX(R2),OX(R1)) be non-zero elements. We
have a short exact sequence

0 → OX(E2 + E3)
β−→ OX(E1 + E2 + 2E3) → OE1+E3(E1 + E2 + 2E3) → 0.

As in the proof of the previous lemma, β◦ᾱ = 0 if and only if Hom(OX(E3),OE1+E3(E1+
E2 + 2E3)) �= 0. We have

Hom(OX(E3),OE1+E3(E1 + E2 + 2E3)) = H0(X, OE1+E3(E1 + E2 + E3)).

The latter sheaf fits into a short exact sequence

0 → OE3 � OE3(E2+E3) → OE1+E3(E1+E2+E3) → OE1(E1+E2+E3) � OE1(−2) → 0

from which it follows that H0(X, OE1+E3(E1 + E2 + E3)) = C.

Thus, we know that between ORi
(Ri) and ORj

(Rj) there is either no arrow or two
arrows, one in degree 0 and one in degree 1. Moreover, β̄ ◦ α �= 0 and β ◦ α �= 0 for

ORi
(Ri)

α ��
ᾱ

�� ORk
(Rk)

β ��

β̄

�� ORj
(Rj),
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where α, β are non-zero morphisms and ᾱ, β̄ are non-zero elements of the first Ext
groups.

It remains to understand the space of morphisms from ORk
(Rk) to Ni and how these

morphisms compose with morphisms ORi(Ri) → ORk
(Rk) and Ni → Nj .

As the Ni are torsion free, we know that Hom(ORk
(Rk),Ni) = 0. From the short exact

sequence
0 → Ni → Ni ⊗ OX(Rk) → ORk

(Rk) → 0 (3.2)

we deduce that Ext1(ORk
(Rk),Ni) � Hom(ORk

(Rk),ORk
(Rk)) = C. Let us fix a non-

zero element ζi
k of the group Ext1(ORk

(Rk),Ni).
The diagram

0

��

0

��
0 �� Ni

��

=

��

Ni ⊗ OX(Rj) ��

��

ORj (Rj)

��

�� 0

0 �� Ni
�� Ni ⊗ OX(Rk) ��

��

ORk
(Rk) ��

��

0

ORk−Rj
(Rk) = ��

��

ORk−Rj
(Rk)

��
0 0

shows that the composition

Hom(ORj (Rj),ORk
(Rk)) ⊗ Ext1(ORk

(Rk),Ni) → Ext1(ORj (Rj),Ni)

is an isomorphism.
To understand the composition

Ext1(ORk
(Rk),Ni) ⊗ Hom(Ni,Nl) → Ext1(ORk

(Rk),Nl)

we apply the functor Hom(·,Nl) to the short exact sequence (3.2). It follows that for
φ ∈ Hom(Ni,Nl) the composition φ◦ ζi

k is zero if and only if φ factors through Nl(−Rk).

3.3. DG quiver of 〈ORn(Rn)[−1], . . . , OR1(R1)[−1], OX , N1, . . . , Nt〉
Now we will present calculations allowing one to determine the DG quiver of the

collection 〈ORn(Rn)[−1], . . . ,OR1(R1)[−1],O,N1, . . . ,Nt〉. Recall that we work under
the assumption that the collection 〈OX0 ,N1, . . . ,Nt〉 on X0 is strong.

To calculate the DG category of the collection

〈ORn(Rn)[−1], . . . ,OR1(R1)[−1],OX ,N1, . . . ,Nt〉

we substitute some objects with universal coextensions.
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3.3.1. Tilting object

Note that if 2 � 1, then we have a unique non-trivial extension

0 → OR1(R1) → OR1+R2(R1 + R2) → OR2(R2) → 0.

Hence, OR1+R2(R1 + R2) is the universal coextension of OR1(R1) by OR2(R2).
We will show that for ik � · · · � i1 � s the universal coextension of ORi1+···+Rik

(Ri1 +
· · · + Rik

) by ORs(Rs) is ORs+Ri1+···+Rik
(Rs + Ri1 + · · · + Rik

).

Proposition 3.4. Let 〈ORn(Rn)[−1], . . . ,OR1(R1)[−1],OX ,N1, . . . ,Nt〉 be an excep-
tional collection on X such that 〈OX0 ,N1, . . . ,Nt〉 is a strong exceptional collection on
X0. Then

OSn(Sn)[−1] ⊕ OSn−1(Sn−1)[−1] ⊕ · · · ⊕ OS1(S1)[−1] ⊕ OX ⊕ N1 ⊕ · · · ⊕ Nt

is tilting on X, where the Sk are defined as

Sk =
∑
j�k

Rj .

To prove Proposition 3.4 we shall need the following lemma.

Lemma 3.5. For i � k � l we have

Hom(ORi(Ri),ORl+···+Rk
(Rl + · · · + Rk))

� Hom(ORi(Ri),ORk+1(Rk+1)) ⊗ Hom(ORk+1(Rk+1),ORl+···+Rk
(Rl + · · · + Rk)) = C,

Ext1(ORi(Ri),ORl+Rl+1+···+Rk
(Rl + Rl+1 + · · · + Rk))

� Hom(ORi(Ri),ORk+1(Rk+1)) ⊗ Ext1(ORk+1(Rk+1),ORl+···+Rk
(Rl + · · · + Rk)) = C,

where the sum Rl + · · · + Rk is taken over all divisors Rj such that k � j � l.

Proof. We proceed by induction. The initial case, for k = l, follows from Lemma 3.2.
The induction step follows from applying the functor Hom(ORi(Ri), ·) to the short exact
sequence

0 → ORl+···+Rk−1(Rl + · · ·+Rk−1) → ORl+···+Rk
(Rl + · · ·+Rk) → ORk

(Rk) → 0. (3.3)

�

Proof of Proposition 3.4. From the above lemma and the short exact sequence
(3.3) it follows that if i � k � l, the sheaf ORl+···+Rk

(Rl + · · · + Rk) is the universal
coextension of ORl+···+Rk−1(Rl + · · · + Rk−1) by ORi

(Ri). Hence, by the construction
described in [7], the object

OSn(Sn)[−1] ⊕ OSn−1(Sn−1)[−1] ⊕ · · · ⊕ OS1(S1)[−1] ⊕ OX ⊕ N1 ⊕ · · · ⊕ Nt

is tilting on X. �
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Endomorphisms of the tilting object depend not only on the order of the divisors but
also on the dual graph of the exceptional curves.

Consider the blow-up with the following dual graph of exceptional divisors:

E3 E2 E1.

Then

E2
1 = −2, E2

2 = −2, E2
3 = −1,

E1E2 = 1, E1E3 = 0, E2E3 = 1,

R1 = E1 + E2 + E3, R2 = E2 + E3, R3 = E3,

and the order is

3 � 2 � 1.

The endomorphisms of OR3(R3) ⊕ OR2+R3(R2 + R3) ⊕ OR1+R2+R3(R1 + R2 + R3) are

OR3(R3)
α3 �� OR2+R3(R2 + R3)

α2 ��

β3

�� OR1+R2+R3(R1 + R2 + R3)
β2

��

with

β3 ◦ α3 = 0, α3 ◦ β3 = β2 ◦ α2.

However, if the dual graph is

E2 E3 E1,

then

E2
1 = −3, E2

2 = −2, E2
3 = −1,

E1E2 = 0, E1E3 = 1, E2E3 = 1,

R1 = E1 + E2 + 2E3, R2 = E2 + E3, R3 = E3,

the order is still

3 � 2 � 1.

and the endomorphisms of the tilting object are

OR3(R3)
α3 �� OR2+R3(R2 + R3)

α2 ��

β3

�� OR1+R2+R3(R1 + R2 + R3)
β2

��

with

β3 ◦ α3 = 0, β2 ◦ α2 = 0.
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3.3.2. Ext1(OSk
(Sk),Ni)

Lemma 3.6. Let ik � ik−1 � · · · � i1. Then

Ext1(ORi1+···+Rik
(Ri1 + · · · + Rik

),Ni) = Ck

and the remaining Ext groups are zero.

Proof. We proceed by induction. The short exact sequence

0 → ORi1+···+Rik−1
(Ri1 + · · ·+Rik−1) → ORi1+···+Rik

(Ri1 + · · ·+Rik
) → ORik

(Rik
) → 0

together with an equality

Exti(ORik
(Rik

),Ni) = Exti(OEik
(Eik

),Ni)

completes the proof. �

If we apply the functor Hom(OSk
(Sk), ·) to the short exact sequence

0 → Ni → Ni ⊗ OX(Sk) → OSk
(Sk) → 0,

we get an isomorphism

Ext1(OSk
(Sk),Ni) � Hom(OSk

(Sk),OSk
(Sk)). (3.4)

The identity morphism in the latter space corresponds to an element

ζi
k ∈ Ext1(OSk

(Sk),Ni).

The diagram

0

��

0

��
0 �� Ni

��

=

��

Ni ⊗ OX(Sk)

��

�� OSk
(Sk)

ι

��

�� 0

0 �� Ni
�� Ni ⊗ OX(Sl) ��

��

OSl
(Sl)

��

�� 0

OSl−Sk
(Sl)

= ��

��

OSl−Sk
(Sl)

��
0 0

shows that for an inclusion ι : OSk
(Sk) → OSl

(Sl) we have ζi
l ◦ ι = ζi

k.
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The isomorphism (3.4) allows us, in addition, to calculate the Yoneda composition

Hom(Ni,Nk) ⊗ Ext1(OSk
(Sk),Ni) → Ext1(OSk

(Sk),Nk).

Thus, if the collection 〈OX0 ,N1, . . . ,Nt〉 on X0 is strong, we know the endomorphism
algebra of the tilting object

OSn(Sn)[−1] ⊕ OSn−1(Sn−1)[−1] ⊕ · · · ⊕ OS1(S1)[−1] ⊕ OX ⊕ N1 ⊕ · · · ⊕ Nt.

Using one-sided twisted complexes one can then calculate the DG quiver of the collection
〈ORn

(Rn)[−1], . . . ,OR1(R1)[−1],OX ,N1, . . . ,Nt〉 and of any of its mutations (see [1]).

4. Canonical DG algebras of toric surfaces

4.1. Toric surfaces

We recall some information about toric surfaces. More details can be found, for example,
in [5].

A smooth projective toric surface Y is determined by its fan, spanned by a collection
of elements ρ1, . . . , ρn in a lattice N = Hom(C∗, T ) ∼= Z2, where T = (C∗)2 is a two-
dimensional torus. We enumerate the ρis clockwise and consider their indices, is, to be
elements of Z/nZ. Then, for every i ∈ Z/nZ, the vectors ρi and ρi+1 form an oriented
basis of N . Moreover, for every such pair there is no other ρk lying in the rational
polyhedral cone generated by ρi and ρi+1 in NQ = N ⊗ Q.

There is a one-to-one correspondence between one-dimensional orbits of the T -action
on Y and the rays in the fan generated by the ρis. For every i we denote by Di the
closure of this orbit. Then the Dis are T -invariant divisors on X. Every Di is isomorphic
to P1 and the intersection form is given by

DiDj =

⎧⎪⎨
⎪⎩

ai if i = j,

1 if j ∈ {i − 1, i + 1},

0 otherwise,

where ai ∈ Z are such that ρi−1 + aiρi + ρi+1 = 0. Conversely, the numbers (a1, . . . , an)
determine the toric surface Y .

Divisors Di and Di+1 intersect transversely in a T -fixed point pi corresponding to the
cone spanned by the vectors ρi and ρi+1.

A surface Y1 obtained from Y by a blow-up of a torus-fixed point pi is again a toric
surface. The fan of Y1 is determined by vectors ρ1, . . . , ρi, ρi+ρi+1, ρi+1, . . . , ρn. Moreover,
every toric surface different from P2 can be obtained from some Hirzebruch surface Fa

by a finite sequence of blow-ups of T -fixed points.
A canonical divisor of a toric surface is given by KY = −

∑n
i=1 Di. The Picard group

of Y is Pic(Y ) = Zn−2.
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4.2. Exceptional collections on toric surfaces

The ath Hirzebruch surface Fa has a fan with four vectors and we can assume that

w1 = (1, 0), w2 = (0,−1), w3 = (−1, a) and w4 = (0, 1).

The collection 〈OFa ,OFa(D1),OFa(D1 + D2),OFa(D1 + D2 + D3)〉 is a full strong excep-
tional collection on Fa.

If Y is obtained from Fa by a sequence of T -equivariant blow-ups, then we can assume
that the vectors ρ1, . . . , ρn determining Y are numbered in such a way that ρn = w4 =
(0, 1). Then the collection 〈OY ,OY (D1),OY (D1+D2), . . . ,OY (D1+ · · ·+Dn−1)〉 on Y is
obtained by augmentation from the strong collection on Fa; hence, it is full. The following
lemma tells us that in fact the numeration of T -invariant divisors is not important.

Lemma 4.1 (cf. Bondal [2, Theorem 4.1]). Let 〈E1, . . . , En〉 be a full exceptional
collection on a smooth projective variety Z of dimension m. Then the n-fold mutation
of En to the left, LnEn, is isomorphic to En ⊗ ωZ [m − n], where ωZ is the canonical line
bundle on Z.

Let σ1 = 〈OY ,OY (D1),OY (D1 + D2), . . . ,OY (D1 + · · · + Dn−1)〉 be a full exceptional
collection on Y . Then, by the above lemma,

LnOY (D1 + · · · + Dn−1) = OY (−Dn)[2 − n].

Hence, σ1 can be mutated to a collection

〈OY (−Dn)[2 − n],OY ,OY (D1),OY (D1 + D2), . . . ,OY (D1 + · · · + Dn−2)〉,

which, in turn, after a shift and a twist by OY (Dn), is equivalent to the collection

σn = 〈OY ,OY (Dn),OY (Dn + D1), . . . ,OY (Dn + D1 + · · · + Dn−2)〉.

One can repeat this operation and obtain full exceptional collections

σi = 〈OY ,OY (Di), . . . ,OY (Di + · · · + Di+n−2)〉

for any i ∈ Z/n.

4.3. Canonical DG algebra of a toric surface

Let Z = Tot ωY be the total space of the canonical bundle on Y and let p : Z → Y

denote the canonical projection. As the vector bundle

E = OY ⊕ OY (D1) ⊕ · · · ⊕ OY (D1 + · · · + Dn−1)

is a generator of Db(Y ), the sheaf p∗(E) is a generator of Db(Z) (see [4, Proposition 4.1]).
Moreover,

HomZ(p∗(E), p∗(E)) = HomY (E , p∗p
∗(E))

= HomY (E , E ⊗ p∗(OZ))

=
⊕
n�0

HomY (E , E ⊗ OY (−nKY )).
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On Y we can consider an infinite sequence (Ak)∞
k=0 of line bundles

Asn+r = O(sKY + D1 + · · · + Dr) for 0 � r < n.

Denote by AY =
⊕

Ak the sum of all elements in this sequence. It was proved in [9]
that the DG enhancement of Hom•(AY ,AY ) can be calculated via the Čech enhance-
ment. It follows that the DG enhancement of HomZ(p∗(E), p∗(E)) is the same as the DG
enhancement of HomY (AY ,AY ).

The sequence 〈OY ,OY (D1), . . . ,OY (D1 + · · ·+Dn−1)〉 is an augmentation of a strong
exceptional collection on a Hirzebruch surface and therefore the methods described in
§ 3 allow one to calculate the DG algebra of endomorphisms of

⊕n−1
k=0 Ak. Lemma 4.1

guarantees that up to shifts the remaining elements of the sequence (Ak) are obtained
by mutations from A0, . . . , An−1. Therefore, twisted complexes allow one to calculate the
DG endomorphism algebra of Hom(AY ,AY ): the canonical DG algebra of Y .

The composition provides a natural map

Hom(Aik−1 , Aik
) ⊗ · · · ⊗ Hom(Ai1 , Ai2)

Ψi1,...,ik−−−−−→ Hom(Ai1 , Aik
)

and an analogous one for elements of Ext1(Ai1 , Aik
). If there exists K ∈ N such that for

any i, j any element of Hom(Ai, Aj) or Ext1(Ai, Aj) is in the image of some Ψi1,...,ik
such

that is+1 − is < K for all s ∈ {1, . . . , k − 1}, then the canonical DG algebra of Y can be
presented as a path algebra of a cyclic DG quiver with K vertices.

If one can choose K to be the number n of T -invariant divisors of Y , then the DG
quivers Qi of exceptional collections σi can be read from the canonical DG quiver Q of Y

(Qi)0 = (QY )0,

(Qi)1 = (QY )1 \ {a ∈ (QY )1 | t(a) > i − 1 > h(a)},

and the canonical DG quiver Q is obtained by gluing of the DG quivers Qi.

Remark 4.2. The canonical DG algebra of F3 cannot be presented as a path algebra
of such a quiver, i.e. in this case K > 4. If, as before, we consider the fan of F3 with
w1 = (1, 0), w2 = (0,−1), w3 = (−1, 3) and w4 = (0, 1), then the map φ : OF3(D1+D2) →
OF3(2D1 + 2D2 + 2D3 + D4) with zeroes along 2D2 is not a composition of any maps
between line bundles.

4.4. Examples

We conclude with some examples of canonical DG quivers of toric surfaces.
The canonical DG algebra of F1 is a path algebra of the quiver

v1

a1
��

�

���
��a2

��
�

���
��

v4

e����

������

g

��
v2

b
���

�

�����
�

c0
��

�

����
�

c1
��

�

����
�

v3

d1���

		��� d2���

		���
f
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with relations

c0a1 = c1a2, d1c0 = d2c1, d1ba2 = d2ba1,

a1ed2 = a2ed1, a1f = gd1, a2f = gd2,

ba1e = c1g, ba2e = c0g, fc0 = ed2b,

fc1 = ed1b.

The canonical DG algebra of F2, with intersection numbers (0, 2, 0,−2), is a path
algebra of the DG quiver

v4

a1
��

��
��

��

���
��

��
��

�
a2
��

��
��

��

���
��

��
��

�

v3

e��������

����������
f��������

����������

h1
��h2
�� v1

b
��

��
��

��

����
��

��
��
c0

��
��

��
��

����
��

��
��
c1

��
��

��
��

����
��

��
��
c2

��
��

��
��

����
��

��
��

g1

�� g2

��

v2

d1�������

		������� d2�������

		�������

j2





j1





with

deg(a1) = 0, deg(a2) = 0, deg(b) = 0, deg(c0) = 0,

deg(c1) = 0, deg(c2) = 0, deg(d1) = 0, deg(d2) = 0,

deg(e) = 0, deg(f) = 1, deg(g1) = −1, deg(g2) = −1,

deg(h1) = 0, deg(h2) = 0, deg(j1) = 0, deg(j2) = 0,

∂(g1) = d2c1 − d1c0, ∂(g2) = d2c2 − d1c1, ∂(h1) = a1f,

∂(h2) = a2f, ∂(j1) = fd1, ∂(j2) = fd2

and relations

c0a1 = c1a2, c1a1 = c2a2, d1ba2 = d2ba1, c1h2 = c0h1 + ba2e,

c2h2 = c1h1 + ba1e, a1j2 = a2j1, h1d2 = h2d1, a1ed2 = a2ed1,

a1fd2 = a2fd1, fd1c0 = fd2c1, fd1c1 = fd2c2, fg1 = ed2b,

fg2 = ed1b, j1c0 = j2c1, j1c1 = j2c1, a1j1 = 0,

a2j2 = 0, h1d1 = 0, h2d2 = 0.
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If we blow up F1 in such a way that the obtained toric surface Y1 has intersection numbers
(−1,−1, 0, 0,−1), then the canonical algebra of Y1 is a path algebra of the quiver

v5 a

��
b

��v4

j

��

l
�� v1

c

��
d

��
g

��v3

f

�� k

��

v2
e

��

h

��

with relations

gb = eda, hd = fg, hcb = feca, kg = jhc,

ked = jfec, bk = lf, bjh = ejfe, lh = ake,

lfe = bke, dl = cbj, bk = lf, dak = cajf,

gl = ecaj.

If we blow up F1 at another point, to obtain Y2 with intersection numbers (0, 1,−1,

−1,−2), then the canonical DG algebra is a path algebra of the DG quiver

v4 g ��

m

��
r

��

v5

l1

��

l2

��

k1

��
k2

��v1

a
��

b��v3

f

��
h

��

v2

s1

��

s2

��

c

�� d

�� e

��
i

��

with

deg(a) = 0, deg(b) = 0, deg(c) = 0, deg(d) = 0,

deg(e) = 0, deg(f) = 0, deg(g) = 0, deg(h) = 0,

deg(i) = 0, deg(k1) = 1, deg(k2) = 0, deg(l1) = 0,

deg(l2) = 0, deg(m) = 0, deg(r) = 0, deg(s1) = −1,

deg(s2) = −1,

∂(l1) = bk1, ∂(l2) = bk2, ∂(m) = k1g,

∂(r) = k1h, ∂(s1) = he − gi, ∂(s2) = hd − gfe

https://doi.org/10.1017/S0013091516000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000493


876 A. Bodzenta

and relations

eb = da, ib = fea, gfca = hcb, el1 = cbk2 + dl2,

il1 = fel2 + fcak2, l1g = bm, l2g = am, ar = l2h,

amf = br, bk2h = ak2gf, bk1h = ak1gf, k1s1 = k2hc,

k1s2 = k2gfc.
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