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Particle migration in planar die-swell flows
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We present a numerical study on particle migration in a planar extrudate flow
of suspensions of non-Brownian hard spheres. The suspension is described as a
Newtonian liquid with a concentration-dependent viscosity, and shear-induced particle
migration is modelled according to the diffusive flux model. The fully coupled set of
nonlinear differential equations governing the flow is solved with a stabilized finite
element method together with the elliptic mesh generation method to compute the
position of the free surface. We show that shear-induced particle migration inside the
channel leads to a highly non-uniform particle concentration distribution under the
free surface. It is found that particle migration dramatically changes the shape of the
free surface when the suspension is compared to a Newtonian liquid with the same
bulk properties. Remarkably, we observed extrudate expansion in the Newtonian and
dilute suspension flows; in turn, at high concentrations, a die contraction appears.
The model does not account for normal stress differences, and this result is a direct
consequence of variations in the flow stress field caused by shear-induced particle
migration.

Key words: capillary flows, particle/fluid flow, suspensions

1. Introduction

Free-surface flows of particle suspensions play a key role in several industrial
processes, such as continuous and discrete coatings, extrusion of plastics and fibres,
and production of pharmaceutical and biomedical devices (Tadros 2011, 2017). The
hydrodynamic interactions between the suspended particles in complex flows lead to
shear-induced particle migration in the bulk of the suspension. As discussed in the
comprehensive review of Stickel & Powell (2005), shear-induced particle migration
drastically alters the flow characteristics when the suspension is compared to a
Newtonian fluid with the same bulk properties and under the same conditions. Hence,
fundamental understanding of the particle distribution in free-surface flows and the
shape of the free surface itself is essential to process optimization.

Since the pioneering observations of Karnis, Goldsmith & Mason (1966) and
Gadala-Maria & Acrivos (1980), a great effort has been made to better understand
the phenomenon of shear-induced particle migration in the flow of concentrated
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suspensions. The first discussion on the possibility of a cross-stream flux of particles is
due to Leighton & Acrivos (1987), who used a simple scaling argument to develop a
general expression for the diffusive flux of particles in unidirectional shear flows. They
suggested that particle migration is based on irreversible particle–particle interactions
because of gradients in frequency of particle interactions, particle concentration and
effective suspension viscosity. As a consequence, the particles migrate against the
direction of gradients in shear rate and suspension viscosity. The hypothesis for
particle migration from high- to low-shear-rate regions was later confirmed by several
experimental investigations of Poiseuille and cylindrical Couette flows (Husband &
Gadala-Maria 1987; Abbott et al. 1991; Altobelli & Givler 1991; Graham & Altobelli
1991; Sinton & Chow 1991). Beyond these reports on particle migration in steady
and fully developed conditions, other works have addressed particle migration in
oscillatory flow fields. For instance, Butler, Majors & Bonnecaze (1999) used nuclear
magnetic resonance imaging techniques to visualize shear-induced particle migration
in oscillatory flows in a tube. A similar problem was studied numerically by Morris
(2001) using Stokesian dynamics simulations. As a result, it was found that the
migration towards the flow centreline is recovered at large oscillation amplitudes. In
turn, at small amplitudes, the particles migrate towards the wall.

Phillips et al. (1992) extended the analysis of Leighton & Acrivos (1987) to
develop a convection–diffusion equation that describes the evolution of particle
concentration in the flow, establishing the now well-known diffusive flux model. The
proposed theoretical model was validated through many experimental observations
in cylindrical Couette and pressure-driven flows through tubes and channels using
different experimental techniques (Koh, Hookham & Leal 1994; Hampton et al.
1997; Subia et al. 1998; Butler & Bonnecaze 1999; Han et al. 1999; Norman,
Nayak & Bonnecaze 2005). However, the diffusive flux model presents some
drawbacks. The model deals with some phenomenological parameters that are hard
to measure (Graham, Mammoli & Busch 1998; Tetlow et al. 1998) and fails to
predict particle migration in curvilinear torsional flows (Chapman 1990; Chow et al.
1994; Krishnan, Beimfohr & Leighton 1996; Bricker & Butler 2006; Kim, Lee &
Kim 2008). Another difficulty of the model is related to the singularity that the
particle transport equation presents in regions where the local shear rate vanishes,
as occurs near the centreline of tubes and channel flows (Miller & Morris 2006;
Ahmed & Singh 2011; Rebouças et al. 2016). Although it was developed strictly
for one-dimensional shear flow, because of its relative simplicity, good accuracy and
low computational cost, the diffusive flux model has been extensively used to predict
particle concentration distributions in many problems of practical applications, such as
flows with non-Newtonian continuous phase (Rao et al. 2002), evolving flows (Ingber
et al. 2009), flows through asymmetric bifurcations (Ahmed & Singh 2011), flows of
suspensions with non-spherical particles (Siqueira, Rebouças & Carvalho 2017a) and
free-surface slot coating flows (Min & Kim 2010; Campana, Silva & Carvalho 2017;
Siqueira, Rebouças & Carvalho 2017b).

Another approach typically used to study particle migration in suspension flows
is the so-called suspension balance model, which was first proposed by Nott &
Brady (1994) and then modified by Morris & Boulay (1999). The suspension balance
model is a two-phase model which provides a continuum description of the bulk
suspension motion, as well as the relative velocity of the particle phase and fluid
phase. Its physical concept is that the migration phenomenon arises in order to
balance a non-homogeneous normal stress because of the presence of the particles
in the ambient Newtonian liquid. The particle flux is directly proportional to the
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divergence of the particle stress tensor (i.e. an additional stress in the fluid-phase
stress tensor), which includes contact or interparticle effects as well as hydrodynamic
contributions. Recently, Snook, Butler & Guazzelli (2016) considered refractive index
matching techniques to investigate the dynamics of shear-induced particle migration
in oscillatory pipe flows and compared the experimental results with the predictions
of the suspension balance model using rheological models (Morris & Boulay 1999;
Boyer, Pouliquen & Guazzelli 2011b). Nevertheless, the suspension balance model
requires correlations for the particle-phase stress which cannot be easily obtained
experimentally (Zarraga, Hill & Leighton 2000; Boyer, Pouliquen & Guazzelli 2011a;
Couturier et al. 2011; Dbouk, Lobry & Lemaire 2013), and the exact nature of the
particle stress that is responsible for particle migration is still a subject of debate
(Lhuillier 2009; Nott, Guazzelli & Pouliquen 2011).

The first experimental report about particle migration in free-surface flows is the
work of Husband et al. (1994), who performed an extensive investigation on the flow
of bimodal suspensions along an inclined plane. They found that the particles migrate
to the low-shear-rate region near the air–liquid interface. Moreover, they also verified
that large particles migrate with a higher rate than the small ones, leading to a size
segregation in the flow. Tirumkudulu, Tripathi & Acrivos (1999) and Tirumkudulu,
Mileo & Acrivos (2000) considered the flow of a monodisperse suspension of neutrally
buoyant spherical particles in a partially filled rotating cylinder. They observed that
the suspension segregates into regions of high and low particle concentration along
the cylinder axis, and that the particle concentration fluctuations lead to an instability
in the flow (Govindarajan, Nott & Ramaswamy 2001; Timberlake & Morris 2002; Jin
& Acrivos 2004). Loimer, Nir & Semiat (2002) studied the free-surface topography
along the vorticity direction in simple shear flows of concentrated suspensions. They
noticed that the roughness of the surface disturbances depends on the particle size,
particle concentration and the surface tension of the suspending fluid. Free-surface
topography was also investigated in gravity-driven flows of concentrated suspensions
along an inclined plane by Timberlake & Morris (2005) and Singh, Nir & Semiat
(2006).

Recently, some numerical analyses have been developed to investigate particle
migration in free-surface flows using the diffusive flux model. For instance, Min &
Kim (2010) used the finite volume method together with the volume of fluid model
to investigate particle migration in two free-surface flows of particle suspensions.
They presented a first discussion on the effects of inertia, particle size and suspension
bulk concentration on the flow characteristics. Campana et al. (2017) studied slot
coating flows of particle suspensions using the finite element method, and showed
that the final particle distribution in the coated film is not uniform and depends
strongly on the operating parameters. A similar study was conducted by Siqueira
et al. (2017b) considering particle alignment in slot coating flows of suspensions of
non-spherical particles. The effect of particle fillers in different process flows with
free surfaces has been studied experimentally. Chu et al. (2006) reported changes
in the operability window of the slot coating process associated with suspended
inorganic particles in poly(vinyl alcohol) solutions. Liang (2010) showed that the
extrudate swell of polypropylene composites containing diatomite particles decreases
as the particle volume fraction rises. Die swell in the polypropylene polymer matrix
was suppressed by the addition of carbon nanotubes, as reported by Kharchenko et al.
(2004). However, the mechanisms by which the suspended particles affect die-swell
flows of particle suspensions are still not clear.

In this work, we perform a detailed numerical study on shear-induced particle
migration in planar die-swell flows of particle suspensions, exploring a wide range of
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FIGURE 1. A schematic diagram of the geometry of the problem (not to scale).

model parameters and examining the effects of particle migration in the free-surface
configuration. The suspension is assumed to be composed by non-Brownian spherical
particles dispersed in a Newtonian liquid, and particle migration is described according
to the diffusive flux model. The set of governing equations is solved numerically by
a stabilized finite element method together with the elliptic mesh generation method
to compute the position of the free surface. The rest of this article is organized as
follows. The mathematical model is described in § 2, and the numerical methodology
employed is reviewed in § 3. Then, § 4 is devoted to the numerical results and
discussions. Finally, some concluding remarks are presented in § 5.

2. Mathematical formulation
The liquid flows through a channel between two parallel plates and then is extruded

into the ambient atmosphere. A sketch of the geometry of the problem is shown in
figure 1, where H is half of the channel gap. The free-surface height h is unknown
a priori and depends on the flow parameters. The lengths of the inlet channel and
free-surface region were chosen to be 75H and 25H, respectively. The flow is assumed
to be symmetric with respect to the x2 = 0 plane. Therefore, only the upper half of
the channel is considered. It is worth mentioning that particle migration does not
reach a fully developed condition at the end of the upstream channel. As discussed
by Nott & Brady (1994), the channel length necessary to obtain a fully developed
particle concentration distribution is very high. However, the geometry used here
is long enough to lead to a strongly non-uniform particle concentration field and
consequently to viscosity gradients that change the flow behaviour, as discussed in
the results section.

Because of the typical scales involved in the problem, i.e. the particle diameter is
much smaller than the channel height, the suspension can be treated as an equivalent
continuum liquid in the flow domain. Under this circumstance, the flow is governed
by incompressible mass conservation and momentum conservation equations, namely

∇ · u= 0 (2.1)

and

ρ

(
∂u
∂t
+ u · ∇u

)
=∇ ·Σ + ρg. (2.2)

In (2.1) and (2.2), u is the velocity field vector, ρ is the suspension density, Σ is
the suspension stress tensor and g is the gravitational field vector. The stress tensor
is split as Σ =−pI + τ , where p is the pressure field, I is the unit tensor and τ is
the extra-stress tensor field.
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We assume that the extra-stress is a purely viscous stress that obeys Newton’s law
with a concentration-dependent viscosity, such that τ = ηγ̇ , where η = η(φ) is the
suspension viscosity, φ is the local particle concentration and γ̇ = ∇u + ∇uT is the
rate-of-strain tensor, in which the superscript T denotes the transpose operation. The
suspension viscosity is given by a differential-effective-medium-based model recently
proposed by Santamaría-Holek & Mendoza (2010), such that

η= η0

[
1−

(
φ

1− cφ

)]−[η]
, (2.3)

where η0 is the viscosity of the Newtonian solvent liquid, [η] is the so-called intrinsic
viscosity and c = (1 − φc)/φc is a crowding factor that guarantees that the particles
cannot occupy all the volume of the sample due to geometric restrictions, in which φc
is the critical particle concentration at which the suspension loses its fluidity, i.e. η→
∞ as φ→φc. For suspensions of hard spheres, it follows that [η]=2.5 and φc=0.637.
It is worth mentioning that (2.3) recovers the classical result of Einstein (1911) at
the limit of infinitely dilute suspensions, and provides good results when compared to
experimental data over the entire concentration range.

Because of irreversible particle–particle interactions that occur in non-uniform shear
flows, the suspended particles tend to migrate to preferred regions in the flow domain.
Shear-induced particle migration is described by the diffusive flux model developed
by Phillips et al. (1992). The model states a typical convection–diffusion equation
accounting for particle transport in the flow, such that

∂φ

∂t
+ u · ∇φ =−∇ ·Nφ, (2.4)

where Nφ is the total diffusive flux of particles due to different mechanisms. Initially,
Phillips et al. (1992) recognized that particle migration arises from two different
mechanisms, namely gradients in shear rate and gradients in suspension viscosity.
They used the theory of Leighton & Acrivos (1987) to develop mathematical
expressions for these two fluxes, as follows:

Nc =−Kca2φ∇(γ̇ φ) (2.5)

and

Nη =−Kηa2

(
γ̇ φ2

η

)
∇η, (2.6)

where Nc and Nη are the diffusive flux of particles because of gradients in shear
rate and gradients in suspension viscosity, respectively. In (2.5) and (2.6), γ̇ = |γ̇ |
is the local shear rate (i.e. the second invariant of the rate-of-deformation tensor),
a is the particle radius, and the parameters Kc and Kη are diffusion-like coefficients
inherent to the model that should be found from experimental results. We set Kc=0.41
and Kη = 0.62, as found by Phillips et al. (1992) in pressure-driven flows through
tubes and cylindrical Couette flows. We also consider an additional diffusive flux of
particles because of the curvature of the streamlines in the flow, as introduced by
Krishnan et al. (1996) and later adapted by Kim et al. (2008) to a frame-independent
formulation. The mathematical expression for this flux is

Nκ =Kκa2γ̇ φ2κns, (2.7)
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where κ is the local radius of curvature of a streamline and ns is the unit normal
vector in the radially outward direction of a curved streamline. Following Kim et al.
(2008), the additional diffusion-like coefficient is defined as Kκ = Kc. It is worth
mentioning that we are considering suspensions of neutrally buoyant particles, so
that the effects related to sedimentation because of gravity are neglected, and the
suspension density is equal to the density of the Newtonian solvent liquid.

The boundary conditions used to solve (2.1), (2.2) and (2.4) are given below, in
which n and t are local unit normal and tangent vectors to the boundaries, respectively.

(i) Synthetic inflow plane: At the inflow plane, we assume a uniform particle
concentration, φ = φ̄, where φ̄ is the suspension bulk concentration, and a fully
developed, parabolic velocity profile, so that

u=
3
2

V
[

1−
(x2

H

)2
]

ê1, (2.8)

where V = Q/H is the flow mean velocity and Q is the imposed flow rate (per
unit width).

(ii) Symmetry plane: Because of symmetry, we have that n · u= 0, t · (n ·Σ)= 0 and
n ·Nφ = 0 along the flow centreline.

(iii) Synthetic outflow plane: At the outflow plane, we assume a fully developed
velocity profile with an imposed pressure, n · ∇u= 0 and p= 0. Moreover, there
is no diffusive flux of particles, such that n ·Nφ = 0.

(iv) Free surface: At the free surface, the shear stress vanishes and there is no liquid
flux across the air–liquid interface, so that t · (n ·Σ)= 0 and n · u= 0. Moreover,
the liquid traction should balance the sum of the pressure in the external gas and
the capillary pressure induced by the curvature of the free surface. The stress
jump across the interface is written as n ·Σ = (−pg+ σκ)n, where pg= 0 is the
external gas pressure, σ is the suspension surface tension and κ is the curvature
of the free surface. The liquid surface tension is assumed to be constant and
independent of the local particle concentration at the interface, such that there are
no Marangoni effects (Chandrasekhar 1961). Finally, we also assume that there
is no adsorption or desorption of particles in the free surface, which leads to
n ·Nφ = 0.

(v) Static contact line: The contact line is pinned at the corner of the channel exit.

A dimensional analysis of the problem suggests that it is convenient to introduce
three dimensionless numbers, which are combinations of the various macroscopic
model parameters. These dimensionless numbers are: (i) the macroscopic Reynolds
number, Re = ρQ/η̄; (ii) the capillary number, Ca = η̄V/σ ; and (iii) the ratio of
particle radius to channel gap, ζ = a/H. Here, η̄ = η(φ̄) is the average suspension
viscosity evaluated with the bulk concentration φ̄, i.e. neglecting particle migration.
All simulations were performed at Re= 0, a= 100 µm and ζ = 10−1, so that the only
parameters that are varied in this work are Ca and φ̄.

3. Numerical method
Because of the free surface, the domain of the extrudate swell flow analysed here

is not known a priori. The domain is part of the solution and depends on the flow
parameters. In order to solve this free-boundary flow by means of standard techniques
for fixed domain problems, the set of equations and boundary conditions posed in the
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unknown domain (i.e. the physical domain) have to be transformed to an equivalent
problem defined in a known domain (i.e. a reference computational domain). This
transformation is made by a mapping x = x(ξ) that connects the two domains.
The mapping procedure used here is based on the elliptic mesh generation method
presented by Christodoulou (1990) and de Santos (1991). In this case, the inverse
mapping satisfies an elliptic equation identical to those encountered in diffusion
transport with variable diffusion coefficients,

∇ · (D∇ξ)= 0, (3.1)

where ξ is the position vector in the computational domain and D is a symmetric
positive definite second-order tensor of diffusion-like coefficients used to control
element spacing in the reference domain (Benjamin 1994). Equation (3.1) is usually
referred to as the mesh generation equations. Boundary conditions are also needed
to solve the second-order partial differential equations of mesh generation. The solid
boundaries and the synthetic inflow and outflow planes are defined by functions of
the coordinates in the physical domain, and stretching functions are used to distribute
the nodes along the boundaries. At the static contact line, either the position of the
contact line is specified, or the angle between the unit normal vector outwards from
the free surface and the unit normal vector outwards from the solid boundary is
fixed, and the contact line lies on the solid boundary. Here, we kept the position
of the contact line fixed at x/H = (0, 1), so that the contact angle is part of the
solution of the problem. The position of the free surface is implicity defined by the
kinematic condition u · n = 0, such that there is no liquid flux across the air–liquid
interface. This version of the elliptic mesh generation method has been widely used
in numerical simulations of free-surface flows, such as coating flows of Newtonian
liquids (Carvalho & Scriven 1997; Carvalho & Kheshgi 2000; Tjiptowidjojo &
Carvalho 2011), non-Newtonian polymer solutions (Pasquali & Scriven 2002; Romero
et al. 2004; Romero, Scriven & Carvalho 2006; Bajaj, Prakash & Pasquali 2008) and
particle suspensions (Campana et al. 2017; Siqueira et al. 2017b), stretching of liquid
bridges (Dodds, Carvalho & Kumar 2009, 2011, 2012) and predictions of dynamic
wetting failure (Vandre, Carvalho & Kumar 2012, 2013, 2014; Liu et al. 2016).

Numerical approximations of the transport equations and the mesh generation
equations were obtained by using the DEVSS-TG/SUPG mixed finite element
method (Guénette & Fortin 1995; Szady et al. 1995; Pasquali & Scriven 2002).
The DEVSS-TG formulation treats the velocity gradient as an independent variable
with a traceless continuous interpolation. The interpolated velocity gradient is then
used to compute the viscous stress with a discrete adaptive split. The independent
variables of the problem are written as a linear combination of a finite number
of basis functions. Lagrangian biquadratic functions represent the velocity field,
particle concentration and mesh position; Lagrangian bilinear functions represent the
interpolated velocity gradient; and linear discontinuous functions are used for the
pressure field. Galerkin weighting functions are used in the residual equations of
mass conservation, momentum conservation, mesh position and interpolated velocity
gradient, and the streamline-upwinding Petrov–Galerkin formulation is applied in the
particle transport equation. In addition to that, the singularity of the diffusive flux
model was treated with a modified version of the non-local stress contribution to the
shear rate presented by Rebouças et al. (2016). The result is a large, sparse set of
coupled, nonlinear algebraic equations, which was solved using Newton’s method with
a numerical Jacobian matrix obtained with a second-order central difference scheme.
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FIGURE 2. Mesh independence test: (a) position of the free surface; (b) particle
concentration distribution at the outflow plane (x1/H= 25 plane). Simulations at Ca= 2.5
and φ̄ = 0.20.

FIGURE 3. Representative mesh used in the simulations (not to scale).

Mesh Elements Nodes DoFs

Mesh 1 1000 4221 28 594
Mesh 2 1250 5271 35 649
Mesh 3 1500 6321 42 749

TABLE 1. Mesh information

The tolerance on the L2-norm of the global residual vector and Newton’s update was
set to 10−6. At each iteration, the linear system was solved with a frontal solver
based on the LU factorization method (Duff, Erisman & Reid 1989), and solutions at
different parameters were obtained with a first-order arclength continuation (Bolstad
& Keller 1986).

We performed a grid-independence study for a representative combination of the
governing parameters to ensure that the numerical results are independent of the
mesh refinement. Three different meshes were examined, and the number of elements,
nodes and degrees of freedom (DoFs) of each one of them is specified in table 1.
The accuracy of our approximations was assured by computing the shape of the free
surface and the particle concentration distribution at the free-surface outflow plane
(x1/H = 25 plane). These results are presented in figure 2. In this test, we have used
Ca = 2.5 and φ̄ = 0.20. As can be seen, the three meshes yield quite close results.
Mesh 3, illustrated in figure 3, was selected and employed for all cases investigated.
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FIGURE 4. Particle concentration along the flow centreline (x2/H = 0 plane) for:
(a) φ̄ = 0.10; (b) φ̄ = 0.20; (c) φ̄ = 0.30; (d) φ̄ = 0.40. Simulations at Ca= 1.

4. Results and discussion

First, we investigate particle migration by examining the particle concentration
along the flow centreline. Figure 4 shows the results for suspensions at different bulk
concentrations at Ca = 1. As expected, particle concentration along the centreline
increases as the suspension flows inside the channel. Indeed, particles migrate from
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regions of high shear rate near the wall to regions of low shear rate near the
symmetry plane. Particle concentration reaches a maximum value close to the end of
the channel. For φ̄ = 0.10, the maximum concentration is φm ≈ 0.35 and occurs at
x1/H≈−1.5, and for φ̄= 0.40 it is φm≈ 0.58 and occurs at x1/H≈−8.1. Just before
the exit of the channel, the centreline concentration shows a sudden decrease, which
is a consequence of the transition from the bounded flow inside the channel to the
free-surface flow outside the channel. At the intersection between the channel and the
free surface, the shear rate undergoes a rapid variation from a maximum value at the
channel wall to zero at the air–liquid interface. Therefore, the free-surface induces
a redistribution in the particle concentration field near the channel exit, pushing
the particles towards the air–liquid interface and thereby decreasing the centreline
concentration. However, for x1/H & 1, the centreline concentration along the free
surface remains constant and higher than the suspension bulk concentration. For
φ̄ = 0.10, the concentration along the free-surface centreline is φcfs ≈ 0.19, and for
φ̄ = 0.40 it is φcfs ≈ 0.50.

The constant concentration along the free-surface centreline shows that shear-
induced particle migration is almost negligible in the flow under the free surface.
The flow in that region is bounded by the flow symmetry plane and the air–liquid
interface, and since the shear rate vanishes along these two boundaries, the gradient
in shear rate is almost zero, i.e. the flow approaches a plug flow condition. The
constant centreline concentration under the free surface is greater than the suspension
bulk concentration, φcfs > φ̄, which indicates the existence of gradients in particle
concentration in the extrudate. Thus, particle migration in this region arises only
from gradients in suspension viscosity and curved streamlines. However, as discussed
by Nott & Brady (1994), the diffusive mechanisms are relatively weak, so that
particle migration under the free surface is very slow. Figure 5 displays the particle
concentration distribution at the outflow plane. In all cases, particle concentration
is higher near the flow centreline, and drastically decreases towards the air–liquid
interface. For φ̄= 0.10, the interface concentration is φi≈ 0.06, and for φ̄= 0.40 it is
φi ≈ 0.27. Figure 6 shows the particle concentration field in the entire flow domain,
highlighting the non-uniform distribution of particle concentration inside the channel
and under the free-surface region.

In all plots presented in figure 5 the x2 coordinate in the free jet was normalized
by the free jet final height, h. However, the free-surface height and the shape of
the free surface itself depend strongly on the flow parameters, as can be seen in
figure 6. For a circular die at the limit of small Reynolds number, the interface
swells to approximately 13 % of the tube diameter in the case of Newtonian liquids.
In the case of polymeric solutions, the extrudate swell can be as high as 300 %.
This difference in the extrudate diameter is related to the presence of normal stress
differences in polymeric liquids (Tanner 1985; Bird, Armstrong & Hassager 1987).
Normal stress differences in the flow of non-colloidal suspensions can be computed if
the suspension balance model of Nott & Brady (1994) and Morris & Boulay (1999)
is used. However, the diffusive flux model together with the constitutive equation used
here does not show normal stress difference, i.e. N1=N2= 0. Therefore, the predicted
variation of the extrudate swell is related to the non-uniform particle distribution in
the flow due to shear-induced migration. Figure 7 compares the shape of the free
surface of suspensions with different bulk concentrations (but with the same average
bulk viscosity) and a Newtonian liquid with the same average bulk properties. The
extrudate final height decreases considerably as the suspension concentration increases.
At low concentrations, the extrudate height is smaller than that of the Newtonian flow.
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FIGURE 5. Particle concentration distribution at the free-surface outflow plane (x1/H= 25
plane) for: (a) φ̄ = 0.10; (b) φ̄ = 0.20; (c) φ̄ = 0.30; (d) φ̄ = 0.40. Simulations at Ca= 1.

For the Newtonian liquid, h/H ≈ 1.13, and for φ̄ = 0.10 and φ̄ = 0.20, we found
h/H≈ 1.11 and h/H≈ 1.05, respectively. In turn, at high concentrations, the extrudate
height is smaller than the channel gap; at φ̄ = 0.30, h/H ≈ 0.99, and at φ̄ = 0.40,
h/H ≈ 0.95.

Inside the channel, particles are concentrated near the symmetry plane and the wall
layer is depleted of particles, which leads to a very intense viscosity gradient in the
flow. Therefore, the velocity profile of the suspension flow at the channel exit is
blunted when compared to the Newtonian liquid. As the suspension concentration
increases, the viscosity near the centreline increases and thereby the centreline velocity
decreases; in turn, the viscosity near the wall decreases, leading to a higher velocity
gradient in this region. This result is shown in figure 8(a). Figure 8(b) shows the
fluid velocity along the symmetry plane, and figure 9 displays the horizontal velocity
field in the entire flow domain. For the Newtonian case, the centreline velocity inside
the channel is constant and equal to u/V = 1.5, and experiences a sudden decrease
to u/V ≈ 0.88 as the free surface approaches. Since u/V < 1 under the free surface,
the flow decelerates and we observe a die expansion with respect to the channel gap
in order to satisfy mass conservation. When particle migration is considered in the
suspension flow, the particles are more concentrated near the flow centreline, such that
the high viscosity in this region leads to a decrease in the centreline velocity. At φ̄=
0.10, the centreline velocity decreases from u/V ≈ 1.49 inside the channel to u/V ≈
0.91 along the free surface. So, there is also a die expansion, but with an extrudate
height smaller than the Newtonian case. At φ̄=0.40, the centreline concentration is so
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FIGURE 6. (Colour online) Particle concentration field in the flow domain for:
(a) φ̄ = 0.10; (b) φ̄ = 0.20; (c) φ̄ = 0.30; (d) φ̄ = 0.40. Simulations at Ca= 1.

high that the velocity falls from u/V ≈ 1.37 inside the channel to u/V ≈ 1.05 in the
free surface. Since u/V > 1 under the free surface, the extrudate velocity is higher
than the flow mean velocity and a die contraction appears in order to satisfy mass
balance. There are a few experimental reports on extrudate contraction in the flow
of concentrated suspensions. Aral & Kalyon (1997) presented evidence on a variation
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FIGURE 7. Shape of free surface. Simulations at Ca= 1.
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FIGURE 8. Comparison of the velocity field in the flow of suspensions and a Newtonian
liquid: (a) velocity profile at the channel exit (x1/H = 0 plane); (b) centreline velocity at
the free surface (x2/H = 0 plane). Simulations at Ca= 1.

in extrudate shape in the flow of dense suspensions of non-colloidal spheres. Nicolas
(2002) observed a die contraction in gravity-driven jets of concentrated suspensions. A
qualitatively similar result was reported by Furbank & Morris (2004) on the formation
of drops of particulate suspensions. However, in the works of Nicolas (2002) and
Furbank & Morris (2004), both inertial and gravitational effects were not negligible,
so that we cannot be sure whether the die contraction they observed was caused by
the same mechanism as discussed here. Extrudate contraction was also reported by
Kharchenko et al. (2004) in the flow of concentrated suspensions of carbon nanotubes,
which was assumed to be a consequence of particle alignment in the flow direction.

The variations in suspension viscosity and flow velocity caused by particle migration
imply a strong change in the suspension stress field near the channel exit and the
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FIGURE 9. (Colour online) Horizontal velocity field in the entire flow domain for:
(a) Newtonian liquid; (b) φ̄ = 0.10; (c) φ̄ = 0.40. Simulations at Ca= 1.

entrance of the free-surface region. Figure 10 compares the stress field in this region
for a Newtonian fluid, a dilute suspension at φ̄ = 0.10 and a concentrated suspension
at φ̄ = 0.40. In all cases, the fluids present the same average bulk viscosity. In these
plots, the stress components are evaluated in units of τc = η̄V/H, the characteristic
shear stress of the flow. The normal stress Σ22 along the x2 = 0 plane rises as the
suspension bulk concentration increases. The resulting vertical net force along the
plane is compressive for the Newtonian fluid. Therefore, the vertical component of
the surface tension force acting at the contact line needs to be negative in order
to satisfy momentum balance; the free-surface height is larger than the channel
gap. On the other hand, the resulting vertical net force along the plane pulls the
liquid downwards for the concentrated particle suspension at φ̄ = 0.40. The vertical
component of the surface tension force at the contact line needs to be positive,
resulting in an extrudate contraction. This stress-based argument explains the change
in the free-surface curvature from a Newtonian liquid and dilute suspensions, where
a die expansion is observed, to concentrated suspensions, where a die contraction
appears.

In the absence of inertia and gravity, the shape of the free surface is dictated by a
balance between viscous and interfacial forces near the air–liquid interface, which is
represented by the flow capillary number. Figure 11 shows the effect of the capillary
number on the free jet final height. In all cases, the flow rate was kept fixed and the
capillary number was varied only by changing the liquid surface tension. At very low
capillary number, the flow is dominated by surface-tension forces, which act in the
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FIGURE 10. (Colour online) Stress field near the entrance of the free surface. (a–c) For
Σ22/τc: (a) Newtonian liquid; (b) φ̄= 0.10; (c) φ̄= 0.40. (d–f ) For Σ12/τc: (d) Newtonian
liquid; (e) φ̄ = 0.10; ( f ) φ̄ = 0.40. Simulations at Ca= 1.

sense to avoid the curvature of the free surface. As a consequence, the extrudate final
height is almost equal to the channel gap, i.e. h/H ≈ 1, without a considerable die
expansion or contraction. At Ca= 10−2, h/H≈ 1.005 for the Newtonian liquid, h/H≈
1.002 for suspensions at φ̄ = 0.10 and h/H ≈ 0.995 for suspensions at φ̄ = 0.40. As
the capillary number increases and viscous effects become dominant, the free-surface
curvature increases in order to balance the viscous force at the air–liquid interface.
Therefore, the extrudate final height and the die expansion increase in the case of
a Newtonian liquid and suspensions at low concentrations. In turn, the free jet final
height decreases and the die contraction becomes more pronounced for suspensions
at high concentrations. At the limit of very high capillary number, the relation h/H
tends to a constant asymptotic value. At Ca = 102, h/H ≈ 1.189 for the Newtonian
liquid, h/H ≈ 1.149 for suspensions at φ̄ = 0.10 and h/H ≈ 0.936 for suspensions at
φ̄ = 0.40. Although the capillary number has a strong effect on the extrudate shape,
we verified that it has a negligible effect on the final particle distribution at the free-
surface outflow plane when the x2 coordinate is normalized by the corresponding free
jet final height.

5. Final remarks
Particle migration in planar extrudate flows was studied. The suspension was

described as a Newtonian liquid with a concentration-dependent viscosity, and
shear-induced particle migration was modelled according to the diffusive flux

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

37
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.373


64 I. R. Siqueira and M. S. Carvalho

0.9

1.0

1.1

1.2

10010–1

Ca

10–2 102101

Newtonian

FIGURE 11. Effect of the capillary number on the free jet height.

model. The set of fully coupled, nonlinear differential equations was solved by the
DEVSS-TG/SUPG finite element method together with the elliptic mesh generation
method to capture the position of the free surface.

The results show that particle concentration distribution at the free-surface outflow
is highly non-uniform, presenting higher concentration near the flow symmetry plane
and lower concentration near the air–liquid interface. Particle migration affects the
local viscosity and flow velocity, and thereby changes the suspension stress field
near the channel exit. For a Newtonian liquid and dilute suspensions, die swell was
observed. On the other hand, at high concentrations, a die contraction was observed.
Here, this change in the free-surface curvature is related to the stress field variation
caused by particle migration. The curvature of the free surface increases with the
capillary number in order to balance the viscous force near the air–liquid interface.
Therefore, for a Newtonian liquid and dilute suspensions, extrudate height increases
with capillary number, whereas for concentrated suspensions, the extrudate height falls
as capillary number increases. These results may explain the die-swell suppression
observed in experiments of extrusion of particle-filled suspensions.
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