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Lift and drag forces acting on a particle moving
in the presence of slip and shear near a wall
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The lift and drag forces acting on a small spherical particle moving with a finite slip in
single-wall-bounded flows are investigated via direct numerical simulations. This study
is an extension of our previous work that considered the lift and drag forces acting on a
sphere moving near a wall in the presence shear, but in the absence of slip (Ekanayake
et al., J. Fluid Mech., vol. 904, 2020, A6). The effect of slip velocity on the particle
force is analysed as a function of separation distance for low slip and shear Reynolds
numbers (10−3 ≤ Reslip ≤ 10−1 and 10−3 ≤ Reγ ≤ 10−1) in both quiescent and linear
shear flows. A generalised lift model valid for arbitrary particle–wall separation distances
and Reγ , Reslip ≤ 10−1 is developed based on the results of the simulations. The proposed
model can now predict the lift forces in linear shear flows in the presence or absence of slip,
and in quiescent flows when slip is present. Existing drag models are also compared with
numerical results for both quiescent and linear shear flows to determine which models
capture near-wall slip velocities most accurately for low particle Reynolds numbers.
Finally, we compare the results of the proposed lift model to previous experimental results
of negatively buoyant particles and to numerical results of neutrally buoyant (force-free)
particles moving near a wall in quiescent and linear shear flows. The generalised lift model
presented can be used to predict the behaviour of particle suspensions in biological and
industrial flows where the particle Reynolds numbers based on slip and shear are O(10−1)
and below.

Key words: suspensions, microfluidics, particle/fluid flow

1. Introduction

Small particles moving near a wall experience lift forces in a direction normal to the wall.
In sheared flows, these forces cause particles to migrate across fluid streamlines and cluster
at different equilibrium locations away from the wall (Segre & Silberberg 1961, 1962).
This passive particle migration, induced purely by hydrodynamic forces, is observed
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in biological flows causing, for example, cell migration in microvascular networks
(Leiderman & Fogelson 2011). This migration mechanism has also been exploited in
the design of micro-scale cell sorting microfluidics (Di Carlo et al. 2009), macro-scale
particle deposition systems and shear enhanced membrane filtration devices (van der Sman
& Vollebregt 2012). Accurate quantification of the lift forces acting on small particles
is hence key in predicting particle distributions in both biological and non-biological
suspension flows.

In this study, we are particularly interested in the lift forces acting on smooth, rigid
spherical particles that are moving with a finite slip velocity and at low particle Reynolds
numbers. Note that this study is an extension of our previous work, which investigates the
lift and drag force in the presence of shear, but without slip velocity (Ekanayake et al.
2020). In dilute systems, particle slip velocities can originate from a variety of forces,
including fluid drag or buoyancy. These forces are often much higher in magnitude than the
lift forces. For example, freely translating neutrally buoyant particles experience a finite but
relatively small slip velocity due to the wall-shear fluid drag force (Ekanayake et al. 2020).
In contrast, heavy particles sedimenting in vertical flows can experience much larger slip
velocities due to strong buoyancy forces, which are further affected by wall-bounded fluid
drag forces when particles are moving in close proximity to a wall. In both cases, the
lift force acting on a particle strongly depends on the slip velocity, fluid shear rate and
distance to the wall. A significant amount of theoretical work has examined lift forces for
rigid particles at finite slip, however, a generalised wall-bounded correlation applicable for
all particle–wall separation distances is not available.

The main objective of this work is to extend the existing slip-shear-wall-based theoretical
results given for Reslip, Reγ � 1 to larger particle Reynolds numbers up to O(10−1), directly
relevant to particulate flows within small channels (i.e. particle migration in microfluidic
devices). We use well resolved numerical simulations to define a general lift model for a
particle experiencing slip in a shear flow for arbitrary particle–wall separation distances.
For this, rigid spherical particles moving with finite slip tangential to a flat wall in quiescent
and linear shear flows are considered for slip and shear Reynolds numbers in the range of
10−3 to 10−1. We consider both non-rotating and freely rotating particles.

We first discuss the available slip-based lift and drag models and their associated
limitations, in §§ 2.1 and 2.2, respectively. Then, we define the numerical set-up in § 3.
In § 4, we express our numerical results, for both quiescent and linear shear flows, as new
lift correlations valid for arbitrary wall–particle separation distance. In § 5, we compare
the results of these new lift correlations together with selected drag correlations against
previous near-wall experimental results for negatively buoyant particles in quiescent and
linear shear flows, as well as previous numerical results for force-free particles in linear
shear flows.

2. Existing theories

In this section we outline the previous work related to lift and drag forces acting on
rigid particles, and establish the limitations to be addressed in this study. For clarity, the
force models are classified as unbounded (ub), wall-bounded outer region (wb,out) and
wall-bounded inner region (wb,in) considering the wall and particle separation distance.
Wall-bounded inner-region-based models consider a particle close enough to a wall
such that the viscous effects are more significant than the inertial effects. Wall-bounded
outer-region-based models consider a particle located far away from a wall, where both
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Figure 1. Schematic of a translating sphere of radius a moving at velocity up in (a) an unbounded linear shear
flow (b) a wall-bounded quiescent flow and (c) a wall-bounded linear shear flow.

viscous and inertial effects are significant. The corresponding notation (ub, wb,out and
wb,in) will appear in the superscript of each force coefficient.

2.1. Lift force

2.1.1. Unbounded models
The hydrodynamic lift force is an inertia-induced force that reduces to zero for rigid
particles in Stokes flow (Bretherton 1962). When inertia is present, a particle that either
leads or lags the fluid flow can experience a lift force in unbounded linear shear flows
(figure 1a). Accounting for this, Saffman (1965) proposed an asymptotic expression for
the lift force (FL)

F∗
L = FLρ

μ2 = −sgn(γ ∗)2.255 × 9
π

Reγ
1/2Reslip + sgn(γ ∗)

11
8

Reγ Reslip − πReωReslip

(2.1)

valid for low slip, shear and rotational Reynolds numbers (Reslip, Reγ , Reω � 1). Here,

Reslip = |uslip|a
ν

, Reγ = |γ |a2

ν
, Reω = ωa2

ν
, (2.2a–c)

and uslip, ω, a, μ, ν and γ are the particle slip velocity, particle angular rotation, particle
radius, dynamic viscosity, fluid kinematic viscosity and fluid shear rate, respectively
corresponding to the flow geometry of figure 1(a). Here, the particle slip velocity refers to
the velocity of particle relative to the local undisturbed flow velocity (uslip = up − uf ). The
shear rate normalised by the slip velocity γ ∗ = γ a/uslip, depends on both the slip velocity
and shear rate, with the direction of the lift force determined by the sign of γ ∗. Hence,
in two-dimensional Cartesian flow system, Saffman’s (1965) first-order lift solution (first
term of (2.1)) predicts a lift force in the direction of increasing fluid velocity (+y direction)
for a lagging particle in a positive shear (uslip < 0, γ > 0) or for a leading particle in
a negative shear (uslip > 0, γ < 0), where γ = duf ,x/dy, and the reader is refereed to
figure 1(a) for coordinate directions. Hereafter, for convenience, any lift force acting in
the positive +y direction will be defined as positive. If both the slip and shear have the
same sign (i.e. γ ∗ > 0), the lift direction reverses and the Saffman (1965) first-order lift
solution predicts a negative lift force.

Saffman’s model is an outer-region-based lift model, in which the boundary of the inner
and outer region is located at min(LG, LS) from the particle. Here, LS = ν/|uslip| and LG =√

ν/|γ | are the Stokes and Saffman length scales, respectively. In addition to the small
particle Reynolds number constraints, inertial effects due to shear must be higher than
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the inertial effects generated by the slip velocity (ε = √|Reγ |/Reslip � 1 or equivalently
LG � LS) for the model to be valid.

The first and second terms on the right-hand side of (2.1) are both due to fluid slip-shear
effects, while the third term, similar to the lift model of Rubinow & Keller, is due to the
particle rotation. Saffman (1965) illustrated that the lift force due to rotation is less than
that due to the shear by an order of magnitude, unless the rotational speed of a particle
is much greater than the shear rate. Since the self-induced rotation of a freely rotating
particle was shown to be small compared to the slip-shear lift for the condition Reγ � 1,
many studies neglect the third term when considering a freely translating and rotating
particle. Additionally, the second term in (2.1) is less important than the first when ε � 1
(McLaughlin 1991), and as a consequence, many outer-region studies focus solely on the
first term of (2.1).

Relaxing the constrains of ε � 1 in the Saffman (1965) first-order solution and using the
Oseen approximation, McLaughlin (1991) and Asmolov (1990) independently proposed
modified unbounded lift models in the form of,

F∗
L = −sgn(γ ∗)

9
π

Re1/2
γ ReslipJ(ε), (2.3)

valid for non-rotating particles at Reslip, Reγ � 1. This force can be written in terms of a
slip-shear lift force coefficient for unbounded flow, defined by

Cub
L,2 = F∗

L

−sgn(γ ∗)Re2
slip

= 9
π

εJ(ε). (2.4)

The function J(ε) needs to be evaluated analytically or numerically. Currently available
expressions based on asymptotic solutions and empirical fitting functions for J(ε) are
presented in table 1. These expressions, along with previous direct numerical simulation
and experimental results, are plotted in figure 2. At the limit ε → ∞ (or equivalently at the
limit Reγ � Reslip), J(ε) reduces to the Saffman’s limit of 2.255, whereas J(ε) decreases
to zero rapidly as ε decreases.

In the McLaughlin (1991) and Asmolov (1990) studies, the integral expression for J(ε)

was evaluated numerically. In addition, McLaughlin (1991) also provided two analytical
solutions for J(ε) at the limits of ε � 1 and ε � 1 (see figure 2). The values obtained from
numerical evaluations suggested a positive J(ε) for ε > 0.23 and a negative J(ε) for ε <

0.23. Based on McLaughlin’s (1991) theoretical results, specifically given for the range
0.1 < ε < 20, Mei (1992) proposed a fitting function for J(ε). In a similar vein, the same
integral expression of J(ε) was re-evaluated numerically by Shi & Rzehak (2019) who
proposed another fitting function to capture both negative and positive values accurately.
Note, however, these asymptotic solutions derived for Reγ , Reslip � 1 may not be valid for
larger Reynolds numbers, specifically for the O(10−1) ranges relevant to this study.

Direct numerical simulation (DNS) studies, whereby the flow around an individual
particle is simulated, provide better estimations of J(ε) for Reslip, Reγ � 1 in unbounded
linear shear flows, as they do not rely on the Oseen approximation (Dandy & Dwyer 1990;
Legendre & Magnaudet 1998; Cherukat et al. 1999; Kurose & Komori 1999). Dandy
& Dwyer (1990) performed the first DNS study of the flow around a rigid sphere in an
unbounded linear shear flow. However, the values obtained for the lift at small Reynolds
numbers were later shown by subsequent DNS studies to be significantly in error due
to the small domain size (25 particle radii) employed (Legendre & Magnaudet 1998;
Cherukat et al. 1999). Legendre & Magnaudet (1998) performed simulations for a clean
spherical bubble using large domain sizes (100 particle radii and 200 particle radii, Shi
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Figure 2. Comparison of J(ε) values from experimental and DNS data for Reslip < 1 with empirical and
theoretical correlations. Asymptotic solution (◦) and asymptotic limits (——–) by McLaughlin (1991). DNS:
Legendre & Magnaudet (1998) (�, red), Cherukat, McLaughlin & Dandy (1999) (�, light blue), Kurose
& Komori (1999) (�, light green). Experiments: Cherukat, McLaughlin & Graham (1994) (+, light grey),
empirical fits by Mei (1992) (——–, blue), Shi & Rzehak (2019) (——–, Lime green) and Legendre &
Magnaudet (1998) (——–, red).

Study J(ε) Limits Equation

McLaughlin
(1991)

−32π2ε5 ln(1/ε2) ε � 1 (2.5)
2.255 − 0.6463ε−2 ε � 1

Mei (1992) 0.6765{1 + tanh[2.5(lgε + 0.191)]}{0.667 + tanh[6(ε − 0.32]} 0.2 < ε < 20 (2.6)

Legendre &
Magnaudet
(1998)

2.255(1 + 0.20ε−2)−3/2 0 < ε < 10 (2.7)

Shi & Rzehak
(2019)

−0.04ε + 2.05ε2 − 32.2ε3 + 106.8ε4 ε ≤ 0.23 (2.8)
2.255(1 + 0.02304ε−2)−12.77 ε > 0.23

Table 1. Correlations for J(ε).

& Rzehak 2019). Note that these results for bubble simulations were used to interpret lift
forces on rigid spheres by considering the J(ε) function which applies to both bubbles
and rigid particles, as shown in Legendre & Magnaudet (1997). The numerical data and
theoretical estimations from McLaughlin (1991) were in good agreement for ε ≥ 0.5,
however, the negative J(ε) values for 0 < ε < 0.23 predicted by the theoretical studies
were not observed. Citing reasons for this discrepancy, Legendre & Magnaudet (1998),
and later Takemura & Magnaudet (2009), explained that the theoretical integral expression
obtained for J(ε) is based on the Oseen approximation, which is not sufficiently accurate
to evaluate the small lift forces that exists at low shear rates. They illustrated that this
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approximation cannot capture the higher-order terms in the lift force expansion (i.e. second
term in (2.1)) which are important when ε is very small (Reslip � √

Reγ ) (McLaughlin
1991; Legendre & Magnaudet 1998). Comparing their numerical data with theoretical
values, Legendre & Magnaudet (1998) suggested that the lower bound of validity in the
asymptotic solution is ε ≈ 0.7. In the same study an empirical fit for J(ε) was suggested,
based on their numerical results for 0.2 < ε < 0.6 at Reslip < 1 and the McLaughlin
(1991) theoretical results for ε > 0.8. The resulting correlation predicts a positive lift force
for all ε values. Both Kurose & Komori (1999) and Cherukat et al. (1999) performed DNSs
specifically for a rigid sphere translating in unbounded linear shear flows. Cherukat et al.
(1999) used large domains (75 and 105 particle radii) and tested for low slip and shear
Reynolds number combinations (0.01 < Reslip < 1, 0.01 < Reγ < 0.025). The computed
J(ε) values were positive for all ε at Reslip, Reγ < 1, as illustrated in figure 2. However,
the results for ε ≥ 2 deviated from other asymptotic predictions. The discrepancy has been
explained as a domain truncation error (Cherukat et al. 1999). Kurose & Komori (1999)
performed simulations for relatively large slip Reynolds numbers 0.25 < Reslip < 250,
using relatively small domain sizes (10, 20 particle radii), and found the computed J(ε)

values agreed well with other numerical studies.
Experimentally, Cherukat et al. (1994) investigated the variation of J(ε) at small Reγ

and Reslip numbers in unbounded flows. The migration velocities of a small negatively
buoyant particle sedimenting in a linear shear flow were measured. To allow comparison
with theory, these migration velocities have been converted to J(ε) values using (2.3)
and Stokes’ law, and the results are plotted in figure 2. As illustrated in the figure, the
experimental values for J(ε) closely follow the asymptotic theories up to ε ∼ 1, but beyond
this there is a difference between the two results. Cherukat et al. (1994) explained that
the inconsistencies between experimental and theoretical values in this region could be
due to experimental errors in the measurements of low migration velocities at low Reslip.
Consistent with the DNS results, negative J(ε) values were not observed in any of these
experiments, specifically for ε < 0.23. This again suggests that any analytical solution or
empirical correlation based on Oseen’s approximation are not accurate for low ε.

For relatively large slip Reynolds numbers with weak shear, a significant change in the
lift coefficient and the direction were observed numerically beyond a specific value of
Reslip (Reslip > 50) (Kurose & Komori 1999; Bagchi & Balachandar 2002). Accounting
for these numerical results, Loth (2008) and recently Shi & Rzehak (2019) proposed
correlations for lift force coefficient, Cub

L,2, valid for Reslip > 50. Also, for the inviscid
limit and weak shear (Reslip → ∞), Auton (1987) suggested a theoretical estimation for a
rigid spherical particle’s lift coefficient.

2.1.2. Wall-bounded models
In bounded flows (i.e. near a wall), particles moving at a finite slip velocity experience an
additional lift force even in the absence of shear. This wall-slip lift is greatest near the wall
and reduces rapidly to zero away from the wall. Note that while a particle slip velocity can
be in any direction relative to a wall, in this study we only consider slip lift due to slip
velocity in the direction parallel to a wall.

2.1.2.1. Outer region The wall-slip lift for a spherical particle sedimenting in a
quiescent fluid (Reγ = 0) with a single wall located in the outer region (l > LS) was
first investigated by Vasseur & Cox (1977). Here, l is the distance between the particle
centre and the wall. Singular perturbation techniques were used to determine the migration
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Particle slip effect on lift and drag

velocity and the equivalent lift force was then calculated using Stokes’ law. The deduced
lift force valid for Reslip � 1 was given as

F∗
L = Cwb,out

L,3 (l/LS)Re2
slip. (2.9)

The integral expression for Cwb,out
L,3 was evaluated numerically as a function of separation

distance normalised by the Stokes length l/LS. In the same study, the asymptotic behaviour
at small and large values of LS was obtained analytically considering the inner and outer
boundary limits of the outer region (l/LS � 1 and l/LS � 1, respectively). Although
a rotating sphere was originally considered, Vasseur & Cox (1977) illustrated that the
calculated lift force is independent of rotation as long as the angular velocity is less
than O(Reslip) in the outer region. Hence, (2.9) is applicable for a non-rotating sphere
as well. Several studies have developed empirical fitting correlations for Cwb,out

L,3 by

solving the integral expression for Cwb,out
L,3 numerically (Takemura & Magnaudet 2003;

Takemura 2004; Shi & Rzehak 2020). These expressions are listed in table 2, in addition
to the analytical solutions obtained for the asymptotic limits, and the predictions of these
correlations show that a leading or lagging particle in quiescent flows always moves
away from the wall. Hence, the deduced lift coefficient Cwb,out

L,3 is positive irrespective
of the slip velocity direction, but reduces to zero as l/LS → ∞. Vasseur & Cox (1977)
and later Takemura (2004) conducted experiments to measure the migration velocity
of a rigid particle sedimenting in a quiescent flow. While the first study obtained
migration velocities of a particle falling relatively far away from the wall, the latter study
focused mainly on obtaining experimental results for the inner region. The experimental
measurements of Vasseur & Cox (1977) obtained mainly for l/LS > 1 agreed well with
the outer-region-based Cwb,out

L,3 correlations. The presence of a wall also affects the
slip-shear lift force acting on a particle in a linear shear flow. A non-rotating sphere in
a single-wall-bounded linear shear flow with the wall lying in the outer region was first
investigated by Drew (1988), and later by Asmolov (1989) and McLaughlin (1993). The
latter two studies used the method of matched asymptotic expansions, and considered a
leading and a lagging particle in a positive shear field. These cases correspond to γ ∗ > 0
and γ ∗ < 0 respectively. In the outer region, the effect of rotation was shown to be less
significant, and hence the developed models are applicable for both freely rotating or
non-rotating particles. Drew (1988) considered the problem in the limit of ε � 1 while
McLaughlin (1993) and Asmolov (1989) considered a range of ε values. Based on the
Oseen approximation, an analytical solution for l � LG and ε � 1 (but not necessarily
Reslip = 0) was also provided in the McLaughlin (1993) study.

For Reγ , Reslip � 1 and l � min(LG, LS) (i.e. in the outer region) the wall-bounded slip
lift force can be presented as,

F∗
L = −sgn(γ ∗)Cwb,out

L,2 Re2
slip. (2.14)

The numerical values obtained for Cwb,out
L,2 by solving Airy functions indicated that the

unbounded slip-shear lift varies as l/LG changes (Asmolov 1989; McLaughlin 1993). For
ε � 1, Cwb,out

L,2 monotonically reduced from the unbounded values to near zero values for
small enough l/LG, irrespective of the sign of γ ∗. McLaughlin (1993) showed that these
near zero values are similar to the outer boundary values of the inner-region solutions of
Cox & Hsu (1977) when l/LG < 1 and ε > 1. Based on the numerical data tabulated
in McLaughlin (1993), for both γ ∗ > 0 and γ ∗ < 0, and considering the asymptotic
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Study Cwb,out
L,3 Limits Equation

Vasseur & Cox
(1977)

(9π/16)[1 − 11/32(l/LS)] l/LS � 1 (2.10)
(9π/4)[(l/LS)

−2 + 2.21901(l/LS)
−5/2] l/LS � 1

Takemura &
Magnaudet
(2003)

[9π/16 + 2.89π × 10−6(l/LS)
4.58] exp(−0.292(l/LS)) 0 < l/LS < 10 (2.11)

4.47π(l/LS)
−2.09 10 ≤ l/LS < 100

Takemura
(2004)

18π[32 + 2(l/LS) + 3.8(l/LS)
2 + 0.049(l/LS)

3]−1 0 < l/LS < 10 (2.12)

Shi & Rzehak
(2020)

(9π/16)[1 + 0.13(l/LS)((l/LS) + 0.53)]−1 0 < l/LS < 10 (2.13)
4.47π(l/LS)

−2.09 10 ≤ l/LS < 100

Table 2. Correlations for outer-region-based wall-slip lift coefficient Cwb,out
L,3 .

Study f (ε, l/LG) Limits Equation

McLaughlin (1993) 1 − 1.8778(l/LG)−5/3/J(ε) l/LG � 1, ε � 1 (2.18)

Cox & Hsu (1977) 11/96π2(l/LG)/J(ε) l/LG � 1 (2.19)

Takemura et al. (2009) 1 − exp
[
− 11

96
π2(l/LG)/J(ε)

]
l/LG > 1, ε > 1 (2.20)

Shi & Rzehak (2020) 1 − exp
[
− 11

96
π2 70

70 + (l/LG)1.378 (l/LG)/|J(ε)|
]

l/LG < 15, ε > 1 (2.21)

1 − 1.8778L−5/3
G /|J(ε)| l/LG ≥ 15, ε > 1

Table 3. Numerical correlations for f (ε, LG).

inner-region solution of Cox & Hsu (1977) valid for l < LG, both Takemura, Magnaudet &
Dimitrakopoulos (2009) and Shi & Rzehak (2020) proposed semi-empirical fits for Cwb,out

L,2
for ε > 1 in the form of

Cwb,out
L,2 = f (ε, l/LG)Cub

L,2. (2.15)

Table 3 summarises the available theoretical and empirical correlations for f (ε, l/LG).
Noting that when shear is negligibly small (ε → 0, or Reγ → 0) the lift contribution

should be entirely due to the disturbance produced by the wall and slip effects, several
studies have attempted to combine (2.14) and (2.9) such that sgn(γ ∗)Cwb,out

L,2 tends

towards to Cwb,out
L,3 in the limit of ε → 0. Using (2.12) and (2.20) for Cwb,out

L,3 and Cwb,out
L,2

respectively, Takemura et al. (2009) combined these two coefficients using a fitting
function ( f2(ε, l/LS)) as

F∗
L =

(
−sgn(γ ∗)Cwb,out

L,2 + f2(ε, l/LS)C
wb,out
L,3

)
Re2

slip, (2.16a)
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Particle slip effect on lift and drag

where
f2(ε, l/LS) = exp (−0.22ε3.3(l/LS)

2.5), (2.16b)

(2.16a) can be expressed as a force coefficient,

Cwb,out
L,23 = F∗

L

Re2
slip

= −sgn(γ ∗)Cwb,out
L,2 + f2(ε, l/LS)C

wb,out
L,3 , (2.16c)

with the lift normalised by the slip Reynolds number. The outer-region-based lift model
given by (2.16) performs well for small and intermediate ε � 1 (Takemura et al. 2009; Shi
& Rzehak 2020), however, it is worth noting that this model predicts a zero lift force in the
absence of slip which is not the case for non-zero shear rates (Ekanayake et al. 2020).

The lift force acting on a spherical particle translating with zero-slip velocity (Reslip = 0
or equivalently ε = ∞) in the outer region of a positive shear flow has also been studied
theoretically and numerically. Asymptotic studies for Reγ � 1 (Asmolov 1999) and DNS
studies for 10−3 < Reγ < 10−1 (Ekanayake et al. 2020) find a lift force that decays rapidly
to zero with increasing separation distance. Based on numerical lift results, Ekanayake
et al. (2020) proposed an outer-region-based lift model accounting for both shear and wall
effects

F∗
L = Cwb,out

L,1 (l/LG)Re2
γ , (2.17a)

where
Cwb,out

L,1 = 2.231 exp((−0.1054(l/LG)2 − 0.3859(l/LG))), (2.17b)

for non-rotating particles and

Cwb,out
L,1 = 1.982 exp((−0.115(l/LG)2 − 0.2771(l/LG))), (2.17c)

for freely rotating particles, with Cwb,out
L,1 approaching zero as l/LG increases. Similar to the

slip-based lift coefficient (Cwb,out
L,3 ), the shear-based lift coefficient Cwb,out

L,1 remains positive
for both negative and positive shear rates, favouring particle migration away from the wall.

2.1.2.2. Inner region Inner-region-based models require a particle to be located close
to the wall such that l � min(LG, LS) and Reslip, Reγ � 1 (Cox & Brenner 1968). In
these models the lift force on both freely rotating and non-rotating particles is obtained
by coupling the two flow disturbances that originate from particle slip and fluid shear in
a nonlinear manner. These inner-region-based lift models present the lift as (Cherukat &
McLaughlin 1994; Magnaudet, Takagi & Legendre 2003)

F∗
L = Cwb,in

L,1 Re2
γ + sgn(γ ∗)Cwb,in

L,2 Reγ Reslip + Cwb,in
L,3 Re2

slip, (2.22)

where the three lift coefficients, Cwb,in
L,1 , Cwb,in

L,2 and Cwb,in
L,3 are functions of separation

distance. The first and last terms on the right-hand side of (2.22) originate from the
disturbance induced by the presence of the wall in a shear flow field and by the presence
of the wall in quiescent flow, respectively. The corresponding lift coefficients Cwb,in

L,1 and

Cwb,in
L,3 are therefore associated with a force in the absence of slip (Reslip = 0) and a force

in the absence of shear (Reγ = 0), respectively. The second term depends on both the slip
velocity and shear rate, and the corresponding coefficient Cwb,in

L,2 is associated with a force
when both the slip and shear are of the same order of magnitude. The first and last terms
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Study Cwb,in
L,2 Cwb,in

L,3 Comments Equation

Cox & Hsu (1977)a − 66π

64

[(
l
a

)
+ 374π

1056

]
18π

32
Non-rotating, l/a � 1 (2.23)

− 66π

64

[(
l
a

)
+ 443π

528

]
18π

32
Freely rotating, l/a � 1 (2.24)

Cherukat & McLaughlin (1994) −3.2397
(

l
a

)
− 1.1450 − 2.0840

(a
l

)
+ 0.9059

(a
l

)2
1.7716 + 0.2160

(a
l

)
− 0.7292

( a
l

)2 + 0.4854
(a

l

)3
Non-rotating, l/a � 1 (2.25)

Cherukat & McLaughlin (1995) −3.2415
(

l
a

)
− 2.6729 − 0.8373

(a
l

)
+ 0.4683

( a
l

)2
1.7669 + 0.2885

( a
l

)
− 0.9025

( a
l

)2 + 0.5076
(a

l

)3
Freely rotating, l/a � 1 (2.26)

Krishnan & Leighton (1995) −5.534 1.755 Non-rotating, l/a = 1 (2.27)
−2.091 0.236 Freely rotating, l/a = 1 (2.28)

Magnaudet et al. (2003)
−66π

64

[(
l
a

)
+ 443

528
+ 52

55

( a
l

)] 18π

32

[
1 + 0.1875

(a
l

)
− 0.168

(a
l

)2
]

Freely rotating, l/a � 1 (2.29)

Table 4. Slip-based lift coefficients (Cwb,in
L,2 and Cwb,in

L,3 ) of inner-region studies.
aMinor corrections were provided by Lovalenti in the Appendix of Cherukat & McLaughlin (1994)
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Particle slip effect on lift and drag

in (2.22) produce forces directed away from the wall, promoting positive lift, whereas the
lift force due to the second term depends on both slip and shear rate directions, with the
direction of this force captured by the sign of (γ ∗). The available correlations for Cwb,in

L,2

and Cwb,in
L,3 are summarised in table 4. Correlations available for Cwb,in

L,1 are tabulated in our
previous study (Ekanayake et al. 2020) and hence not detailed further here.

In the theoretical context, Cox & Brenner (1968) were the first to obtain an implicit
expression for the lift forces in the inner region by using point force approximations at
l/a � 1. Later, Cox & Hsu (1977) simplified this and presented closure expressions for
lift coefficients with the leading-order term proportional to l/a. The model is valid only
when the separation distance is large compared to the sphere radius (l/a � 1). Accounting
for the finite size of the particle, several other inner-region studies considered higher-order
contributions to the flow disturbances, and proposed lift correlations that are valid for a
particle almost in contact with the wall (l/a � 1) (Leighton & Acrivos 1985; Cherukat
& McLaughlin 1994; Krishnan & Leighton 1995; Magnaudet et al. 2003). Unlike for the
outer-region models, rotation has a significant effect on lift coefficients within the inner
region, particularly when the particle is close to the wall. Overall, as the inner-region
models require a particle to be close to a wall, these models cannot be used to predict
unbounded results as l/a becomes large even at Reslip, Reγ � 1.

To summarise, the above analysis on existing lift force theories shows that all the
presented lift models are limited to specific ranges of wall separation distance, fluid
shear rate and particle slip velocity. For example, lift coefficients currently available for
quiescent flows (CL,3) are region specific (i.e. either inner region or outer region based) and
do not account for any slip-based inertial corrections particular when a particle translates
closer to a wall (i.e. towards and within the inner region). For linear shear flows, existing
slip-shear-based lift coefficients (CL,2) are also region specific and hence cannot capture
the slip- or shear-based inertial dependence when a particle translates closer to a wall. The
CL,2 correlations that capture the inertial dependence of slip and shear are always limited
to the systems where slip is stronger than shear, and thereby fail to capture the lift forces
when shear is strong (i.e. freely translating neutrally buoyant particles in shear flows).
Hence, a generalised lift model valid for arbitrary particle–wall separation distances is
necessary to make accurate predictions of particle distributions in industrial applications
where Reslip, Reγ < 10−1.

2.2. Drag force

2.2.1. Unbounded models
The drag force acting on a rigid sphere translating with a finite slip velocity in an unbounded
quiescent flow was first examined by Stokes (1851). The study only considered the inner
region of the disturbed flow and assumed Reslip � 1. The finite inertial effects in the
outer region of the disturbed flow were later analysed by Oseen (1910), who proposed
a first-order slip-based inertial correction to the Stokes expression. Accounting for both
inner and outer regions of the disturbed flow, a higher-order inertial correction for the drag
force was suggested by Proudman & Pearson (1957), using a matched asymptotic method.
The drag force predicted by Proudman & Pearson’s model reduces to Stokes’ expression
or Oseen’s drag results, depending on the magnitude of Reslip. Of note, these theoretical
models are strictly limited to Reslip � 1 and their predictions rapidly deviate from the
measured drag forces for Reslip > 1. Therefore, for Reslip � 1, empirical inertial corrections
based on experimental and numerical data are more commonly used to capture the drag
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Study Cub
D,2(Reslip) Limits Equation

Stokes (1851) 6π Reslip � 1 (2.31)
Oseen (1910) 6π(1 + 3/8Reslip) Reslip < 1 (2.32)
Proudman & Pearson (1957) 6π(1 + 3/8Reslip + 9/40Re2

slip ln(Reslip)) Reslip < 1 (2.33)

Schiller (1933) 6π(1 + 1/6Re2/3
slip) Reslip < 800 (2.34)

Clift et al. (1978) 6π(1 + 0.1315Re
0.82−0.05 log10 Reslip
slip ) 0.01 < Reslip < 20 (2.35)

Table 5. Theoretical and empirical inertial corrections for Cub
D,2.

force variation (Schiller 1933; Clift, Grace & Weber 1978). The drag force (FD) acting on
a spherical particle with a finite slip in an unbounded flow is generally presented as

F∗
D = FDρ

μ2 = −sgn(uslip)ReslipCub
D,2(Reslip), (2.30)

where Cub
D,2 is the unbounded drag coefficient. Various theoretical and empirical

correlations for Cub
D,2, particularly for Reslip � 10, are listed in the table 5.

In unbounded linear shear flows, the effect of shear on the drag force is extremely
weak for small slip Reynolds numbers (Reslip � 1) (Dandy & Dwyer 1990; Legendre
& Magnaudet 1998; Kurose & Komori 1999). However, for relatively large slip values
(Reslip > 5) and Reγ /Reslip ∼ O(1), a noticeable effect from shear on the drag force occurs
(Kurose & Komori 1999). For these large slip velocities theoretical arguments predict the
drag as (Legendre & Magnaudet 1998)

F∗
D = −sgn(uslip)ReslipCub

D,2(Reslip)[1 + K0(Reγ /Reslip)
2]. (2.36)

The numerical results of Kurose & Komori (1999) suggested that K0 is of the order of
unity for Reslip) ∼ O(1) and K0  0 for Reslip � 1.

2.2.2. Bounded models
The effect of walls on the drag force was first examined by Faxen (1922) for a particle
translating with a finite slip velocity parallel to a wall. The study considered a non-inertial
(Reslip � 1), quiescent flow (Reγ = 0) with the walls located in the inner region of the
disturbed flow of the particle. In Faxen’s study, the unbounded drag model, (2.30) was
modified to incorporate wall effects via (Happel & Brenner 1981)

F∗
D = −sgn(uslip)Reslip[Cub

D,2(Reslip) + Cwb,in
D,2 (a/l)]. (2.37)

Thus, the net drag coefficient in a quiescent flow can be written as

CD,2 = F∗
D

−sgn(uslip)Reslip
= Cub

D,2 + Cwb,in
D,2 . (2.38)

The wall-bounded drag coefficient derived by Faxen, Cwb,in
D,2 consists of higher-order terms

of separation distance up to O((a/l)5) in the drag force expansion

Cwb,in
D,2

6π
=
[

1 − 9
16

(a
l

)
+ 1

8

(a
l

)3 − 45
256

(a
l

)4 − 1
16

(a
l

)5
]−1

− 1. (2.39)

This correlation is in good agreement with experimental data up to Reslip = 0.1 (Ambari,
Gauthier & Guyon 1984; Takemura 2004). Vasseur & Cox (1977) analysed the effects of
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Particle slip effect on lift and drag

walls located in the outer region of the flow on the drag force. The study considered a
quiescent flow and used a method of matched asymptotic expansions together with the
Oseen approximation. The integral expression obtained for the drag force by solving the
outer-region velocity field was numerically evaluated and plotted as a function of l/LS.
Two analytical models valid in the limits of l � LS and l � LS were also suggested in
the same study. Later, Takemura (2004) suggested an empirical fit for the Vasseur & Cox
(1977) outer-region-based wall-bounded drag coefficient. The model was presented as a
function of l/LS and considered numerical values up to l/LS � 10

Cwb,out
D,2 = 6π

(a
l

) [ 9
16 + 11.13(l/LS) + 0.584(l/LS)2 + 0.371(l/LS)3

]
. (2.40)

The net drag coefficient under Takemura’s outer-region models is obtained by replacing
the Cwb,in

D,2 by Cwb,out
D,2 in (2.38) (Takemura 2004). The theoretical predictions of Cwb,in

D,2 and

Cwb,out
D,2 , given via (2.39) and (2.40), reduce to zero with increasing separation distance,

while the net drag coefficient, CD,2, reduces to the unbounded drag coefficient value
Cub

D,2. Note, however, that, as the slip Reynolds number increases, the net drag coefficient

predicted using Cwb,out
D,2 tends to reach the unbounded Stokes limit much faster than that

predicted via the inner region Cwb,in
D,2 .

Equations (2.39) and (2.40) are specific to the inner and outer regions, respectively, and
hence cannot represent the drag across all separation distances. Based on experimental
results at Reslip ∼ 0.09 − 0.5, Takemura (2004) suggested a modification to Cwb

D,2 as
follows:

Cwb
D,2

6π
=
[

1 −
(

Cwb,out
D,2

6π

l
a

)(a
l

)
+ 1

8

(a
l

)3 − 45
256

(a
l

)4 − 1
16

(a
l

)5
]−1

− 1. (2.41)

In this modification, the 9/16 coefficient of the inner-region model represented by (2.39)
was replaced by Cwb,out

D,2 to capture the transition behaviour of the Cwb
D,2 when a particle

shifts from the inner to the outer region.
For wall-bounded linear shear flows, Magnaudet et al. (2003) presented an additional

contribution to the drag force due to wall shear applicable to the inner region of the
disturbed flow when Reγ � 1. The force was given by

F∗
D = −sgn(γ )Reγ Cwb,in

D,1 (Reγ , a/l) − sgn(uslip)ReslipCD,2(Reslip, a/l), (2.42)

with the wall-shear-based drag coefficient, Cwb,in
D,1 given as a function of (a/l) as,

Cwb,in
D,1 = 15π

8

(a
l

)2
[

1 + 9
16

(a
l

)]
. (2.43)

This function reduces rapidly to zero moving away from the wall (Magnaudet et al. 2003).
In our previous numerical study, Ekanayake et al. (2020) modified this coefficient by
including higher-order terms of separation distance and introduced an inertial correction

915 A103-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

13
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.138


N.I.K. Ekanayake, J.D. Berry and D.J.E. Harvie

for shear, resulting in an expression valid for inner, outer and unbounded regions as

CD,1 = 15π

8

(a
l

)2
[

1 + 9
16

(a
l

)
+ 0.5801

(a
l

)2 − 3.34
(a

l

)3 + 4.15
(a

l

)4
]

+ (3.001Re2
γ − 1.025Reγ ). (2.44)

Note that this shear-based wall drag creates a negative slip velocity near a wall for
force-free particles. Despite the considerable past research in this area, existing drag
models require further work to cover practically relevant moderate inertial ranges. For
particles moving in quiescent flows, the influence of finite slip inertial effects on the CD,2
drag coefficient requires further validation, particularly for Reslip < 10−1. For particles
moving in linear shear flows, the influence of both finite slip and shear inertial effects
on the overall CD drag coefficient also requires further validation, again for the relevant
ranges of Reslip, Reγ < 10−1.

3. Numerical simulations

3.1. Problem specification
The numerical framework of the present investigation is similar to that of § 2 in Ekanayake
et al. (2020) except that, here, the particle moves with a non-zero-slip velocity. We consider
a smooth, rigid sphere of radius a with the origin of the Cartesian coordinate system
located at the centre of the sphere. Both wall-bounded quiescent and linear shear fluid
flows are considered (figures 1(b) and 1(c)). For both cases, the particle slip velocity is
explicitly set to a known value

uslip = up − uf ( y = 0) = uslipex, (3.1)

where up = upex is the particle velocity and uf is the undisturbed fluid. The fluid velocity
of the linear shear flow is defined as

uf = γ ( y + l)ex. (3.2)

Here, l is the distance of the sphere centre from the wall and ex is the coordinate unit
vector in x direction. For the quiescent flow cases, γ is set to zero. Note that under this
formulation the particle is constrained to translate only in the x direction with particle
velocity up.

A reference frame that moves with the particle (Batchelor 1967) is employed to solve
the steady-state Navier–Stokes (N–S) equations

∇ · ρu′ = 0, (3.3a)

∇ · (ρu′u′ + σ ) = 0, (3.3b)

where u′ = u − up and u is the local fluid velocity. The boundary conditions used in the
moving frame of reference are

u′ =
{

[γ ( y + l) − up]ex y = +∞; y = −l; x, z = ±∞
ω × r |r| = a,

(3.4)

where r is a radial displacement vector pointing from the sphere centre to the particle
surface and ω is the angular rotation of the particle. The fluid is assumed to be Newtonian
with a dynamic viscosity μ and density ρ, and the ‘no-slip’ boundary condition is applied
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Particle slip effect on lift and drag

on the particle surface. The total stress tensor (σ = pI + τ ) (Bird, Stewart & Lightfoot
(2002) sign convention), is computed using the fluid pressure, p and viscous stress tensor,
τ = −μ(∇u′ + ∇u′T).

The forces (F p) and the torque (T p) acting on the particle are calculated using the same
method provided in Ekanayake et al. (2020)

F p = −
∫

S
n · σ dS, (3.5a)

T p = −
∫

S
r × σ · n dS, (3.5b)

where S and n(= r̂) are the particle surface area and outward unit normal vector of particle
respectively. The drag (FD = F p · ex) and lift (FL = F p · ey) are defined as the fluid forces
acting on the sphere in the +x and +y directions, respectively. For the non-rotating cases
all components of the angular velocity ω are explicitly set to zero, whereas for the freely
rotating cases the z component of the net torque T p is explicitly set to zero and the z
component of ω (ω · ez = ωp) is solved for as an unknown (with other components of ω
set to zero).

The results in the remainder of this study are presented in non-dimensional form
(indicated by an asterisk) using length scale a, time scale a/uslip, velocity scale γ a and
force scale μ2/ρ.

The system of equations given in § 3.1 is solved using the finite volume package arb
(Harvie 2010) over a non-uniform body-fitted structured mesh (Ekanayake et al. 2020),
generated with gmsh (Geuzaine & Remacle 2009). Domain size and mesh dependency
results are provided in Appendix B.

4. Numerical results and force correlations

In this section, we first provide our generalised lift and drag force definitions (§ 4.1), and
then develop new force correlations based on the numerical results for quiescent flows
(§ 4.2) and linear shear flows (§ 4.3).

4.1. Lift and drag model definitions
The non-dimensional problem for lift force depends on four non-dimensional variables,
given that the physical problem involves seven independent parameters with three
independent units (Buckingham π theorem). Hence, we choose the non-dimensional lift
force F∗

L to depend on three non-dimensional parameters, being Reslip, Reγ and l∗ (= l/a).
Specifically, we use the definition of Ekanayake et al. (2020), applicable for inner, outer
and unbounded regions, to present the lift force in a linear shear flow for finite slip and
shear conditions,

F∗
L = CL,1Re2

γ + sgn(γ ∗)CL,2Reγ Reslip + CL,3Re2
slip. (4.1)

The first and last terms of (4.1) are defined by the lift forces in a linear shear flow in the
absence of slip (Reslip = 0) and in a quiescent flow in the absence of shear (Reγ = 0),
respectively. The remaining term captures the remaining lift contributions in the presence
of both slip and shear. The lift coefficients CL,1, CL,2 and CL,3 in (4.1) are defined to be
functions of shear, shear and slip and slip, respectively, as well as the wall distance. The
unambiguous definitions for the three coefficients allow (4.1) to be a valid representation
of the lift force at any separation distance.
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Similarly, the drag force for finite slip in a linear shear flow is defined as (Ekanayake
et al. 2020),

F∗
D = −sgn(γ )CD,1Reγ − sgn(uslip)CD,2Reslip. (4.2)

The first term in (4.2) is associated with the drag force in a linear shear flow in the absence
of slip (Reslip = 0) while the second term captures the remaining drag contributions in the
presence of both slip and shear. Both coefficients are functions of wall distance, with CD,1
a function of shear, and CD,2 a function of both slip and shear. Both force coefficients,
CD,1 and CD,2 defined in this equation are valid for arbitrary separation distances (inner,
outer, unbounded regions).

In the present study, we investigate forces on a particle under finite slip conditions, and
hence, provide new correlations for lift coefficients CL,2 and CL,3. In addition, the most
suitable correlation for CD,2 under linear shear flow conditions is determined for finite
slip and shear Reynolds numbers. In the remainder of this study, unless stated otherwise,
the zero-slip lift and drag force coefficients (CL,1 and CD,1, respectively) are evaluated
using the correlations proposed by Ekanayake et al. (2020) that are valid for all separation
distances l∗ ≥ 1.2.

4.2. Particle translating in a quiescent flow

4.2.1. Lift force
In figure 3, the lift coefficients CL,3 computed for both non-rotating and a freely rotating
particles in a quiescent flow are plotted as a function of non-dimensional separation
distance (l∗). The numerical results are compared against the available inner-region
correlations listed in table 4 that are valid for Reslip � 1. In general, the lift coefficient
values predicted via most of the analytical solutions slightly underestimate the numerically
computed lift forces, particularly for Reslip < 10−2 near the wall. For example, the lowest
slip Reynolds number (Reslip = 10−3) simulation conducted at the smallest distance to the
wall (l∗ = 1.2) gives a CL,3 of 1.755 (1.682) for a non-rotating (freely rotating) particle,
which is ∼ 1.68 % (0.48 %) higher than the asymptotic value of 1.726 (1.674) predicted
for a non-rotating (freely rotating) particle at l∗ = 1.2 (Cherukat & McLaughlin 1994).
The Cox & Hsu (1977) first-order lift expression, which does not account for the finite
particle size, produces a lift coefficient independent of l∗ for both non-rotating and a
freely rotating particles. The value agrees to a certain extent with the present numerical
and other theoretical predictions, but is not particularly accurate near the wall. When a
particle is almost in contact with the wall (l∗ = 1), the Krishnan & Leighton (1995) study
gives a CL,3 of 1.755 for a non-rotating particle, which is reasonably consistent with the
present numerical results obtained at l∗ = 1.2. For a freely rotating particle at l∗ = 1,
Krishnan & Leighton (1995) also predict a value of CL,3 = 0.236, which is nearly an
order of magnitude less than the non-rotating CL,3 value, and is far from ours and the other
inner-region model predictions in this region. Although the rotation of the sphere acts to
decrease this lift for a particle near the wall, the reason for the significant deviation between
these two theoretical analyses is not clear. For a freely rotating particle the Magnaudet
et al. (2003) lift correlation predicts a lift coefficient which is larger than the available
asymptotic inner-region theories for Reslip � 1 (figure 3b). A similar over-prediction is
observed for CL,1 near the wall (see Ekanayake et al. 2020) which may be caused by the
neglect of higher-order separation distance terms (O(1/l∗) > 2) that are significant when
in the vicinity of the wall.

For the non-rotating case (figure 3a), the lift results are also compared with numerical
predictions based on a boundary element method (BEM) which included small inertial

915 A103-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

13
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.138


Particle slip effect on lift and drag

1.90

(a) (b)

1.85

1.80

1.75

1.70C
L,

3

1.65 1.78

1.76

1.74

1.72
1.0 1.5

1.60

1.55

1.50
1 2 3 4 5 6

l∗
7 8 9 10 1 2 3 4 5 6

l∗
7 8 9 10

1.90

1.85

1.80

1.75

1.70

1.65

1.60

1.55

1.50

Figure 3. Lift coefficient (CL,3) for different shear Reynolds number as a function of non-dimensional
separation distance (l∗) for (a) non-rotating and (b) freely rotating spheres. Simulations: Reslip = 10−3 (◦,
red), 10−2 (�, red) and 10−1 (�, red). Numerical predictions by Fischer & Rosenberger (1987) that included
small inertial effects at Reγ � 1 (∗, black star). Analytical predictions of Cox & Hsu (1977) (······, (2.23),
(2.24)), Cherukat & McLaughlin (1994) (-·-·, grey, (2.25), (2.26)), Krishnan & Leighton (1995) (——–, grey,
(2.27)) and Magnaudet et al. (2003) (- - -, grey, (2.29)). Present numerical fit for inner region (——–, blue,
(4.3a), (4.3b)). Present numerical fit for all regions (——–, red, (4.4a), (4.4b)).

effects (Reγ � 1) (Fischer & Rosenberger 1987). The computed lift coefficient values for
the lowest slip Reynolds number (Reslip = 10−3) are consistent with the BEM results for
small separation distances (figure 3a). However, a considerable difference between the
present results and BEM predictions is apparent at larger separation distances (l∗ ∼ 10).
This could be possibly due to insufficient numerical accuracy of a Gauss–Legendre
product formula used by Fischer & Rosenberger (1987), as suggested by Shi & Rzehak
(2020). However, to our knowledge there are no numerical data available for a freely
rotating particle at these low slip Reynolds numbers for additional verification. We also
note from our domain dependence study that the errors in our numerical simulations are
also highest at these large l∗ and small Reslip values.

As Reslip increases, the computed lift coefficients deviate significantly from the
asymptotic inner-region correlations as inertial effects become significant, in both the
non-rotating and freely rotating cases. Although most of our numerical data are well
within the inner region, the computed lift force coefficient decreases with Reslip number
in contrast to the inner-region models which predict lift coefficients that are independent
of Reslip. The discrepancy between simulation and theory arises as the force expansion
used in the inner-region models does not satisfy the boundary conditions at large distances
from the wall. With increasing slip velocity and separation distance, the walls move to the
outer region, and the inner-region-based theoretical lift models then fail to capture the lift
coefficient variation.

The numerical lift coefficient values and the outer-region asymptotic predictions valid
for Reslip � 1 are plotted in figure 4 as a function of l∗/LS

∗. Here, LS
∗(= LS/a) is the

normalised Stokes length by the particle radius. Although all the computed results are
in inner region, the coefficients closer to the outer boundary (l∗/LS

∗ ∼ 1), particularly
at Reslip = 10−1, trend towards the outer-region theoretical predictions. In this boundary
limit, the difference between a non-rotating and freely rotating lift coefficient value is
less significant and the lift results are consistent with outer-region theory (Vasseur &
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2.0

1.5

1.0

CL,3

0.5

10–3 10–2 10–1

l∗/LS
∗

100 101 102
0

Figure 4. Lift coefficient (CL,3) for slip Reynolds number values of Reslip = 10−3 (◦), 10−2 (�) and 10−1

(�) as a function of separation distance non-dimensionalised by the Stokes length scale (l∗/LS
∗). Red and

blue symbols are for freely rotating and non-rotating particles, respectively. Asymptotic models for Reslip � 1
by Vasseur & Cox (1977) (——–, grey, (2.10)), Takemura & Magnaudet (2003) (- - -, grey, (2.11)), Takemura
(2004) (······, grey, (2.12)) and Shi & Rzehak (2020) (-·-·, grey, (2.13)). Present numerical fit for non-rotating
particles (——–, blue, (4.4a)) and freely rotating particles (——–, red, (4.4b)).

Cox 1977). Since the outer-region asymptotic models are strictly valid for l∗/LS
∗ � 1,

variations in the lift correlation observed to occur in the inner region are thus not
captured. This further highlights the need for a model capable of capturing both inner
and outer-region slip lift behaviours simultaneously. Based on our lift results obtained
for the lowest slip Reynolds number (Reslip = 10−3), we first propose a numerical fit for
the wall-slip lift force in the inner region as a function of separation distance (l∗). The
proposed correlations are given by

Cwb,in
L,3 = 1.774 + 0.4353

(
1
l∗

)
− 1.198

(
1
l∗

)2

+ 0.7792
(

1
l∗

)3

, (4.3a)

for a non-rotating particle and

Cwb,in
L,3 = 1.764 + 0.4757

(
1
l∗

)
− 1.268

(
1
l∗

)2

+ 0.683
(

1
l∗

)3

, (4.3b)

for a freely rotating particle. Figure 3 indicates that there is no significant variation of the
numerical results for CL,3 when the slip Reynolds number increases from Reslip = 10−3 to
10−2. This behaviour suggests that the proposed inner-region-based correlations, shown in
figure 3, can be used for very small slip Reynolds numbers (Reslip � 1) as the numerical
lift results are almost independent of slip for Reslip < 10−2.

Next, by replacing the constant in the proposed inner-region lift model (4.3) with the
Takemura (2004) outer-region model (2.12), the following correlation is proposed to
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account for the inertial dependency over all wall separation distances as:

CL,3 = Cwb,out
L,3 + 0.4353

(
1
l∗

)
− 1.198

(
1
l∗

)2

+ 0.7792
(

1
l∗

)3

, (4.4a)

for a non-rotating particle and

CL,3 = Cwb,out
L,3 + 0.4757

(
1
l∗

)
− 1.268

(
1
l∗

)2

+ 0.683
(

1
l∗

)3

, (4.4b)

for a freely rotating particle. Here, the Takemura (2004) outer-region model (2.12) gives a
definition for Cwb,out

L,3 as

Cwb,out
L,3 = 18π

32 + 2
(

l∗

L∗
S

)
+ 3.8

(
l∗

L∗
S

)2

+ 0.049
(

l∗

LS∗
)3 . (4.4c)

These correlations are also plotted in figures 3 and 4, demonstrating that inertial effects
are accurately predicted as a particle moves from the inner to the outer region, and the
correct limit of CL,3 → 0 for l∗/L∗

S → ∞ is achieved. When a particle is very close to the
wall for the smallest Reynolds number, i.e. l∗/L∗

S → 0 and l∗ = 1, (4.4a) (4.4b) calculates
the lift coefficient as 1.784 (1.659) for a non-rotating (freely rotating) particle, a value that
is just 2.3 %(0.1 %) higher (lower) than the asymptotic inner-region result of Cherukat &
McLaughlin (1994, 1995).

4.2.2. Drag force
In this section, we validate existing drag models using the numerical data obtained for
quiescent flows. Under these conditions there is no shear and hence CD,1 = 0. Figure 5
shows the variation in net drag coefficient, CD,2, as a function of dimensionless separation
distance (l∗) for both non-rotating and freely rotating particles. The inset in the figure
shows the variation as a function of separation distance (l∗/L∗

S). The results are compared
against the wall-bounded inner-region analytical correlation of Faxen (Happel & Brenner
1981) (2.39) and the outer-region empirical drag model of Takemura (2004) (2.40). The
predictions of the Takemura (2004) inner–outer-based theoretical model given by (2.41)
for low slip Reynolds numbers are also shown.

For each of the slip Reynolds numbers, the highest numerical value for CD,2 is reported
when the particle is close to the wall, and with increasing wall distance, these coefficients
asymptote to the unbounded Stokes limit (CD,2 = 6π) for both non-rotating and freely
rotating particles. The effect of rotation on the drag force is hardly discernible for all
separation distances. As indicated in figure 5, no inertial dependency is observed in the
computed drag coefficients for all tested Reslip values. The numerical drag results are
in good agreement with the analytical inner-region correlation, (2.39), noting that all
the numerical results are inside the region l∗/L∗

S < 1 (inset of figure 5). However, even
in the outer boundary limit (when l∗/L∗

S ∼ 1), the results given for Reslip = 10−1 do
not significantly deviate from the inner-region predictions (2.39) or follow the transition
behaviour predicted by Takemura (2004) in (2.40). Note that (2.40) was originally
validated for relatively large slip Reynolds numbers (0.09 ≤ Reslip ≤ 0.5), compared to our
simulated slip range. Hence, we conclude that the correlation given by (2.39) is valid up
to Reslip = 10−1 for both rotating and freely rotating particles without requiring correction
any further for inertial effects.
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Figure 5. Drag force coefficient of a spherical particle in the absence of shear (CD,2). Simulations:
non-rotating (◦), freely rotating (+). Analytical prediction: Faxen inner-region correlation (Happel & Brenner
1981) (——–, (2.39)), Takemura (2004) outer-region correlation (——–, blue, (2.40)) and Takemura (2004)
inner–outer-region correlation (- - -, red, (2.41)). Unbounded Stokes drag (······, (2.31)).

4.3. Particle translating with a finite slip in a shear flow
In this section, we build on the previous results by analysing the lift and drag force acting
on a spherical particle moving parallel to a wall with a finite slip in a linear shear field.
We again use the force correlations given in § 4.1 to express the results in terms of lift
and drag coefficients. Both Reslip and Reγ are varied systematically covering a range from
10−3 to 10−3 (corresponding to 0.32 < ε < 326 and < 10−2 < |γ ∗| < 102). Both positive
and negative slip velocities are considered.

4.3.1. Lift force
Figure 6 shows the variation in dimensionless lift force (F∗

L) for a freely rotating particle as
a function of l∗ for different combinations of slip and shear Reynolds numbers. Figure 6(a)
and figure 6(b) present results for a leading (uslip > 0) and a lagging particle (uslip < 0)
respectively, in a positive shear field (γ > 0). The numerical results are compared against
the available inner and outer-region lift models that are valid for Reγ , Reslip � 1. Here,
the inner-region model of Cherukat & McLaughlin (1995) given by (2.22), and the
outer-region model of Takemura et al. (2009) given by (2.16) are included for comparison.

For Reslip, Reγ < 10−2, the numerically computed lift forces in the region close to
the wall (l∗ < 5) agree reasonably well with the asymptotic values predicted by the
inner-region model (Cherukat & McLaughlin 1995) for both positive and negative slip
velocities. As Reslip and Reγ increase and inertial effects become more significant, the
computed lift coefficients deviate significantly from the inner-region theoretical values.
With increasing slip, shear and separation distance, the walls move to the outer region
(l∗ > min(LG

∗, LS
∗)) and unsurprisingly, the inner-region-based models fail to capture

the lift coefficient variations accurately. Here, LG
∗(= LG/a) is the normalised Saffman
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Figure 6. Non-dimensional lift force (F∗
L) of a freely rotating particle; Reγ and Reslip increase in the order of

10−3, 10−2, 10−1 from left to right and top to bottom respectively. Simulations: inner region (◦, red) and outer
region (•, red) for each plot. Analytical predictions: inner-region model of Cherukat & McLaughlin (1995)
(- - -, grey, (2.22)), outer-region model of Takemura et al. (2009) (-·-·, grey, (2.16)). Present model prediction
(——–, red, (4.6)). (a) Leading particle in a positive shear field (γ ∗ > 0) and (b) lagging particle in a positive
shear field (γ ∗ < 0).
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length by the particle radius. At Reslip and Reγ > 10−2 and l∗ � 5, the computed results
coincide reasonably well with values predicted by the Takemura et al. (2009) outer-region
correlation. However, for the largest shear Reynolds numbers and smallest slip Reynolds
numbers (i.e. results for Reγ > 10−2, Reslip < 10−1), the existing outer-region model
significantly underestimates the simulated lift results.

In order to better understand the outer-region behaviour, in figure 7 we plot the computed
lift force coefficients against the separation distance normalised using the Saffman length
scale (l∗/L∗

G). The numerical results are compared against two existing outer-region-based
correlations, namely Cwb,out

L,23 given via (2.16) and Cwb,out
L,2 given via (2.15). However, while

Cwb,out
L,23 is valid for both small and large ε values, Cwb,out

L,2 is only valid when shear
dominates (ε > 1). In both cases J(ε) is evaluated using the Legendre & Magnaudet
(1998) correlation (2.7) and f (ε, l/LG) is evaluated using the Takemura et al. (2009)
correlation, (2.20). Equation (2.12) is used to evaluate Cwb,out

L,3 , present in the expression

for Cwb,out
L,23 . As (l∗/L∗

G) increases, the theoretical lift force results for positive and negative
γ ∗(= γ /uslip), obtained by varying only the slip direction, asymptote to the negative
and positive unbounded lift forces, respectively. Although the theoretical model given by
(2.16) fails to capture the numerical lift variation in the transition region (l∗ ∼ L∗

G) when
|γ ∗| ≥ 10, the same model predicts the numerical data reasonably well when |γ ∗| ≤ 1.
On the other hand, the predictions of (2.15) coincide with the numerical data only when
|γ ∗| ∼ 1 (Reγ ∼ Reslip) (see figure 7a).

No existing models capture the force variation in both the inner and outer regions
successfully for all of the Reynolds numbers considered here. Recalling our definition
for the net lift force given by (4.1), since the coefficients CL,1 and CL,3 capture the lift
contributions due to finite shear and finite slip conditions in the limits of γ ∗ → ∞ and
γ ∗ = 0, respectively, the remaining coefficient CL,2 is found by subtracting the force
contributions due to CL,1 and CL,3, from the present numerical results (see figure 8). Here,
CL,1 and CL,3 are evaluated using (3.3) in Ekanayake et al. (2020) and (4.4) in the present
study respectively.

We define a new correlation for CL,2 in the following manner. To capture the variation of
the remaining force contributions and the inner- and outer-region transition behaviour, the
outer-region-based, wall-bounded lift coefficient Cwb,out

L,2 given by (2.15) is substituted into
the lowest-order term of the Cherukat & McLaughlin (1995) inner-region slip-shear lift
Cwb,in

L,2 correlation given by (2.25) for a non-rotating particle and (2.26) for a freely rotating

particle. Noting that Cwb,out
L,2 in (2.15) scales with Re2

slip, the outer-region coefficient
is divided by |γ ∗| to match the inner-region lift correlation scaling. The resulting
slip-shear-based net lift coefficient CL,2, which is valid for all three regions (i.e. inner,
outer and unbounded) is,

CL,2 = −Cwb,out
L,2

1
|γ ∗| − 1.1450 − 2.0840

(
1
l∗

)
+ 0.9059

(
1
l∗

)2

, (4.5a)

for a non-rotating particle and

CL,2 = −Cwb,out
L,2

1
|γ ∗| − 2.6729 − 0.8373

(
1
l∗

)
+ 0.4683

(
1
l∗

)2

, (4.5b)

for a freely rotating particle. The new CL,2 correlation proposed for the freely rotating
particle is plotted as a function of l∗ in figure 8 and as a function of the normalised
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Figure 7. Lift force coefficient (CL = F∗
L/Re2

slip) of a freely rotating particle as a function of separation
distance non-dimensionalised by Saffman length scale (l∗/LG

∗). Simulations: inner region (◦) and outer region
(•). Analytical outer-region correlation of Takemura et al. (2009) (- - -, (2.16)) and (······, (2.15)). Present model
predictions (——–, (4.6)). (a) Leading particle in a positive shear field (γ ∗ > 0) and (b) lagging particle in a
positive shear field (γ ∗ < 0).

Saffman length l∗/L∗
G in figure 9. Given that the new correlation for CL,2 (4.5) captures

the variation of the remaining lift force contributions reasonably well for most of the slip
and shear Reynolds numbers considered, we substitute this force model into the main net
lift force correlation. The performance of the net lift correlation (4.1) is then examined for
a freely rotating particle by plotting the force (F∗

L) predictions in figure 6. The overall lift
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Figure 8. Lift force coefficient CL,2 of a freely rotating particle; Reγ and Reslip increase in the order of
10−3, 10−2, 10−1 from left to right and top to bottom respectively. Simulations: inner region (◦, red) and outer
region (•, red) for each subplot. Analytical predictions: inner-region CL,2 model of Cherukat & McLaughlin
(1995) (- - -, grey, (2.26)), outer-region model of Takemura et al. (2009) (-·-·, grey, (2.15)). Present model
prediction (——–, red, (4.5b)). (a) Leading particle in a positive shear field (γ ∗ > 0) and (b) lagging particle
in a positive shear field (γ ∗ < 0).
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Figure 9. Lift force coefficient CL,2 of a freely rotating particle as a function of separation distance
non-dimensionalised by the Saffman length scale (l∗/LG

∗). Simulations: inner region (◦) and outer region (•).
Analytical outer-region correlation of Takemura et al. (2009) (- - -, (2.15)). Present model predictions (——–,
(4.5)). (a) Leading particle in a positive shear field (γ ∗ > 0) and (b) lagging particle in a positive shear field
(γ ∗ < 0).

coefficient (CL), obtained by normalising the net lift force by the slip Reynolds number,

CL = F∗
L

Re2
slip

= γ ∗2CL,1 + γ ∗CL,2 + CL,3, (4.6)

is shown in figure 7. Here again, the lift coefficients, CL,1 and CL,3 are evaluated using
(4.1) from our previous study (Ekanayake et al. 2020) and (4.4b) from § 4.2. For reference
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a summary of all the lift correlations used in the net lift force calculations are provided in
Appendix A.

As shown in both figures 6 and 7, the new model captures the inner–outer transition
behaviour of the computed lift results well. Referring to figure 6, for low slip and shear
values (Reγ and Reslip � 10−2), the model performs well for both positive and negative
γ ∗. For large slip values and for small shear rates (i.e. Reslip = 10−1 and Reγ = 10−3),
the model slightly overestimates (underestimates) the simulated results with a maximum
deviation of 4.96 % (3.67 %) for γ ∗ > 0 (γ ∗ < 0) when the particle is furthest from the
wall. With increasing shear rate (i.e. Reγ ∼ 10−1) for the same large slip values, this
deviation rapidly reduces for γ ∗ > 0, but increases to 24.03 % for γ ∗ < 0.

As well as the force magnitudes, the change of the lift force direction is more accurately
predicted (i.e. Reγ = 10−1) using the new correlation than any other available model.
Note that a positive lift (F∗

L > 0) and a negative lift (F∗
L < 0) represent a force directed

away from and a force acting towards the wall, respectively. In figure 6(a), the lift forces
computed for γ ∗ > 0 indicate a change of the lift force direction and a decrease in the
force with increasing separation distance. However, for the same Reγ and Reslip values,
the numerical data given in figure 6(b) for γ ∗ < 0, only indicate positive lift forces for
the selected range of separation distances, and generally an increase in the lift force with
increasing separation distance.

The force variations shown in figures 6 and 7 can be explained by examining the
behaviour of the three theoretical lift coefficients (CL,1, CL,2 and CL,3) separately. The
coefficients CL,1 and CL,3, responsible for the lift due to pure shear and pure slip,
respectively, always remain positive irrespective of the direction of both slip and shear.
Thus, the lift forces due to these two coefficients will always act to push a particle away
from the wall. However, with increasing separation distance, the values of these two lift
coefficients rapidly reduce to zero (Vasseur & Cox 1977; Ekanayake et al. 2020). Therefore
CL,1 and CL,3 are only important close to the wall. The remaining slip-shear lift coefficient,
CL,2, behaves differently. Unlike the other two coefficients, CL,2 is sensitive to the direction
of slip and shear (determined by sgn(γ ∗)), and also has a finite negative or positive value in
the unbounded limit. Hence, at large separation distances, the net lift force mainly depends
on the CL,2 coefficient and its corresponding sign. However, near a wall, the net lift force
magnitude and the direction strongly depend upon the inner-region contributions of all
three coefficients.

Including all lift contributions covering the inner and outer regions means that the
present lift model predicts the correct lift coefficient variation with Reγ , Reslip and l∗,
over the wide range of parameters considered in this study (figures 6 and 7).

4.3.2. Drag force
The drag force on a freely rotating spherical particle moving parallel to a wall in a linear
shear flow is analysed in this section. Here, the drag force normalised by the slip Reynolds
number

CD = F∗
D

Reslip
= −γ ∗CD,1 − CD,2 (4.7)

is used to define the net drag coefficients. Results are presented for positive and negative
slip velocities in a positive shear field, noting that results for a negative shear field are
identical to the presented positive shear field results with the sign of the slip velocity
swapped. Figure 10 shows the variation in the net drag coefficient CD for slip and shear
Reynolds numbers in the range 10−3 − 10−1 as a function of wall separation distance
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Figure 10. Drag force coefficient (CD) of a freely rotating particle as a function of separation distance
non-dimensionalised by the Saffman length scale (l∗/LG

∗). Simulations: inner region (◦) and outer region
(•). Inner-region analytical predictions when CD,1 is evaluated by (2.44) (——–) and by (2.43) (- - -). For both
cases CD,2 is evaluated by (2.39). Outer-region analytical prediction when CD,2 and CD,1 are evaluated by
(2.40) and (2.44), respectively (-·-·). (a) Leading particle in a positive shear field (γ ∗ > 0) and (b) lagging
particle in a positive shear field (γ ∗ < 0).

normalised by Saffman’s length. A positive slip in the presence of the wall produces
a force on a leading particle that is in the opposite direction to the flow (figure 10a).
The largest negative values for CD are obtained when the particle is close to the wall,
reducing to the unbounded Stokes drag result with increasing wall distance. Both positive
and negative values for CD are reported for a lagging particle close to the wall (figure 10b),
with the direction of the force depending on both the CD,1 and CD,2 magnitudes. Although
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a lagging particle results in a positive slip-drag force contribution, the positive shear
produces a force in the opposite direction to the flow. As a result negative net drag forces
are obtained near the wall at high γ ∗.

The simulated drag coefficient results are also compared against the inner-region-
and outer-region-based theoretical drag correlations at low Reγ � 1. Two correlations,
(2.44) and (2.43), for CD,1 are first tested while using an inner-region-based Faxen drag
coefficient for CD,2 (2.39). As shown in figure 10, (2.44) for CD,1 performs better than
(2.43) when predicting the lift results for high γ ∗. However, no significant difference
between these two models is observed for small γ ∗. The outer-region-based drag model
of Takemura (2004) (2.40) is also tested for CD,2 in combination with (2.44) for CD,1.
Unsurprisingly, this model fails to capture the inner-region behaviour in either slip
direction, particularly closer to the wall, although the model predictions agree reasonably
well with other theoretical models for large l∗/LG

∗ values. In summary, for the considered
range of slip and shear Reynolds numbers, the most accurate drag predictions are obtained
using the Ekanayake et al. (2020) model (2.44) for CD,1 and the Faxen (1922) model (2.39)
for CD,2, respectively.

5. Application of the combined model: neutrally buoyant and negatively buoyant
particles

In this section, we examine the movement of both force-free (neutrally buoyant) and
negatively buoyant particles in a linear shear flow using the new correlations. We also
examine the movement of negatively buoyant particles in a quiescent flow. To validate the
force-free results, we compare against the numerical results of Ekanayake et al. (2020). To
validate the negatively buoyant results we use results of two previous experimental studies
conducted by Takemura (2004) and Takemura & Magnaudet (2009) for rigid spherical
particles at low but finite slip Reynolds numbers (0.05 < Reslip < 2.5). Given the scope
of the current study, we only use the experimental data where Reslip < 1.

5.1. Force-free particle in a linear shear flow
In this section, we re-examine the movement of the force-free particle which has been
previously discussed in Ekanayake et al. (2020). However, we now employ the proposed
CL,2 and CL,3 coefficients in (4.1), which span across all three regions. In this section, the
net lift force coefficient obtained by normalising the net lift force (4.1) using the shear
Reynolds number,

CL = F∗
L

Re2
γ

= CL,1 + 1
γ ∗ CL,2 + 1

γ ∗2 CL,3 (5.1)

is used to present lift results. The procedure followed to calculate the slip velocity of the
force-free particle is same as in Ekanayake et al. (2020). Note that the CD,2 correlation
used in our previous study is further validated for linear shear flows in the present study
(see § 4.3). The calculated slip velocities are applied to (5.1) together with the new CL,2
and CL,3 lift coefficients. The lift results are plotted in figure 11, and compared against
the direct numerical results. The previous estimations which used the inner-region-based
correlations for CL,2 and CL,3 are also plotted in the same figure.

The predictions from (5.1) agree reasonably well with the numerical results. Near the
wall (l∗ < 2), the present lift model predictions are more accurate than the previous
estimations, particularly for the highest shear Reynolds number. Also, the inset of the
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Figure 11. Lift force of a force-free particle translating in a linear shear flow near a wall when F′
L,tot is

evaluated using (5.1) for Reγ = 10−3 (——–, blue), Reγ = 10−2 (——–), Reγ = 10−1 (——–, red); Numerical
results (Ekanayake et al. 2020) (coloured hollow circles). CL,2 and CL,3 in (5.1) are evaluated using the
inner-region-based Cherukat & McLaughlin (1995) models (dotted lines).

figure illustrates that the net lift of a force-free particle rapidly reduces to zero as the
separation distance increases.

5.2. Negatively buoyant particle in a quiescent fluid
The migration of a small particle falling near a wall in a quiescent flow is analysed using
the lift correlations proposed in § 4.2. For this, the slip velocities of the sedimenting
particle are first calculated by balancing the buoyancy force, FG = 4/3πa3(ρs − ρf )g with
the wall-bounded fluid drag force, FD (Takemura 2004). Here, ρs and ρf are the solid and
fluid densities respectively and g is the gravity. In the original experimental study, the
unbounded slip Reynolds numbers, Reslip,∞(= auslip,∞/ν), were calculated by balancing
FG with the unbounded fluid drag force, FD,∞(= 6πμauslip,∞). The local slip velocity
that varies with the separation distance can hence be written in terms of this unbounded
slip velocity as

uslip = −6π
ν

a

(
Reslip,∞

CD

)
. (5.2)

Figure 12(a) shows the calculated and measured slip values (Takemura 2004) as a function
of l∗ for three different values of Reslip,∞. For quiescent flows, the net drag coefficient, CD
given in (5.2) reduces to −CD,2 according to (4.7). For comparison, three correlations are
used to evaluate the wall-bounded drag coefficient, Cwb

D,2, that capture the inner-region,
outer-region and inner–outer-region transition behaviours. The inertial correction for Cub

D,2
is evaluated by (2.35). Note that when plotting these figures, for the lowest slip Reynolds
number, the Reslip,∞ = 0.09 value quoted in Takemura (2004) had to be adjusted to
Reslip,∞ = 0.1005 to get the correspondence given in Takemura (2004), based on the
kinetic viscosity and density values combinations given in the original paper.

The overall combined inner–outer correlation predicts the CD well over all parameter
ranges considered. However, the results for Reslip,∞ = 0.1005 in figure 12(a) indicate that
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Figure 12. Analysis of a sedimenting particle in a quiescent single wall-bounded flow. Experiments:
Reslip,∞ = 0.1005 (◦, blue), Reslip,∞ = 0.255 (◦, red), Reslip,∞ = 0.5 (◦). Outer-region data are indicated
using solid circles, and inner-region data by hollow circles. (a) Slip velocity when Cwb

D,2 is evaluated using,
(2.39) (dashed line), (2.40) (dashed and dotted line) and (2.41) (solid line) and Cub

D,2 is evaluated by (2.35).
(b) Migration velocity when CL,3 is evaluated by present model ((4.4b) solid line) and by using inner-region
correlation equation (2.29) (dashed line) and outer-region correlation equation (2.12) (dashed and dotted line)
as given in Takemura (2004).

the Faxen’s inner-region drag correlation given by (2.39) does a better job at predicting the
slip velocity, noting the modification we used on the reported Reslip,∞. For the two larger
Reslip,∞, (2.41) captures both inner-region and outer-region data points reasonably well,
while for these particular cases (2.39) and (2.40), deviate significantly from one another.
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The derived slip velocities from (5.2) are then combined with the new lift correlation
given for a freely rotating particle in a quiescent flow (4.6). Since the measured quantity
was actually the dimensional transverse migration velocity of the particle relative to the
wall (wmig), a force balance normal to the wall is performed (Takemura 2004). The forces
considered here are the fluid drag force normal to the wall (FD⊥ = μawmigCD⊥) and the
particle lift force (FL)

wmig = uslipReslip
CL

CD⊥
. (5.3)

Here, CD⊥ is the wall-bounded drag coefficient of a particle translating normal to a
wall. Similar to CD,2, Faxen (Happel & Brenner 1981) provided an analytical inner-region
correlation for CD⊥ while Takemura (2004) provided an empirical fit to the outer-region
correlations for Reslip � 1. Since the reported wmig are small compared to uslip, the
inner-region correlation proposed by Faxen (Happel & Brenner 1981) is used to calculate
CD⊥ in (5.3)

CD⊥ = 6π

1 − 9
8

(
1
l∗

)
+ 1

2

(
1
l∗

)3

− 135
256

(
1
l∗

)4

− 1
8

(
1
l∗

)5 . (5.4)

Note that the lift coefficient CL in (5.3) reduces to CL,3 due to the quiescent flow condition
and the corresponding coefficients are evaluated using the new correlation (4.4b).

The calculated migration velocity values are shown for different Reslip,∞ in figure 12(b)
and compared against the previous inner- and outer-region lift models suggested in the
original paper (Takemura 2004). The theoretical and experimental migration velocity
values show a strong dependence on both Reslip,∞ and l∗. The analytical predictions
using the new inner–outer-based lift correlation (4.4b) agree reasonably well with the
experimental results for all three Reslip,∞ numbers. Although the pure inner-region-based
predictions are fairly accurate for low slip Reynolds number (i.e. Reslip,∞ = 0.1005),
the predictions for larger Reslip,∞ values deviate from the experimental results at larger
separation distances. The outer-region-based migration velocity predictions are less
accurate for all the examined cases. Interestingly, with increasing l∗, the experimental
migration velocity results obtained for Reslip,∞ = 0.5 reach a maximum around l∗ ∼
2 − 2.5. For this particular slip Reynolds number, the transition from inner to outer region
also happens at l∗ ∼ 2, and the predictions based on the new lift correlation capture
this transition behaviour more accurately than the other available models. Experimental
values very close to the wall (l∗ ∼ 1.2) are slightly higher than the theoretical prediction.
Nevertheless, notable measurement deviations were also reported closer to the wall,
suggesting one potential cause for the discrepancies between experimental and theoretical
values here.

5.3. Negatively buoyant particle in a linear shear flow
In this section a small spherical particle falling in a linear shear flow near a wall is
examined using the lift and drag correlations from § 4.3. Both positive and negative shear
flows are considered.

First, the net drag coefficient for positive and negative shear rates of the same
magnitude are analysed at small slip (Reslip = 0.029). The variations are compared against
experimentally measured drag coefficient values (Takemura & Magnaudet 2009). Unlike
the quiescent situation, here CD is a function of both CD,1 and CD,2. We compare two
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different correlations for CD,1 (2.43) and (2.44) and use the inner-region-based Faxen drag
correlation (2.39) for CD,2.

As expected, the net drag coefficient of a sedimenting particle increases when the
particle moves closer to the wall. However, higher drag coefficients are observed for a
sedimenting particle in a positive shear (γ ∗ > 0), when compared to the negative shear
field (γ ∗ < 0). This variation decreases as separation distance increases since the effect of
CD,1 rapidly decays with l∗. A relatively small difference is observed when using (2.43)
compared to (2.44) to calculate CD,1, a result of shear being relatively low in this analysed
system.

Next, the lift correlations derived for linear shear flow at Reslip,∞ ≤ O(10−1) are used
to predict migration velocities. Similar to the previous section, the slip velocity of the
sedimenting particle is first calculated using (5.2). The values are then combined with the
new lift correlation given for a freely rotating particle to find the measured dimensionless
transverse migration velocity of the particle relative to the fluid (wmig/(uslipReslip)),

wmig

uslipReslip
= CL

CD⊥
. (5.5)

Here, CD⊥ is again evaluated using the Faxen inner-region expression (5.4) and CL is
evaluated using the new correlation given in (4.6).

Figure 13(b) shows the dimensionless migration velocity as a function of normalised
separation distance for three different Reslip,∞, in which two cases are for negative shear
rates. All the data reported for the lowest two Reslip,∞ numbers are in the inner region as
the dimensionless Stokes length extends up to l∗ = 10 for Reslip,∞ = 0.1 and l∗ = 5.9 for
Reslip,∞ = 0.17. For these two experiments, note that the Saffman length is much larger
than the Stokes length since ε � 1. For Reslip,∞ = 0.55, the inner region shrinks as the
non-dimensional Stokes length reduces to l∗ = 1.81 while the non-dimensional Saffman
length spans up to l∗ = 5.5. Therefore, all the experimental data for this case are in
the outer region according to the definition of the region boundary at l∗ = min(L∗

S, L∗
G).

Based on experimental results, Takemura et al. (2009) suggested an empirical fit for
the migration velocity by combining the lift and the wall-normal drag coefficients.
Although the migration velocity predictions of this fit closely follow the experimental
results (i.e. dotted lines in figure 13b), this correlation does not provide information
about individual forces acting on the particle, and hence this fit cannot be used to
predict the particle behaviour when different hydrodynamic forces are acting on a particle
simultaneously.

The quantitative agreement of the present model against the experimental data is
actually better for the largest two Reslip,∞ values, than for the Reslip,∞ = 0.1 case.
However, as the migration velocity is very small for Reslip,∞ = 0.1, Takemura et al. (2009)
suggested that the experimental measurements could be less reliable for the entire range of
l∗ for this case. For Reslip,∞ = 0.17 and 0.55, the proposed lift correlation captures both
the inner and outer-region behaviour in both negative and positive shear environments
reasonably well. Unsurprisingly, (4.6) follows the inner-region model prediction of
Takemura et al. (2009) for Reslip,∞ = 0.17 as all the experimental measurements
are well within the inner region. Interestingly, the calculated migration velocities for
Reslip,∞ = 0.55, using the new lift correlation, capture the experimental outer-region
behaviour fairly well in the region between the normalised Stokes and Saffman lengths
(1.82 < l∗ < 5.5).
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Figure 13. Analysis of a sedimenting particle in a linear single wall-bounded flow. (a) Drag coefficient
when CD,1 is evaluated by (2.44) (solid) and (2.43) (dashed). For all cases CD,2 is evaluated by (2.39),
(2.31). Experiments: Reslip,∞ = 0.029, γ ∗∞ = −0.116 (◦, blue), Reslip, ∞ = 0.029, γ ∗∞ = 0.116 (◦, red). (b)
Migration velocity when CL is evaluated by using proposed lift (4.6) (solid), inner-region model (2.22) using
the Magnaudet et al. (2003) coefficients (dashed), outer-region model (2.16) using the Takemura et al. (2009)
coefficients (dashed dotted) and empirical fit Takemura (2004) (dotted). Experiments: Reslip,∞ = 0.1, γ ∗∞ =
−0.061 (◦, blue), Reslip,∞ = 0.17, γ ∗∞ = 0.044 (◦, red), Reslip, ∞ = 0.55, γ ∗∞ = −0.033 (◦). Outer-region
data are indicated using solid circles, and inner-region data by hollow circles.

6. Conclusion

The lift and drag forces acting on a spherical particle in a single-wall-bounded flow field
are examined via numerical computation. Forces are obtained under the conditions of finite
slip in both quiescent and linear shear flows. The effect of slip velocity, shear rate and wall
separation are investigated by varying the slip and shear Reynolds number over the range
Reslip, Reγ = 10−3–10−1 and the wall separation distance over l∗ = 1.2–9.5. The N–S
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equations are solved using a finite-volume solver to find the fluid flow around the particle
in large computational flow domains.

Based on the numerical results, we present a new lift force correlation in terms of
three force coefficients, valid for any particle–wall separation distance (excluding contact),
and Reslip, Reγ ≤ 0.1. These three lift coefficients, CL,1, CL,2 and CL,3, are defined to be
functions of only shear rate, slip velocity and shear rate and only slip velocity, respectively,
in addition to wall distance. First a correlation for the slip-based lift coefficient (CL,3) is
proposed based on the lift results obtained for a particle translating in quiescent flow.
This coefficient, which is independent of shear, reduces to the unbounded value of zero
in the limit l∗ → ∞, and asymptotes to the inner-region theoretical value in the limits of
Re → 0 and l∗ → 1. The shear-based lift coefficient, CL,1 is adopted from our previous
study (Ekanayake et al. 2020). The remaining coefficient, CL,2, is calculated by subtracting
the force contributions due to pure shear (CL,1) and pure slip (CL,3) from the numerical
lift force results that are computed in a linear flow for both leading and lagging freely
rotating particles. By combining existing inner and outer-region-based lift correlations,
a new expression is then proposed to capture the CL,2 coefficient behaviour. The net lift
model obtained by combing all three lift coefficients covers both strong slip and shear
flows and is applicable for negative or positive slip and shear rates. To our knowledge, this
is the first lift model proposed for a rigid particle that accurately captures the transition in
lift force behaviour between the inner and outer regions.

The performance of existing drag models are also compared against the numerical drag
results for Reslip, Reγ ≤ 0.1. The drag force coefficients computed for both non-rotating
and freely rotating particles in quiescent flows agree reasonably well with the inner-region
Faxen (1922) predictions over the entire wall separation range. For linear shear flows, the
most accurate drag predictions are obtained using the Ekanayake et al. (2020) and Faxen
(1922) drag models.

The behaviours of freely translating neutrally buoyant particles in a linear shear flow
and sedimenting particles in both quiescent and linear shear flows are examined using
the new lift correlations and examined drag correlations. The results are validated against
numerical (Ekanayake et al. 2020) and experimental values (Takemura 2004; Takemura &
Magnaudet 2009). The new lift correlation captures the numerical lift coefficient variation
of the freely translating neutrally buoyant particles reasonably well. The correlation
predicts the shear dependency of the lift coefficient and reduces to zero as the separation
distance increases. The computed migration values for negatively buoyant particles, using
the new lift correlation also agree well with the experimental measurements in quiescent
flows. While the inner-region slip-based drag coefficient given by Faxen performs well for
small Reslip < 0.1, the inner–outer-region-based correlation by Takemura (2004) captures
the drag variation when 0.1 < Reslip < 1. For negatively buoyant particles in linear shear
flows, the proposed lift model performs better than the other existing theoretical models
when predicting the migration velocity for both positive and negative shear rates. However,
a significant difference, noted at the lowest slip Reynolds number may be attributed to the
measurements’ uncertainties mentioned in the experimental study.

Overall, the proposed new lift correlations, valid for any particle–wall separation
distance, will aid in providing accurate constitutive equations for interphase forces to be
used in particle-based Lagrangian approaches (Maxey & Riley 1983; Loth & Dorgan 2009)
or interpenetrating continua based Eulerian-Eulerian (McTigue, Givler & Nunziato 1986)
systems and will provide new opportunities to simulate many critical multiphase biological
and industrial problems.
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Appendix A

Summary sheet of the recommended equations for lift and drag forces for a freely rotating
particle based on the analysis in this paper.

A.1. Lift force

F∗
L = CL,1Re2

γ + sgn(γ ∗)CL,2ReslipReγ + CL,3Re2
slip (4.1)

F∗
L = FLρ/μ2,

where,

Reslip = |aρuslip/μ|, Reγ = |γ a2ρ/μ|, γ ∗ = γ a/uslip, ε =
√

|Reγ |/Reslip,

LS = ν/|uslip|, LG =
√

ν/|γ |, l∗ = l/a, LS
∗ = LS/a, LG

∗ = LG/a.

Correlations from (Ekanayake et al. 2020)

CL,1 = f1(Reγ )Cwb,out
L,1 (l∗/LG

∗) + f2(Reγ )Cwb,in′
L,1 (1/l∗) (3.3)

f1(Reγ ) = 0.9250 exp (−0.3500Reγ ) − 0.0135 exp (−7000Reγ ) (3.4)

Cwb,out
L,1 (l∗/L∗

G) = 1.982 exp
[
−0.1150

(
l∗/L∗

G
)2 − 0.2771

(
l∗/L∗

G
)]

(3.5)

f2(Reγ ) = 1 +√
Reγ (3.6)

Cwb,in′
L,1 (1/l∗) = 1.0575(1/l∗) − 2.4007(1/l∗)2 − 1.9610(1/l∗)3† (3.3)

CL,3 = Cwb,out
L,3 (l∗/LS

∗) + Cwb,in′
L,3 (1/l∗) (4.4)

Cwb,out
L,3 = 6π

[
3/
(

32 + 2 (l/LS) + 3.8(l/LS)
2 + 0.049(l/LS)

3
)]

(2.12)

Cwb,in′
L,3 = 0.4757(1/l∗) − 1.268(1/l∗)2 + 0.683(1/l∗)3† (4.3)
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CL,2 = −Cwb,out
L,2

1
|γ ∗| + Cwb,in′

L,2 (1/l∗) (4.5)

Cwb,out
L,2 = f (ε, l/LG)Cub

L,2 (2.15)

Cub
L,2 = 9

π
εJ(ε) (2.4)

f (ε, l/LG) = 1 − exp
[
− 11

96
π2(l/LG)/J(ε)

]
(2.20)

J(ε) = 2.255(1 + 0.20ε−2)−3/2 (2.7)

Cwb,in′
L,2 = −2.6729 − 0.8373(1/l∗) + 0.4683(1/l∗)2†. (2.26)

(A1)

† Corresponding to the referred equation, but without the highest-order term in (1/l∗)

A.2. Drag force

F∗
D = −sgn(γ )CD,1Reγ − sgn(uslip)CD,2Reslip (4.2)

F∗
D = FDρ/μ2

CD,2 = Cub
D,2 + Cwb,in

D,2 (2.38)

Cub
D,2 = 6π (2.35)

Cwb,in
D,2 = 6π([1 − 9/16(1/l∗) + 1/8(1/l∗)3 − 45/256(1/l∗)4

−1/16(1/l∗)5]−1 − 1) (2.39)

CD,1 = (15π/8)(1/l∗)2[1 + 9/16(1/l∗) + 0.5801(1/l∗)2 − 3.34(1/l∗)3

+4.15(1/l∗)4] + (3.001Re2
γ − 1.025Reγ ). (2.44)

Appendix B

B.1. Domain size dependency
Since the domain and mesh dependency were tested for linear shear flows in our previous
study (Ekanayake et al. 2020), here, we select a quiescent flow. The location of the outer
boundaries of the mesh, L∗, is first varied to select a suitable domain size such that the lift
and drag forces are negligibly affected by this parameter. The value of L∗ is increased from
50 to 120 and simulations are performed for three selected slip Reynolds numbers; Reslip =
10−3, 10−2 and 10−1 and for seven wall distances; l∗ = 1.2, 2, 3, 4, 6, 8 and 9.5; at Reγ =
0. With increasing L∗, the number of mesh points in the domain edge is systematically
increased, resulting in Nt total number of cells.

The lift and drag coefficients, CL,3 and CD,2 respectively (defined in § 4.1) are shown
in table 6 for the minimum and maximum separation distances (l∗ = 1.2 and 9.5) and
minimum and maximum slip Reynolds numbers (Reslip = 10−3 and 10−1). Here, δ is the
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Non-rotating Freely rotating

Domain Lift Drag Lift Drag

l∗ Reslip L∗ Nt CL,3 |δ%| −CD,2 |δ%| CL,3 |δ%| −CD,2 |δ%|
1.2 0.001 50 158 976 1.7828 1.6284 −36.831 0.1792 1.7121 1.8196 −36.786 0.1858

100 189 702 1.7545 0.0138 −36.766 0.0026 1.6818 0.0165 −36.719 0.0027
120 200 960 1.7542 — −36.765 — 1.6815 — −36.718 —

0.1 50 158 976 1.7653 1.2595 −36.849 0.1410 1.6947 1.4308 −36.804 0.1464
100 189 702 1.7434 0.0149 −36.798 0.0019 1.6711 0.0175 −36.751 0.0020
120 200 960 1.7431 — −36.797 — 1.6708 — −36.751 —

9.5 0.001 50 236 736 1.7086 5.6979 −20.222 0.7455 1.7096 5.6488 −20.222 0.7454
100 280 962 1.8037 0.4493 −20.084 0.0563 1.8039 0.4444 −20.084 0.0562
120 296 960 1.8118 — −20.072 — 1.8120 — −20.072 —

0.1 50 236 736 1.5206 2.5743 −20.362 0.5574 1.5215 2.5324 −20.362 0.5574
100 280 962 1.5597 0.0723 −20.256 0.0348 1.5600 0.0685 −20.256 0.0348
120 296 960 1.5608 — −20.249 — 1.5611 — −20.249 —

Table 6. Effect of domain size on drag and lift coefficients for maximum and minimum separation distances
(l∗ = 1.2 and 9.5) and slip Reynolds number (Reslip = 10−3 and 10−1) at Reγ = 0. δ is the percentage error in
coefficient, relative to results calculated using the largest domain size (L∗ = 120).

percentage difference of each force coefficient relative to the values obtained using the
maximum domain size (L∗ = 120) and is used an indicator of the coefficient accuracy.

For all non-rotating and freely rotating cases, a domain size of L∗ = 100 is sufficient to
capture the inertial effects responsible for lift results, since |δ| � 1 %, with an exception
of lift results at l∗ = 9.5 and Reslip = 10−3. However, even for these conditions, increasing
the domain size by 20 % (from L∗ = 100 to L∗ = 120) only results in a change in CL,3 of
less than 1 %. For smaller separation distances (i.e. l∗ = 1.2), the reported δ values are
significantly small as the near-wall effects dominate outer boundary effects (Ekanayake
et al. 2018). The δ values calculated for drag force coefficients are again much less than
1 % for the selected domain size of L∗ = 100 for all separation distances. Hence, a domain
size of L∗ = 100 is used for all simulations in this study.

B.2. Mesh dependency
In this section, the effect of mesh resolution within the boundary layers surrounding the
sphere is examined. The number of cells on the sphere surface and the number of inflation
layers around the sphere are adjusted systematically by varying the number of mesh points,
Np, on each curved side length of a cubed sphere.

Figure 14 shows the variation of lift coefficients and non-dimensionalised lift forces as
a function of Reslip for four mesh refinement levels. The simulations are performed for the
smallest separation distance l∗ = 1.2 with a domain size of L∗ = 100. As Reslip approaches
zero, F∗

L reduces to zero while CL,3 asymptotes to different finite values. While results
for F∗

L appear to be independent of mesh refinement, CL,3 exhibits considerable variation
with mesh refinement, particularly for low Reslip values. This relative difference in CL,3
decreases as Np increases. For example, at the lowest Reslip value, CL,3 changed by 3.77 %
as Np is increased from 15 to 25, but changes by only 0.37 % as Np is increased from 25 to
30. Noting the significant increase of the total cell count Nt from 158 976 to 310 500 with
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Figure 14. Effect of mesh resolution around the sphere on CL,3 for a non-rotating particle at l∗ = 1.2. Np =
15 (solid line square); 20 (solid line triangle); 25 (solid line star); 30 (solid line circle).

increasing Np from 25 to 30 and by considering the computational memory requirements,
we employed the mesh with Np = 25 for the remainder of the study.
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