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SELMER GROUPS OF ELLIPTIC CURVES OVER THE PGL(2)
EXTENSION

JISHNU RAY and R. SUJATHA

Abstract. Iwasawa theory of elliptic curves over noncommutative GL(2)

extension has been a fruitful area of research. Over such a noncommutative
p-adic Lie extension, there exists a structure theorem providing the structure
of the dual Selmer groups for elliptic curves in terms of reflexive ideals in the
Iwasawa algebra. The central object of this article is to study Iwasawa theory
over the PGL(2) extension and connect it with Iwasawa theory over the GL(2)

extension, deriving consequences to the structure theorem when the reflexive
ideal is the augmentation ideal of the center. We also show how the dual Selmer
group over the GL(2) extension being torsion is related with that of the PGL(2)

extension.

§1. Introduction

Let p ≥ 5 be a prime, which is our assumption throughout the article. Let G be a
compact noncommutative torsion-free p-adic analytic group. Let Λ(G) = Zp[[G]] be the
Iwasawa algebra of G. An ideal J of Λ(G) is called left reflexive ideal if the natural
map

J →HomΛ(G)op
(
HomΛ(G)(J,Λ(G)),Λ(G)

)
is an isomorphism as Λ(G)-modules. We can also define a right reflexive ideal in a similar
fashion. A two-sided ideal is called reflexive if it is both right and left reflexive. In [A],
Ardakov showed that if G ∼= H ×C where H is a torsion-free pro-p group with split
semisimple Lie algebra and C ∼= Zp, the two-sided reflexive ideals of G are of the form
J = fΛ(G), where f is a distinguished polynomial in Λ(C) (see [A, Cor. 4.8]).

Reflexive ideals occur naturally in the study of Selmer groups of elliptic curves with
good ordinary reduction at p over noncommutative p-adic Lie towers. More precisely, let
E be an elliptic curve over a number field F such that E has good ordinary reduction at
all the primes of F lying over an odd prime p. Let F∞ = F [Ep∞ ] be the noncommutative
p-adic Lie extension with Galois group G=Gal(F∞/F ) having center C. Since p≥ 5, G is
p-torsion-free compact p-adic Lie group (cf. Lemma 2.1). We also assume throughout our
article that G is a pro-p group. Therefore, Λ(G) is an Auslander regular local ring [V, Th.
3.26]. Let ̂Sel(E/F∞) be the Pontryagin dual of the Selmer group over F∞; it is easily seen
to be a finitely generated module over the Iwasawa algebra Λ(G). In [CFK+], the authors
study Iwasawa theory over this noncommutative extension F∞. If ̂Sel(E/F∞) is torsion (see
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Theorem 2.4), we have the following (weak) structure theorem:

̂Sel(E/F∞)∼⊕m
i=1Λ(G)/Ji, (1.1)

where Ji are nonzero left reflexive ideals in Λ(G) and ∼ is a pseudoisomorphism of left
Λ(G)-modules [CSS, p. 74]. Note that Ardakov’s result mentioned above only applies to
two-sided reflexive ideals. However, there can be ideals in the structure theorem which are
left reflexive but not right reflexive. Note also that Ardakov’s result does not give us whether
a particular two-sided reflexive ideal actually appears in the structure theorem for Selmer
groups in (1.1). Therefore, in order to better understand the structure of the Selmer groups,
it is crucial to classify all the reflexive (left) ideals that can occur in the decomposition in
(1.1).

Our point of interest in this article is to understand when the augmentation ideal I(C)

can occur in the decomposition in (1.1). We show that this question is crucially related with
the question of understanding whether the dual Selmer group for the PGL(2) extension
is torsion over the corresponding Iwasawa algebra. In the following, we discuss the main
result in our article.

Let K∞ be the fixed field of F∞ under the center C. Let Sel(E/K∞) be the Selmer
group over K∞; its dual is again a finitely generated module over the Iwasawa algebra
Λ(PG) = Λ(G/C). As p≥ 5, one easily obtains that PG has no p-torsion (cf. Lemma 2.1).
Since Iwasawa algebras of compact, p-torsion-free, p-adic Lie groups are Auslander regular
[V, Th. 3.26], Λ(PG) is also an Auslander regular local ring. By using our main theorem
(see Theorem 1.1), we can classify when Sel(E/K∞) is cotorsion as a Λ(PG)-module in
terms of the ideals Ji. We can prove that all the ideals Ji cannot be the augmentation ideal
I(C) (because the center cannot act trivially on Sel(E/F∞); see Proposition 3.8). Now, on
the one hand, if any of these ideals is I(C), then Sel(E/K∞) is not a cotorsion Λ(PG)-
module. On the other hand, if none of the ideals are contained in I(C), then Sel(E/K∞)

is a cotorsion Λ(PG)-module (see Theorem 3.6 and Remark 3.7). This gives a complete
classification of when ̂Sel(E/K∞) can be a torsion Λ(PG)-module.

Under suitable hypotheses, Coates showed that the dual Selmer group over the GL(2)

extension is torsion over Λ(G) (cf. [Co1, Th. 4.5]). In particular, in [Co1, Th. 4.5], it was
shown that if the dual Selmer group of the elliptic curve over the cyclotomic extension is
torsion and has μ-invariant zero, then the dual Selmer group of the elliptic curve over the
GL(2) extension is Λ(G)-torsion. As a consequence of our main result in this article, we
can show that if the dual Selmer group of the elliptic curve over the PGL(2) extension is
torsion, this implies that the dual Selmer group over the GL(2) extension is also torsion.
Hence, our result gives an alternative criterion under which the dual Selmer group of the
elliptic curve over the GL(2) extension is torsion.

Our main result can be summarized as follows (see Theorems 3.1 and 3.5).

Theorem 1.1. Let p≥ 5, and let G be a pro-p compact p-adic Lie group.

1. As Λ(PG)-modules, the Selmer group Sel(E/K∞) is isomorphic to the Selmer group
Sel(E/F∞) invariant by the center C.

2. The dual Selmer group ̂Sel(E/K∞) is a torsion Λ(PG)-module if and only if ̂Sel(E/F∞)

is a torsion Λ(G)-module and H1(C, ̂Sel(E/F∞)) = 0.
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Furthermore, any of the following conditions are sufficient to conclude that ̂Sel(E/K∞) is
a torsion Λ(PG)-module.

• The Selmer group Sel(E/F ) is finite and H2(PG, ̂Sel(E/K∞)) is finite.
• The Selmer group Sel(E/F ) is finite, ̂Sel(E/F∞) is a torsion Λ(G)-module, and
H0(PG,H1(C, ̂Sel(E/F∞)) is finite.

Note that part (1) of the theorem above gives an isomorphism and not just a pseudo-
isomorphism, whereas the natural map

Sel(E/F )→ Sel(E/K∞)PG

has finite kernel and cokernel (see Theorem 4.2). We could prove part (2) only because
of the interesting isomorphism in part (1). In the context of Iwasawa theory over
a noncommutative p-adic Lie extension, one mainly considers admissible p-adic Lie
extensions. We define a Galois extension M∞ of F to be an admissible p-adic Lie extension
of F if (i) Gal(M∞/F ) is a p-adic Lie group, (ii) M∞/F is unramified outside a finite
set of primes of F, and (iii) M∞ contains the cyclotomic Zp-extension of F [CS2, §2].
Results from cyclotomic Iwasawa theory are then used to obtain results in noncommutative
Iwasawa theory. In this article, an attempt is made to rephrase the question of whether the
two-sided reflexive ideal I(C) can occur in the structure theorem of Sel(E/F∞) in terms
of whether Sel(E/K∞) is cotorsion over Λ(PG). For this, we adopt a descent approach,
since the PGL(2) extension does not contain the cyclotomic extension. For our descent
argument, we use GL(2) Iwasawa theory to try and gain insights into PGL(2) Iwasawa
theory. Moreover, we also ascend the Iwasawa theoretic tower from the PGL(2) extension
to the GL(2) extension and derive conditions when the dual Selmer group over the GL(2)

extension is torsion.
Another reason to consider the PGL(2) extension is the following. The Lie algebra of

PGL(2) is a simple (noncommutative) Lie algebra. Unlike SL(2), the PGL(2) extension
occurs naturally as a p-adic Lie extension of the number field F in Iwasawa theory of
elliptic curves. Over the GL(2) extension, ̂Sel(E/F∞)⊗Zp Qp is an infinite dimensional Qp-
representation [Co1, Th. 1.5]. Therefore, it is interesting to explore if the corresponding
result holds for PGL(2) extension. One can also enquire if the Lie algebra representation
theory of PGL(2) enables us to study the module structure of the dual Selmer group

̂Sel(E/K∞), and thus giving us more insight into the arithmetic theory of elliptic curves.
This article consists of four sections including the introduction. In §2, we set up notation

and collect the preliminary results that are needed. In §3, the defining exact sequences for
the Selmer groups are used to compare the Selmer groups over the GL(2) extension and
the PGL(2) extension (see Theorem 3.1). Furthermore, using a descent approach from the
Selmer group over the GL(2) extension, we prove various equivalent conditions that are
sufficient to ensure that the dual Selmer over the PGL(2) extension is a cotorsion module
over the corresponding Iwasawa algebra (see Theorems 3.5 and 3.6). As applications, §4
deals with regular growth of ranks of Selmer groups as we descend from the GL(2) extension
to the PGL(2) extension (see Proposition 4.1). Moreover, we study the relation between
the Selmer group over the base field F and the Selmer group over the PGL(2) extension
(see Theorem 4.2).
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Under the assumption that the dual Selmer group over the PGL(2) extension is torsion,
its Euler characteristic and the nonexistence of its nontrivial pseudonull submodules have
been shown in §4. These questions have been dealt in Howson’s dissertation [Ho1, Th. 5.34]
and Zerbes’ dissertation [Z, Chaps. 8 and 9], but our proofs are different and much simpler.

It is clear that our methods in this article are extendable to a broader class of Galois
representations. Our case of representations arising from elliptic curves should be seen as a
first step.

§2. Preliminaries

Lemma 2.1. For p > n+1, there are no elements of p-power order in GLn(Zp) and
PGLn(Zp).

Proof. First, consider the case for GLn(Zp). Suppose X ∈GLn(Zp) and Xp = 1. Since
Xp−1 = (X−1)(Xp−1+ · · ·+1) and (Xp−1+ · · ·+1) is irreducible over Zp, we deduce that
the minimal polynomial of X is of degree p−1. We know that the characteristic polynomial
of X is of degree n. Hence, n≥ p−1, which is a contradiction.

Next, consider the case for PGLn(Zp). Suppose X ∈ PGLn(Zp) and Xp = 1. Let Z be a
lift of X in GL(n,Zp). Then Zp = cIn for some c ∈ Zp (c is actually in Z×

p ) and In is the
identity matrix. Suppose c is not a pth power. Then the polynomial T p− c is irreducible.
(This follows from a general fact that if F is a field, p is a prime, and c ∈ F , then xp− c is
irreducible in F [x] if and only if xp− c does not have any root in F.) Hence, n≥ p, which
is a contradiction.

Suppose c = kp where k ∈ Z×
p , then Zp− cIn = 0 is the same as (k−1Z)p− In = 0. But

then we can invoke the fact from GLn(Zp) and deduce that k−1Z = In which gives that
Z = kIn and hence Z belongs to the center.

Suppose p≥ 5 and G is a pro-p, compact open subgroup of GL2(Zp) with center C. Let
PG be the quotient G/C. Then G and PG are p-torsion-free, and hence their Iwasawa
algebras are Auslander regular local rings (cf. [V, Th. 3.26]) and so we have a dimension
theory. Furthermore, the usual notion of rank of a module over these Iwasawa algebras
(cf. [V, Def. 1.2]) coincides with the homological rank (see [Ho2]). The module is torsion if
and only if its rank over the corresponding Iwasawa algebra is zero. Finally, note that the
p-cohomological dimensions of G and PG are 4 and 3, respectively.

Now, suppose G is not necessarily pro-p (still assuming p > 3). Let G′ be a compact open
pro-p subgroup of G. Both Λ(G) and Λ(G′) are Auslander regular integral domains. (This
result does not need the pro-p assumption (see [V, Th. 3.36]).) Suppose M is a finitely
generated Λ(G)-module. Then M is Λ(G)-torsion if and only if

M+ := E0
Λ(G)(M) = HomΛ(G)(M,Λ(G)) = 0.

Given a finitely generated Λ(G)-module M, there is an exact sequence

0→ E1
Λ(G)DM →M → (M+)+ → E2

Λ(G)DM → 0

(see [V, Prop. 2.5]). This submodule E1
Λ(G)DM is the Λ(G)-torsion submodule of M (see

[V, Def. 2.6]). Hence, the module M is said to be Λ(G)-torsion if and only if

E1
Λ(G)DM =M.
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It is easy to see that if G′ is an open pro-p subgroup, then there are natural isomorphisms

E0
Λ(G)(M)∼= E0

Λ(G′)(M) and E1
Λ(G)DM ∼= E1

Λ(G′)DM

(see [V, Prop. 2.7(ii)] and the discussion after Definition 2.6 of [V]). Consequently, M is
torsion as a Λ(G)-module if and only if M is torsion as a Λ(G′)-module. Thus, in order
to show that M is a torsion Λ(G)-module, it suffices to show that the homological rank of
M as a Λ(G′)-module is zero. Since any compact p-adic analytic group contains an open
characteristic subgroup which is uniform and extrapowerful pro-p group, one may study
modules over Λ(G′) by restriction of scalars (see [V, Rem. 3.23]).

Let E be an elliptic curve over a number field F without complex multiplication, and let
p≥ 5. Let us suppose that E has good ordinary reduction at the primes of F above p. Let S
be a finite set of primes of F including those above {p,∞} and the primes where E has bad
reduction. Suppose FS is the maximal extension of F unramified outside S. Assume that
H∞ is an infinite Galois extension of F, contained in FS , whose Galois group Gal(H∞/F )

is a pro-p, compact, p-torsion-free, p-adic Lie group of positive dimension.
For such a p-adic Lie extension H∞ of F, we can define the Selmer group of E over

H∞ as a kernel of a natural global to local cohomological map defined by the following
sequence:

0→ Sel(E/H∞)→H1(FS/H∞,Ep∞)
λH∞−−−→⊕v∈SJv(H∞). (2.1)

Here, Jv(H∞)’s are local cohomology groups defined as follows (cf. [Co1, §3.1]). Let H∞
be the union of an increasing tower of finite extensions Hn of F. Let v ∈ S, and for each
n, denote by Hn,ωn the completion of Hn with respect to a prime ωn of Hn such that ωn

divides v and such that ωn form a compatible sequence of primes ωn+1 | ωn. Then

Jv(H∞) := lim−→
n→∞

⊕ωn|vH
1(Hn,ωn ,E)(p),

where the limit is taken with respect to the restriction maps.
The Selmer group encodes several p-adic arithmetic information about the elliptic curve.

It follows immediately from Kummer theory of E over H∞ that we have the following exact
sequence:

0→ E(H∞)⊗Qp/Zp → Sel(E/H∞)→X(E/H∞)(p)→ 0,

where X(E/H∞) is the Tate–Shafarevich group (cf. [CS1, p. 15]).
It is easy to see that the dual Selmer group is a finitely generated module over the

Iwasawa algebra

Λ(Ω) = lim←−
W

Zp[Ω/W ],

where W runs over all open normal subgroups of Ω=Gal(H∞/F ). In the rest of the text,
H∞ is either the cyclotomic Zp-extension of F, or a pro-p noncommutative GL(2) extension
of F, or a pro-p noncommutative PGL(2) extension of F (see below). Since we are assuming
p≥ 5, the corresponding Galois groups are p-torsion-free, pro-p, compact p-adic Lie groups.
It is natural to study the structure of this Selmer group. In the classical case, when the group
Ω = Gal(Fcyc/F ) ∼= Zp is commutative, the Iwasawa algebra Λ(Ω) is a commutative local
ring. One may then use the well-known structure theorem of finitely generated modules over

https://doi.org/10.1017/nmj.2022.14 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.14


SELMER GROUPS OF ELLIPTIC CURVES OVER THE PGL(2) EXTENSION 927

Λ(Gal(Fcyc/F )) in this setting [Bo, Chap. VII, §4]. In the noncommutative cases, when Ω is
a compact pro-p, p-adic analytic group without p-torsion, the Iwasawa algebra Λ(Ω) is an
Auslander regular local ring [V, Th. 3.26], and hence there is a dimension theory for modules
in this setting. Suppose M is a finitely generated module over a noncommutative Iwasawa
algebra Λ(Ω). Then M is a torsion Λ(Ω)-module if dimM ≤ dimΛ(Ω)−1. The module M
is pseudonull if dimM ≤ dimΛ(Ω)−2 (see [V, §3]). There is also a weak structure theorem
[CSS].

Set

Fn = F (Epn+1), F∞ = F (Ep∞),

and write

Gn =Gal(F∞/Fn), G=Gal(F∞/F ).

By a well-known result of Serre [S], G is open in GL2(Zp) for all primes and G=GL2(Zp) for
all but a finite number of primes. Note that F∞ contains Fcyc, the cyclotomic Zp-extension
over F with Galois group Γ, a p-adic Lie group of dimension 1.

A deep conjecture of [Ma] asserts the following conjecture.

Conjecture 2.2. Sel(E/Fcyc) is a finitely generated cotorsion Λ(Γ)-module.

This conjecture is known to hold in some cases (e.g., when F =Q), thanks to a celebrated
result of Kato [K]. Coates and Howson in [CH1], [CH2], developed Iwasawa theory over the
GL(2) extension F∞ and provided conditions under which the Selmer group Sel(E/F∞) is
cotorsion as a module over the noncommutative Iwasawa algebra Λ(G). In particular, they
showed the following results (cf. Lemmas 4.7 and 4.8, Proposition 4.3, and Theorem 4.5
of [Co1]).

Theorem 2.3. If Sel(E/F ) is finite, then Hi(G,Sel(E/F∞)) is finite for i = 0,1.
Additionally, if Sel(E/F∞) is Λ(G)-cotorsion, then Hi(G,Sel(E/F∞)) is 0 for i= 2,3,4.

Theorem 2.4. If Sel(E/Fcyc) is a cotorsion Λ(Γ)-module and has μ-invariant 0, then
Sel(E/F∞) is a cotorsion Λ(G)-module.

Coates and Howson have also calculated an explicit formula for the Euler characteristic
χ(G,Sel(E/F∞) (cf. [CH2, Th. 1.1]) under the assumption that Sel(E/F∞) is cotorsion
as a Λ(G)-module. Their point of view was to understand how Iwasawa theory over the
cyclotomic extension Fcyc influences the Iwasawa theory when one climbs up the tower
to F∞.

Let N be a module endowed with the discrete topology and a continuous action of a
profinite group G. Let H be a closed normal subgroup of G. Recall the Hochschild–Serre
spectral sequence

Hr(G/H,Hs(H,N)) =⇒ Hr+s(G,N). (2.2)

We shall make repeated use of this sequence with H = C, the center of G.

§3. Descent from GL(2) Iwasawa theory to PGL(2) Iwasawa theory

Let us make the following assumptions throughout the rest of this article. Assume that
G is a pro-p group. Since p ≥ 5, we note that the compact p-adic pro-p Lie groups G,
C, and PG are all p-torsion-free and hence have p-cohomological dimensions 4,1, and 3,
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respectively. Hence, their Iwasawa algebras are all Auslander regular local rings by [V, Th.
3.26].

From the Hochschild–Serre spectral sequence (see (2.2)) with G = Gal(F∞/F ), H = C,
and G/H =PG, it is easy to see that we obtain the commutative diagram (3.1) with exact
rows.

0 Sel(E/F∞)C H1(FS/F∞,Ep∞)C
(
⊕v∈S Jv(F∞)

)C

0 Sel(E/K∞) H1(FS/K∞,Ep∞) ⊕v∈SJv(K∞)

α β

λK∞

γ (3.1)

The vertical maps are given by restriction maps. Our first objective is to prove the
following theorem.

Theorem 3.1. The vertical maps α,β,γ in the fundamental diagram (3.1) are all
isomorphisms. In particular,

Sel(E/K∞)∼= Sel(E/F∞)C

as Λ(PG)-modules.

Proof. From the Hochschild–Serre spectral sequence, we have the following exact
sequence:

0→H1(C,Ep∞)→H1(FS/K∞,Ep∞)
β−→H1(FS/F∞,Ep∞)C →H2(C,Ep∞).

Since the p-cohomological dimension of C is 1, H2(C,Ep∞) = 0, and hence the cokernel of
the map β is zero. By applying Shapiro’s lemma (cf. the proof of [Co1, Lem. 3.1]), we have
the following exact sequence:

0→H1(ΘC
w ,E(F∞,w))(p)→ Jv(K∞)

γv−→
(
Jv(F∞)

)C →H2(ΘC
w ,E(F∞,w))(p), (3.2)

where w is a prime of F∞ above v and ΘC
w is the decomposition group of C at w (see also

[CH2, (19), (133), and (134)] for the corresponding exact sequence when K∞ is replaced
by Fcyc). As ΘC

w is a closed subgroup of C which is of dimension 1 as a p-adic Lie group,
H2(ΘC

w ,E(F∞,w))(p) = 0, which proves that the cokernel of γv is zero.
The following argument shows that ker(β) = H1(C,Ep∞) is zero. The congruence

subgroups of GL2(Zp) form a base of neighborhood for its topology, and thus C must
contain a scalar matrix

x=

(
1+pn 0

0 1+pn

)

for n sufficiently large. However, x lies in C, so x− 1 annihilates H1(C,Ep∞) (see [Mi,
Chap. I, Lem. 6.21]). Therefore, pnH1(C,Ep∞) = 0. Now, consider the short exact sequence

0→ Epn → Ep∞
×pn

−−−→ Ep∞ → 0. (3.3)

As pnH1(C,Ep∞) = 0, the long exact sequence corresponding to (3.3) gives rise to the
following short exact sequence:

0→H1(C,Ep∞)→H2(C,Epn)→H2(C,Ep∞)→ 0. (3.4)
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Now, C has p-cohomological dimension 1, and hence H2(C,Epn) = 0. Therefore,
H1(C,Ep∞) = 0 by (3.4). This shows that the map β is injective.

Writing γ =⊕v∈Sγv, (3.2) gives

Ker(γv) =H1(ΘC
w ,E(F∞,w))(p), (3.5)

where w is a prime of F∞ above v and ΘC
w is the decomposition group of C at w. In the

following, it is shown that

H1(ΘC
w ,Ep∞) = 0. (3.6)

The decomposition subgroup ΘC
w is a subgroup of C which is pro-p. Therefore, ΘC

w is a
subgroup of 1+ pZp and hence a procyclic group. Choose σ to be a topological generator
of ΘC

w ; for instance, σ = 1+pn for some n. By [NS, Prop. 1.7.7],

H1(ΘC
w ,Ep∞) = Ep∞/(σ−1)Ep∞ = Ep∞/pnEp∞ .

As Ep∞ is a p-divisible group, Ep∞/pnEp∞ = 0, giving us H1(ΘC
w ,Ep∞) = 0.

If v � p, by Kummer theory [G, §2], H1(ΘC
w ,E(F∞,w))(p) =H1(ΘC

w ,Ep∞), which vanishes
by (3.6). This proves that Ker(γv) = 0 when v � p.

Now, suppose that v | p. Let u be the prime of K∞ such that w | u and u | v, and let Iu
be the inertia subgroup of K∞ over F at the prime u. Since Iu is infinite, K∞,u is deeply
ramified (see [CG]). It is also well known that F∞,w is deeply ramified.

Hence, [CG, Prop. 4.8 and Th. 2.13] gives

H1(K∞,u,D)∼=H1(K∞,u,E)(p), (3.7)

H1(F∞,w,D)∼=H1(F∞,w,E)(p), (3.8)

where D can be identified with Ẽv,p∞ , the p-primary subgroup of the reduction of E
modulo v. Note that E has good ordinary reduction at primes of F above p. By [CG],
the module D also satisfies the following exact sequence:

0→ C ′ → Ep∞ →D → 0, (3.9)

where C ′ is divisible and D is the maximal quotient of Ep∞ by a divisible subgroup such
that Iv acts on D via a finite quotient. Note that the following sequence is exact:

0→H1(ΘC
w ,D)→H1(K∞,u,D)→H1(F∞,w,D)Θ

C
w .

Hence, using (3.7) and (3.8) into the above exact sequence, it is easy to see that

ker(γv) =H1(ΘC
w ,E(F∞,w))(p)∼=H1(ΘC

w ,D).

The exact sequence (3.9) gives that the following sequence

H1(ΘC
w ,Ep∞)→H1(ΘC

w ,D)→H2(ΘC
w ,C)

is exact. By (3.6), we know that H1(ΘC
w ,Ep∞) = 0, and since ΘC

w is a subgroup of C
which has p-cohomological dimension 1, we have H2(ΘC

w ,C) = 0. Therefore, it is clear that
H1(ΘC

w ,D) = 0, which shows that ker(γv) = 0 for v | p.
Thus, the maps β and γ are isomorphisms. The theorem now follows from the snake

lemma applied to the fundamental diagram (3.1).

Corollary 3.2. If H1(G,Sel(E/F∞)) is finite, then H1(PG,Sel(E/K∞)) is also finite.
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Proof. The assertion follows from the natural injection

H1
(
PG,

(
Sel(E/F∞)

)C)
↪→H1(G,Sel(E/F∞))

and Theorem 3.1.

The reader is referred to Theorem 2.3 in §2 for cases where H1(G,Sel(E/F∞)) is known
to be finite.

3.3 Conditions when the Selmer over PGL(2) extension is cotorsion
The following theorems give several conditions when ̂Sel(E/K∞) is torsion as a Λ(PG)-

module.

Theorem 3.4. Assume weak Leopoldt’s conjecture at K∞, that is, H2(FS/K∞,

Ep∞) = 0. Then the dual Selmer group ̂Sel(E/K∞) is Λ(PG)-torsion if and only if the
map λK∞ in (3.1) is surjective.

Proof. The proof follows from [SS, Th. 7.2].

Theorem 3.5. The dual Selmer group ̂Sel(E/K∞) is a torsion Λ(PG)-module if any
of the following conditions hold:

1. The Selmer group Sel(E/F ) is finite and H2(PG, ̂Sel(E/K∞)) is finite.
2. The Selmer group Sel(E/F ) is finite, ̂Sel(E/F∞) is a torsion Λ(G)-module, and

H0(PG,H1(C, ̂Sel(E/F∞)) is finite.
3. ̂Sel(E/F∞) is a torsion Λ(G)-module and H1(C, ̂Sel(E/F∞)) = 0.

Conversely, if ̂Sel(E/K∞) is a torsion Λ(PG)-module, then (3) holds.

Proof. Let M = ̂Sel(E/F∞). We have MG
∼= H0(PG,MC) and MC

∼= ̂Sel(E/K∞).
Now, since Sel(E/F ) is finite, by Theorem 2.3, it follows that H0(PG,MC) is finite. By
assumption, H2(PG,MC) is also finite. Since

rankΛ(PG)MC =
3∑

k≥0

(−1)krankZpHk(PG,MC)

(see [Ho2, Th. 1.1]), we obtain rankΛ(PG)MC = 0 and hence MC is Λ(PG)-torsion. This
shows that ̂Sel(E/K∞) is a torsion as a Λ(PG)-module and hence proves that the condition
(1) is sufficient.

To show that the condition in (2) is also sufficient, note that if M is Λ(G)-torsion
and Sel(E/F ) is finite, then H1(G,M) is finite and H2(G,M) = 0 (see Theorem 2.3). By
Hochschild–Serre spectral sequence, we conclude that H0(PG,H1(C,M)) is finite if and
only if H2(PG,MC) is finite, and hence (2) follows from (1).

For (3), note that it follows from [Ho2, Th. 1.1] the Hochschild–Serre spectral sequence
(use (2.2) with H = C and N =Hl(C,M)) that

rankΛ(G)M =
∑
k≥0

(−1)krankZpHk(G,M) (3.10)

=
∑
k,l≥0

(−1)k+lrankZpHk(PG,Hl(C,M)) (3.11)
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=
∑
l≥0

(−1)lrankΛ(PG)Hl(C,M) (3.12)

= rankΛ(PG)MC − rankΛ(PG)H1(C,M). (3.13)

Suppose (3) holds. Since H1(C,M) is precisely the Λ(G)-submodule of M consisting of the
elements in M annihilated by the augmentation ideal I(C) = 〈c−1〉, we have H1(C,M) = 0.
Hence, the conclusion follows from (3.13) and Theorem 3.1.

Finally, suppose if MC
∼= ̂Sel(E/K∞) is a torsion Λ(PG)-module. Then it follows from

(3.13) that M is torsion as a Λ(G)-module and H1(C,M) is torsion as a Λ(PG)-module.
Then H1(C,M) is pseudonull as a Λ(G)-module. However, M has no nonzero pseudonull
submodules (see [OV, Th. 5.1]), and therefore H1(C,M) = 0.

The following theorem gives a restatement of condition (3) in Theorem 3.5 using the
structure theorem of dual Selmer groups over noncommutative Iwasawa algebras [CSS]. By
[CSS], there is an injection of Λ(G)-modules

⊕m
i=1Λ(G)/Ji ↪→M/M0

with pseudonull cokernel. Here, Ji’s are reflexive ideals in Λ(G) which are pure of grade 1,
and M0 is the maximal pseudonull submodule of M. Recall that M = ̂Sel(E/F∞); hence,
M has no nontrivial pseudonull submodule and therefore M0 = 0. This gives the exact
sequence

0→⊕m
i=1Λ(G)/Ji →M →N → 0, (3.14)

where N is a pseudonull Λ(G)-module.

Theorem 3.6. The Selmer group Sel(E/K∞) is a cotorsion Λ(PG)-module if and only
if Sel(E/F∞) is a cotorsion Λ(G)-module and H1(C,⊕m

i=1Λ(G)/Ji) = 0.

Proof. Since the center C has p-cohomological dimension 1, the sequence (3.14) gives
the following exact sequence of Λ(PG)-modules:

0→H1(C,⊕m
i=1Λ(G)/Ji)→H1(C,M)→H1(C,N) (3.15)

→ (⊕m
i=1Λ(G)/Ji)C →MC →NC → 0. (3.16)

Let Ji be the image of Ji under the natural projection Λ(G)→ Λ(G/C) = Λ(G)/I(C).
Since H1(C,Λ(G)/Ji) = 0 for each i= [1,m] by assumption, then Ji � I(C) and hence Ji is
nonzero. Therefore, we have

dimΛ(PG)(Λ(G)/Ji)C = dimΛ(PG)(Λ(G/C)/Ji)< dimΛ(PG) = 4, (3.17)

which implies that (Λ(G)/Ji)C is Λ(PG)-torsion. Now, as N is a pseudonull Λ(G)-module,

dimΛ(G)N ≤ dimΛ(G)−2 = dimΛ(PG)−1.

This implies that NC is a torsion Λ(PG)-module, and the same holds for the module MC

from (3.17) and (3.16).
Conversely, suppose that MC

∼= ̂Sel(E/K∞) is torsion as a Λ(PG)-module. Then, by The-
orem 3.5, M is torsion as a Λ(G)-module and H1(C,M) = 0 whence H1(C,⊕m

i=1Λ(G)/Ji) = 0

by (3.15).
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Remark 3.7. We note that the ideals Ji cannot be I(C) for all i≥ 1 because the center
C cannot act trivially on the Selmer group at F∞ (see Proposition 3.8).

Suppose none of the ideals Ji are contained in I(C). Then ̂Sel(E/K∞) is torsion as a
Λ(PG)-module. On the other hand, if Ji = I(C) for some i, then ̂Sel(E/K∞) cannot be
torsion as a Λ(PG)-module (see Theorem 3.6).

Suppose Sel(E/F∞) is cotorsion as a Λ(G)-module, and Sel(E/F ) and H1(G,N) are
finite. Then none of the ideals Ji can be contained in I(C). This is because, from (3.14),
we obtain the exact sequence

H1(G,N)→ (⊕m
i=1Λ(G)/Ji)G →MG,

whose first and last terms are finite. In this case, ̂Sel(E/K∞) is torsion as a Λ(PG)-
module.

In [CSS, Prop. 8.10], for the elliptic curve E =X1(11) : y
2+y = x3−x2 of conductor 11

and prime p=5, the authors show that the center C cannot act trivially on Sel(E/F∞). The
following proposition generalizes this for any elliptic curve without complex multiplication
and with good ordinary reduction for the primes above p.

Proposition 3.8. Suppose G ∼= C ×PG, and Sel(E/F ) is finite. Then the center C
cannot act trivially on Sel(E/F∞).

Proof. If C acts trivially on Sel(E/F∞), then

Sel(E/F∞) = Sel(E/F∞)C ∼= Sel(E/K∞).

Hoewever, Sel(E/K∞) is cofinitely generated over Λ(PG) and so with the above identifi-
cation, Sel(E/F∞) is cotorsion over Λ(G). As Sel(E/F∞) is Λ(G)-cotorsion and Sel(E/F )

is finite, the cohomology groups Hi(G,Sel(E/F∞)) are finite for all i. The degeneration of
the Hochschild–Serre spectral sequence (see [NS, Prop. 2.4.5]) gives an injection

Hi(PG,Sel(E/K∞)) ↪→Hi(G,Sel(E/F∞)).

This implies that the cohomology groups Hi(PG,Sel(E/K∞)) are finite for all i. Hence,

rankΛ(PG)
̂Sel(E/K∞) =

∑
i≥0

(−1)irankZpHi(PG, ̂Sel(E/K∞)) = 0,

whereby Sel(E/K∞) is Λ(PG)-cotorsion. We deduce that

dimΛ(G)
̂Sel(E/F∞)≤ dimΛ(PG)−1 = dimΛ(G)−2.

This would imply that ̂Sel(E/F∞) is a pseudonull Λ(G)-module. However, ̂Sel(E/F∞) has
no nonzero pseudonull submodules. Hence, ̂Sel(E/F∞) = 0. On the other hand, it is known
that ̂Sel(E/F∞) is infinite dimensional as a Qp-vector space (see [Co1, Th. 1.5]). This gives
us a contradiction.

Examples 3.9. Here are some examples of elliptic curves E such that G=Gal(F∞/F )

is a direct product of its center C and PG. We follow the nomenclature from Cremona
tables [Cr].

1. Let E be the elliptic curve X1(11), namely E is the curve y2+ y = x3−x2 and prime
p= 5. This is a curve of conductor 11 defined over Q, but we consider it over F =Q(μ5).
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Put F∞ = F (E5∞). Then G=Gal(F∞/F ) has the form G= C×PG [CSS, Exam. 8.7,
p. 104].

2. Let E be the elliptic curve X0(11), namely E is the curve y2+ y = x3−x2− 10x− 20

and p = 5. This is a curve of conductor 11 defined over Q, but we consider it over
F = Q(μ5). Put F∞ = F (E5∞). Then the Galois group G = Gal(F∞/F ) is a subgroup
of the first congruence kernel of GL2(Z5) [F, (3), p. 586]. Hence, G is of the form
C×PG.

3. For any general elliptic curve E over F without complex multiplication and with good
ordinary reduction for the primes above p, we can always find an integer k large enough
such that, over the base field F [Epk ], the Galois group G=Gal(F∞/F [Epk ]) lies inside
the first congruence kernel of GL2(Zp) and hence can be written in the form C×PG.
The center C can be identified with a subgroup of diagonal matrices of a certain form
(see [V, Rem. 4.11]).

§4. Applications

Suppose G∼= PG×C. Let Cn = Cpn

and Gn = PG×Cn. Note that Gn �=Gpn

. Let M =
̂Sel(E/F∞).

Proposition 4.1. Suppose that M is a torsion Λ(G)-module. Then, for all large n,
rankΛ(PG)MCn is a constant, independent of n.

Proof. As Gn is of finite index in G, M is also a finitely generated module over Λ(Gn).
As Cn

∼=Zp, we can identify MCn with H1(Cn,M) and then they both are finitely generated
over Λ(PG). The Hochschild–Serre spectral sequence Hr(PG,Hs(Cn,M)) =⇒ Hr+s(G,M)

and the argument as in (3.10)–(3.13) give

rankΛ(Gn)M = rankΛ(PG)MCn − rankΛ(PG)H1(Cn,M).

Identifying MCn with H1(Cn,M), we deduce

rankΛ(PG)MCn = rankΛ(Gn)M +rankΛ(PG)M
Cn

= pnrankΛ(G)M +rankΛ(PG)M
Cn

= rankΛ(PG)M
Cn .

(The second equality follows since Gn is of index pn in G, and the third equality follows
as M is a torsion Λ(G)-module by assumption.) Note that Cn is in the center, and hence
abelian, and therefore MCn is a Λ(G)-submodule of M. However, M is a finitely generated
module over Λ(G), and hence M is a Noetherian module and satisfies the ascending chain
condition on its submodules. Hence, the chain

MC0=C ⊂MC1 ⊂ ·· ·MCn · · ·

stabilizes and so rankΛ(PG)M
Cn is a constant independent of n, for all sufficiently

large n.

https://doi.org/10.1017/nmj.2022.14 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.14


934 J. RAY AND R. SUJATHA

Consider the following fundamental diagram:

0 Sel(E/K∞)PG H1(FS/K∞,Ep∞)PG
(
⊕v∈S Jv(K∞)

)PG

0 Sel(E/F ) H1(FS/F,Ep∞) ⊕v∈SH
1(Fv,E)(p).

λPG
K∞

f g

λF

h
(4.1)

Let Coker(λPG
K∞

) be the cokernel of the map λPG
K∞

in (4.1).

Theorem 4.2. The vertical maps f,g,h in the fundamental diagram (4.1) have finite
kernels and cokernels. Furthermore, if Sel(E/F ) is finite, then Coker(λPG

K∞
) is finite.

Proof. Since H1(C,Ep∞) = 0, using Hochschild–Serre spectral sequence and noting that
the cohomology groups

Hi(PG,Ep∞(K∞)) =Hi(G,Ep∞)

are finite for i≥ 1, it is easy to see that the kernel and the cokernel of g are finite.
Next, we decompose h into local components h = ⊕v∈Shv and analyze the kernel of

cokernel of the map hv.
Let w be a prime of F∞ above v ∈ S, and let u be a prime of K∞ below w. If one denotes

Θu (resp., Δw) the decomposition group of PG at u (resp., the decomposition group of G
at w), then one has an isomorphism Θu =Δw/C ∩Δw.

By Shapiro’s lemma, Hi(PG,Jv(K∞))∼=Hi(Θu,H
1(K∞,u,E)(p)).

By Hochschild–Serre spectral sequence, the following sequence is exact:

0→H1(Θu,E(K∞,u))(p)→H1(Fv,E)(p)
hv−→H1(K∞,u,E)(p)Θu

→H2(Θu,E(K∞,u))(p).

Therefore, to prove that ker(hv) and cokernel(hv) are finite, it is sufficient to show that

1. H1(Θu,E(K∞,u))(p) is finite, and
2. H2(Θu,E(K∞,u))(p) is finite.

Consider the following exact sequence:

0→H1(Θu,E(K∞,u))(p)→H1(Δw,E(F∞,w))(p)→H1(C ∩Δw,E(F∞,w))(p)
Θu (4.2)

→H2(Θu,E(K∞,u))(p)→H2(Δw,E(F∞,w))(p). (4.3)

With ΘC
w = C ∩Δw, the third term of the above exact sequence is

H1(C ∩Δw,E(F∞,w))(p)
Θu =H1(ΘC

w ,E(F∞,w))(p)
Θu =Ker(γv)

Θu .

The last equality is due to (3.5), which is zero by Theorem 3.1.
Therefore, by the exact sequence (4.2), it suffices to show that

1. H1(Δw,E(F∞,w))(p) is finite, and
2. H2(Δw,E(F∞,w))(p) is finite.

However, H1(Δw,E(F∞,w))(p) and H2(Δw,E(F∞,w))(p) are the kernel and cokernel of
the map δv, the local map of the following fundamental diagram which is known to be
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finite by the work of Coates and Howson (cf. proof of [CH2, Prop. 3.3] or Proposition 5.21

of [Ho1]):

0 Sel(E/F∞)G H1(FS/F∞,Ep∞)G
(
⊕v∈S Jv(F∞)

)G

0 Sel(E/F ) H1(FS/F,Ep∞) ⊕v∈SH
1(Fv,E)(p).

⊕v∈Sδv
(4.4)

Therefore, the kernel and cokernel of h are finite. By the snake lemma, we deduce that
the same is true for f.

If Sel(E/F ) is finite, Coker(λF ) is finite (cf. [CS1, p. 35]). This implies that Coker(h◦λF )

is finite. However, Coker(h◦λF ) = Coker(λPG
K∞

◦g), and hence Coker(λPG
K∞

) is finite.

Let M be the category of all finitely generated Λ(G)-modules, let C be the full
subcategory of all pseudonull modules in M, and let q : M → M/C denote the quotient
functor. From [A, §1.3], recall that an object q(M) in the quotient category M/C is said
to be completely faithful if Ann(N) = 0 for any N ∈M such that q(N) is isomorphic to a
nonzero subquotient of q(M).

Lemma 4.3. (see [Co2, Lem. 9]1) Suppose q( ̂Sel(E/F∞)) is completely faithful. Then
Sel(E/K∞) is Λ(PG)-cotorsion.

Remark 4.4. In [BZ, §7], the authors consider an elliptic curve E over a number field
and study the dual Selmer group of E over a PG-extension that arises from the trivializing
extension of the Galois representation associated with another elliptic curve A. The example
in [BZ, §7] combined with the method of the proof of [Co2, Lem. 9] extend to give an example
of the dual Selmer group of E which is cotorsion over the PG-extension arising from the
trivializing extension defined by the elliptic curve A. However, we are primarily interested
in studying the cotorsion property of the dual Selmer group over the PG-extension of the
number field contained in the trivializing extension of the same elliptic curve. A detailed
study is currently underway in a broader context.

The Euler characteristic of the Selmer group of the PGL(2) extension has been computed
in Zerbes’ dissertation [Z, Chap. 8] and Howson’s dissertation [Ho1, Th. 5.34], but we include
a simpler proof here.

Let χ(PG,Sel(E/K∞)) be the Euler characteristic of Selmer group of the PGL(2)

extension, and let

ξp(E/F ) = ρp(E/F )×
∏
v∈B

(1/Lv(E,1))(p) (4.5)

be defined as in [CS1, §3.14].

Theorem 4.5. Suppose Sel(E/K∞) is Λ(PG)-cotorsion and Sel(E/F ) is finite. Then
Sel(E/K∞) has finite Euler characteristic given by

χ(PG,Sel(E/K∞)) = χ(G,Sel(E/F∞)) = ξp(E/F ), (4.6)

where ξp(E/F ) is as in (4.5).

1 We thank the referee for reminding us about this reference.
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Proof. Since Sel(E/K∞) is Λ(PG)-cotorsion, it implies that Sel(E/F∞) is Λ(G)-torsion
and H1(C,Sel(E/F∞)) = 0 (cf. Theorems 3.5 and 3.6). The Hochschild–Serre spectral
sequence

Hi(PG,Hj(C,Sel(E/F∞))) =⇒ Hi+j(G,Sel(E/F∞))

gives

χ(G,Sel(E/F∞)) =
∑
i≥0

(−1)iχ(PG,Hi(C,Sel(E/F∞))) = χ(PG,Sel(E/K∞)).

Under the assumption that Sel(E/F ) is finite, χ(G,Sel(E/F∞)) equals ξp(E/F ) by [CS1,
Th. 3.16].

The quantity ξp(E/F ) in (4.5) is related to the exact formula of the p-part of Birch
and Swinnerton-Dyer conjecture, which in turn gives the value of the p-part of the leading
coefficient of the complex L-value at 1.

Suppose that ̂Sel(E/Fcyc) is Λ(Γ)-torsion (e.g., F =Q) and Sel(E/F ) is finite. It is well
known that χ(Γ,Sel(E/Fcyc)) = ρp(E/F ) (cf. [CS1, Th. 3.3]). From (4.5) and (4.6), we
obtain

χ(PG,Sel(E/K∞)) = χ(G,Sel(E/F∞)) = χ(Γ,Sel(E/Fcyc))×
∏
v∈B

(1/Lv(E,1))(p).

Then the Iwasawa Main Conjecture predicts that the characteristic ideal of ̂Sel(E/Fcyc)

is generated by a p-adic L-function fE(T ) ∈ Λ(Γ). Since Sel(E/Fcyc) is Λ(Γ)-cotorsion, we
deduce that the leading term of fE(T ) is nonzero and

fE(0)∼ χ(Γ,Sel(E/Fcyc)).

Here, a ∼ b means that a and b both have the same p-adic valuation (cf. [G, Lem. 4.2]).
This gives a conjectural connection of fE(T ) with the value of the Hasse–Weil complex
L-function L(E/F,s) at s= 1. This is based on the Birch and Swinnerton-Dyer conjecture
for E over F. The conjecture then asserts that L(E/F,1) �= 0, and for a suitably defined
period Ω(E/F ), the value L(E/F,1)/Ω(E/F ) is rational. One would then expect

fE(0)∼
(∏

v|p
(1−βvN(v)−1)2

)
L(E/F,1)/Ω(E/F ),

where (1−βvN(v)−1)2 is a certain Euler factor as in [G, p. 91].
The nonexistence of nontrivial pseudonull submodules of ̂Sel(E/K∞) has been dealt

with in Zerbes’ dissertation [Z, Chap. 9, §3]. The referee suggested that we include a proof
of this assertion. This is done in the following theorem. Our proof is different to that of
[Z, Chap. 9, §3]. The proof uses a standard result from Iwasawa theory and is originally
due to Greenberg for commutative Iwasawa algebras.

Theorem 4.6. Assume weak Leopoldt’s conjecture at K∞, that is, H2(FS/K∞,

Ep∞) = 0. Suppose Sel(E/K∞) is Λ(PG)-cotorsion. Then ̂Sel(E/K∞) has no nontrivial
pseudonull submodule.
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Proof. Let Sp be the set of places of S above the prime p. As Sel(E/K∞) is Λ(PG)-
cotorsion, Theorem 3.4 gives the exact sequence

0→ ⊕
v∈Sp

̂Jv(K∞)
⊕

⊕
v∈S\Sp

̂Jv(K∞)→ ̂H1(FS/K∞,Ep∞)→ ̂Sel(E/K∞)→ 0. (4.7)

By Theorem 3.1, ̂Jv(K∞) = ̂Jv(F∞)C for all v ∈ S.
For v ∈ Sp, the corresponding decomposition subgroup of the Galois group of the

trivializing extension F∞ is of dimension 3 (see [CH2, Lem. 5.1]). Hence, ̂Jv(F∞) is free as
a Λ(G)-module (see [OV, Lem. 5.4(i)]), whence ̂Jv(K∞) is free as a Λ(PG)-module.

For v ∈ S\Sp, Jv(F∞) = 0 (see [CH2, Lem. 5.4]), and hence Jv(K∞) = 0.
Since H2(FS/K∞,Ep∞) = 0, [OV, Th. 4.7] allows us to conclude that ̂H1(FS/K∞,Ep∞)

has no nonzero pseudonull submodule.
Now, (4.7) gives an exact sequence where the first term is Λ(PG)-free, and the middle

term has no nonzero pseudonull submodule. An analogue of the argument by Greenberg
referred to above (see [HO, Prop. 3.5]) allows us to conclude that ̂Sel(E/K∞) has no
nontrivial pseudonull submodule.

It seems to us that the full strength of the structure theorem has not been exploited.
Specifically, the ideals in the summands are reflexive and pure of grade 1. It might be
possible to use this effectively to study the homology groups Hj(PG,Λ(G)/Ji). This would
then yield finer results on the structure of the dual Selmer group. We hope to return to this
line of investigation later.
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