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Abstract

Motivated by the problem of variance allocation for the sum of dependent random vari-
ables, Colini-Baldeschi, Scarsini and Vaccari (2018) recently introduced Shapley values
for variance and standard deviation games. These Shapley values constitute a criterion
satisfying nice properties useful for allocating the variance and the standard deviation of
the sum of dependent random variables. However, since Shapley values are in general
computationally demanding, Colini-Baldeschi, Scarsini and Vaccari also formulated a
conjecture about the relation of the Shapley values of two games, which they proved for
the case of two dependent random variables. In this work we prove that their conjecture
holds true in the case of an arbitrary number of independent random variables but, at the
same time, we provide counterexamples to the conjecture for the case of three dependent
random variables.
Keywords: Covariance matrix; sum of random variables; vector majorization; coopera-
tive games
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1. Shapley value

The Shapley value is a value attribution method that originated from economic game the-
ory [12]. The intuition is that, considering a team of players together producing a value, the
Shapley value attributes this value to individual members of the team. The Shapley value has
been successfully applied in many probabilistic and statistical problems, such as collinear
regression [6], reliability [8], queuing theory [2], uncertainty quantification [11], inventory
[10], multivariate risk analysis [1] and machine learning [7]. See [9] for a survey of appli-
cations. The intuition is to regard a set of random variables as the team of players and the
statistical/probabilistic index of interest as the produced value.

Formally, consider a set of n players (random variables) N = {1, 2, . . . , n} and any possible
subset J ⊆ N, called a coalition. The function ν : 2N �→R, with the condition that ν(∅) = 0, is
called the characteristic function or the value function of the game. The characteristic function
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of a coalition J, ν(J), is the value produced by all players in the coalition, for any possible
coalition. Then, the Shapley value φi(ν) is a measure of the value of player i and is given by

φνi =
∑

J⊆N\{i}

(n − |J| − 1)! |J|!
n! [ν(J ∪ {i}) − ν(J)] , (1)

where |J| is the cardinality of J. It can be recognized that the Shapley value for the ith player
is based on the marginal increase in the value function ν(J ∪ {i}) − ν(J) when player i joins
coalition J, averaged over all possible coalitions.

The Shapley value can be characterized by several interesting properties:

Efficiency:
∑n

i=1 φi(ν) = ν(N).

Symmetry: If ν(J ∪ {i}) = ν(J ∪ {j}) for all J ⊆ N \ {i, j}, then φi(ν) = φj(ν).

Dummy player: If ν(J ∪ {i}) = ν(J) for all J ⊆ N, then φi(ν) = 0.

Linearity: If two value functions ν and μ have respective Shapley values φ(ν) and φ(μ),
then the game with value αν + βμ has Shapley value αφ(ν) + βφ(μ) for all α, β ∈R.

In [12] it is proved that the Shapley value is the unique attribution method satisfying these four
properties. Equivalently, the Shapley value (1) can be expressed as

φi (ν)= 1

n!
∑

ψ∈P(N)

(
ν
(
Pψ (i) ∪ {i})− ν

(
Pψ (i)

))
, (2)

where P(N) is the set of all permutations of N and Pψ (i) is the set of players who precede i in
the order determined by the permutation ψ . The representation of Shapley value in (2) based
on permutations has been adopted for developing algorithms for the calculation of Shapley
values [3,13].

2. Variance and standard deviation games

Colini-Baldeschi, Scarsini and Vaccari [5] recently used Shapley values as the allocation
criterion for a portfolio problem.

Consider the random vector X = (X1, X2, . . . , Xn) with finite second moment, and the
sum of the random variables S =∑n

i=1 Xi. Then, [5] considers the Shapley values using the
characteristic functions

ν(J) = Var(SJ) , λ(J) =√
Var(SJ),

where the partial sums SJ =∑
i∈J Xi are defined for every J ⊆ N. The authors of [5] call ν

a variance game and λ a standard deviation game, and characterize the Shapley values for a
variance game.

Theorem 1. (Colini-Baldeschi, Scarsini and Vaccari [5].) For a variance game ν, φi(ν) =
Cov (Xi, S).

However, an analogous closed-form representation of the Shapley value is not available for a
standard deviation game. Thus, comparing Shapley values for variance and for standard devi-
ation games is very difficult. This led the authors of [5] to formulate a conjecture about their
comparison, which we describe in the next section.
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Comparing Shapley values 611

3. Conjecture and results

Given two vectors x, y ∈R
n, the vector x is said to be majorized by y (x ≤ y) if

∑n
i=k x(i) ≤∑n

i=k y(i) for all k ∈ {2, . . . , n} and
∑n

i=1 xi =∑n
i=1 yi, where x(1) ≤ x(2) ≤ · · · ≤ x(n) is the

increasing rearrangement of x. Using this notion, the conjecture can be formulated as follows.

Conjecture 1. (Colini-Baldeschi, Scarsini and Vaccari [5].) For any n × n covariance matrix
�, if ν is the corresponding variance game and λ the corresponding standard deviation game,
then

1

λ(N)
	(λ) ≤ 1

ν(N)
	(ν),

where 	 denotes the vector of the Shapley values.

The authors of [5] showed that the conjecture holds for n = 2 dependent random variables
and verified it numerically for n = 3, 4, 5 independent random variables. We now prove in
Section 3.1 that the conjecture holds true for an arbitrary number of independent random vari-
ables. However, we show, using two counterexamples in Section 3.2, that the conjecture is
not valid for n = 3 dependent random variables. From a reviewer’s report we learnt about [4],
where it is shown how the conjecture in the case of independent random variables can be seen
as an application of a far more general theorem, whose proof includes several lemmas and
definitions. Although we expect those results to be sound, we think that our alternative proof
of the conjecture for independent random variables, being direct and self-contained, can be
interesting and useful.

3.1. Proof of the conjecture for independent random variables

Theorem 2. Assume that the random variables are independent. Then, the conjecture holds
for any n.

Proof. Let ν be the variance game and λ the standard deviation game. We assume the random
variables to be independent with variances σ 2

1 ≤ σ 2
2 ≤ · · · ≤ σ 2

n , so that it is easily checked
that φi(ν) = σ 2

i . Moreover, straightforward computations show that, when i ≤ j, φi(λ) ≤ φj(λ)
as well.

First of all, we observe that the conjecture holds for n = 2 and 3. In fact, the case n = 2 is
trivial, so that we have to prove the conjecture when n = 3. Since the ordering of the vectors
�(ν) and �(λ) by increasing components is the same, and, moreover, we can assume, with-
out loss of generality, that Var(X1 + X2 + X3)= SD (X1 + X2 + X3)= 1, the proof amounts to
showing that

φ1(λ)≥ φ1(ν), φ3(λ) ≤ φ3(ν). (3)

We start with the first inequality in (3). In fact, after straightforward computations, that
inequality is seen to be equivalent to

F (a, b)= 2 − 2
√

1 − a + 2
√

a + √
1 − b − √

1 − a − b + √
a + b − √

b − 6a ≥ 0

in a suitable set of the (a, b) plane, where σ 2
1 = a, σ 2

2 = b, and σ 2
3 = c satisfy c = 1 −

a − b ≥ b ≥ a ≥ 0. Namely, our first inequality must be verified in the triangle T with ver-
tices in (0, 0), (0, 1

2 ), ( 1
3 ,

1
3 ). In fact, it is easily computed that F(0, b) = F( 1

3 ,
1
3 ) = 0.

Moreover, straightforward computations show that lim
a→0+

∂F
∂a (0, b) = +∞ when b> 0, while

∂2F
∂a2 ≤ − 1

2

[(
1
3

)− 3
2 −

(
2
3

)− 3
2
]
< 0 throughout T. Hence, for any fixed b ∈ (0, 1

2 ), F
(
a, b

)
has
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a concave graph when
(
a, b

) ∈ T and is positive when a lies in some right neighborhood of 0.
Then, consider the two oblique sides of T. Replacing b by linear functions of a, the function F
is given along these sides by the two functions

f1(a) = F

(
a,

1

3
− 1

2

(
a − 1

3

))
, f2(a) = F (a, a) .

It is again a matter of standard computations to check that f1(0) = f1
(

1
3

)
= f2(0)= f2

(
1
3

)
= 0,

that both f ′
1 and f ′

2 are positive in a right neighborhood of 0, and that f ′′
1 is negative when

0< a ≤ 1
3 . As to f ′′

2 , instead, straightforward computations show that it changes sign, from

negative to positive, only once when 0< a ≤ 1
3 , whereas f ′

2

(
1
3

)
< 0. Therefore, both f1(a) and

f2(a) are positive when 0< a< 1
3 , which leads us to conclude that F(a, b) ≥ 0 when

(
a, b

) ∈ T
and thus F(a, b) ≥ 0 all over T.

Analogously, using the same symbols, the second inequality in (3) is easily checked to be
equivalent to

G(a, c)= 2 − 2
√

1 − c + 2
√

c + √
1 − a − √

1 − a − c + √
a + c − √

a − 6c ≤ 0

in the triangle S of the (a, c) plane with vertices (0, 1
2 ), (0,1), ( 1

3 ,
1
3 ). Then, straightforward

computations show that the inequality holds on the sides of S, while ∂2G
∂a2 > 0 throughout S,

which implies the above inequality.
Moreover, we can prove (see Appendix A) that, for any set of n independent random

variables, φ1(λ) ≥ σ 2
1 , which implies

n∑
i=2

φi(λ) ≤
n∑

i=2

σ 2
i .

Now, assume n ≥ 4. Consider the set of n − 1 random variables Ñ = (Y, X3, . . . , Xn), where
Y = X1 + X2. Hence, Ñ is a set of n − 1 ≥ 3 independent random variables and we can apply
the induction hypothesis. Assume, without loss of generality, that ν(N) = λ(N) = ν(Ñ) =
λ(Ñ) = 1. Denoting by φ̃k the Shapley values relative to the set Ñ, we observe that, for any
k ≥ 3, φk(ν) = φ̃k(ν) = σ 2

k .
The next step is to prove that, for any k ≥ 3, φk(λ) ≤ φ̃k(λ). Given a permutation ψ of the

elements of Ñ, denote by Z the sum of the random variables different from Y preceding Xk in
ψ(where possibly Z = 0) and by a2 ≥ 0 the variance of Z. When we pass from the computation
of φ̃k(λ) to that of φk(λ), to each previous permutationψ correspond n new permutations. More
precisely, consider the function

	 : {permutations of (X1, X2, X3, . . . , Xn)} → {permutations of (Y, X3, . . . , Xn)}
defined by replacing, in each permutation, X1 with Y and removing X2. So, tak-
ing Z as above and letting 0 ≤ h ≤ n − 3 be the number of addends in Z, it fol-
lows that there exist (h + 1)! (n − h − 2)! permutations of (Y, X3, . . . , Xn) correspond-

ing to the quantity
√

a2 + σ 2
Y + σ 2

k −
√

a2 + σ 2
Y in the computation of φ̃k(λ). Then, for

each such permutation, say ψ ′, there are h + 1 permutations in 	−1
(
ψ ′) corresponding

to the above quantity in the computation of φk(λ) and n − h − 1 permutations corre-

sponding to
√

a2 + σ 2
1 + σ 2

k -
√

a2 + σ 2
1 . Similarly, there are h! (n − h − 1)! permutations of
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(Y, X3, . . . , Xn) corresponding to the quantity
√

a2 + σ 2
k − √

a2 in the computation of φ̃k(λ).

For each such permutation, say ψ ′′, there are n − h − 1 permutations in	−1
(
ψ ′′) correspond-

ing to the above quantity in the computation of φk(λ) and h + 1 permutations corresponding to√
a2 + σ 2

2 + σ 2
k −

√
a2 + σ 2

2 . Therefore, having multiplied by n
n the expression of φ̃k(λ), the

difference with φk(λ) is constituted by replacing (h + 1)! (n − h − 1)! times the quantity

F
(

a2, σ 2
Y , σ

2
k

)
=
√

a2 + σ 2
Y + σ 2

k −
√

a2 + σ 2
Y +

√
a2 + σ 2

k −
√

a2,

where σ 2
Y = σ 2

1 + σ 2
2 , by the quantity

G
(

a2, σ 2
1 , σ

2
2 , σ

2
k

)
=
√

a2 + (σ1)
2 + σ 2

k −
√

a2 + (σ1)
2 +

√
a2 + (σ2)

2 + σ 2
k −

√
a2 + (σ2)

2.

Finally, it follows from straightforward computations, which we omit for the sake of
synthesis, that F ≥ G whenever a2 + σ 2

1 + σ 2
2 + σ 2

k ≤ 1,where either a = 0 or σ 2
1 ≤ σ 2

2 ≤
min

(
a2, σ 2

k

)
. This proves that

φk(λ) ≤ φ̃k(λ) when k ≥ 3. (4)

Now, our first step will be to prove that

n∑
i=3

φi(λ) ≤
n∑

i=3

σ 2
i . (5)

Denoting in the following each σ 2
i as ai ≥ 0, we observe that the above inequality holds both

when a1 + a2 ≤ a3, by the induction hypothesis, as a consequence of (4), and when a1 = a2,
since in such a case φ2(λ) = φ1(λ) ≥ a1 = a2, as proved in Appendix A.

Then, either a1 = a2 or a1 + a2 ≤ a3 hold, implying (5), or else we can determine α >
0, β ≥ 0 such that a1 + α = a2 − β, α = (n − 1) β. Therefore, we consider a path a(x) =
(a1(x), a2(x), a3(x), . . . , an(x)), 0 ≤ x ≤ x, x> 1, such that a1(0) = a1 + α and ai(0) = ai − β,
i = 2, 3, . . . , n, while a1(x) = a1(0) − αx and ai(x) = ai(0) + βx, i = 2, 3, . . . , n, until a1 (x)+
a2 (x)= a3 (x) for some x> 1.

Hence, denoting by φi(λ)(x) the Shapley values for the standard deviation game correspond-
ing to Var(Xi) = ai(x), i = 1, . . . , n,

n∑
i=3

φi(λ)(0) ≤
n∑

i=3

ai(0),
n∑

i=3

φi(λ)(x) ≤
n∑

i=3

ai(x).

Let φi(λ)(x) = fi(x), i = 3, . . . , n. What we want to prove is that

n∑
i=3

f ′′
i (x) =

n∑
i=3

(fi(x) − ai(x))′′ ≥ 0, 0 ≤ x ≤ x,

which clearly implies
n∑

i=3

φi(λ)(x) ≤
n∑

i=3

ai(x), 0 ≤ x ≤ x.
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In order to do this, recall the definition of the Shapley value, i.e.

φi(λ)(x) = fi(x) = 1

n!
∑(

λ
(
Pλ(i) ∪ {i})− λ

(
Pλ(i)

))
,

and call fij(x) the addend of fi(x) corresponding to j terms preceding ai(x) in a permutation
Pλ(i), j = 0, 1, . . . , n − 1. Consider the functions

g1(x) =
n∑

i=3

(fi0(x) + fi1(x)) , gj(x) =
n∑

i=3

fij(x), j = 2, . . . , n − 1.

Then, it can be shown that g′′
j (x)> 0 as 0 ≤ x ≤ x (see Appendix B). In this way, (5) is proved.

We have to consider, now, k ≥ 4; i.e. we have to prove

n∑
i=k

φi(λ) ≤
n∑

i=k

σ 2
i , k = 4, . . . , n. (6)

Let us start from k = 4. Again setting σ 2
i = ai, it follows from the same previous arguments

that the inequality holds if a1 = a2 = a3 or a1 + a2 ≤ a4. Suppose neither one is the case. Then
we can find α, β, γ such that

a1 + α = a2 + β = a3 − γ, α > γ > 0,

α = sγ, s> 0,

β = hγ,

s + h = n − 2,

the extreme cases being given by h = s = n−2
2 , when a2 = a3, and h = −1, when a2 = a1. We

consider, as above, a path joining the two n-tuples where (6) holds, but inverting, for our
convenience, the direction. Thus, a(0) corresponds to a1(0) + a2(0) = a4(0), while a(x) will
correspond to a1 (x)= a2 (x)= a3 (x), so that a(x) is defined by

a1(x) = a1(0) + αx, a2(x) = a2(0) + βx, ai(x) = ai(0) − γ x, i = 3, . . . , n.

Using the previous notation, we denote the functions φi(λ)(x) as fi(x), i = 1, 2, . . . , n. Hence,
from what we have seen, f1(x) + f2(x) ≥ a1(x) + a2(x) along the whole path. First of all, we can
show that, for x ∈ [0, x],

f ′
3(x) ≤ f ′

4(x) ≤ · · · ≤ f ′
n(x), (7)

while we recall that
n∑

i=3

ai(x)
n

=
∑

i=3

ai(0) − (n − 2) γ x.

In fact, compare, for example, f ′
3(x) and f ′

4(x): clearly they are equal, as are f3(x) and f4(x),
when a3 = a4. So, change a3 into a3 − z and a4 into a4 + z, for any small z> 0. Assume, by
contradiction, that, for some x̂ ∈ (0, x),

∂ f ′
3 (̂x, 0)

∂z
− ∂ f ′

4 (̂x, 0)

∂z
> 0.
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Then, for a sufficiently small h> 0, letting x ∈ (̂x, x̂ + h) and setting z = x as well, f ′
3(x)> f ′

4(x).
But, since f3 (̂x)= f4 (̂x), this implies that f3 (̂x + h) > f4 (̂x + h), which leads to a contradiction,
since we have observed that σ 2

i <σ
2
j , i< j, implies φi(λ) ≤ φj(λ).

Hence, moving, say, from a = 1
2 (a3(x) + a4(x)) and setting a3(x) = a − z, a4(x) = a + z at

each z ∈ (0, z) the above steps can be repeated, observing that φj(λ) − φj(λ) increases with
σ 2

j − σ 2
i . Thus, the inequality f ′

3(x) ≤ f ′
4(x) follows and so, by the same arguments, do the

others.
Moreover, we observe that

∑n
i=4 f ′′

i (x) can change sign at most once in (0, x), from positive
to negative, since it can be computed that

∑n
i=4 f ′′

i (x) = 0 implies
∑n

i=4 f ′′′
i (x)< 0. Finally, we

recall that, at x = x, f3(x) ≥ a3(x).
Hence, assume, by contradiction, that there exists a subinterval

[
p, q

]
of [0, x] such that

n∑
i=4

fi(x) =
n∑

i=4

ai(x) when x = p, q,
n∑

i=4

fi(x)>
n∑

i=4

ai(x) when p< x< q.

Then, when p< x< q, f3(x)< a3(x); otherwise, f1(x) + f2(x) + f3(x) ≥ a1(x) + a2(x) + a3(x)

would imply
∑n

i=4 fi(x) ≤
n∑

i=4
ai(x). In particular, we will have f3(x)< a3(x) when x ∈ [r, q),

where r is such that
∑n

i=4 f ′
i (r) = −(n − 3)γ and

∑n
i=4 f ′

i (x)<−(n − 3)γ when x ∈ (r, q).
Hence, because of (7), f ′

3(x)<−γ for x ∈ (r, q). Also, since
∑n

i=4 f ′′
i (x) ≤ 0 in [r, x], it fol-

lows that
∑n

i=4 f ′
i (x)<−(n − 3)γ in [r, x], so that f ′

3(x)<−γ in [r, x] as well, implying
f3(x)< a3(x) in [r, x] and thus leading to a contradiction, as f3(x) ≥ a3(x).

In fact, by recurrent arguments, the other cases k> 4 are proved analogously. This concludes
the proof of the conjecture in the case of independent random variables. �

3.2. The conjecture does not hold for n > 2 dependent random variables

We will show that the conjecture does not hold in the case of three dependent random
variables. Before providing numerical counterexamples, we consider a more general setting.
Namely, let X1, X2, X3 be random variables such that Var(X1 + X2 + X3) = 1 with Cov(Xi, X1 +
X2 + X3) = 1

3 (i.e. φi(ν) = 1
3 ) for i = 1, 2, 3 and, moreover, σ1 <σ2 <σ3. Then, we will prove

that φ1(λ)<φ2(λ)<φ3(λ).
First of all, recalling Var(X1 + X2 + X3) = 1, it is easily calculated that

6φi(λ) = 2 − 2
√

Var(Xj + Xk) + 2σi +
√

Var(Xi + Xj) − σj +
√

Var(Xi + Xk) − σk

where i �= j �= k. Hence, let us compare φ1(λ) and φ2(λ) (the other case is analogous). Again,
by straightforward computations it can be checked that φ1(λ)<φ2(λ) is equivalent to σ1 +√

Var(X1 + X3)<σ2 + √
Var(X2 + X3). Squaring and observing that φ1(ν) = φ2(ν) is equiva-

lent to σ 2
1 + ρ13σ1σ3 = σ 2

2 + ρ23σ2σ3, we are eventually led to show that σ1
√

Var(X1 + X3)<
σ2

√
Var(X2 + X3), i.e.

Var(X1 + X3)

Var(X2 + X3)
<
σ 2

2

σ 2
1

.

Since σ 2
1 + ρ13σ1σ3 = σ 2

2 + ρ23σ2σ3 implies ρ13σ1σ3 = σ 2
2 − σ 2

1 + ρ23σ2σ3, the above
inequality is easily seen to be equivalent to

σ 2
2 − σ 2

1

Var(X2 + X3)
<
σ 2

2 − σ 2
1

σ 2
1

,
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implying σ 2
1 <Var(X2 + X3). Then, assume, by contradiction, that σ 2

1 ≥ Var(X2 + X3),
i.e. σ 2

1 ≥ σ 2
2 + ρ23σ2σ3 + ρ23σ2σ3 + σ 2

3 = σ 2
1 + ρ13σ1σ3 + ρ23σ2σ3 + σ 2

3 . Hence, we should
have 0 ≥ ρ13σ1σ3 + ρ23σ2σ3 + σ 2

3 = Cov (X3, X1 + X2 + X3). But we have assumed that
Cov (X3, X1 + X2 + X3)= φ3(ν) = 1

3 , so we are led to a contradiction.
As we have observed, φ2(λ)<φ3(λ) is proved in the same way. In fact, φ2(λ)<φ3(λ) is

easily checked to be equivalent to

σ1 +√
Var(X1 + X3)<σ2 +√

Var(X2 + X3). (8)

Repeating the above steps relative to the comparison of φ1(λ) and φ2(λ), since φ2(ν) = φ3(ν)
implies σ 2

2 + ρ12σ1σ2 = σ 2
3 + ρ13σ1σ3, it follows that (8) is equivalent to

Var(X1 + X2)

Var(X1 + X3)
<
σ 2

3

σ 2
2

,

i.e., recalling again that σ 2
2 + ρ12σ1σ2 = σ 2

3 + ρ13σ1σ3, after simple computations,

σ 2
3 − σ 2

2

Var(X1 + X3)
<
σ 2

3 − σ 2
2

σ 2
2

.

Then, assume, by contradiction, that σ 2
2 ≥ Var(X1 + X3). Hence, σ 2

2 ≥ σ 2
1 + σ 2

3 + 2ρ13σ1σ3 =
σ 2

1 + σ 2
2 + ρ12σ1σ2 + ρ13σ1σ3, i.e.

0 ≥ σ 2
1 + ρ12σ1σ2 + ρ13σ1σ3 = Cov (X1, X1 + X2 + X3)= φ1(ν),

and we are led to a contradiction, having hypothesised φ1(ν) = 1
3 . Thus, φ1(λ)<φ2(λ)<

φ3(λ), which, since φ1(λ) + φ2(λ) + φ3(λ) = 1, implies φ2(λ) + φ3(λ)> 2
3 = φ2(ν) + φ3(ν),

disproving the conjecture.

Example 1. We provide a numerical example of the above description:

σ 2
1 = 1

6
, σ 2

2 = 2

3
, σ 2

3 = 5

6
, ρ12 = 1

2
ρ13 = 0, ρ23 = − 3

2
√

5
.

In particular, in such a case, Var(X2 + X3)= 1
2 and Var(X1 + X3)= 1, while the covariance

matrix is given by

∑
=

⎛⎜⎜⎝
1
6

1
6 0

1
6

2
3 − 1

2

0 − 1
2

5
6

⎞⎟⎟⎠ .

Example 2. This is another example with all non-negative covariances:

σ 2
1 = 1

6
, σ 2

2 = 1

5
, σ 2

3 = 3

10
, ρ12 = 0.8√

1.2
, ρ13 = 0.2√

1.8
, ρ23 = 0.

The covariance matrix is ∑
=

⎛⎜⎜⎝
1
6

2
15

1
30

2
15

1
5 0

1
30 0 3

10

⎞⎟⎟⎠ .
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4. Future research

In Section 3.1 we have shown that the conjecture holds true for any number of random
variables in the particular case of a diagonal covariance matrix. We present another case in
which the conjecture is valid for any number of random variables.

Theorem 3. Assume that all the correlation coefficients of the covariance matrix are unitary,
i.e. ρij ≡ 1 for all i �= j. Then, the normalized Shapley values for the variance and the standard
deviation games coincide. In particular, the conjecture holds true.

Proof. Under the theorem assumption, the standard deviation value function can be
written as

λ(J) =
⎧⎨⎩Var

[∑
j∈J

Xj

]⎫⎬⎭
1/2

=
{∑

j∈T

σ 2
j + 2

∑
k,j∈T

σkσj

}1/2

=
⎧⎨⎩
(∑

j∈T

σj

)2
⎫⎬⎭

1/2

=
∑
j∈T

σj.

Hence, it easily follows that λ(N) =∑
j∈N σj is the sum of all the standard deviations and that

the marginal value increase simplifies to λ(J ∪ i) − λ(J) = σi. This implies that the normalized
Shapley values for the standard deviation games becomes

1

λ(N)
φi(λ) = 1

λ(N)

∑
T⊆N\{i}

|J|! (N − |J| − 1)!
N! (λ(J ∪ i) − λ(J))= σi∑

j∈N σj
(9)

for all i = 1, 2, . . . , n. If we multiply the numerator and the denominator in (9) by
∑

j∈N σj,
we find

1

λ(N)
φi(λ) =

σi

(∑
j∈N σj

)
(∑

j∈N σj

)2
= σ 2

i +∑
j �=i σj(∑

j∈N σj

)2
= Cov(Xi, S)

Var(S)
= 1

ν(N)
φi(ν),

where ν is the variance value function. �
In conclusion, we believe that the approach we have followed to prove the conjecture in the

independent case for general n can be used to check whether the conjecture of [5] holds for
some specific dependence structures.

A. Appendix

In order to show that
∑n

i=2 φi(λ) ≤∑n
i=2 σ

2
i , we prove that φ1(λ) ≥ σ 2

1 . First of all, set
σ 2

i = ai. Then define

f (a1, . . . , an) = (n − 1)!√a1

+
n∑

k=2

(k − 1)! (n − k)!
⎛⎝{a1 +

∑
j1<···<jk−1

ajr

}1/2

−
{ ∑

j1<···<jk−1

ajr

}1/2
⎞⎠ ,

where 2 ≤ j1 < · · ·< jk−1 ≤ n, and g(a1) = n! a1. Thus, it is clear that φ1(λ) ≥ σ 2
1 is equivalent

to f (a1, . . . , an) ≥ g(a1) whenever 0 ≤ a1 ≤ a2 ≤ · · · ≤ an and a1 + a2 + · · · + an = 1.
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In fact, it is easily computed that, whatever the a2, . . . , an satisfying the previous con-

ditions, f (0, a2, . . . , an) = g(0), f
(

1
n ,

1
n , . . . ,

1
n

)
= g

(
1
n

)
, and finally f (a1, . . . , an)> g(a1)

when 0< a1 ≤ 1
n2 .

So, assume, by contradiction, that f (a′
1, . . . , a′

n) = g(a′
1) for some vector a′ = (

a′
1, . . . , a′

n

)
satisfying the above conditions with 1

n2 < a′
1 <

1
n , and, moreover, that there exist vectors a, still

satisfying the previous conditions, with ‖a − a′‖< ε for a small enough ε > 0 and a′
1 < a1,

such that f (a)< g(a1).

Hence, since f
(

1
n ,

1
n , . . . ,

1
n

)
= g

(
1
n

)
, there must also exist a vector a′′, with a′

1 < a′′
1 ≤

1
n , such that f (a′′) = g(a′′

1), while, for suitable values of a close to a′′, satisfying the above
conditions with a1 < a′′

1, it again holds that f (a)< g(a1).

Let us start, precisely, from such an a′′. It is easily computed that, for a1 > 0, ∂f
∂a1

> 0, while,

for k = 2, . . . , n, ∂f
∂ak

< 0. Hence, for a suitably small x> 0 and suitable non-negative values

b2, . . . , bn such that b2 + · · · + bn = 1, the vector a = (
a′′

1 − x, a′′
2 + b2x, . . . , a′′

n + bnx
)

satis-
fies f (a)< g(a1). Therefore, it is possible to construct a path a(x), 0 ≤ x ≤ x, joining a′′ to some
a′ defined as above, such that f (a(x))< g(a1(x)) when 0< x< x, f (a(0)) = g(a1(0)), f (a(x)) =
g(a1(x)). In fact, we can expect, at most, such a path to be piecewise linear, since, moving,
say, linearly from a′′, some ai(x), 2 ≤ i< n, might reach an initially higher ai+1 before the path
reaches a′. However, a piecewise linear path can be approximated, as well as we want, by a
smooth one. Hence, after inverting, for our convenience, the direction of the path, i.e. letting
it go from a′ to a′′, we can write a(x) = (

a′
1 + x, a′

2 − β2(x), . . . , a′
n − βn(x)

)
, 0 ≤ x ≤ x, with

0 ≤ β2(x), . . . , βn(x), β2(x) + · · · + βn(x) = x, β ′
2(x), . . . , β ′

n(x) ≥ 0, β ′′
2 (x), . . . , β ′′

n−1(x) ≤ 0,

so that, setting f (x) = f (a(x)), g̃(x) = g(a1(x)) = n! (a′
1 + x

)
, f̃ (0) = g̃(0), f̃ (x) = g̃(x), f̃ (x)<

g̃(x) when 0< x< x. Moreover, as g̃′(x) = n!, it follows that f̃ ′(x)< n! when 0< x< ε and
f̃ ′(x)> n! when x′ − ε < x< x for a suitably small ε > 0. However, straightforward com-
putations show that f̃ ′′(x)< 0 when 0< x< x, leading to a contradiction. In fact, since
βn(x) = x − β2(x) − · · · − βn−1(x), β ′′

n (x) = −β ′′
2 (x) − · · · − β ′′

n−1(x). Hence, in particular, in
the expression of f̃ ′′(x), to each term of the type

1

2
β ′′

n (x)

⎛⎜⎜⎝ 1√∑
r

ajr + ah

− 1√∑
r

ajr + ah + a1

⎞⎟⎟⎠
corresponds a sum

1

2

⎡⎢⎢⎣∑
r

β ′′
jr (x)

⎛⎜⎜⎝ 1√∑
r

ajr + an

− 1√∑
r

ajr + an + a1

⎞⎟⎟⎠

+
∑

2≤h �=jr,n

β ′′
h (x)

⎛⎜⎜⎝ 1√∑
r

ajr + ah

− 1√∑
r

ajr + ah + a1

⎞⎟⎟⎠
⎤⎥⎥⎦.
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Since, when h �= n,

1√∑
r

ajr + ah

− 1√∑
r

ajr + ah + a1

≥ 1√∑
r

ajr + ah

− 1√∑
r

ajr + ah + a1

,

the sum of the above two quantities is ≤ 0.

B. Appendix

Let us consider, first, g1(x). For any fixed x ∈ [0, x], set ai(x) = ai. Observe that, whenever
3 ≤ l<m ≤ n,

1

2

[
2

β2

(al + am)
3
2

− β2

4 (am)
3
2

− β2

4 (al)
3
2

]
= β2

4
(̂a)−

3
2

(√
2 − 1

)
for some al ≤ â ≤ am, so that â ≥ a2 ≥ a1. Hence, straightforward computations lead us to
conclude that g′′

1(x) ≥ 0 certainly holds if

(n − 1)

(
1 + 1

2
√

2

)
<
(
(n − 1)2 + n − 2

)(
1 − 1

2
√

2

)
when n ≥ 4. In fact, the worst case is precisely n = 4, when it is easily checked that

3

(
1 + 1

2
√

2

)
< 11

(
1 − 1

2
√

2

)
.

As to gj(x), when 2 ≤ j ≤ n − 2, it can be shown that, in order to prove g′′
j (x) ≤ 0, it is sufficient

to check the inequality

(j + 1)−
3
2

[(
n − 2

j − 1

)
(n − j − 1)2 +

(
n − 2

j

)
(j + 1)2

]
≤ (j)− 3

2

[(
n − 2

j − 1

)
(n − j)2 +

(
n − 2

j

)
(j)2

]
,

which follows through straightforward steps. Finally, fi,n−1(x) = 1
n (1 − √

1 − ai (x)), so that it
is obvious that f ′′

i,n−1(x) ≥ 0.

Acknowledgement

Marcello Galeotti is a member of INDAM (National Institute of High Mathematics) affil-
iated to the group of Mathematical Analysis and Probability (GNAMPA). Giovanni Rabitti
would like to thank the Fondazione Invernizzi for the support received when he was postdoc at
Bocconi University.

References

[1] ABBASI, B. AND HOSSEINIFARD, S. Z. (2013). Tail conditional expectation for multivariate distributions: A
game theory approach. Statist. Prob. Lett. 83, 2228–2235.

[2] ANILY, S. AND HAVIV, M. (2010). Cooperation in service systems. Operat. Res. 58, 660–673.
[3] CASTRO, J., GÓMEZ, D. AND TEJADA, J. (2009). Polynomial calculation of the Shapley value based on

sampling. Comput. Operat. Res. 36, 1726–1730.

https://doi.org/10.1017/jpr.2020.106 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.106


620 M. GALEOTTI AND G. RABITTI

[4] CHEN, Z., HU, Z. AND TANG, Q. (2020). Allocation inequality in cost sharing problem. J. Math. Econom. 91,
111–120.

[5] COLINI-BALDESCHI, R., SCARSINI, M. AND VACCARI, S. (2018). Variance allocation and Shapley value.
Methodology Comput. Appl. Prob. 20, 919–933.

[6] LIPOVETSKY, S. AND CONKLIN, M. (2001). Analysis of regression in game theory approach. Appl. Stoch.
Models Bus. Ind. 17, 319–330.

[7] LUNDBERG, S. M. et al. (2020). From local explanations to global understanding with explainable AI for trees.
Nature Mach. Intel. 2, 56–67.

[8] MARICHAL, J.-L. AND MATHONET, P. (2013). On the extensions of Barlow–Proschan importance index and
system signature to dependent lifetimes. J. Multivar. Anal. 115, 48–56.

[9] MORETTI, S. AND PATRONE, F. (2008). Transversality of the Shapley value. TOP 16, 1.
[10] MÜLLER, A., SCARSINI, M. AND SHAKED, M. (2002). The newsvendor game has a nonempty core. Games

Econom. Behav. 38, 118–126.
[11] OWEN, A. B. (2014). Sobol’ indices and Shapley value. SIAM/ASA J. Uncert. Quant. 2, 245–251.
[12] SHAPLEY, L. S. (1953). A value for n-person games. In Contributions to the Theory of Games, eds H. W. Kuhn

and A. W. Tucker, Princeton University Press, pp. 307–317.
[13] SONG, E., NELSON, B. L. AND STAUM, J. (2016). Shapley effects for global sensitivity analysis: Theory and

computation. SIAM/ASA J. Uncert. Quant. 4, 1060–1083.

https://doi.org/10.1017/jpr.2020.106 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.106

	Shapley value
	Variance and standard deviation games
	Conjecture and results
	Proof of the conjecture for independent random variables
	The conjecture does not hold for n "026E30F le 2 dependent random variables

	Future research
	Appendix
	Appendix
	Acknowledgement
	References

