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The physical structures of velocity are examined from a recent direct numerical
simulation of fully developed incompressible turbulent pipe flow (Wu, Baltzer &
Adrian, J. Fluid Mech., vol. 698, 2012, pp. 235–281) at a Reynolds number of
ReD = 24 580 (based on bulk velocity) and a Kármán number of R+ = 685. In that
work, the periodic domain length of 30 pipe radii R was found to be sufficient to
examine long motions of negative streamwise velocity fluctuation that are commonly
observed in wall-bounded turbulent flows and correspond to the large fractions of
energy present at very long streamwise wavelengths (>3R). In this paper we study
how long motions are composed of smaller motions. We characterize the spatial
arrangements of very large-scale motions (VLSMs) extending through the logarithmic
layer and above, and we find that they possess dominant helix angles (azimuthal
inclinations relative to streamwise) that are revealed by two- and three-dimensional
two-point spatial correlations of velocity. The correlations also reveal that the shorter,
large-scale motions (LSMs) that concatenate to comprise the VLSMs are themselves
more streamwise aligned. We show that the largest VLSMs possess a form similar to
roll cells centred above the logarithmic layer and that they appear to play an important
role in organizing the flow, while themselves contributing only a minor fraction of the
flow turbulent kinetic energy. The roll cell motions play an important role with the
smaller scales of motion that are necessary to create the strong streamwise streaks of
low-velocity fluctuation that characterize the flow.

Key words: turbulent boundary layers, turbulent flows

1. Introduction
Recent direct numerical simulation (DNS) of a turbulent pipe flow by Wu, Baltzer

& Adrian (2012) has shown direct evidence, without the use of Taylor’s hypothesis,
that very large-scale motions (VLSMs) of wavelength greater than 3 pipe radii (R)
contribute over 40 % of the streamwise turbulent energy, and greater than 30 % of the
uv (streamwise-wall normal) shear stress in that flow. That study focused mainly on
statistical aspects and energy spectra of the flow. The purpose of the present study is
to determine the structure associated with the very long-scale motions. Measurements
of large fractions of streamwise turbulent energy and shear stress associated with
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VLSMs in pipe experiments (Kim & Adrian 1999; Guala, Hommema & Adrian 2006)
have brought about discussion of the flows’ structural aspects. Numerical simulations
of pipe flow allow the opportunity to observe very long structures at high resolution
and in three dimensions without the limitations of experiments, such as the effects of
using Taylor’s hypothesis, as discussed in Wu et al. (2012).

Based on premultiplied energy spectra from thermal anemometry measurements
indicating two distinct peaks in turbulent pipe flows, Kim & Adrian (1999) identified
the motions associated with the longer-wavelength peak as VLSMs. This peak
occurs from roughly the top of the buffer layer to wall-normal heights of typically
y/R ≈ 0.25–0.4 in which the peak wavelengths exceed three pipe radii and typically
extend up to 14R (Kim & Adrian 1999). Kim & Adrian (1999) conjectured that
VLSMs were a consequence of spatial coherence in the positions of hairpin packets.
Evidence of hairpin packets, coherent organizations of streamwise-aligned hairpin
vortices that grew as ramps with downstream position and were associated with
uniform momentum zones of low streamwise velocity beneath them, was then
emerging in wall-bounded shear flows based on studies of turbulent boundary layers
(Adrian, Meinhart & Tomkins 2000) and channels (Zhou et al. 1999). Kim & Adrian
(1999) associated the largest hairpin packets with bulges commonly observed in
boundary layers, which had streamwise lengths of the order of the shorter-wavelength
peak observed in the spectrum that was identified as corresponding to large-scale
motions (LSMs). Thus, in this concept, hairpins organized into packets and packets
aligned in a streamwise sense to establish VLSMs. Additional eddy types beyond
packets were not needed to explain the wide range of long length scales observed
in the spectra, although the mechanism by which alignment occurred was left as an
open question, which could involve another flow mechanism. Further evidence for
the concatenated packet model appeared in Guala et al. (2006) in a smoke wire
visualization photograph from the pipe flow of Lekakis (1988) that showed smoke
wavering azimuthally with a streamwise wavelength somewhat greater than 2R. A
photograph viewing the side reveals two distinct regions containing groups of wall-
normal-inclined structures consistent with the presence of hairpins (as postulated in
Adrian et al. 2000).

The VLSMs observed in pipes appear similar to those observed in channels,
which are believed to contain structural elements similar to those of boundary layers.
Balakumar & Adrian (2007) extended the pipe flow studies of Kim & Adrian (1999)
and Guala et al. (2006) to boundary layer and channel flows and demonstrated the
presence of LSM and VLSM indications in hot-wire spectra. Turbulent boundary
layer and channel flows have generally received greater attention than pipes for
studying structure. Besides the hairpin packet structure observed in boundary layers
(Adrian et al. 2000), the study of Hutchins & Marusic (2007a) brought attention
to the streamwise velocity structure of very long motions (which they termed
‘superstructures’) that scale in outer units and exist through the logarithmic region.
With hot-wire rake measurements in laboratory boundary layers and a spanwise array
of sonic anemometers in an atmospheric boundary layer, both of which required the
use of Taylor’s hypothesis, Hutchins & Marusic (2007a) confirmed that the log layers
of these flows are populated with very long meandering features with lengths over
20δ (boundary layer thicknesses). Using turbulent channel DNS at Reτ = 934, they
also found that superstructures extend as ‘footprints’ down to the near-wall region.
They suggested that these structures may also be the VLSMs observed in pipe flows,
but with structures in internal geometries having less meandering than in turbulent
boundary layers, leading to longer length scales observed in the internal geometries.
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Monty et al. (2007) extended the boundary layer study of Hutchins & Marusic
(2007a) to channels and pipes using hot-wire rakes. They studied the spanwise
or azimuthal correlation of streamwise velocity and the scale growth indicated by
this quantity as wall-normal position increases. Their hot-wire traces using Taylor’s
hypothesis indicated that long, meandering low-speed regions flanked by high-speed
regions in the spanwise or azimuthal direction were also present in the logarithmic
regions of channels and pipes. They found that the logarithmic layers of turbulent
boundary layers, pipes and channels have qualitatively similar structures.

Recently, several experimental studies have examined the structure in turbulent pipe
flows. Bailey et al. (2008) and Bailey & Smits (2010) focused on interpreting structure
based on two-point correlations calculated from spectra measured with a pair of
hot-wire probes positioned for various azimuthal arclength separations (1s) and radial
positions. They also inferred streamwise scales by applying Taylor’s hypothesis. Based
on studying the behaviours of azimuthal width scales for LSMs and VLSMs as a
function of wall-normal position y, Bailey et al. (2008) suggested that, if the VLSMs
were created by streamwise alignment of hairpin packets (as suggested by Kim &
Adrian 1999), only the oldest and largest hairpin packets align to create VLSMs. This
is consistent with the Kim & Adrian (1999) concept of 2R-long LSMs aligning and
other evidence that the 2R-long bulges are the largest packets. Bailey et al. (2008) also
noted that the different azimuthal scales suggest the possibility that LSMs and VLSMs
could be independent entities, with VLSMs possibly arising from linear or nonlinear
instabilities.

Correlations similarly obtained for the same pipe flow configuration at ReD =
1.5 × 105 were used by Bailey & Smits (2010) to calculate azimuthal correlation
contributions corresponding to motions with VLSM and LSM streamwise wavelengths
and to generate proper orthogonal decomposition (POD) modes. In general, the
radial–azimuthal correlations Ruu(r, r′,1θ) (with streamwise separation 1x = 0) had
substantial magnitudes for less than about half the pipe circumference based on
correlation contour plots, with the strong positive correlation near the reference
probe position azimuthally surrounded by regions of negative correlation symmetrically
located on either side. Bailey & Smits (2010) noted that this lack of correlation for
|1θ | > 90◦ suggests ‘minimal interactions occur between motions on opposite sides
of the pipe’. By decomposing the radial–azimuthal correlations at 1x = 0 into the
contributions associated with VLSM and LSM streamwise wavelengths, they found
that the VLSMs contribute much to the correlations at larger azimuthal angles from
the reference position, whereas LSMs are generally associated with much of the
positive correlation at narrower 1θ values. For reference wall-normal y values ranging
from 0.1R to 0.5R, the correlations associated with VLSMs at 1x = 0 indicated
that velocity fluctuations in these positions remained correlated with points near the
wall. Conversely, correlations associated with LSMs indicated motions for similar
reference positions at sizable distances above the wall generally did not extend near
the wall. They termed these LSM motions ‘detached’ and distinguished types of
LSMs in this manner. Bailey & Smits (2010) suggested that the sizable difference
in scales between correlations associated with LSMs and VLSMs for reference probe
locations near the wall supports the idea of Bailey et al. (2008) that VLSMs may
not be simply alignments of LSMs that occur near the wall. They also noted that
the more similar scales between VLSMs and LSMs further from the wall could mean
that VLSMs spanning from near the wall to high above form from alignments of
detached LSMs located far above the wall. By performing POD, they observed a
lack of clear delineation between eigenspectra associated with VLSMs and LSMs
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and concluded that the two motions are interrelated. They also noted the possibility
of a linear mechanism creating travelling waves similar to those observed in pipe
transition (Eckhardt et al. 2007), but cautioned that more evidence would be necessary
to support the existence of similar mechanisms, as there are a number of notable
differences between transition and this fully turbulent regime.

POD calculations from experimental measurements of pipe flow were also
performed by Hellström, Sinha & Smits (2011). Instead of hot-wire probes, they
used particle image velocimetry (PIV) to approximate three-dimensional volumes by
capturing velocity vectors in a radial–azimuthal plane and using Taylor’s hypothesis.
Focusing on a low-Reynolds-number (ReD = 12 500) turbulent pipe flow, they found
that reconstructions with the 10 most energetic POD modes ‘capture all the principal
characteristics of the VLSM. This suggests that VLSMs are constructed of the
most energetic POD modes that, when superimposed, give the impression of long
meandering structures’. The most energetic POD modes shown consisted of straight,
streamwise-aligned segments of positive and negative streamwise velocity fluctuation
with various azimuthal widths. They also noted that ‘the superposition of only the
four most energetic modes will recreate meandering structures that appear to be much
longer than any of its constituent modes’. Hellström et al. (2011) noted that these
POD modes appeared similar to a sum of two helical response modes obtained from
the linear stability analysis of McKeon & Sharma (2010), which calculated modes of
a particular form that would experience maximum amplification in turbulent pipe flow.
Hellström et al. (2011) found this to support the linear mechanisms associated with
the existence of these propagating response modes proposed by McKeon & Sharma
(2010).

Große & Westerweel (2011) used a similar PIV measurement technique to study the
structures present in the pseudo-three-dimensional velocity fields, as well as various
statistics, for turbulent pipe flows with Reynolds numbers ranging from ReD = 10 000
to 44 000. Their experiments also provided clear evidence of the very long structures
of streamwise velocity. Große & Westerweel (2011) concluded that their measurements
indicated the presence of low-speed and high-speed regions extending up to several
pipe radii in streamwise length based on applying Taylor’s hypothesis. They also
observed these structures possessing strong coherence (i.e. similar shapes) for a wide
range of radii ranging from y/R= 0.05 to 0.5. They computed probability densities of
streak widths, which they found to be more strongly concentrated at short widths near
the wall and more evenly distributed over a range of widths nearer the pipe core.

As noted above, the quasi-three-dimensional pipe fields obtained with
radial–azimuthal PIV measurements rely on Taylor’s hypothesis to infer the streamwise
spatial variation from two-dimensional fields closely spaced in time. Significant
differences can occur in the longest motions between instantaneous fields and those
obtained by applying Taylor’s hypothesis (Dennis & Nickels 2008; del Álamo &
Jiménez 2009; Wu et al. 2012). In addition, this technique presents issues for
measuring velocity in the region very near the wall. Hellström et al. (2011) discarded
the y/R < 0.1 region because of optical refraction issues. Große & Westerweel
(2011) found significant difference in velocity fluctuation statistics relative to DNS
for y/R < 0.1 at their highest Reynolds number, probably as a result of insufficient
resolution for this region in the experiment.

Given these experimental limitations, DNS data are particularly well suited to
examining the structure of very large-scale motions without the use of Taylor’s
hypothesis while resolving the smallest relevant motions. Although structure has
been observed in several previous pipe simulations performed at lower Reynolds
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numbers (e.g. Eggels et al. 1994; Duggleby, Ball & Schwaenen 2009), relatively
few have been performed for ReD > 10 000. Wu & Moin (2008) performed pipe
simulations for ReD = 5300 and 44 000 and generally focused on statistics but
made several visualizations of streamwise velocity. At ReD = 44 000, they noted the
presence of much ‘fine-grain structure’. In a constant θ plane, they observed a ‘large
number of worm-like elongated high-momentum structures with very narrow azimuthal
dimension’. The domain length of this simulation limited the study of very long
structures.

The present DNS has a Reynolds number high enough to include significant
energy at VLSM scales (wavelengths λx > 3R) and a domain length of 30R that is
long enough for examination of very long structures, with attention given to how
various smaller scales relate to the VLSMs that are significant in energy spectra.
Although DNS is subject to numerical accuracy, computational domain size and
streamwise periodicity issues, the present simulation has been verified by generally
good agreement with experimental statistics (Wu et al. 2012).

This study characterizes the VLSMs in the pipe flow simulation, their relation to
smaller structures, their organization and their similarities to experimental observations
and structural concepts for wall-bounded turbulent shear flows. From energy spectra
considerations, VLSMs are known to be very significant in the log-layer region
(Guala et al. 2006; Hutchins & Marusic 2007a; Wu et al. 2012). The log layer is
also theorized to contain self-similar structures (Perry & Chong 1982; Adrian et al.
2000; Marusic 2001), and therefore this region is of particular interest. However, the
Reynolds number of the simulation limits the range of scale separation that is present,
and in particular the separation between the near-wall region and the logarithmic layer.

The near-wall region is defined herein to be the flow region extending from the wall
that is characterized by intense quasi-streamwise vortices concentrated near y+ = 20,
although the quasi-streamwise vortices extend upwards towards y+ = 60 in Jeong et al.
(1997). The near-wall region is recognized to contain very strong velocity fluctuations
with high- and low-speed streaks (relative to the mean) in alternating spanwise (or
azimuthal) arrangements with a consistent wavelength of 1s+ = 100 (Kim, Kline &
Reynolds 1971; Smith & Metzler 1983). The behaviour of the near-wall region has
been extensively analysed (e.g. Aubry et al. 1988; Johansson, Alfredsson & Kim 1991;
Jeong et al. 1997; Jiménez & Pinelli 1999; Schoppa & Hussain 2002). The near-wall
region has been found to sustain itself autonomously, and the behaviour within the
near-wall region is largely reproduced even when the flow above y+ ≈ 60 is artificially
damped (Jiménez & Pinelli 1999). In an actual flow, motions extending to greater
distances above the wall (including VLSMs) are known to have an influence in the
near-wall region (Hutchins & Marusic 2007a).

In contrast to the motions characterizing the near-wall region, we focus on motions,
including VLSMs, that are particularly pronounced in the log layer. We define the
log layer in the classical sense based on the mean velocity profile, and y+ = 30 to
y/R = 0.15 is taken as the nominal range of the log layer (Marusic & Adrian 2013).
The significant interaction between the near-wall region and the lower extent of the log
layer has led some researchers to suggest larger y+ values for the beginning of the log
layer (e.g. del Álamo et al. 2006). Shear-layer structures of strong azimuthal vorticity
originating in the near-wall region (Johansson et al. 1991) extend into the log layer
when it is defined with a lower limit of y+ = 30. Therefore, we focus attention onto
the highest extent of the log layer, y/R = 0.15, where the most direct influence of the
near-wall motions (as defined by the quasi-streamwise vortical structures) is expected
to be relatively minimal. In the present pipe flow, y/R= 0.15 corresponds to y+ = 101.
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Townsend (1976) postulated that, in the context of log layers, the velocity at a specific
location is principally due to the effects of vortical structures (eddies) extending to
higher locations above the wall, suggesting that, for the y+ = 101 location of interest
in the present flow, the direct effects of the near-wall vortices would be smaller than
the contributions from taller structures.

In this study, we first visualize the velocity streaks in a streamwise–azimuthal
cylindrical surface located near the upper extent of the log layer, describe their
characteristics, and statistically quantify their lengths (§ 3). Next, we visualize the
velocity structures’ radial extents (§ 4) to reveal the near-wall footprints attached to
low-momentum regions. We then employ conditional averages to study the overall
organization pattern of the very long streamwise velocity fluctuation streaks (§ 5).
Finally, we explore the patterns of the other velocity components associated with the
streamwise velocity fluctuation streaks (§ 6).

2. Computational details
In the present study, the unit length scale is pipe radius R, and the unit velocity

scale is Ubulk , which is defined as the ratio of mean volume flow rate and pipe
cross-sectional area. The unit time scale is therefore R/Ubulk . The Reynolds number
based on pipe diameter D and Ubulk is ReD = 24 580, and the Kármán number is
R+ = 685. An overbar denotes ensemble averaging, and a superscript + refers to
quantities normalized by friction velocity uτ for velocity and by viscous wall unit ν/uτ
for distance. Additional details of the simulation and its validation are described in Wu
et al. (2012).

The radial coordinate r is measured from the pipe axis, x is the flow axial direction,
and θ is the azimuthal coordinate. For the purpose of analogy with the spanwise
coordinate of a channel, we introduce the arclength s = rθ . (The use of arclength
in turbulent pipe flows is discussed by Monty et al. (2007).) By analogy with the
wall-normal coordinate of a channel, it is also convenient to define y = R − r for the
pipe (also used by Guala et al. 2006). It is also helpful to introduce the analogous
velocity components u = ux, v = −ur and w = uθ . The subscripts of the correlation
functions herein use u, v,w to indicate the velocity components. An overbar represents
averaging over time as well as over the two homogeneous directions. Prime symbols
(e.g. u′) are used to represent fluctuating quantities from Reynolds decomposition.

3. Long streaks of streamwise velocity fluctuation
As noted in the introduction, long streaks of streamwise velocity (u) fluctuation

are ubiquitous in canonical wall-bounded shear flows. A cylinder at y/R = 0.15 and
y+ = 101, towards the top of the log layer, is clearly visualized when rolled out to be
viewed as a plane (Monty et al. 2007) and is analogous to constant y planes viewed
in channel and boundary layer flows. Contours of streamwise velocity fluctuation
at an instant in time (figure 1) appear qualitatively similar to those obtained from
pipe experiments using Taylor’s hypothesis (Monty et al. 2007; Große & Westerweel
2011; Hellström et al. 2011), with long, approximately streamwise-oriented, streaks
of low- and high-velocity fluctuations visually dominant. The appearance of the
low-velocity streaks is similar to that at y/R = 0.10 in the ReD = 44 000 pipe flow
of Große & Westerweel (2011). Qualitatively, the behaviour contains meandering
with frequent ‘joining and splitting of streaks’ that they observed at a location yet
nearer the wall. At radii relatively near the wall (not deep within the core of the
pipe), Große & Westerweel (2011) observed that streaks do not persist across the
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FIGURE 1. Axial velocity fluctuation u′/Ubulk contours of a streamwise–azimuthal cylinder at
t = 252R/Ubulk and radius where y/R= 0.15 and y+ = 101. (a) The entire simulation domain;
(b,c) two prominent long, streaky, low-speed regions shown in greater detail; (d) even finer
detail of a very fine-scaled motion. A relatively straight low-speed streak in panel (a) is
identified as A for further visualization.

centreline (i.e. do not travel azimuthally by 180◦), and the streaks in the present
DNS behave similarly. Monty et al. (2007) observed several examples of low-speed
streaks travelling 180◦ around the circumference at y/R = 0.15, but these were at
significantly higher Reynolds number (Reτ = 3472 and ReD = 152 000). The limited
azimuthal resolution of the hot-wire rake may also have made discerning individual
streaks more difficult. The domain of the present simulation, for which an unwrapped
constant-radius cylinder is shown in figure 1(a), includes a number of long negative
u′ streaks. The multiple scales of motion with varying strengths and unclarity with
respect to which motions are connected lead to ambiguity with regard to where each
streak begins and ends.

Two examples of low-speed streaks are shown in greater detail in figure 1(b,c).
The presence of multiple scales of motion, with many fine-scale turbulent fluctuations,
is clear. However, more distinct upstream and downstream breaks in a connected
organization of low-momentum fluctuations become apparent when viewed at this
higher resolution. The left and right boundaries of figure 1(b) correspond to the
apparent breaks (ends of an approximately contiguous extent) in long streamwise
motions. In this panel, there appears to be a long low-speed motion between x/R= 12
and 18 and another at greater s/R (azimuthal location) between x/R = 15 and 20.
The break identified near x/R = 18 is much clearer and marks the beginning of a
low-speed motion that extends far past the panel. Both figure 1(b,c) contain low-
speed regions that appear to be wavering in an azimuthal sense. Hutchins & Marusic
(2007a) observed wavering in the logarithmic layers of other wall-bounded turbulent
shear flows. By various means, we seek to characterize the streak patterns and their
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FIGURE 2. Axial velocity fluctuation contours of a streamwise–azimuthal cylinder at
t = 252R/Ubulk and radius where y/R = 0.15 and y+ = 101 (also shown in figure 1a). Black
regions are the regions of strong negative u′ fluctuation with velocity below the contour
threshold level of u′thr/Ubulk =−0.10, which is approximately the r.m.s. fluctuation magnitude
at this radius.

scales in the present pipe flow. In figure 1(c), within the overall streak, several of
the strongest segments of negative fluctuation appear to be more streamwise-aligned,
such as the regions from x/R = 8.2 to 9 and from x/R = 12 to 13. Viewing further
detail of the small-scale fluctuations in figure 1(d), these smallest distinctive motions
appear to consist of slightly streamwise elongated negative velocity fluctuation peaks
that decay in magnitude rapidly with distance from the peak location. While this
will be discussed in greater detail, the streak appears to be composed of these
somewhat randomly oriented but similarly dimensioned small fluctuations, suggesting
concatenations of small motions.

The multiple strengths of u′ fluctuation in figure 1 indicate the ambiguity inherent
in defining the streaks and calculating their lengths. One method of characterizing the
lengths of the streaks is measuring the lengths of contiguous regions with velocity
fluctuation below a threshold value, such that a structure that is contiguous but wavers
(or is azimuthally inclined) is identified as a single structure. Based on quasi-three-
dimensional velocity measurements in a turbulent boundary layer, Dennis & Nickels
(2011) extracted isosurfaces of negative velocity fluctuation at a particular threshold
value (10 % of the local mean velocity) and measured their streamwise lengths
to create a histogram representing the frequencies at which they exist. Große &
Westerweel (2011) calculated histograms of azimuthal widths of velocity structures,
and found that introducing a threshold was also necessary.

For the present study of structures’ streamwise lengths, clusters of points with
velocity fluctuations below a specified fraction of the bulk velocity are extracted
from a streamwise–azimuthal plane, and the streamwise lengths of the resulting point
clusters are statistically quantified. To illustrate the contiguous regions identified for
the same region as that shown in figure 1(a), filled contours of negative fluctuations
stronger than a threshold value u′thr of −0.10Ubulk are displayed in figure 2. Overall,
these contours create the visual impression of scattered strong small-scale negative
fluctuations, with some touching and forming longer contiguous regions, others almost
touching but forming shorter contiguous regions, and many small-scale negative
fluctuations scattered and disconnected but often organized along streak-like lines.
This suggests that what comprises a streak is significantly dependent on the threshold
value chosen, if a streak is defined in this manner. More significantly, figure 2 suggests
a clear very large-scale organizing tendency that is explored by other means in §§ 5
and 6.
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FIGURE 3. Histograms of streamwise length of contiguous regions of negative u′ fluctuation
stronger than a threshold for the streamwise–azimuthal cylinder surface at y/R = 0.15
(y+ = 101). (a,b) The mean number of such structures with the specified length range per
field; (c,d) the mean area contributed by these structures per field. For panels (a,c), the
threshold value is u′thr = −0.10Ubulk . Panel (b) contains contour lines of log(〈nstr〉) and panel
(d) contains contour lines of 〈Aclust〉/A, where Aclust is the area occupied by the clusters in the
specified bin and A is the total area of the streamwise–azimuthal cylinder surface.

Histograms of the corresponding low-speed streak lengths are presented for
y/R= 0.15 in figure 3 with the same contour threshold level of u′thr/Ubulk =−0.10 for
which contours are shown in the example field of figure 2. Contiguous structures are
allowed to cross the periodic boundaries of the domain. The frequencies of occurrence
are counted for bins encompassing ranges of one pipe radius in streamwise length.
The mean number of structures with streamwise lengths that fall within each bin
per field is displayed in figure 3(a). Every streamwise length is included, and the
shorter structures occur much more frequently than longer ones, so the vertical axis is
displayed on a logarithmic scale. Clearly, the vast majority of contiguous low-speed
regions for this threshold value have streamwise lengths less than R. As 〈nstr〉 = 1
indicates that an average of one structure within the corresponding bin occurs per
instantaneous x–θ cylinder, the histogram indicates that only structures with lengths
less than 4R occur more than once per field at y/R = 0.15, on average, for this
threshold. In general, the results for the present pipe are broadly similar to those for
the boundary layer experiment of Dennis & Nickels (2011) and support the same
trends given the differences in flow and algorithm, with less than 5 % of extracted
structures being longer than 7{R, δ} in both cases.

While the results demonstrate that the lengths are subjective with respect to the
choice of threshold value, the length distributions change gradually. Dennis & Nickels
(2011) noted that ‘changing the level within a reasonable margin does not alter the
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distribution greatly’, although their algorithm differed by measuring three-dimensional
structures. To address the effect of threshold, figure 3(b) includes contour lines of 〈nstr〉
histogram values (logarithmically spaced) for structure length bins also as a function
of threshold value. Thus, figure 3(a) is a bar chart representation of the horizontal
slice of figure 3(b) at which u′thr/Ubulk =−0.10. In general, the occurrence frequencies
of the longest structures are most sensitive (in terms of per cent change) to the
threshold values. The length bin for which 〈nstr〉 = 101, for example, remains much
more constant with changing threshold, and is at approximately lx/R= 3 in the vicinity
of the threshold noted above, so contiguous streaks of length 3R and shorter generally
exist most frequently, with several longer streaks also likely per field.

In the context of a different quantity (relating to vortical motions), del Álamo et al.
(2006) discussed the phenomenon of the clusters of connected points satisfying a
selected threshold merging into a few complex, confusing objects as the threshold
value is reduced. In figure 3(b), the contour lines representing the 〈nstr〉 values of
101 and 102 peak at longer structure lengths as threshold magnitude is reduced.
For high threshold magnitudes, as the threshold magnitude is reduced, more and
more contiguous regions of negative fluctuation appear and other regions that existed
at stronger threshold connect to form longer regions. The contour line peaks in
figure 3 occur when the threshold favours contiguous regions with lengths of R to
3R, but the regions of such lengths begin to coalesce together for further reduction
of the threshold value. For the longest length bins, the dominant source for the
creation of such structures with decreasing threshold strength is the combining of
shorter structures (as opposed to individual regions gradually lengthening), and the
occurrence frequency of such structures monotonically increases with decreasing
threshold magnitude. Statistics are not calculated for threshold magnitudes that are
too small because the extracted structures begin to span the entire periodic domain and
are difficult to interpret.

Although relatively small numbers of long structures (lx > R) are extracted, this
statistic does not directly represent their importance, such as their contribution
to turbulent kinetic energy. Owing to the longer structures’ greater areas in the
y/R = 0.15 surface, each such structure occupies a larger fraction of the domain
than each short-length structure. For this reason, the fraction of the x–θ cylindrical
surface area occupied by clusters within each length bin (〈Aclust〉/A) is also calculated.
The mean area fractions are presented on a linear scale in figure 3(c) and with linearly
spaced contour levels in figure 3(d), whereas the mean frequencies of occurrence
are presented logarithmically. Since each bar in figure 3(c) indicates the mean area
fraction that low-speed streaks of each contiguous length at the selected threshold
contributes, the sum of all bars is the total fraction of the area occupied by regions of
negative fluctuations stronger than the threshold value (u′ < u′thr).

While this is one method of characterizing the low-speed structure lengths, the
most common statistical indications of structure lengths in turbulent flows are energy
spectra. It is on this basis that VLSMs are traditionally defined as motions with
streamwise Fourier wavelengths of 3R and greater (λx > 3R) (Guala et al. 2006). The
energy spectra for the present pipe simulation in Wu et al. (2012) indicate that the
flow contains a significant fraction of u energy in the VLSM streamwise wavelengths,
with approximately 44 % of the energy associated with λx > 3R when averaged over
all radii. While experimental pipe spectra in the logarithmic layer at sufficiently high
Reynolds number formed a distinct peak at long wavelength that corresponded to the
VLSMs and led to the spectrum appearing in a bimodal form (Kim & Adrian 1999), at
least some of this peak is introduced by error due to applying Taylor’s hypothesis for
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the experiments (del Álamo & Jiménez 2009). Although this region of the spectrum is
flatter in DNS for which true spatial spectra are calculated and more consistent with
a theoretical k−1

x behaviour at long wavelengths (del Álamo & Jiménez 2009), Wu
et al. (2012) found that a very weak peak may possibly be forming (with a much
higher-Reynolds-number DNS necessary to definitively determine if this is the case).
In any case, the spectrum was reasonably represented with a bimodal form.

The issue remains of how the distribution of energetic wavelengths represented
by the spectra is related to the distribution of scales revealed by the contiguous
low-speed region extraction algorithm described above. Since Fourier wavelengths
represent the wavelengths of periodicity, they involve both positive and negative
fluctuations arranged in a streamwise periodically alternating fashion. It is reasonable
that the strongest Fourier wavelengths would be associated with this period relatively
independently of the exact form of the fluctuation, and additional Fourier components
would assume a less dominant role. This is suggested by the example of the Fourier
series representations of a square wave and triangular wave in which the dominant
wavelengths are those of the periodic signal in each case. If one considers a negative
fluctuation of a certain length immediately neighbouring, in a streamwise sense, a
positive fluctuation, then the dominant wavelength would be twice the length of the
negative structure. This assumes that the lengths of positive and negative fluctuation
structures are the same. In boundary layers, the distribution of high-speed fluctuation
streaks is relatively similar to that of their low-speed counterparts, but somewhat
weighted towards shorter streamwise extent, according to the results of Dennis &
Nickels (2011).

In the present pipe flow’s premultiplied energy spectrum (Wu et al. 2012), the
energy in the logarithmic layer region begins to decay rapidly with increasing
wavelength at approximately λx = 10R, which suggests (in the previously discussed
scenario) the presence of periodically occurring low-velocity structures of length 5R.
The statistics of extracted structures in figure 3(c) indicate that the areas occupied
by contiguous low-speed fluctuation decrease to relatively small values for structures
longer than approximately 5R at that threshold value. The complexity of structure
organization also complicates the link between the energy spectra and extracted low-
speed structures. The statistics of extracted structures generally support the importance
of structures with lengths corresponding to VLSMs, although the structures extracted
for the strongest negative fluctuations are clearly of small scale, with evidence that
they spatially organize. Organization and wavering of structures also clearly affects
their associated energy spectra, as explored in depth by Hutchins & Marusic (2007a).
They showed that a relatively simple streak produces energy at a range of length scales
and the distribution is affected by meandering. Therefore, additional aspects of the
structure dimensions and the organization of structures are considered next.

4. Radial extent of velocity structures

While the velocity fluctuations shown in figure 1 are for y/R = 0.15 (y+ = 101),
near the top of the logarithmic region, the radial extent of the low-speed structures is
significant. In a turbulent channel simulation, Hutchins & Marusic (2007a) noted that
the ‘footprints’ of streamwise velocity extend down to very near the wall. In turbulent
pipe flow, the correlations of Bailey & Smits (2010) suggest that VLSMs remain well
correlated down to the pipe wall. The example pipe field in figure 4 demonstrates the
correlation between streamwise velocity fluctuations (u′) between various radii.
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FIGURE 4. Example streamwise velocity fluctuations at t = 324R/Ubulk visualized by
isosurfaces of u′ = −0.1Ubulk (blue) and 0.1Ubulk (red). The radial sections included are
(a) 30< y+ < 685 and (b) y+ < 30.

Owing to the strong differences in behaviour between the near-wall region and the
flow more distant from the wall, the domain section is split at y+ = 30, which is
the division between the buffer and log layers. The region below y+ = 30 contains
the majority of the near-wall quasi-streamwise vortices and the strongest streamwise
velocity fluctuations. The pipe section is cut in half radially (cut along a constant
θ ), and streamwise velocity fluctuation is visualized by colour isosurfaces at strengths
of ±0.1Ubulk . In figure 4(a), the isosurfaces extend through the logarithmic layer and
above, with a consistent pattern spanning the radii. For clarity, some of the θ is
omitted. Planes extracted and flattened from a series of radii in this region reveal a
unique diamond shape of low-speed fluctuations in this particular section. This shape
can be explained as a superposition of relatively straight but azimuthally inclined
low-speed regions that are further described in § 5.4. The diamond arrangement, drawn
in figure 4 with dashed lines, does not appear to occur particularly frequently, but
is a distinct pattern to observe for the present purpose. A cylindrical surface of the
velocity at y/R= 0.39 (y+ = 270) reveals that elements of the diamond pattern remain
discernible, suggesting that structures of streamwise velocity motions often extend over
significant fractions of R, through the log layer and above. Statistical correlation will
be shown to support the large radial extents of such motions.
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FIGURE 5. Three-dimensional isosurfaces of negative u fluctuation for the pipe section
containing low-speed streak A in figure 1 (t = 252R/Ubulk ). The cylinder shown in figure 1
at y/R = 0.15 with grey contours is included. The isosurfaces are coloured according to
radius, ranging from blue nearer the pipe wall to green at the centreline. Isosurfaces of u′ are
visualized for values of (a) −0.2Ubulk and (b) −0.1Ubulk .

The region within y+ = 30 of the wall in figure 1 also retains evidence of the
diamond pattern identified at greater y values, consistent with VLSM footprints
extending near the wall (Hutchins & Marusic 2007a). The greater strength of the
fluctuations in this region relative to the constant isosurface value leads to dense
population with isosurfaces. The fine scales present in this region can be attributed
to the near-wall motions previously noted. The characteristic azimuthal widths of
near-wall low-speed streaks (1s+ ≈ 100) are visually notable and are associated with
much of the turbulent kinetic energy content in this region.

Figure 5 depicts isosurfaces of negative streamwise velocity fluctuation with a
weaker u′/Ubulk level than in figure 4, in order to emphasize the structures more
distant from the wall. The region visualized is that of figure 1 in which low-speed
streak A was identified. The y/R= 0.15 (y+ = 101) surface of greyscale contours from
figure 1 is included on figure 5. Only the region above this surface is visualized to
clearly display the negative u′ fluctuations at the top of the log law region and above.
The isosurfaces highlight the negative velocity fluctuations penetrating far towards the
pipe centreline.

Low- and high-velocity streaks may be visualized with isosurfaces representing fixed
values of several possible quantities, including u′ fluctuations scaled by the local
root-mean-square (r.m.s.) fluctuation or local mean ū(y), as suggested by Dennis &
Nickels (2011). The present visualizations use u′ normalized by Ubulk , a normalization
that is independent of y. Relative to the present method, normalizing by the local
mean would tend to emphasize the structures near the wall where the mean velocity
is small and fluctuation intensities are large, whereas normalizing by the local r.m.s.
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FIGURE 6. Contour lines of correlation coefficient Ruu indicating an estimate of the
streamwise velocity fluctuation structure associated with a negative (or positive) u fluctuation
at the event location (1x= 0, y= 0.15R).

would strengthen motions far from the wall where intensity is weaker. In a turbulent
boundary layer, Lee & Sung (2011) plotted isosurfaces of negative velocity at a
specific value independent of wall-normal position. It should be recognized that
fluctuations that weaken in accord with the lowering intensity in the core may
persist significantly further from the wall than depicted in figure 5. A weaker constant
threshold or appropriate radial scaling (e.g. by local r.m.s. velocity) would reveal such
structures.

The long structures contained in figure 5 are typical of the negative velocity
structures occupying the pipe. The visualizations indicate that the motions observed
in the log-layer region penetrate deeply into the core, with the overall trend of
ramp-like inclination indicated by the dashed lines for streak A. While the structures
below approximately y/R = 0.15 have a strongly swept (inclined at a shallow wall-
normal angle) appearance, probably due to the very strong shear in this region, the
strong structures visualized above this wall-normal location in figure 5(a) appear to be
inclined at a steeper wall-normal inclination (more similar to 45◦). Further from the
wall than y/R = 0.15 in this flow, the strong negative fluctuations appear more broken
up than the continuous streak A visualized in figure 1, with the three-dimensional
structures appearing like a concatenation. It should be noted that the isosurfaces at
u′/Ubulk = −0.2 represent the stronger motions comprising the streak visible in the
contours at y/R = 0.15. Visualizing the isosurface value of −0.1Ubulk in figure 5(b)
reveals a more continuous streak without the clear steep wall-normal inclinations of
the stronger motions.

The statistically averaged properties of the structure associated with a velocity
fluctuation at a reference height of y= 0.15R are revealed by the two-point correlation
in figure 6. The overall picture is that of an LSM consisting of a series of wall-normal-
inclined negative velocity regions. In terms of overall dimensions and organizations,
the negative u′ motions are generally consistent with the low-speed regions that occur
under the heads of hairpin vortices as described in other studies (e.g. Adrian et al.
2000). The ramp-like character of the u′ two-point correlation is consistent with those
of turbulent boundary layers (e.g. Hutchins & Marusic 2007a) in which hairpins are
experimentally established (e.g. Adrian et al. 2000). The linear stochastic estimate
(LSE) of the velocity field given a swirling strength event used to specify the head
of a hairpin (not shown for this flow) is also consistent with that of channel flow
interpreted in light of hairpin packets (Christensen & Adrian 2001). The aligned
collection of low-speed regions is consistent with a packet of hairpins having a
height of the order of one pipe radius and length of the order of one to three
pipe radii. This interpretation is supported by the patterns of motion found in the
streamwise–radial planes of a large number of realizations (Baltzer 2012) that coincide
with the patterns found in PIV measurements by a number of investigators (Adrian
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et al. 2000; Ganapathisubramani, Longmire & Marusic 2003; Tomkins & Adrian 2003;
Hutchins, Hambleton & Marusic 2005; Hambleton, Hutchins & Marusic 2006; Wu &
Christensen 2006; Volino, Schultz & Flack 2007).

Definitive identification of the large-scale motions as mature hairpin packets requires
visualization of the three-dimensional hairpin vortices surrounding the low-momentum
regions in many realizations such as that in figure 5. This is difficult but possible
for the first generation of hairpin packets generated close to the wall (Adrian &
Liu 2002), but it is far more difficult for larger hairpin packets that have undergone
many vortex interactions that complicate the shape while growing larger. Further, the
vorticity in the hairpins presumably weakens as their scale increases, and we do not
have good methods of recognizing weak vortices in the presence of smaller-scale
stronger vortices. Without strong proof that the realizations of large-scale motions
coincide with mature hairpin packets, we can only conclude that the realizations of
large-scale motions in the pipe flow have several properties that are consistent with
hairpin packets.

5. Streamwise–azimuthal organization of conditional structures
This section explores the mean structure of the flow around the low-speed streaks

of the VLSMs using conditional averages (which are also approximated by LSE),
two-point spatial correlations and POD.

5.1. Conditional average: general u′ event and two-point correlation
For events specified as specific streamwise velocity fluctuation u′ values at a point
in space, the conditional average of the fluctuating velocity field (u′j) on an x–θ
cylinder of radius r = R − y (not explicitly indicated in the equations) is denoted by
〈u′j(x′, θ ′) | u′(x, θ)〉. This field can be approximated by obtaining an LSE as

〈u′j(x′, θ ′) | u′(x, θ)〉 ≈
〈u′(x, θ)u′j(x′, θ ′)〉

σ 2
u

u′(x, θ), (5.1)

in which σu denotes the r.m.s. value of
√〈u′2〉 (e.g. Adrian 1996; Tomkins & Adrian

2003). The expression on the right-hand side of (5.1) is closely related to the two-
point correlation coefficient, which, for the streamwise velocity component, is

Ruu(1x,1θ)= 〈u′(x, θ)u′(x+1x, θ +1θ)〉/σ 2
u , (5.2)

where spatial shifts from the event to x′ and θ ′ are represented by 1x and 1θ . Thus,
the LSE is simply a scaled version of the two-point correlation or the two-point
correlation coefficient Ruu. (Figure 6 in the x–y plane, which is equivalent to the x–r
plane, may be interpreted with an LSE of the streamwise velocity fluctuation given a
streamwise velocity fluctuation event, but in this section the estimation is applied in
x–θ cylinders.)

A number of other studies have analysed streamwise–spanwise planes in describing
turbulence structure. One with the particular focus of understanding long wavering
superstructures of streamwise velocity and their effects is Hutchins & Marusic (2007a).
They found that Ruu correlations for turbulent boundary layer measurements were
characterized by streamwise-elongated positive correlation regions flanked in the
spanwise directions by similarly elongated negative correlation regions, which reflected
the striped nature of high- and low-momentum regions near the log layer. Using
lower levels of two-point correlation from hot-wire rake experiments, they noted
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a distinctive X pattern in the two-point correlation Ruu. They constructed synthetic
velocity streaks that displaced in the spanwise direction as long-wavelength streamwise
sinusoids to show that wavering of the superstructure streaks could cause this feature.
This supported their observation that ‘the very long features in the log region meander
appreciably’.

Other studies shed indirect light on the structure of VLSMs. Ganapathisubramani,
Clemens & Dolling (2006) found that two-point correlation results indicated parallel
negative u′ correlation streaks separated from the positive streak by 2δ spanwise
distance in a supersonic turbulent boundary layer flow. At their high Reynolds
number of Reτ = 5600, the positive correlation streak persisted at a correlation
coefficient value of Ruu = 0.1 for streamwise separations of ±6δ and greater than
±8δ for wall-normal locations of y/δ = 0.16 and 0.45, respectively, where δ is
boundary layer thickness. They found that the results were consistent with the
hairpin vortex packet model (Adrian et al. 2000) and the VLSM model of organized
packets (Kim & Adrian 1999). Volino et al. (2007) studied two-point correlations in
streamwise–spanwise planes of turbulent boundary layers over both smooth and rough
walls at Reτ = 1772 and 2438, respectively. For both cases, they also observed parallel,
streamwise-oriented, spanwise-offset regions of negative correlation in streamwise
velocity correlations Ruu at the wall-normal locations of y/δ = 0.1 and 0.4. Additional
parallel regions of positive and negative correlation repeated at greater spanwise
separations, with low correlation levels. They concluded that these indicated ‘a regular
spacing of high- and low-speed regions’ and attributed the relatively weak correlations
of these regions to variation in the streak spacings. The measurement plane limited the
streamwise separations to ±2δ, and the contours for both the primary correlations and
secondary regions frequently appeared to occupy this length.

Delo, Kelso & Smits (2004) used two-point correlation of a passive scalar (smoke
in a visualization) to investigate structure in a low-Reynolds-number (Reτ = 300)
turbulent boundary layer. Unlike many other studies, they did not average over
multiple realizations or times but only used individual realizations when computing
the autocorrelation. Their results revealed diagonal orientations for correlation maxima
corresponding to organization of large-scale structures, particularly when far from
the wall. At the upper regions of the order of the boundary layer thickness, where
unentrained flow existed, unlike the pipe presently being studied, they found structures
oriented at very large angles relative to streamwise, but typically within ±50◦.
Frequently, multiple diagonal orientations were detectable, which they attributed to
multiple diagonal groupings of structures within the spatial extent of the scalar images.
At y/δ = 0.743, they found primary orientations of the structures within a narrower
range of ±10◦, and this narrowed further to almost a streamwise orientation as the
wall was approached, with presumably better converged spatial averaging due to more
of the smaller structures occurring within the plane. They observed that groups of
large-scale structures often formed agglomerations up to 5δ in length, primarily in the
outer portion of the boundary layer.

Elsinga et al. (2010) used two-point correlation of swirling strength λci to investigate
the streamwise–spanwise organization of vortices in a supersonic boundary layer. Their
results supported streamwise alignments of hairpins associated with very long low-
speed motions, but they also found evidence that hairpins are organized diagonally
in the flow, most convincingly when filtering was applied. Hutchins et al. (2011)
calculated conditional averages with attention given to the wavering of structures and
skin friction events. Their results showed meandering to be a prevalent feature of
events associated with superstructures.
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5.2. Conditional average: general u′ event and two-point correlation results
Two-point correlations Ruu for a series of y positions are displayed in figure 7.
The overall features of a strong, streamwise-elongated positive correlation streak
for x displacements of the order of several R flanked by spanwise-offset streaks of
negative correlation (strongest for small streamwise displacement) are consistent with
the previously described results from other wall-bounded turbulent flows. The plots
in figure 7 have contour levels chosen to clearly display low-level correlations. As
shown by figure 1, u′ fluctuations contain many fine scales that would be expected
to lose correlation with small spatial displacements. This is also apparent from figure
15(b) of Wu et al. (2012), in which the total turbulent kinetic energy in u′ for
y+ = 101 is reduced to 19 % of the unfiltered value when a filter is applied that
removes the fine scales to only include very large-scale motions by retaining only the
Fourier modes with λx > 6R and λθ > 0.4π. These observations suggest that, given a
strong velocity fluctuation event, the average fluctuation strength would decay rapidly
with displacement, but more rapidly for azimuthal displacement than streamwise
displacement due to the commonly streamwise-aligned and streamwise-elongated form
of the fluctuations. Figure 7(e) plots the two-point correlation Ruu as a surface, and
this presentation clearly shows the rapid decay at small separations. Therefore, if one
wishes to focus on the larger scales of motion and their correlation, it is necessary
to focus on smaller correlation coefficient values, since much of the correlation is
associated with the smaller motions. For this reason, figure 7 includes lines at contour
levels ranging up to correlation coefficient magnitudes of only 0.05. Colour contours
in the region of small displacements are highly saturated.

Figure 7 indicates distinctive patterns of streaks in low levels of the two-point
correlations. The streaks have long streamwise extents and are inclined in an
azimuthal sense from the streamwise direction with characteristic angles. The most
straightforward interpretation of this behaviour is provided by the LSE introduced
above, indicating that, on average, this is the pattern of the streamwise fluctuation
given a u′ fluctuation event. Clearly, instantaneous velocity fields fluctuate about the
conditional mean field, and the spike of velocity near the event indicates a great deal
of small-scale randomness. But, the length scales of the low-level correlation patterns
suggest that they are associated with very long motions. While the small scales may
contain much randomness, their form and organization may be strongly influenced
by the large scales of motion, as the work of Mathis, Hutchins & Marusic (2009a)
suggests.

The patterns shown in figure 7 depend somewhat on the sets of velocity fields
included in the averages since they are not fully converged. The features near
the centre (small displacements) are very consistent even without a high degree of
statistical convergence, and the overall character of the patterns at large displacement
remain the same. In addition, as is shown in § 6, experiments also provide evidence
of the correlation patterns that occur at large 1θ on the other side of the pipe
(|1θ |> 90◦) when 1x is zero.

The effect of the sign of the u′ fluctuation event remains to be considered. The
LSE, corresponding to the two-point correlation, necessarily has the same pattern
given either positive or negative fluctuations, except that the signs of the velocities
in the pattern are reversed. Comparing the results for positive and negative u′ events,
Lee & Sung (2011) observed the same behaviour in conditional two-point correlations
in streamwise–spanwise planes of a turbulent boundary layer simulation, except that
there was slight streamwise biasing in different directions based on the signs. For
instantaneous streaks in the present pipe flow, it appears that the negative streaks are,
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FIGURE 7. Contours of two-point correlation coefficient Ruu(1x,1s) in x–θ cylinder
surfaces: (a) y+ = 20 (y/R = 0.03), (b) y+ = 101 (y/R = 0.15), (c) y+ = 250 (y/R = 0.37),
(d) y+ = 342 (y/R= 0.50), and (e) y+ = 80 (y/R= 0.12).
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on average, slightly stronger and slightly narrower azimuthally than positive streaks.
Since negative streaks are also of interest because of their close relation to structures
resembling hairpin packets, they therefore contain appropriate events upon which to
focus.

5.3. Conditional average on long negative u′ regions
The streamwise velocity fluctuations considered in § 5.2 are not very specific events.
They could be associated with any point along a high- or low-speed streak. To make
the analysis more specific, we consider the conditionally averaged velocity field around
a point located at the centre of an instantaneous streak. This quantity is found by
locating the centres of long streaks of negative u′, shifting the velocity fields such that
all centres coincide, and averaging the surrounding fields.

The events are chosen as the centres of mass of the contiguous negative u′ streaks
extracted in § 3. Only streaks longer than 2R are included for specifying events. At the
chosen threshold of u′thr = −0.10Ubulk , an average of 10 such events (2R- to 5R-long
clusters) occur per field. Motions of these lengths are generally seen as concatenations
of smaller motions, as discussed above, but they are often relatively straight, in
the sense of not changing azimuthal inclinations relative to the streamwise direction,
although they may be inclined in this manner at constant angles. Since a long streak
with such azimuthal inclination appears in three-dimensional space as a helix, the
angle relative to streamwise in an x–s plane is referred to henceforth as the helix angle
to distinguish this angle from that of wall-normal inclination pertaining to structures.
Helix angles may be signed positive and negative based on whether s increases or
decreases with increasing x, and these correspond to clockwise and anticlockwise
rotation of the helices when viewed looking down the positive x axis.

In figure 8(a), the conditional average on long negative u′ streak centres is compared
to the LSE in (5.1), which estimates the velocity field for a much more general
condition of u′. The agreement in the locations of the streaks and locations at which
signs change is very good, as indicated by solid lines enclosing red contours and
dashed lines enclosing blue contours. Since the LSE in (5.1) is simply proportional
to Ruu, this is a strong indication that the two-point correlation, even at low levels,
contains strong imprints of the patterns of the relatively long regions of negative u′

fluctuations.
The features of both the two-point correlation and the conditional average of low-

speed streak centres include X-like patterns of positive correlation extending from
the location of zero displacement and long, azimuthally inclined, streaky regions of
positive and negative correlation at larger displacements. Streaks with similar helix
angles are present in instantaneous u′ field realizations (figure 1). Dominant helix
angles of the relatively low level contours of conditional average (and therefore
two-point correlation) are indicated by a solid line in figure 8(a), extending from
the zero-displacement region downstream with a helix angle of 5.0◦. The line offset
azimuthally above the zero-displacement region has a helix angle of 4.2◦. It appears
that these helix angles may be an imprint of dominant helix angles for structures
present in the flow, and this issue will be explored in further depth.

Owing to statistical homogeneity of the flow in the streamwise and azimuthal
directions, the autocorrelation must exhibit reflectional symmetry about the origin:
Ruu(1x,1s) = Ruu(−1x,−1s). The property is clear in figures 7 and 8, even though
the statistical estimates of Ruu are not fully converged. In addition, on physical
grounds one expects no preference for structures in the pipe to prefer clockwise or
anticlockwise orientations in the long-time average, implying reflectional symmetry
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FIGURE 8. (a) Conditional average of streamwise velocity fluctuation u′ conditioned on
events of centres of contiguous regions of negative u′ with lengths between 2R and 5R at
y+ = 101 are displayed as colour contours. The LSE for a general negative u′ event is plotted
with solid black contour lines representing 0.005 and 0.01 of the event strength and dashed
black lines representing levels of −0.005 and −0.01. Thick, straight black lines indicate
dominant correlation helix angles of approximately 4–5◦. (b) Two-point correlation with
colour contours, with signing unchanged such that red indicates positive correlation. This
correlation is decomposed into the two helix angle directions, (c) negative and (d) positive.
In panels (b–d), black contour lines (thin dotted for negative) depict the autocorrelation
of the low-pass Fourier-filtered u field, retaining streamwise wavelengths of 3.33R and arc
wavelengths of 0.59R (40◦) and longer. Levels correspond to 0, 0.01 and 0.02 of the unfiltered
correlation magnitude. Thick dashed lines indicate the helix angles of the correlation, 4◦ in
panel (c) and 5◦ in panel (d).

of Ruu with respect to the 1s = 0 line. This property is only approximately obeyed
in figures 7 and 8 owing to incomplete convergence to the infinite-time average. The
deviation from this symmetry provides a clue about the structure. Specifically, the
preponderance of structures with positive helix angles (azimuthally inclined towards
positive 1s) in figure 7 suggests that the infinite-time symmetry is composed of equal
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amounts of structures with positive and negative helix angles, while finite-time average
correlations may show a preponderance towards one or the other direction. Hence,
the symmetry of the autocorrelation should not be interpreted to imply symmetric
structures. In the next section we consider breaking this somewhat artificial symmetry
of the statistics by separating the velocity field in x and θ into two contributions
containing structures with positive and negative helix angles.

5.4. Helical features in the two-point correlations and instantaneous u′ fields
Owing to the periodicity in both the streamwise and azimuthal coordinates, the pipe
flow is naturally described by Fourier decomposition in these directions. In the two-
dimensional Fourier decomposition, the helix angle sign (direction of rotation) for
streaks appearing in each mode is determined by the signs of the wavenumbers kx

and kθ .
The two-point correlation of the total u, velocity field (the sum of each field

decomposed into positive and negative helix angle components) for y/R = 0.15 is
reproduced in figure 8(b). Concentrating on the low-level contours, the X shape noted
by Hutchins & Marusic (2007a) is clearly evident, and the extremities extending
from the X are approximated by dashed lines. The angles for each line are
determined independently (4 and 5◦) and only drawn on the 1x > 0 half because
of the symmetry. The correlation is decomposed by helix angle by including only
those modes with wavenumber pairs (kx, kθ) with signs of (+,+) and (−,−) for
figure 8(c) and signs of (+,−) and (−,+) for figure 8(d). That is, figure 8(c) is
the correlation of the anticlockwise field, and figure 8(d) is the correlation of the
clockwise field. The pairs of sign combinations are necessary to obtain a real-valued
correlation. Computationally, the negative wavenumbers correspond to wavenumbers
above the Nyquist wavenumber when taking the discrete Fourier transform (DFT),
since DFT coefficients are periodic in wavenumber. In a one-dimensional DFT of a
real signal, conjugate symmetry establishes the relation between positive and negative
wavenumbers. In the two-dimensional case, the pairs of wavenumber signs correspond
to phase relations for the wavenumbers in each coordinate direction. For each mode
in physical space, to maintain a constant value of e

√−1(kxx+kθ θ), and hence a constant
value of kxx + kθθ , x or θ must decrease as the other variable increases for a (kx, kθ)
wavenumber pair with signs of (+,+) or (−,−). Conversely, x or θ must also
increase as the other variable increases for a (+,−) or (−,+) wavenumber pair to
maintain a constant value of each mode, thereby establishing the travelling direction.

The modes with kx = 0 and kθ = 0 are included in both sets by splitting them
equally between each set. Thus, the correlation of figure 8(b) is precisely equal
to the sum of those depicted in figure 8(c,d). Since the correlation computed in
Fourier space involves the combination of each Fourier mode computed independently
(R̂ij(kx, kθ)= 〈ûi(kx, kθ)û∗j (kx, kθ)〉), it is equivalent to first decompose the velocity fields
by helix angles and compute their two-point correlation or to compute the two-point
correlation of the full velocity fields (figure 8b) and then decompose the correlation in
this manner.

The dashed lines in figure 8(c,d) are copied from panel (b) and also follow the
azimuthally inclined positive correlation streaks that remain in each contribution.
By synthesizing azimuthally inclined velocity streaks, it is readily observed that the
two-point correlation is characterized by the same streak helix angle as that of
the synthetic velocity. This remains true when the single streaks are replaced with
azimuthally parallel sets of similar streaks with alternating signs of velocity that each
represent a low-speed streak azimuthally straddled by high-speed streaks – as with the
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profile used in the synthesis by Hutchins & Marusic (2007a). The agreement of helix
angles supports the concept that each contribution of the helix angle sign-decomposed
correlation is formed by very large-scale motions with characteristic helix angles, as
are observed in instantaneous velocity fields (figures 1 and 2). The lengths of the
primary positive correlation streaks in figure 8(c,d) are noteworthy, extending for
positive displacements of approximately 14R. Analogous to the discussion in § 3 with
regard to energy spectra, the relation between the lengths that appear in the correlation
and the structure lengths that appear in velocity fields is dependent on the organization
of the velocity structures. However, instantaneous u′ features of up to 25h (channel
half-heights) in streamwise length have been identified by Hutchins & Marusic (2007a)
in channel DNS, although their example could be interpreted as a combination of
several straighter (though spanwise-inclined) velocity structures.

In addition to the primary streaks in each contribution when the correlation is
decomposed (figure 8c,d), weaker streaks also exist located at significant azimuthal
displacements. Figure 8(d) is simplest, with the additional positive correlation streaks
parallel to, but directly azimuthally offset from, the primary streak. The azimuthal
locations between the positive correlation streaks are occupied by negative correlation
streaks of similar helix angle. The varying configurations in the u′ fields, including
the varying azimuthal spacings between negative and positive u′ streaks, would
clearly lead to different azimuthal displacements for peak contributions to the
negative correlation regions immediately azimuthally offset from the primary positive
correlation streaks. This variation could explain the greater azimuthal widths of these
negative correlation regions relative to the other streaks and the consequent lack of
azimuthal shift invariance to the overall pattern.

The variations in configurations of velocity fields contributing to the not fully
statistically converged correlations are probably largely responsible for the differences
between the anticlockwise and clockwise contributions in figure 8(c,d), as they
should possess mirror symmetry as a result of the lack of preferred azimuthal
directions. Instead, the anticlockwise (negative helix angle) two-point correlation
appears to contain parallel-inclined (same helix angle), azimuthally offset positive
correlation streaks with streamwise offsets of half the domain length (as opposed to
negligible streamwise offset for those of the clockwise contribution). Owing to the
streamwise periodicity, the streamwise-offset streaks can be regarded as continuous in
the streamwise direction when the periodic extensions are imagined.

In addition, local maxima at various locations along the secondary streaks may be
attributed to the lack of full convergence and to favoured positions in the velocity
streaks contributing to the correlation. Also, the number of streaks that occur around
the pipe circumference varies between velocity fields and varies with streamwise
positions within each velocity field. The number of azimuthal periods for positive and
negative fluctuation structures in each velocity field must be an integer because of the
azimuthal periodicity. However, azimuthal scale growth also occurs on average with
increasing y, as indicated by the decreasing numbers of azimuthal periods at significant
streamwise displacements in figure 7 (although the number of azimuthal periods in
this correlation remains relatively constant for 1x = 0). Azimuthal scale growth is
explored in greater depth in § 6. Thus, the patterns observed in the correlation are a
combination of several integer numbers of u′ fluctuation azimuthal periods that occur
with varying probability distributions for each y. The observations of Delo et al. (2004)
with regard to the effects of multiple angles in patterns of structures revealed by the
correlations are relevant. Whereas Delo et al. (2004) focused on correlations of single
fields independently, we have chosen to calculate the correlations averaged over fields
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at multiple times. The dominant angle in our correlation is therefore determined by
an average over all streak angles that exist in the set of fields, whereas the small
number of streak angles that exist in a single field make more distinctive individual
contributions when the correlation is calculated for that individual field alone. Since
the set of velocity streaks appearing within each field are azimuthally inclined by
a distribution of helix angles, the specific set of velocity streaks included in the
calculated correlation could affect the locations at which the secondary correlation
streaks appear and where local peaks appear along these streaks (owing to interference
between the particular streaks included in the average to compute the correlation).
Nonetheless, the overall character of the patterns in the correlations would be similar
regardless of the particular fields (or set of fields) chosen because the streaks behave
similarly and are inclined by angles that are fairly consistent, whereas specific details
at large azimuthal displacements would vary. With a sufficiently large set of fields,
the correlations would be expected to converge, but the present statistical convergence
is sufficient to clearly show the qualitative patterns of the streaks at low correlation
levels.

While the discussion has focused on decomposing the correlations, similarly
decomposing the velocity fields into clockwise and anticlockwise contributions further
establishes the importance of the decomposed correlations and the relation between the
velocity fields and the correlation patterns. Simply decomposing the velocity fields as
was performed for the two-point correlation yields unclear velocity patterns because
of the decomposed small scales. The low-level correlation streaks of interest involve
relatively large streamwise and azimuthal scales, and these are accurately represented
when the correlation is low-pass-filtered to retain only a fraction of the scales. This
may be verified by comparing the contour lines displaying the filtered version of the
correlation with the colour contours representing the unfiltered two-point correlation
in figure 8. By retaining only these same large scales when decomposing the velocity
field, the components of decomposed velocity are much clearer to interpret. As with
decomposition by helix angle sign (direction), retaining a particular set of Fourier
modes for velocity and then calculating the correlation is equivalent to calculating the
correlation for full unfiltered fields and then filtering the correlation by retaining the
same set of modes.

The example velocity field in figure 9, which has been filtered, retains the long
streaks that may be identified in the unfiltered field (figure 1). Dashed white lines
drawn on two prominent examples of negative u′ fluctuation streaks with characteristic
helix angles demonstrate that these features remain after decomposing into clockwise
and anticlockwise components. The helix angles of the identified streaks are slightly
steeper than those inferred from the two-point correlation, which are understood as
an average. The example field displays a range of helix angles for the long streaks,
but the longest examples appear to occur commonly at helix angles consistent with
the two-point correlation streaks. In their turbulent boundary layer experiment, Dennis
& Nickels (2011) identified ‘spines’ along isosurfaces of very long u′ motions to
identify the lines they follow in a streamwise–spanwise sense. Their results include
a distribution of spanwise-inclined streak structures that are relatively straight, but it
appears that meandering is more common than in the present pipe flow, possibly as
a result of the different flow geometry. In terms of organization of streaks relative to
other streaks within the present pipe domain, as is implied by the long parallel streaks
that occur in the two-point correlations, a number of different configurations appear
to occur in the instantaneous velocity fields, but a pattern consisting of three parallel
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FIGURE 9. (a) Filtered version of the u′ field in figure 1(a), which is decomposed into the
two rotation directions in panels (b) and (c). The filter retains streamwise wavelengths of
3.33R and arc wavelengths of 0.59R (40◦) and longer, which is the same as in figure 8. The
example dashed lines (with helix angles of 6.0◦ in panel (b) and 7.5◦ in panel (c)) demonstrate
that the associated azimuthally inclined, low-speed (black) streak features are also discernible
in the field of panel (a) prior to this decomposition.

azimuthal periods of streaks for each rotation direction (helix angle sign) appears
conceivable as a common or preferred overall organization for the radius examined.

The overall pattern of the low-level streaks in the two-point correlation can therefore
be understood as an imprint of the VLSMs in instantaneous velocity with helix angles
of 4–8◦ and often very long streamwise extent. The secondary streaks centred at
azimuthal displacements represent the overall effects of the organizations of these
VLSMs, and the secondary streaks may result from the interference patterns created
by a combination of the most common configurations. Configurations more frequently
included in the finite set of fields averaged would bias the two-point correlation
towards their particular associated patterns. These observations are most readily
seen when the u′ fields and correlations are decomposed by helix angle direction.
The pattern of the very long motions represented in the full two-point correlation
therefore is dominated by the X pattern created by the dominant clockwise and
anticlockwise azimuthally inclined streaks with favoured helix angles. The additional
azimuthally inclined regions at greater azimuthal and streamwise displacements may
be understood as interference patterns from the more simply described clockwise and
anticlockwise components. The combination of helical modes is analogous to McKeon
& Sharma (2010) adding helical modes for velocity of opposing azimuthal rotation
that have a similar form (not considering radial variation) to the present correlation
functions when considering each helix angle separately. McKeon & Sharma (2010)
found that adding such modes yielded a pattern of alternating low- and high-speed
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streamwise-aligned regions. This was also discussed by Hellström et al. (2011). In
the present u′ correlation, local maxima along the non-primary streaks occur with
lengths approximately in the LSM range, and these could be viewed as a result
of the interference of the clockwise and anticlockwise components or as preferred
locations of LSMs in the finite set of velocity fields included in the average. From
the correlation at 1x = 0, it will be noted in § 6 that characteristic regions of positive
correlation on the wall opposite the zero-displacement point are also observed in
experiments by Bailey et al. (2008) and therefore characterize the organization.

Hutchins & Marusic (2007a) also discussed the X-shaped correlation and found that
a sinusoidally wavering (in a spanwise sense) synthetic u, streak could generate this
pattern. As described above, generating synthetic fields also demonstrates that helical
structures can generate similar patterns when averaged over many examples with a
distribution of helix angles. The additional structures present in arrangements also
generate weaker helical correlation streaks at distances beyond the X shape of the
positive correlation. In fact, there is a distribution of helix angles for relatively long
structures of negative u′, and this leads to a complicated pattern that obscures the
individual helical modes.

While there is evidence of very long, sinusoidally wavering structures in the
hot-wire rake traces of Hutchins & Marusic (2007a), it is more difficult to see
clear examples of sinusoidally wavering structures with such length in the present
pipe simulation. Guala et al. (2006) also identified sinusoidal azimuthal wavering
of structures in a pipe flow visualization, but the streamwise wavelength was
somewhat greater than 2R (and in the LSM range), in contrast to the boundary
layer wavelengths of nominally 12δ (well within the VLSM range) identified in
Hutchins & Marusic (2007a). A distinction should be made between streamwise
wavelengths defined based on streamwise Fourier decomposition (as in energy spectra)
and streamwise wavelengths defined based on the appearance of azimuthal wavering,
although a close correspondence is expected because of the expected behaviour
along a constant azimuthal position within an azimuthally wavering streak. Examples
of long contiguous or almost contiguous structures each with a consistent overall
helix angle (particularly when viewed without focusing on the details) are clearly
apparent in figure 2. In an experimental hot-wire rake measurement of a turbulent
pipe flow, Monty et al. (2007) noted that very long streamwise velocity structures
(up to 25R in length) could rotate about the pipe axis by 180◦, and meandering
was also observed. The sinusoidal meandering interpretation can be reconciled with
the interpretation based on streaks with constant helix angle by recognizing that
long regions of approximately sinusoidal wavering can be split into relatively straight
azimuthally inclined segments, so it could be difficult to distinguish between the two
interpretations. It appears that each scenario can lead to two-point correlation patterns
consistent with those observed in actual flows.

5.5. Interpretation of organization with multiple scales
While the VLSMs explain the patterns in the lower magnitude levels of the two-point
correlation, the characteristics of the higher levels of correlation are also significant to
describing the structure of the turbulent flow. The two-point correlation at magnitudes
higher than the VLSM levels is characterized by a streamwise-elongated streak that
is more streamwise-aligned (as compared to the X shape associated with VLSMs)
and is clearly associated with shorter length structures since it appears at short
streamwise displacements. In figure 2 it is apparent that the individual shorter motions
organized to form VLSMs frequently possess different azimuthal inclinations (helix
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angles) than the overall lines characterizing VLSMs. The shorter-scale motions (than
VLSMs) in figures 1 and 2 appear to be more streamwise-aligned than the overall
structures (VLSMs) that they appear to comprise. This is consistent with evidence
from the two-point correlation, in which contour lines for moderate contour levels are
strongly streamwise-elongated (which can be observed from figure 7e), as opposed
to azimuthally wide, as they would appear if they were associated with structures
averaged over a significant range of azimuthal inclinations. The pipe flow experiment
of Große & Westerweel (2011) also appears to contain many relatively streamwise-
aligned shorter motions of streamwise velocity fluctuation.

Based on the multiple scales of u′ motions observed in figure 1 and the descriptions
of the various scales in the preceding sections, the following organization scenario
emerges for the structure surrounding the negative u′ fluctuations. Small, intense
velocity fluctuations exist that are somewhat random in their shape and precise
dimensions. Such fluctuations are frequently located near vortices and seem, in
an average sense, to be consistent with what might be expected from a single
hairpin vortex, although the associated intense vortices are often complex in geometry.
These velocity fluctuations are somewhat streamwise-elongated, and examples of such
fluctuations are shown in figure 1(d) with lengths of the order of 0.2R. These velocity
motions frequently appear to organize in streamwise series that may be azimuthally
inclined, but appear more often to be closely streamwise-aligned (with their nearest
neighbours). Examples can be seen in figure 1(b,c) as the relatively straight and
horizontal (i.e. streamwise-oriented) segments of negative velocity fluctuation. The
lengths of these entities vary significantly, but regions often appear straight for
approximately 1R to 2R. These may be related to the LSM scales originally identified
with turbulent bulges in boundary layers (discussed in Wu et al. 2012). It should be
noted that the approximate lengths of 1R–2R are based on observations at y/R = 0.15
(y+ = 101) in the present pipe flow, which is at the top of the present flow’s log layer
(though a similar y+ value might be considered relatively low in the log layer of a
higher-Reynolds-number flow). The 1R–2R lengths do not contradict the lengths of
LSMs traditionally defined from wavelengths in energy spectra that inherently require
a negative and positive fluctuation (of the Fourier mode) in streamwise succession.
The accepted LSM lengths are based on observations in spectra that include a wide
range of Reynolds numbers (Kim & Adrian 1999; Guala et al. 2006; Balakumar &
Adrian 2007). As noted above, examination of the x–y planes indicated the existence
of u′ ramps, and other features are consistent with packets, but the actual vortices and
their organizations visualized in three dimensions appear distorted from the idealized
hairpin vortex packet model. Averaged results, such as two-point correlations, support
a ramp-like spatial signature characterizing the streamwise velocity motions (figure 6).

While the lengths observed correspond to observations in the present flow simulation
at a single Reynolds number, and therefore the scaling of the lengths cannot be
investigated, the lengths are consistent with values proposed in relation to the hairpin
packet model. It has been established that the strongest motions in the near-wall
region (excluding the VLSM footprints) scale in inner (viscous) units, whereas the
characteristic LSM and VLSM wavelengths approximately scale in outer units, based
on energy spectra (Guala et al. 2006; Balakumar & Adrian 2007). At the present
Reynolds number, a consequence of the limited scale separation present in the flow is
close interaction between the near-wall region (though not directly with the strongest
quasi-streamwise vortices) and the relatively thin log layer. By various scenarios, the
near-wall region can generate hairpin vortices or spanwise arches (e.g. Schoppa &
Hussain 2002) that would grow into the log layer. Marusic & Adrian (2013) proposed
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a scenario in which hierarchies of hairpin packets with different scales grow within the
log layer, with higher Reynolds numbers accommodating a greater number of packet
scales. In the log layer of the present flow, only limited growth of such structures
would occur under the packet hierarchy scenario, and the structure lengths would
be expected to correspond closely to those of the hairpin packets being generated
at the wall. The lengths of velocity structure features observed in the present pipe
flow are comparable to the characteristic lengths of hairpin packets forming in the
buffer layer proposed by Marusic & Adrian (2013). The 0.2R (140+) lengths of the
small, intense, somewhat streamwise-elongated motions observed in the present flow
are consistent with the 100–200+ lengths of low-speed streaks for the forming hairpins
near the buffer layer suggested by Marusic & Adrian (2013). The relatively straight
and streamwise-oriented series of the 0.2R-long motions with overall lengths of 1R–2R
(685–1370+) observed in the present pipe flow are consistent with the 500–2000+

lengths suggested for earliest hairpin packets formed in Marusic & Adrian (2013). The
appearance of these motions as streamwise-aligned series of the smaller scales further
supports their identification as packet-like entities. Note that the inner scalings only
apply to the young packets forming, whereas outer scaling of the motions described
herein would apply to higher-Reynolds-number flows at similar y/R locations in which
hierarchies with more scales of packets are present and more significant growth has
occurred from the lower extent of the log layer. However, the limited Reynolds
number and consequent log-layer thickness do not prevent the present simulation from
accommodating VLSMs and large-scale vortical motions (roll cells, to be considered in
§ 6) that are clearly distinct from the near-wall quasi-streamwise vortices.

In planes drawn from streamwise–azimuthal cylinder surfaces, the packet-like
entities appear to concatenate in streamwise succession, as suggested by Kim &
Adrian (1999), but frequently there are also azimuthal offsets as they concatenate,
analogous to the spanwise offsets of packets suggested by Balakumar & Adrian (2007)
in channels and boundary layers. The offsets in the present flow are apparent in
figure 2, in which relatively straight regions of typically 1R to 2R length connect to
each other or are closely organized to form regions that are much longer and often
azimuthally inclined. Depending on how offsets occur in concatenations of LSMs, the
concatenations could result in VLSMs that are azimuthally sinusoidal or straight with
favoured helix angles. In the present pipe simulation, VLSMs appearing as azimuthally
inclined streamwise concatenations of straight segments of LSM-length motions are
visually most common.

The histograms of figure 3 are now interpreted with respect to the structures of
different scales. The 1R- to 2R-long regions that tend to be streamwise-aligned are
identified with LSMs and packet-like entities. When concatenated into VLSMs, they
create merged-together, longer, low-speed regions when connected regions stronger
than a particular threshold are extracted for creating the histograms. However, the
lengths of the contiguous regions associated with these concatenations that themselves
are concatenations of the smallest, most intense motions depend on the strength of
each such constituent velocity structure, its geometry and precisely how it is oriented
with respect to other structures. Owing to these variations, as the threshold for
extracting contiguous regions of fluctuation decreases and they coalesce into longer
objects, it is difficult to extract clearly delineated scales for each type of motion. The
main organization of the LSMs is in streamwise arrangements often with azimuthal
offsets. For this reason, as the threshold decreases below the level appropriate for
viewing the LSMs distinctly (which varies between each LSM), more and more LSMs
coalesce into the VLSM-length structures with characteristic helix angles that remain
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relatively constant over the length of each VLSM. This variation in structures is
consistent with the relatively broad length histograms that do not show clear peaks and
the relatively broad premultiplied energy spectra, in which the peaks approximately
indicate characteristic lengths (though the spectra correspond to streamwise oscillation
lengths instead of individual positive or negative fluctuation structure lengths).

6. Azimuthal structure and roll cells

The instantaneous fields and two-point correlation data display significant radial
coherence for structures of u′ fluctuation, but there is also significant azimuthal scale
growth as the wall distance increases (radius decreases), consistent with azimuthal
energy spectra in Wu et al. (2012). Azimuthal scale growth was also observed in the
azimuthal two-point correlations, and these issues were explored for pipe experiments
by Monty et al. (2007), Bailey et al. (2008) and Große & Westerweel (2011). While
it is clearly evident in the x–θ surfaces that the signs of velocity fluctuation alternate
with θ for a given x position, the manner in which the regions of constant sign widen
with increasing y is now considered. To this end, we examine the structure of the
instantaneous flow field and the correlation functions in the radial–azimuthal plane
next.

While vector fields of the r–θ planes of turbulent pipe flows have not been
frequently studied, with the prominent exception of Große & Westerweel (2011),
analogous y–z planes in turbulent channel simulations have been examined more often.
Aside from a number of studies focusing very near the wall, Hanratty & Papavassiliou
(1997) studied vector fields in these planes of relatively low-Reynolds-number channel
simulations and the fields of conditional averages for the channel flow based on Q2
events (ejections upwards from the wall accompanied by negative streamwise velocity
fluctuation). They observed velocity vector patterns of streamwise-oriented vortices
near the wall that they termed ‘wall eddies’. They found that the ‘wall vortices
appear to induce sheetlike jets that extend over very large regions of the channel’ and
observed structures associated with large Reynolds stress extending far from the wall
past the channel centreline. More recently, Mito et al. (2007) extended similar analysis
to an Reτ = 950 channel simulation and found that large-scale eruptions appeared
in y–z planes. They suggested that vortices located outside the log layer lifted fluid
upwards.

An example vector field in an r–θ plane for the present pipe simulation is displayed
in figure 10. The appearances of this and other examples are qualitatively similar to
those in the pipe measurements of Große & Westerweel (2011). Prominent features
are radially inward ejections away from the walls, which are often accompanied by
negative u′ fluctuations (blue) as slower fluid closer to the wall is transported inwards
to the core. These regions correspond to Q2 motions in the flow. In the near-wall
region, the azimuthal (arclength) scales of these motions are close to the expected
1s+ = 100 value for the wavelength of low-speed streaks (Kline & Robinson 1989).
These ejections often occur between two azimuthally separated, counter-rotating quasi-
streamwise vortex cores, which are also expected to exist in the near-wall region
(Johansson et al. 1991; Jeong et al. 1997). The behaviour of azimuthally alternating
regions of u′ fluctuations and quasi-streamwise vortices continues up from the wall
approximately to the y+ = 30 circle drawn in the figure. The value y+ = 30 is the
nominal lower extent of the log law region and near the upper extent of the most
intense near-wall quasi-streamwise vortices.
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FIGURE 10. Example plane at fixed x position for an instantaneous field of the present
pipe simulation showing the in-plane velocity with vectors and the plane-normal velocity
(u′) fluctuations by colour contours ranging from blue (negative) to red (positive), with
presentation similar to Große & Westerweel (2011). (a) The entire pipe diameter with vectors
interpolated on a coarse uniform grid; (b,c) details near the walls with vectors on finer grids.
Arrows indicate 1s+ = 100 arclengths at the wall.
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Above the near-wall region, the regions of negative u′ fluctuation transported
upwards from the wall are observed to merge with increasing y, suggesting that
significant azimuthal scale growth is occurring. If the azimuthally wide regions of
positive and negative u′ fluctuations in the log layer or closely above are followed
radially down to the wall, many of the finer motions below these wide regions have
a tendency to contain more u′ fluctuation of the same sign as the higher-y regions,
consistent with the footprints previously observed. It appears that some vortex cores
are also oriented normal to this r–θ plane where they intersect. Much of the scale
growth (merging) in the instantaneous examples appears to have occurred once y/R
values have reached approximately the upper extent of the logarithmic layer. A circle
at y/R= 0.3 is drawn to indicate a region above the log layer. Elsewhere we have used
y/R = 0.15 as a nominal upper extent to the log layer (based on the mean velocity
profile), but the character of the motions visually changes around y/R = 0.3 when
viewed from this perspective. The fluctuations above (within) the y/R = 0.3 circle
appear more isotropic, but tall ejections beginning near the wall are seen to extend
above y/R= 0.3.

LSEs reveal the average structure associated with a negative u′ fluctuation. Instead
of calculating a LSE in the x–θ cylinder, as in § 5, this LSE is now computed in the
r–θ plane, as Große & Westerweel (2011) also considered. As in § 5.1, the LSE given
a low-speed event is simply the scaled two-point correlation of velocity.

In figure 11(a), the zero-level contours of the average streamwise velocity
fluctuation in a field conditioned on a negative u′ event are shown for a series of
reference positions yref . (This plane may be seen in the three-dimensional correlation
visualizations in the supplementary material, available at http://dx.doi.org/10.1017/jfm.
2012.642, represented by the line contour plane and also the plane that exists at
the cuts at 1x = 0 in these visualizations.) Regions of opposite velocity fluctuation
sign that occur azimuthally adjacently on each side of the event are indicated by
dashed contour lines. The correlation value of −0.0004U2

bulk corresponds to correlation
coefficient values ranging between −0.073 and −0.018, depending on the reference
(event) location. The reference locations are indicated by coloured dots, and the
contour lines are similarly coloured to identify them with each dot. For the zero-level
contours, the lines show a surprising similarity independent of the radial position of
the event. These correlation regions are evidence of towering regions of streamwise
velocity fluctuation that penetrate deeply into the core while extending outwards far to
the wall, consistent with the footprints described by, for example, Hutchins & Marusic
(2007a) and Mathis et al. (2009a).

Another noteworthy feature of figure 11(a) is the presence of two positively
correlated regions on the opposite side of the pipe from the event in the r–θ
plane. The correlation lines are relatively independent of the radial locations of the
event. These positive correlation regions also correspond to low-speed streaks that
would occur in the LSE of a negative u′ event, and they are clearly visible in three-
dimensional correlation isosurfaces (available in the supplementary material) and the
isosurfaces’ planar slices at 1x = 0. These positive correlation streaks observed in
this plane provide further description of the azimuthally offset streaks discussed in
relation to the x–θ surface contours of figure 7. In experimental two-point correlation
measurements of turbulent pipe flow, Bailey et al. (2008) also noted the presence
of regions of weak positive correlation at large azimuthal separations, of the order
of 115◦, from the reference position. They found this to support the possibility that
VLSMs could be related to nonlinear instabilities that are clearly seen in transition
and clearly manifest themselves in that context as coherent structures with periodicity
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FIGURE 11. (a) Contour lines at two-point correlation Ruu(1x = 0, r, rref ,1θ) values of
0 (solid lines) and −0.0004U2

bulk (dashed lines) coloured as the dots indicating the reference
points at rref /R = {0.50, 0.63, 0.78, 0.88, 0.97}. LSEs of −u′ events with colour contours of
u′ (with levels in 0.05 increments of the event strength) and vectors for the other velocity
components are shown for (b) y+ref = 20, (c) y+ref = 101 (y/R = 0.15) and (d) y+ref = 341
(y/R= 0.50). Panel (b) includes an upper part for higher resolution of the event region.
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around the pipe circumference (Eckhardt et al. 2007). (Note that the colour contours
in figure 6 of Bailey et al. (2008) display Ruu(1θ, r) in which the only separation is
in θ , but this quantity is plotted for a range of radii. Conversely, we display correlation
Ruu(1θ, r, rref ) for separations in both θ and r in our figure 11(a), and a set of rref
values are included.)

Bailey et al. (2008) observed the phenomenon of the azimuthally distant regions of
positive correlation in their measurements particularly at low Reynolds numbers (for
which effects of transition may persist more strongly), such as for ReD = 7.6 × 104.
Some weaker positive correlation was also visible at their Reynolds numbers ranging
up to ReD = 5.5 × 106. Structures of streamwise velocity in azimuthally periodic
arrangements were observed in transitional pipe flows (e.g. Hof et al. 2004), and
Hof et al. (2004) found such structures to agree well with the patterns obtained
by extracting travelling waves from a numerical pipe simulation. It is possible that
the mechanisms responsible for these motions continue to affect the flow at the
present Reynolds number. Hof et al. (2004) noted that the waves would probably be
unstable in fully turbulent flow, but they potentially could be observable as transients
(and thereby leave a statistical imprint). In figure 11(a), no positive correlation is
discernible above approximately y/R = 0.3 in the regions azimuthally offset from
the event, based on the contours, which appears consistent with the experimental
results of Bailey et al. (2008). The presence of these features in both our results
and experiment is a strong indication that elements of the patterns observed in the
low-level correlations are not merely due to noise, lack of statistical convergence,
or streamwise periodicity imposed in the simulation. Note also that we have not
imposed azimuthal symmetry in calculating the two-point correlation, and thus the
symmetry present is indicative of the degree of convergence of the correlation. Plots
of two-point correlation between u′ and wall shear stress in Chin et al. (2010) for
R+ = 170 and 500 pipe flow simulations are suggestive of weak azimuthally offset
secondary correlations, but the differences in quantities makes the correlations not
directly comparable.

An LSE given a negative u′ event may be used to visualize the average velocity in
the r–θ plane surrounding a low-speed streak. The in-plane motions are displayed with
vectors in figure 11(b–d), and colour levels of the contours of the streamwise velocity
fluctuation are chosen to represent relatively strong motions, with colours saturating
at half the event strength. (The signs of u′ are opposite between visualizations of
the two-point correlation, such as in figures 7 and 8, and these plots of the LSE, as
they are oppositely signed scalings of the two-point correlation for negative u′ events.)
Independently of the radial location of the negative u′ event, a counter-rotating pair
of vortices appears centred on the event. The result for the event specified near the
wall at y+ = 20 appears similar to structures observed in instantaneous fields such as
figure 10, with a pair of vortex cores consistent with legs of quasi-streamwise vortices
shown in figure 11(b) on a fine-scale grid of vectors. The coarser-spaced vectors in
the lower half of figure 11(b) display the larger-scale motions in the field for this
event, with vector lengths that reveal the weaker motions, and the correlated region of
weaker upward ejection and negative u′ fluctuation that continues far above the wall.
This pattern could be interpreted as a combination of a near-wall motion, between
quasi-streamwise vortices, with a weaker contribution extending higher from the wall,
perhaps from a footprint of a VLSM. In this scenario, two relatively distinct physical
mechanisms would be contributing to this pattern of motion, while the conditional
averaging does not distinguish between the effects. The observations of Balachandar
& Adrian (1993) for conditional averages in turbulent convection are relevant. Distinct

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

64
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.642


268 J. R. Baltzer, R. J. Adrian and X. Wu

roll-cell and thermal-plume structures were present for turbulent convection at high
Rayleigh numbers, and conditional averages based on the simplest events yielded
averages that were superpositions of these two structures. Thus, for the low y+ event
in the present pipe flow, the results do not imply that only a single mechanism is
responsible for the flow observed.

For events at higher y values, a somewhat similar pattern in the conditional average
also does not necessarily indicate that the same physical mechanisms are responsible
for the flow pattern as were responsible for the near-wall event. Furthermore, when
asymmetric structures exist that are equally probable to incline in one direction
or the opposite direction, the conditional average for a simple event yields a
symmetric structure. This appears to be the case for events further above the wall
in figure 11(c,d), where the LSE still indicates qualitatively similar patterns, each
with a symmetric pair of vortices, but the instantaneous fields suggest that any such
vortices rarely occur in pairs at these distances from the wall. While Balachandar &
Adrian (1993) employed multiple event locations to elucidate more information about
their flow structures, the present pipe flow three-dimensional fields contain additional
information not seen in these planar visualizations and averages that can be exploited
using alternative means to relate the patterns of structure to streamwise wavelengths.

One method to analyse the organization of characteristic structures in a flow is
POD (Lumley 1967, 1981). Since POD extracts highly energetic structures that may be
linearly combined to reconstruct each field and POD is based on the three-dimensional
two-point correlation, the POD modes are related to the LSEs of conditional averages.
POD was performed in pipe flow at low Reynolds number (R+ = 150) by Duggleby
et al. (2007), and the present POD methodology is similar. Further details of POD
analysis for the present flow are described in Baltzer (2012). The POD analysis is
performed using the entire three-dimensional domain and includes all three velocity
components with correlation between each component. Owing to the homogeneity
and periodicity in x and θ , each velocity component of the POD modes varies
trigonometrically as a function of the x and θ spatial coordinates, i.e. the modes are
Fourier in those directions. Each mode is assigned a mode number set (ix, iθ , n), where
ix and iθ are indices for which the corresponding mode wavelengths are λx = 30R/ix

and λθ = 2π/iθ . For each (ix, iθ) pair, there exists a set of POD modes in which
each mode has different radial variations and velocity component behaviours, and n
identifies each mode within the set by ordering according to decreasing energy. When
ix and iθ are both non-zero, the modes take the form of helical waves encompassing all
radii (though often with motions concentrated near particular radii), but the modes are
otherwise similar in form to the x–θ Fourier decompositions that were performed for
individual radii in § 5.4.

The eigenvalues indicate the mean amounts of turbulent kinetic energy that each
POD mode contributes to reconstructed fields, so the most energetic modes are
particularly important for describing the flow. The n = 1 (most energetic) eigenvalues
for each streamwise and azimuthal wavenumber index in table 1 include the sum
of all Fourier modes with positive and negative wavenumber values for the indices
indicated. The eigenvalues therefore represent the contributions of both the clockwise
and anticlockwise modes, as well as the complex conjugate mode pairs required
to reconstruct a real-valued velocity field. The n = 1 modes each account for
approximately 90 % of the total energy over all radii (which is equal the sum of the
eigenvalues for all n) for each wavenumber pair shown. In table 1, two wavenumber
pairs (bold) correspond to particularly energetic modes relative to other wavenumber
pairs.
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ix = 0 ix = 1 ix = 2 ix = 3 ix = 4 ix = 5 ix = 6

iθ = 0 0.0290 0.0599 0.0399 0.0337 0.0240 0.0359 0.0280
iθ = 1 0.2549 0.4095 0.2074 0.2012 0.1077 0.1864 0.1595
iθ = 2 0.4757 1.0132 0.4656 0.3241 0.1948 0.2028 0.1213
iθ = 3 0.7464 0.6884 1.0167 0.2249 0.2190 0.1134 0.1747
iθ = 4 0.2813 0.4251 0.3242 0.2316 0.2086 0.1556 0.1252
iθ = 5 0.2101 0.2681 0.3122 0.3911 0.1575 0.1438 0.1171
iθ = 6 0.1418 0.1786 0.3396 0.2000 0.1397 0.1380 0.0905

TABLE 1. Eigenvalue spectra of the n = 1 POD modes for the pipe flow, displaying
the values for the modes with the largest streamwise and azimuthal scales. The two
bold eigenvalues correspond to the most energetic modes that are also visualized. The
eigenvalues are normalized to percentages such that the sum is 100 if the remaining
higher-wavenumber indices are also included along with all modes for higher n.

Figure 12(a,b) displays the vector patterns in r–θ planes and isosurfaces of u′

for these two most energetic n = 1 POD modes. The (ix = 1, iθ = 2) mode and the
(ix = 2, iθ = 3) mode have helix angles of 5.1 and 6.8◦, respectively, at y/R = 0.15.
The corresponding wavelengths of 30R and 15R are among the longest VLSM
wavelengths that the domain can accommodate. For these particularly energetic POD
modes, the helix angles are consistent with those frequently observed for u′ structures
in the velocity fields and the dominant streaks of the two-point correlations. For a
given azimuthal width of u′ streaks, which determines the azimuthal wavenumber,
the helix angle of a given mode is determined by the streamwise wavenumber. The
amount of energy present in these POD modes indicates that modes with these helix
angles make sizable contributions to the flow. The mode helix angle at a particular
y location is given by tan−1[(R − y)2πix/(Lxiθ)], where Lx is the 30R domain length.
It should be noted that the possible helix angles are somewhat coarsely spaced often
by several degrees apart, so the angles indicated by the most energetic modes are
best understood as corresponding to a range of favoured helix angles appearing in the
flow. The angular resolution is sufficient for the most energetic iθ = 3 mode to be
inclined at a steeper angle than the lowest non-zero angle. Dominant helix angles are
also observed from instantaneous fields (with figure 9 demonstrating that the very long
modes representing the u′ motions in figure 1 are clearly represented by the largest-
scale Fourier modes) and the two-point correlation (figure 8) to form conclusions in
further discussion. The eigenvalue spectra also indicate that significant energy exists in
the ix = 0 POD mode for iθ = 3, suggesting that streamwise-aligned motions with this
azimuthal width also make a significant contribution to the flow.

The modes’ in-plane velocity vector patterns in figure 12(a,b) display similarities
to the conditional average for an isolated negative u′ event. Unlike the conditional
average (approximated by an LSE), however, in POD modes the vortices and
associated large-scale flow appear in organized patterns periodically around the pipe
circumference. The vector pattern remains constant for each POD mode as x varies,
except for rotating about the pipe axis in a helical manner. While the anticlockwise
modes are visualized, a similar set of clockwise modes also exists for oppositely
signed wavenumbers that only varies in that the azimuthal variations are the mirror
images of the modes displayed. The overall character of these motions is that of roll
cells. While such mode patterns do not typically visually appear symmetrically in the
instantaneous planes, particularly as the core is approached, and the addition of other
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FIGURE 12. The (a) (ix = 1, iθ = 2) and (b) (ix = 2, iθ = 3)n = 1 POD modes display roll-
cell-like behaviour. The right isosurfaces indicate the swirling patterns of u′ (at one-half
of maximum magnitude), while the left plots display the colour u′ fluctuation and in-plane
velocity vectors at x= 0 planes. (c) An idealized depiction of the organization of LSM-length,
ramp-like, relatively straight low-velocity streaks (blue) concatenating following typically
azimuthally inclined lines to form VLSMs. Roll cells are schematically represented with
yellow arrows indicating axial swirling. High-velocity streaks are omitted and would fill
between the motions shown. This figure emphasizes the motions strongly contributing to the
log layer, with the smaller (shorter than LSM) scales of motion and the near-wall motions
omitted.
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POD modes can significantly alter the appearance, the POD modes contain a statistical
imprint of an overall roll-cell behaviour in the flow.

Prior studies of wall-bounded turbulent flows have also suggested the presence of
roll cells, though much of the discussion has been in the context of turbulent channels.
Toh & Itano (2005), in a numerical study of a channel, studied large-scale structures
that were in the form of roll cells with counter-rotating large-scale circulations and
the interactions of these structures with the near-wall motions. Despite a limited
Reynolds number (Reτ = 349) and the lack of scale separation, they were able to
distinguish large-scale motions from the near-wall motions. Performing a stability
analysis calculation for an Reτ = 2 × 104 turbulent channel, del Álamo & Jiménez
(2006) show that the two most amplified single-wave solutions with λx = 60h (channel
half-heights) have the form of ‘velocity streaks of alternating signs flanked by a
pair of counter-rotating streamwise vortices’ when viewed in a y–z plane. However,
the first one has spanwise wavelength λ+z = 100 and the second one has λ+z = 2000,
while both are similar in geometry (when scaled to the similar sizes). del Álamo
& Jiménez (2006) noted that, although the former structure is consistent with the
well-documented near-wall layer, the latter reaches ‘deep into the logarithmic layer’
as a ‘large-scale global structure’. They also related these motions to the ‘conical u
streaks surrounded by pairs of counter-rotating streamwise vortices’ that del Álamo
et al. (2006) observed for a conditional average of vortex clusters in the logarithmic
region of a channel simulation. del Álamo & Jiménez (2006) also observed agreement
between the amplitudes of streamwise and wall-normal velocity components for their
most amplified solutions and those of principal POD eigenfunctions when considering
Reτ = 1000 channel flow. Considering an approximation to Blasius boundary layer
flow, Farrell & Ioannou (2012) used stochastic structural stability theory (SSST) to
study the dynamics of streamwise roll and streak structures. They found that these
structures are associated with an instability associated with powerful growth. The
global optimal structure in this flow appears as a roll cell with a height of several
displacement thicknesses.

Hutchins & Marusic (2007b) computed the conditional average of a negative u′

event at y+ = 150 (y/h = 0.16) in a turbulent channel simulation, and found the result
in the y–z plane to indicate that a negative u′ superstructure was associated with a
‘large-scale counter-rotating roll mode’. Their conditional average flow pattern appears
similar to the pattern found by del Álamo & Jiménez (2006) and also similar to
that of the similar conditional average in the present pipe (figure 11). Marusic &
Hutchins (2008) also observed a large-scale roll-cell structure in a y–z plane from
two-point correlations calculated from experimental fields of a turbulent boundary
layer. They noted the open question of whether this pattern could be attributed to
jittering of small-scale vortices or a separate instability related to the superstructure,
as del Álamo & Jiménez (2006) suggested. The former possibility is based on the
observation of Balakumar & Adrian (2007) that ‘the smoothed field of a concatenation
of misaligned hairpin packets would look like a pair of meandering counter-rotating
streamwise vortices, whose diameters would be of the order of the height and width
of the packets’. Based on large-eddy simulations of turbulent channels, Chung &
McKeon (2010) also calculated similar roll-cell patterns in a y–z plane for conditional
averages based on large-scale low-speed events, where large scales were extracted
by filtering. They also discussed the relationship between the conditionally averaged
velocity patterns for small-scale and large-scale flow, each based on a large-scale
low-speed event. The small-scale pattern retained a roll-cell character in the y–z plane,
so it appeared to strengthen the large-scale contribution.
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In pipe flows at lower Reynolds numbers, Duggleby et al. (2007, 2009) computed
POD modes that possessed a similar roll-cell form to the present results. Their
R+ = 150 flow, however, would not be expected to contain strong VLSMs or sufficient
scale separation to clearly distinguish dominant roll cells organizing the flow. They
classified the mode behaviours according to the mode index pairs. The dominant two
modes of our calculation, for which the azimuthal mode number index exceeds the
streamwise number index, would be classified as ‘wall modes’. They observed that
the associated coherent structures stayed close to the wall for these modes in their
R+ = 150 pipe flow. The differing domain lengths of the present simulation and theirs
leads to a lack of equivalence between streamwise wavenumber indices that would be
expected to affect the mode classification criteria. Duggleby et al. (2007, 2009) also
suggested dynamical mechanisms by which the turbulent flow is sustained. For the
present pipe flow, the energetic strengths of the two most energetic POD modes that
we have identified as corresponding to roll cells are significantly greater than those of
POD modes with neighbouring wavenumber indices. This suggests that they represent
dominant physical motions in the flow. In addition to the modes’ direct contribution of
energy, they are also able to strongly influence the flow by organizing other motions.
Studies in other flows suggest that the largest scales of POD modes have a more
direct link to physical motions than the POD modes of smaller scales that tend to
approach an asymptotic form (Moser 1994; Baltzer & Adrian 2011). This reduced
distinctiveness for POD modes other than the dominant two is consistent with the
Bailey & Smits (2010) conclusions that VLSMs and LSMs are interrelated, which they
based on POD eigenvalue behaviour.

The relatively small fraction of the total flow energy represented by the two
strongest POD modes identified (just over 2 %) indicates that other motions are
important and the relation between the two most energetic modes and the smaller-scale
modes is also important. When interpreting the percentages of turbulent kinetic energy
associated with these most highly energetic modes, it is important to note that the
percentage is calculated relative to the sum of the fluctuations at all radii filling the
pipe volume and much of the turbulent kinetic energy is contributed by much smaller
scales of motion occupying the region from the wall through the buffer layer. Thus
the motions identified by these most energetic roll-cell-like POD modes contribute
much more strongly to the flow throughout the log layer and above, such as the
y/R= 0.15 (y+ = 101) location that has been examined. The roll cells for the modes in
figure 12(a,b) are centred at y/R = 0.43 (y+ = 300) and y/R = 0.31 (y+ = 220). These
locations are far above the near-wall vortices below y+ = 60 and the POD modes
represent distinctly different motions, as the associated streamwise wavelengths also
indicate.

The energies associated with the modes are consistent with the observation when
reconstructing fields from POD modes that the two highly energetic roll-cell modes
must be combined with strong net contributions from other scales of motion to
produce the strengths of the negative u′ streaks in the instantaneous fields. In
the instantaneous fields at y/R = 0.15, typical peak strengths of the negative u′

streaks are of the order of −0.25Ubulk (with small peak regions occasionally
stronger than −0.45Ubulk), whereas the contributions of the (ix = 1, iθ = 2, n = 1)
and (ix = 2, iθ = 3, n= 1) POD modes to the field of figure 1 have maximum strengths
of −0.014Ubulk and −0.011Ubulk at y/R = 0.15 (when the strongest of the clockwise
and anticlockwise modes associated with each wavenumber set are considered).

A set of n = 1 modes with wavelengths of the (ix = 2, iθ = 3) mode and longer
contains 21 independent modes in total (including separate modes for clockwise and
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anticlockwise helices), and this set was compared to the single instantaneous field.
The correlation coefficient between the unfiltered fluctuating velocity (u′) and the
contribution of (or projection onto) this mode set (ũ′) for this field at y/R = 0.15 is
ρuũ = Ruũ/(σuσũ)= 0.26 (σ denotes r.m.s. value of the relevant quantity). As only very
long wavelengths (>15R) are included in these roll-cell POD modes, this correlation
value is consistent with the predominance of VLSM energy in the u component
(Wu et al. 2012). Since the highly energetic u component is largely responsible for
the strength of each overall POD mode contribution, the correlation values for the
remaining components also indicate how well correlated the other components are
to the streamwise fluctuation streaks. For the radial and azimuthal components, the
correlation coefficients are ρvṽ = 0.04 and ρww̃ = 0.12, respectively. These correlation
values indicate that there is significant correlation between the longest scales of
these velocity components in the flow and the roll-cell behaviour accompanying the
streamwise velocity streaks that are captured by the set of POD modes (which are
dominated by the (ix = 1, iθ = 2, n = 1) and (ix = 2, iθ = 3, n = 1) modes). However,
the correlation coefficient values are significantly smaller than the streamwise velocity
component correlation coefficient because the smaller scales contribute relatively
greater fractions of the radial and azimuthal velocity motions. The ρww̃ value is
consistent with a significant contribution from the roll cells to the azimuthal velocity
while smaller scales clearly contribute most of the strength of the azimuthal motions in
the field.

While scales smaller than the roll cells are responsible for much of the strong
negative u′ peaks, the spatial relationships that cause the smaller scales to strengthen
the u′ motions of the roll cell are consistent with the hypothesis that the largest scales
are composed of concatenations of LSMs, as has been shown by the form of the
two-point u′ correlations. Wu et al. (2012) showed that the largest scales of u′ motion
of this pipe flow remain correlated with patterns that are clearly recognizable when the
flow convects downstream by distances of 7R, with lower correlation levels persisting
considerably longer. The time persistence suggests that roll cells associated with the
very long streaks that also influence large volumes would play an important role in
the organization of the smaller scales of motion. We have also shown (figure 8) that
the largest scales are responsible for the low-level patterns in the two-point correlation,
and the prominence of the (ix = 1, iθ = 2) and (ix = 2, iθ = 3) modes suggests that the
low-level contour azimuthal pattern is dominated by an interference pattern of iθ = 2
and iθ = 3 modes. Their sum would lead to a pattern consistent with the pattern of
positive correlations appearing on the opposite wall from the event that are not equally
azimuthally spaced in the r–θ plane. That this positioning does not correspond to
precisely threefold or twofold symmetry is consistent with the correlation locations
reported by Bailey et al. (2008). Interpretations of the interaction between the roll cells
and intense smaller scales of motion will be considered in the conclusion.

For comparison, the clockwise and anticlockwise pair of helical velocity response
modes that McKeon & Sharma (2010) summed were created with streamwise
wavelengths of 2πR and azimuthal wavelengths of 2π/10 rad. Using these values,
they visualized the resulting arrangement of VLSM streamwise velocity structures
with signs alternating in x and θ (their figure 15). Though for a smaller azimuthal
wavelength than those of our two most energetic POD modes, their resulting helix
angle of 4.9◦ at y/R= 0.15 is comparable to ours. While they generated a streamwise-
aligned arrangement of alternating fluctuations by summing similar helical modes of
opposite rotation with equal strengths, in our POD reconstructions the strengths can
vary significantly between the clockwise and anticlockwise modes for a given set
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of wavenumber magnitudes. For the two most energetic modes in the field we have
considered, the strengths can differ by a factor of 2 within each mode pair, leading
to the azimuthal inclinations. While the strengths of the coefficients vary with each
individual field, the overall energy or eigenvalues should be equal for the positive and
negative wavenumber pair because of the statistical symmetry when a large set of
fields are used for the POD calculation. It is more difficult to compare our results with
the experimental pipe POD results of Hellström et al. (2011) because they used the
snapshot method to calculate POD modes and the resulting modes are not constrained
to precise helical forms. The helical form would be gradually approached with many
data samples (snapshots) owing to the homogeneity in x and θ (as the eigenvalue
spectra of simpler systems suggest (e.g. Duggleby & Paul 2010)). For the set of data
in Hellström et al. (2011), the two most energetic modes contain long regions of u′

that are streamwise-aligned (helix angle of zero). These regions are arranged in such a
manner that the streamwise velocity fluctuations alternate signs with their streamwise
and azimuthally offset neighbours, as in McKeon & Sharma (2010). In Hellström
et al. (2011), the azimuthal wavelengths of the structures are irregular, but the pipe
circumference appears to contain 3–5 periods.

A summary of the overall organization of negative u′ fluctuations above the near-
wall region is depicted diagrammatically in figure 12(c), with relatively short ramps
representing strong levels of the LSMs (which would extend longer, wider and taller if
visualized at weak levels). Finer scales of motion and near-wall motions are omitted.
This diagram includes long examples of concatenations with the typical characteristic
helix angles, as well as several shorter examples that lack strong azimuthal inclinations
but waver on an LSM scale. Arrows represent broad vortical motions based on the
form of the two most energetic POD modes that each appear in the form of roll cells
separating very long streaks of u′.

7. Conclusions
Analysis of structure primarily in the log layer in the DNS of a turbulent pipe flow

simulated by Wu et al. (2012) shows that long meandering motions of streamwise
velocity fluctuation are composed of smaller motions. The following observations
focus on y/R = 0.15 (y+ = 101 for this flow) at the upper extent of the log layer that
is furthest from the direct effects of the near-wall region quasi-streamwise vortices.
The motions of streamwise velocity have been divided into three distinct types:
short scales of less than approximately 0.2R in streamwise length (where distinct
negative u′ motions are visually observed having lengths of the order of 0.2R); longer
scales frequently of approximately 1R–2R; and VLSMs longer than 3R. While these
dimensions are observations from the present pipe flow and are not intended to assert
a specific scaling with Reynolds number, the lengths are reported in outer scaling
because the motions appear generally consistent with features observed in other studies
that approximately scale in outer units (Kim & Adrian 1999; Guala et al. 2006). The
large-scale motions of 1R–2R recognized in this study are broadly consistent with
the velocity patterns expected to be associated with large-scale hairpin packets, with
negative velocity fluctuation regions frequently possessing ramp-like geometry normal
to the wall. Additional study of the surrounding vortical structures is necessary to
further justify the association with hairpin packets. The nominally 1R- to 2R-long
negative velocity fluctuation regions identified in the logarithmic layer and regions
nearer the wall are consistent with the LSMs previously defined by wavelengths of
0.3R–3R based on energy spectra over broad ranges of y and Reynolds numbers and
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that were also associated with hairpin vortex packets (Kim & Adrian 1999; Guala et al.
2006; Balakumar & Adrian 2007). When comparing between the lengths of 1R- to
2R-long contiguous regions and the lengths of LSMs defined in other studies based
on streamwise wavelengths in energy spectra, it must be noted that the quantities are
defined inherently differently, with contiguous regions of negative u′ in contrast to
wavelengths of negative and positive u′ in streamwise succession.

The LSM-like motions are frequently observed to align in succession, though they
often organize with azimuthal offsets between each other. In this way, they create
very long motions that are frequently azimuthally inclined and often appear to waver
– with each LSM azimuthally offset, instead of the very long-scale wavering with
wavelengths of nominally 12δ in Hutchins & Marusic (2007a). The organization is
consistent with the proposal of Kim & Adrian (1999), with LSMs concatenating
to form VLSMs, except that the concatenations occur along preferred azimuthal
inclination angles. The longest examples of VLSMs in the present simulation are
most commonly azimuthally inclined and relatively straight along helix angles of
4–8◦ relative to streamwise, although examples that are highly streamwise-aligned
(i.e. with helix angles of approximately zero) are also present, but are generally
shorter. Statistical evidence of the arrangement is revealed by two-dimensional
(streamwise–azimuthal) two-point spatial correlations. The two-dimensional two-point
correlations reveal a streamwise-elongated region of high correlation that decays
relatively rapidly in x and is associated with the more streamwise-aligned LSMs
(at correlation levels lower than the rapid decay associated with the finest scales
of motion). The relatively low correlation levels whose patterns remain unchanged
when low-pass Fourier filtering is applied are associated with the VLSMs that are
characterized by the 4–8◦ helix angles, particularly for the longest examples. The
two-point correlation also indicates the presence of these motions as correlation
persists for very long streamwise displacement distances (>15R) along these azimuthal
inclinations when decomposed by inclination direction. The non-decomposed two-point
correlation, which includes both clockwise and anticlockwise helix directions, contains
a more complex pattern. A distinct X shape that arises from superposition of the
clockwise and anticlockwise helical modes is the dominant feature, and additional
weaker peaks appear from the interference between the helical modes.

While we see that VLSMs consist of LSMs arranged to form the helical VLSM
patterns, these observations do not explain how the organization occurs. Study
of instantaneous r–θ planes, two-point correlations and the most energetic POD
modes suggests the presence of roll cells surrounding the low-speed (and high-
speed) elongated VLSM streaks. The two particularly energetic POD modes also
possess azimuthal inclination angles consistent with the u′ streaks. The roll-cell
motions associated with these modes are characterized by diffuse vortical motions
bounding low-speed streaks associated with radially thick columns of low streamwise
velocity (consistent with the concept of footprints in Hutchins & Marusic (2007a))
accompanied by radially inward motion from the wall penetrating deeply towards the
core. The roll cells identified in the two strongest POD modes are centred significantly
above the wall (y/R = 0.43 and 0.31) and are distinct from the quasi-streamwise
vortices of near-wall motions. While the symmetry that exists in a conditional average
is not often seen in instantaneous examples (particularly when far above the wall),
the two strongest POD modes suggest that very long structures including such thick
columns organized as patterns of roll cells contribute significantly to the overall flow
pattern. The strengths of the roll-cell motions indicate that organized smaller scales are
responsible for much of the strength of the streaks observed in the flow.
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Clarifying the interaction between the dominant roll cells and intense smaller scales
would require a dynamical study to evaluate several possible scenarios. The presence
of the large roll cells could sweep the small scales and induce the production of new
structures in a scenario similar to that devised by Toh & Itano (2005) for turbulent
channel flow. Adrian (2007) suggested the possibility that large scales (perhaps in
the form of the roll cells described herein) sweep small-scale vortices near the wall
in wall-bounded turbulent flows to the stagnation points in the organized pattern of
these large-scale vortices. Based on finding the mode shapes of a given scale that
are most strongly amplified in the presence of forcing by other modes present in
the flow, McKeon & Sharma (2010) found modes that are likely to be dominant
structures in the turbulent pipe flow. Hellström et al. (2011) noted the modes of
McKeon & Sharma (2010) to be similar in form to POD modes in their turbulent
pipe flow experiment, which themselves are similar to the roll-cell POD modes of
the present flow. Such modes may be the agency that performs the organization of
LSMs into VLSMs. As structures grow from the wall, they can be organized from
the effects of the larger-scale motions. Mathis et al. (2009a,b) have shown that very
large motions in u′ modulate the presence of smaller motions, so the presence of roll-
cell-like modes could also induce the presence of the smaller-scale motions identified.
As the eigenvalues of the POD for the present flow indicate significantly stronger
energy content for the two roll-cell-like modes relative to other modes, an independent
mechanism is also possible. Such a mechanism could be similar to the modes observed
in pipe transition (Eckhardt et al. 2007). del Álamo & Jiménez (2006) suggested a
mechanism in channels involving most-amplified wave solutions of an instability in
which the solutions have a roll-cell form. In addition, a two-way interaction may exist
whereby smaller scales force the roll-cell modes (consistent with McKeon & Sharma
2010), and the roll-cell modes in turn organize the smaller scales.

In conclusion, our evidence is consistent with a physical picture in which the longest
VLSMs are formed by the concatenation of LSMs along helix lines principally with
helix angles of 4–8◦ relative to the streamwise direction. The agency by which the
LSMs organize is not fully determined, but we favour a model in which helical
roll cells either sweep the LSMs into alignment along the stagnation zones between
cells or trigger the autogeneration (Zhou et al. 1999) of smaller hairpin packets that
ultimately grow into LSMs organized along the lines of the roll cell uplifting from the
wall. The former picture is motivated by earlier observations by Toh & Itano (2005)
(described in Adrian 2007), and it is consistent with the helical roll cells found from
POD analysis and the modes presented by McKeon & Sharma (2010).
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