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FRAÏSSÉ LIMITS OF C*-ALGEBRAS

CHRISTOPHER J. EAGLE, ILIJAS FARAH, BRADD HART, BORIS KADETS,
VLADYSLAVKALASHNYK, ANDMARTINO LUPINI

Abstract. We realize the Jiang-Su algebra, all UHF algebras, and the hyperfinite II1 factor as Fraı̈ssé
limits of suitable classes of structures. Moreover bymeans of Fraı̈ssé theory we provide new examples of AF
algebras with strong homogeneity properties. As a consequence of our analysis we deduce Ramsey-theoretic
results about the class of full-matrix algebras.

§1. Introduction. Fraı̈ssé theory lies at the crossroads of combinatorics and
model theory. It originates from the seminal work of Fraı̈ssé in [14] for the case
of discrete countable structures. Broadly speaking, Fraı̈ssé theory studies the cor-
respondence between homogeneous structures and properties of the classes of their
finitely generated substructures. The age of a countable structure is the collection
of its finitely generated substructures, and the ages of homogeneous structures are
precisely the classes of structures known as Fraı̈ssé classes. Conversely, given any
Fraı̈ssé class, one can construct a countable homogeneous structure with the given
class as its age. This structure, which is referred to as the Fraı̈ssé limit of the class,
is unique up to isomorphism, and can be thought of as the structure generically
constructed from the class.
Fraı̈ssé theory has been recently generalized to metric structures by Ben Yaacov
in [1]. An earlier approach to Fraı̈ssé limits in the metric setting was developed
in [35]. Standard examples of metric Fraı̈ssé limits are the Urysohn metric space,
its variants, and the Gurarij Banach space (previously construed as a Fraı̈ssé limit
in [23]). The Elliott intertwining argument central in classification program for
nuclear C*-algebras (see [31]) is closely related to the proof of uniqueness of metric
Fraı̈ssé limits.
In this paper, we study Fraı̈ssé limits of C*-algebras. In particular, we show
that several important C*-algebras can be described as Fraı̈ssé limits of suitable
classes. As in [26], we work under slightly less general assumptions than [1], and we
consider only classes where the interpretation of functional and relational symbols
are Lipschitz (see Section 2 below for the precise definitions). In our constructions,
we consider Fraı̈ssé classes that are not complete (in the sense of [1]) and are
not closed under substructures. The reason we do this is that the class of finitely
generated substructures of a given C*-algebra tends to be too large. As a matter
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of fact, conjecturally all simple and separable C*-algebras are singly generated
(see [36]). As a consequence, we only consider classes that are made of suitable
“small” subalgebras of the given C*-algebra.
We show that the Jiang-Su algebra Z [20] and all UHF algebras [16] are limits
of suitable Fraı̈ssé classes. Both Z and UHF algebras are examples of C*-algebras
of fundamental importance for the classification program of C*-algebras, a survey
of which can be found in [31], [8]. Furthermore we prove that, while the class of
finite-dimensional C*-algebras is not Fraı̈ssé, one can obtain a Fraı̈ssé class by
adding a distinguished interior trace and imposing a restriction on the number of
direct summands. This provides new examples of AF algebras satisfying strong
homogeneity properties. Finally we deduce a Ramsey-type result for the class of
matrix algebras, either endowed with the operator norm or with the trace-norm.
This is obtained from the above mentioned description of (infinite type) UHF
algebras as limits, together with a similar characterization of the hyperfinite II1
factor R. We use the observation that the corresponding automorphism groups
are extremely amenable which is a result due to Gromov [17]. The other ingredient
is the well known connection between extreme amenability and Ramsey-theoretic
properties of a Fraı̈ssé class originally established in [21] and recently generalized
to the metric setting in [26].
The paper is divided into seven sections. In Section 2, we recall the basic notions
and results of Fraı̈ssé theory, adapted to the framework of C*-algebras. Section 3
contains the results aboutUHFalgebras,AF algebras, and the hyperfinite II1 factor.
The description of the Jiang-Su algebra as a Fraı̈ssé limit is presented in Section 4.
We recall the notions of Lévy groups and extremely amenable groups in Section 5,
where we observe that the automorphisms groups of the hyperfinite II1 factor and
infinite type UHF algebras are Lévy. This is used in Section 6 to deduce Ramsey-
type results about the class of full matrix algebras. We conclude in Section 7 with a
discussion of future lines of research and open problems.

§2. Fraı̈ssé limits of C*-algebras. In this section, we define Fraı̈ssé classes of
C*-algebras and their Fraı̈ssé limits. Recall that a C*-algebra is a subalgebra of
the algebra of bounded linear operators on a Hilbert space which is closed under
the adjoint operation * and is closed in the operator norm topology (see [4] for
an introduction to C*-algebras). We will often consider unital C*-algebras, that
is, algebras with a multiplicative identity element, but when we say “C*-algebra”
without qualification we mean an algebra which is not necessarily unital. We will
consider C*-algebras as examples of metric structures. The literature contains sev-
eral definitions of metric structures suited to various purposes; the one we present
here is the same as in [26].

Definition 2.1. A language L consists of a set of predicate symbols and a set
of function symbols. Each predicate symbol P and function symbol f carries an
associated arity and Lipschitz constant CP and Cf , respectively. We assume that
every language includes a distinguished symbol d , which will always be interpreted
as a metric.
An L-structure is a complete metric space (A, d ), together with interpretations
for the symbols of L: for each
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(1) n-ary predicate symbol P, a CP-Lipschitz function PA : An → R, and
(2) each n-ary function symbol f, a Cf-Lipschitz function fA : An → A.
We need to say a word about how we will formally see C*-algebras as structures
in the sense of the previous definition. For a C*-algebra A, we will consider the
unit ball A1 together with the operator norm as the underlying complete metric
space. In terms of the language, for every *-polynomial p(x1, . . . , xn), there will be
an n-ary predicate Rp which is interpreted on An1 by ‖p(x1, . . . , xn)‖. This relation
is Lipschitz with a constant that is independent of the choice of C*-algebra. If we
wish to consider a trace as well then we similarly introduce relations for traces of
all *-polynomials on the unit ball; again, all of these relations are Lipschitz. In
practice, we will use the usual C*-algebraic notation when we deal with C*-algebras
but formally, for the purposes of fitting the continuous Fraı̈ssé context, we will treat
them as above.
Since all of our structures fit into the framework described above, we find it
convenient to give a presentation of Fraı̈ssé theory which is closer to that of [26]
than the more general approach taken in [1]. Our definitions are not identical to
those of either [26] or [1]; see Remark 2.7 for discussion of the differences. In
particular, [26] do not require their metric spaces to be bounded and therefore their
structures are notmetric structures in the sense of [2]. In the way that we are viewing
C*-algebras (as their unit balls) the underlying metric is bounded, and therefore
their continuous theory is well-defined.

Definition 2.2. Let A be a C*-algebra, and a a tuple from A1. The subalge-
bra generated by a is the smallest C*-subalgebra of A which contains a, and is
denoted 〈a〉. We say that A is finitely generated if there is a finite tuple a such that
A = 〈a〉.
Remark 2.3. The condition that a C*-algebra be finitely generated may be
weaker than it appears. It is known that a large class of separable unital C*-algebras,
including all those which areZ-stable, are generated by single elements (see [36] for
this result and further discussion). In particular, some of the C*-algebras we will
construct as Fraı̈ssé limits will be singly generated.

Definition 2.4. Let K be a class of finitely generated structures with distin-
guished generators.

(1) We say that a structure is a K-structure if it is an inductive limit of elements
of K.

(2) The class K has the near amalgamation property (NAP) if whenever
A,B0, B1 ∈ K, and ϕi : A→ Bi are morphisms, then for every ε > 0, there is
a C ∈ K and morphisms �i : Bi → C such that d (�0ϕ0(a), �1ϕ1(a)) < ε,
where a is the distinguished generating set of A.

(3) The class K has the amalgamation property (AP) if, in the definition of NAP,
we may take ε = 0.

(4) The class K has the joint embedding property (JEP) if for all A,B ∈ K, there
is C ∈ K such that A and B embed into C .

The properties defined above have clear analogues in classical Fraı̈ssé theory.
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In the classical setting, one works with countable classes of finite structures, in
order to ensure that the resulting limit object is also countable. In the metric setting,
it is necessary to replace countability by separability in a suitably chosen topology,
which we now describe. As in [1, Definition 2.10], ifK is a class of finitely generated
structures, we denote byKn the subclass ofK consisting of all members of K whose
distinguished generating sets have size n. If K has JEP and NAP, we can define a
pseudometric on Kn by defining

dK(a, b) = inf{dC (a, b) : a, b ∈ C,C ∈ K},
where dC is the distance computed in C (see [1, Definition 2.11]), and ā and b̄ are
the distinguished generators of elements of Kn.
Definition 2.5. A classK of finitely generated structures with JEP andNAP has
the weak Polish Property (WPP) if for each n the pseudometric space (Kn, dK) is
separable.

Finally, we come to the central definitions of Fraı̈ssé classes and Fraı̈ssé limits.

Definition 2.6. A class K of finitely generated structures is a Fraı̈ssé class if it
satisfies JEP, NAP, and WPP.
A K-structureM is a Fraı̈ssé limit of the Fraı̈ssé class K if:
(1) M is K-universal: For every A ∈ K, there is an embedding of A intoM ,
(2) M is approximately K-homogeneous: for all A,B ⊆ M such that A ∼= B,
A,B ∈ K and for every ε > 0, there is an automorphism � ofM such that if
ā and b̄ are the generators of A and B then d (ā, �(b̄)) < ε.

Remark 2.7. The classes that we are considering are incomplete in the sense of
[1, Definition 2.12]. The completions of our classes will include their Fraı̈ssé limits.
The classes we consider also fail to be hereditary, that is, we will have classes K,
and members A ∈ K with finitely generated substructures B ⊆ A and B 	∈ K. As
a consequence, we do not have the usual correspondence between Fraı̈ssé classes
and ages of homogeneous structures. Nevertheless, our definitions do allow us to
construct limits of Fraı̈ssé classes, and hence obtain interesting information about
the limit objects.

Theorem 2.8. Every Fraı̈ssé class has a Fraı̈ssé limit which is unique up to
isomorphism.

The proof is a straightforward adaptation of the proofs of Lemma 2.17 and
Theorem 2.19 from [1].
In the discrete setting, many (though not all) well-known Fraı̈ssé limits have
theories with quantifier elimination. The main results of [5] show that quantifier
elimination is a rare phenomenon forC*-algebras; in particular, it is shown in [5] that
the only noncommutative C*-algebra with quantifier elimination isM2(C), so none
of the noncommutative C*-algebraswe construct as Fraı̈ssé limits in the subsequent
sections have quantifier elimination. In Section 3.2, we show that the hyperfinite II1
factor R is the Fraı̈ssé limit of matrix algebras viewed as von Neumann algebras.
The theory ofR also does not have quantifier elimination, as shown in [18].
We do have one example of a C*-algebra which is a Fraı̈ssé limit whose theory
has quantifier elimination, namely the algebra C (2N) of continuous functions on
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the Cantor set. It is straightforward to see that this algebra is the Fraı̈ssé limit of
the class of finite-dimensional commutative C*-algebras (i.e., the algebras of the
form Cn). Quantifier elimination for the theory of C (2N) is proved in [7]. In fact,
by the results of [6], the theory of C (2N) is the only theory of infinite-dimensional
commutative unital C*-algebras which has quantifier elimination.

§3. AF algebras. Wenow turn to describing several examples of Fraı̈ssé classes of
finite-dimensional C*-algebras. Throughout this section, when we discuss Mn(C),
we are considering it as being n2-generated by the standard matrix units. Recall
that a (normalized) trace on a unital C*-algebraA is a continuous linear functional
� : A → C such that �(1) = 1, it is positive (i.e., �(a∗a) ≥ 0 for all a ∈ A),
and �(ab) = �(ba) for all a, b ∈ A. The space of traces of A, T (A), is a weak*-
compact and convex subset of the unit ball of the dual of A. Every unital *-
homomorphism between tracial algebras ϕ : A → B gives rise to the continuous
affine map ϕ∗ : T (B)→ T (A): if � ∈ T (B) and a ∈ A, define

ϕ∗(�)(a) = �(ϕ(a)).

This contravariant functor will also play a role in the proof of Lemma 4.4. It is a
well-known fact from linear algebra that each matrix algebraMn(C) has a unique
trace, and that trace � is given by �([ai,j ]) = 1

n

∑n
j=1 aj,j . We will make frequent

and unmentioned use of the following well-known properties of finite-dimensional
C*-algebras.

Fact 3.1. (1) Every finite-dimensional C*-algebra is isomorphic to a finite
direct sum of matrix algebras.

(2) IfA =Mk1 (C)⊕ · · · ⊕Mkn (C), then every trace on A is a convex combination
of the (unique) traces onMk1 (C), . . . ,Mkn (C).

(3) There is a unital embedding ofMn(C) intoMm(C) if and only if n dividesm. A
unital embedding of finite-dimensional algebrasA and B is characterized up to
unitary conjugacy by the multiplicities with which it maps each direct summand
of A into each direct summand of B (that is, by its Bratteli diagram; see
[4, Section III.2] or [10, Section 4.4]).

When we consider a finite-dimensional algebraMk1 (C)⊕· · ·⊕Mkn(C), we always
consider it as being generated by elements of the form a1 ⊕ · · · ⊕ an, where the ai ’s
vary over the distinguished generators of theMki (C)’s.
We begin by observing that when we consider classes of finite-dimensional C*-
algebras near amalgamation can be replaced by actual amalgamation.

Lemma 3.2. LetK be a subclass of the class of finite-dimensional C*-algebras. The
following are equivalent:

(1) K has NAP,
(2) K has AP.
Proof. The direction (2) =⇒ (1) is obvious. For the other direction, suppose
that K has NAP. Take A,B1, B2 ∈ K, and let ϕi : A → Bi be morphisms. Write
A =Mn1 (C)⊕ · · · ⊕Mnk (C). Let

a = ((In1 , 0, . . . , 0), (0, In2 , 0, . . . , 0), . . . , (0, . . . , 0, Ink )).
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By definition of NAP, with ε = 1
2 , there is a K-structure C , and maps �i : Bi → C

such that d (�0ϕ0(a), �1ϕ1(a)) < ε.
We claim that C satisfies the definition of AP. Consider the Bratteli diagrams
of the embeddings �0ϕ0 and �1ϕ1 of A into C . If these Bratteli diagrams are the
same, then after conjugating by a unitary, we have �0ϕ0 = �1ϕ1, so C exactly
amalgamates B0 and B1 over A. If the Bratteli diagrams are not the same, then for
some i the ranks of the matrices �0ϕ0(0, . . . , Ini , . . . , 0) and �1ϕ1(0, . . . , Ini , . . . , 0)
are not equal. These images are then projections of different ranks, so

‖�0ϕ0(0, . . . , Ini , . . . , 0))− �1ϕ1(0, . . . , Ini , . . . , 0)‖ = 1,
which contradicts our choice of C . 

In the setting of Banach spaces, the class of all finite-dimensional Banach spaces
is a Fraı̈ssé class, with theGurarij space as its limit (see [1, Section 3.3]). By contrast,
the class of all finite-dimensional C*-algebras is not a Fraı̈ssé class. The obstacle to
amalgamation comes from considering traces.

Proposition 3.3. The class of finite-dimensional C*-algebras is not a Fraı̈ssé class.

Proof. Weshow that this class does not haveAP.LetA= C⊕C,B =M2(C), and
C =M3(C). Consider the following embeddings �A,C : A→ C and �B,C : B → C :

�A,C (a, b) =
[
a 0
0 b

]
, �B,C (a, b) =

⎡
⎣a 0 0
0 b 0
0 0 b

⎤
⎦ .

Suppose that D is a finite-dimensional C*-algebra which amalgamates B and C
over A with respect to these embeddings, via embeddings �B,D and �C,D . Let x =
�B,D ◦ �A,B(1, 0), and note that x = �C,D ◦ �A,C (1, 0) by definition of amalgamation.
Let �D be a trace on D. On the image of B in D the trace �D restricts to a trace,
which must be the unique trace �B from B. Therefore,

�D(x) = �B (�A,B(1, 0)) = �B

([
1 0
0 0

])
=
1
2
.

Similarly, �D restricts to the unique trace �C on the image of C in D. Then we have

�D(x) = �C (�A,C (1, 0)) = �C

⎛
⎝
⎡
⎣1 0 0
0 0 0
0 0 0

⎤
⎦
⎞
⎠ = 1

3
.

This contradiction finishes the proof. 

3.1. UHF algebras. If we restrict our attention to subclasses of the class ofmatrix
algebras, we can obtain UHF algebras as Fraı̈ssé limits. Recall that a separable
unital C*-algebra which arises as the direct limit of unital embeddings of matrix
algebras is called a uniformly hyperfinite (UHF) algebra. It is well-known that UHF
algebras are classified by supernatural numbers, that is, formal products

∏
p prime p

np ,
where each np ∈ N ∪ {∞}; given a UHF algebra A, which is the direct limit
of Mk1 (C) → Mk2 (C) → · · · , the associated supernatural number is given by
np = sup { r : pr | ki for some i }. See [10, Chapter 4] for more details.
Theorem 3.4. Every UHF algebra is a Fraı̈ssé limit.
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Proof. LetA be aUHF algebra, andwriteA as the direct limit of matrix algebras
Mn1 (C),Mn2 (C), . . .. As usual, we view eachMni (C) with its standard matrix units
as generators. Let K = {Mni (C) : i ∈ N }. We then have

Kn =
{
{Mni (C)} if n = n2i for some i ,
∅ if n 	= n2i for all i .

In particular, it is clear thatWPP holds. The classK has a minimal elementMn1 (C),
so JEP will be a consequence of AP. To see AP, note that ifMni (C) is embedded in
Mnj (C) andMnk (C), and (without loss of generality) nj ≤ nk , thenMnj (C) embeds
in Mnk (C) in a way which (up to unitary equivalence) respects the embedding of
Mni (C). Therefore Mnk (C) itself serves to amalgamate Mnj (C) and Mnk (C) over
Mni (C).
It is clear from the construction of the Fraı̈ssé limit of K that this limit is a UHF
algebra with the same supernatural number as A, and hence is isomorphic to A. 

An argument similar to the one in Theorem 3.4 shows that the class of full matrix
algebras with injective (not necessarily unital) *-homomorphisms as morphisms is
a Fraı̈ssé class. The corresponding limit is the (non-unital) C*-algebra of compact
operators on the separable infinite-dimensional Hilbert space [3, Section I.8].

3.2. The hyperfinite II1 factor. In Theorem 3.4 matrix algebras were regarded as
finite-dimensionalC*-algebras, but we can also regard themas tracial vonNeumann
algebras. A tracial von Neumann algebra is a unital C*-algebraM endowed with a
distinguished trace � such that the unit ball of M is complete with respect to the
trace-norm ‖x‖� = � (x∗x)

1
2 . As was shown in [12], tracial von Neumann algebras

can be regarded as metric structures in the language of unital C*-algebras with
the additional predicate symbol for a distinguished trace, where the symbol for
the metric is interpreted as the distance associated with the trace-norm. Since the
operator norm is not uniformly continuous with respect to the trace-norm, it is
no longer part of the structure. A tracial von Neumann algebra is separable if it is
separable with respect to the trace-norm.
A finite factor is a tracial von Neumann algebra (M, �) such that the center ofM
consists only of the scalar multiples of the identity. WhenM is a finite factor, the
trace � on M is uniquely determined. Full matrix algebras are examples of finite
factors. A finite factor that is not isomorphic to a full matrix algebra is called a II1
factor. Equivalently, a finite factor is a II1 factor when the trace assumes all values
in [0, 1] on projections.
A II1 factor is hyperfinite if it can be locally approximated (in trace-norm) by full
matrix algebras. The unique hyperfinite II1 factor is traditionally denoted byR and
can be concretely realized as the direct limit of the direct sequence

(
M2n (C))n∈N

in the category of tracial von Neumann algebras. The same proof as Theorem 3.4
shows that the class of full matrix algebras regarded as finite factors is a Fraı̈ssé
class. Since a direct limit of finite factors is a finite factor, the Fraı̈ssé limit of the
class of full matrix algebras is the hyperfinite II1 factorR. That is, we have:
Theorem 3.5. The hyperfinite II1 factor R is the Fraı̈ssé limit of the class of full
matrix algebras (regarded as finite factors).
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3.3. Finite width algebras. We now return to considering C*-algebras. Through-
out this section, we consider finite-dimensional C*-algebras as being unital, so in
particular, all the embeddings we consider will be unital *-homomorphisms. To
progress beyond UHF algebras, we need to consider more general classes of finite-
dimensional algebras than just matrix algebras. With the obstacles encountered in
Proposition 3.3 in mind, we make the following definitions.

Definition 3.6. (1) A finite-dimensional C*-algebra A has width n if A can
be written as a direct sum of exactly n matrix algebras.

(2) A trace � on a finite-dimensional C*-algebraA is interior if, when � is written
as a convex combination of the unique traces on the matrix algebras which
appear as direct summands of A, none of the coefficients are 0. The trace � is
rational if all of these coefficients are rational.

Lemma 3.7. Let A,B,C be finite-dimensional C*-algebras of width n, and let
α, 	, 
 be rational interior traces on A,B,C , respectively. Let Φ : A → B and
Ψ : A → C be trace-preserving embeddings. Then there exists N ∈ N such that B
and C can be amalgamated intoMN (C) over A by trace-preserving embeddings.

Proof. Write A =Mh1 (C)⊕ · · · ⊕Mhn (C). For each i , let αi be the unique trace
onMhi (C), and let ai ∈ Q be such that α =

∑n
i=1 aiαi . Write B =Ml1(C) ⊕ · · · ⊕

Mln (C), and C = Mk1 (C) ⊕ · · · ⊕Mkn (C), and denote the traces on B and C by
	 =

∑n
i=1 bi	i and 
 =

∑n
i=1 ci
i , respectively. For each i, j ≤ n, let ti,j be the

multiplicity with which Ai is embedded by Φ in Bj ; similarly, let qi,j be multiplicity
with which Ai is embedded by Ψ in Cj .
A direct computation from the definition of Φ (respectively, Ψ) being trace-
preserving shows that for all 1 ≤ j ≤ n,

n∑
i=1

bi
li
tj,i =

aj
hj
=

n∑
i=1

ci
ki
qj,i . (3.1)

We consider the conditions necessary to create a trace-preserving amalgamation
of B and C into MN (C). For each 1 ≤ i ≤ n, let si be the multiplicity with
whichMli (C) is embedded inMN (C) by this hypothetical embedding, and let ri be
similarly the multiplicity of the embedding ofMki (C). We immediately see that we
must have

n∑
i=1

li si = N =
n∑
i=1

kiri . (3.2)

For the traces 	 and 
 to be preserved (with respect to the unique trace � onMN (C)),
we must additionally have, for each 1 ≤ j ≤ n,

bj

n∑
i=1

li si = ljsj, (3.3)

and

cj

n∑
i=1

kiri = kjrj. (3.4)
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Finally, we must make our amalgamation respect Φ and Ψ. It is sufficient to
ensure that each Mhi (C) from A embeds into MN (C) via B and C with the same
multiplicities. That is, we must satisfy the following for all 1 ≤ j ≤ n:

n∑
i=1

tj,i si =
n∑
i=1

qj,i ri . (3.5)

Finding any positive integers s1, . . . , sn, r1, . . . , rn satisfying 3.2, 3.3, 3.4, and 3.5
will complete the proof.
If we view Equation 3.3 as a linear system in variables si then the facts that∑n
i=1 bi =

∑n
i=1 ci = 1 and all bi , ci 	= 0 imply that the system of equations 3.3 is

equivalent to

si =
bi ln
bnli
sn for all i < n,

and similarly Equation 3.4 is equivalent to

ri =
cikn
cnki
rn for all i < n.

Given these conditions, Equation 3.2 reduces to

rn =
lncn
bnkn

sn.

If we choose any sn and define the remaining ri , si as above, straightforward sub-
stitution shows that Equation 3.5 follows from Equation 3.1. Therefore if sn ∈ N

is chosen so that the above formulas for the si , ri all yield integer values, then
Equations 3.2–3.5 will be satisfied. 

Proposition 3.8. The class of finite-dimensional algebras of width n ≥ 2 with a
distinguished interior trace has AP. Moreover, we can always choose the amalgam to
have a rational trace.
Proof. Let A,B,C be algebras of width n with distinguished traces α, 	, 
, and
let Φ : A→ B and Ψ : A→ C be morphisms which each preserve α. By continuity,
and the fact thatα, 	, 
 are interior, the maps Φ and Ψ each preserve an open neigh-
bourhood of traces around α. Let U be the intersection of these neighbourhoods,
so Φ and Ψ both preserve U .
Let �1, . . . , �n be rational traces on A which form the vertices of an (n − 1)-
simplex contained in U . Apply Lemma 3.7 to each �i to produce matrix algebras
MN1 (C), . . . ,MNn (C) which embed B and C over A with trace-preserving embed-
dings. Let D =MN1 (C)⊕ · · · ⊕MNn (C), and embed B and C intoD by taking the
direct sum of the embeddings into eachMni (C); let Θ be the resulting embedding
of A into D. The extremal traces on D are mapped by Θ to the �i , so by convexity
there is some interior rational trace � onD which is mapped by Θ to α. Then (D, �)
is the required amalgam of B and C over A. 

We can now show that certain classes of finite-dimensional algebras are Fraı̈ssé
classes. To obtain information about the Fraı̈ssé limits, we will use the K0 functor.
To each unital C*-algebra A is associated an abelian group K0(A), and to each
embedding f : A → B an injective group homomorphism K0(f) : K0(A) →
K0(B). Since we will not explicitly need the construction of K0, we refer the reader
to [4], [30], or [10] for the definition.
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Theorem 3.9. For each n ≥ 2, and each interior trace � on Cn, the class K(n, �) of
finite-dimensional C*-algebrasA of width n with a distinguished interior trace α such
that there is an embedding of Cn into A which preserves �, is a Fraı̈ssé class.
The Frais̈sé limit of K(n, �) is simple, has a unique trace, and is not self-absorbing.
As an abelian group, theK0 group of the Fraı̈ssé limit is divisible and of rank n. Hence
when n 	= m, the limits of K(n, �) and K(m,�) are non-isomorphic.
Proof. It follows from Proposition 3.8 that this class has AP, and since this
class has a minimal element, JEP is a consequence of AP. By Proposition 3.8,
we have countably members of K(n, �) (namely, finite-dimensional algebras with
distinguished rational traces) such that every other member of K(n, �) embeds
into one of them. Since the space of substructures of a fixed member of K(n, �) is
separable in dK, we conclude that K(n, �) has WPP.
Let A denote the Fraı̈ssé limit ofK(n, �). It is clear from the proof of Proposition
3.8 that whenever a finite-dimensional algebra B appears in the construction of A,
at some future stage there is a finite-dimensional algebra C such that each direct
summand of B embeds into each direct summand of C . By [4, Corollary III.4.3]
the limit A is simple.
At each stage of the amalgamation in the proof of Proposition 3.8, we have a
(B, �) ∈ K(n, �), and we choose an open set around � which is preserved by the
relevant embeddings. Given any trace � onB other than �, in a future stage we may
amalgamate with (B, �) again, this time choosing an open set around � which does
not include �. So only the trace � is preserved to the limit algebra A, and hence A
has a unique trace.
For the remaining claims, we consider K0(A). For any choice of sequence Ak
from K(n, �) such that A = ⋃

k≥1Ak , we have K0(A) = lim−→K0(Ak) (see [4, The-
orem IV.3.3]). Each Ak is a direct sum of exactly n matrix algebras, so as abelian
groups, K0(Ak) ∼= Zn. The maps in K(n, �) are embeddings, and so the maps in
the direct limit of K0 groups are injective. For torsion-free groups, rank can be
defined directly in terms of linear independence, and it follows that the direct limit
of rank n torsion-free abelian groups via injective maps has rank n; therefore we
have rank(K0(A)) = n.
Finally, we show that A is not self-absorbing. By the Kunneth formula for C*-
algebras [34], there is an injective mapK0(A)⊗K0(A)→ K0(A⊗A). AsK0(A) has
rank n, we have thatK0(A)⊗K0(A) has rank n2, and hence cannot be injected into
the rank n group K0(A). Therefore K0(A⊗ A) 	∼= K0(A), and also A 	∼= A⊗ A. 


§4. The Jiang-Su algebra. The Jiang-Su algebraZ was constructed by Jiang and
Su in [20]. This infinite-dimensional algebra is K-theoretically indistinguishable
from the one-dimensional algebra C. The tensorial absorption of the Z plays a
central role in Elliott’s classification program of nuclear C*-algebras (see e.g., [8]
and the introduction to [33]). Z exhibits many of the properties of a Fraı̈ssé limit.
In this section, we show that Z is indeed a Fraı̈ssé limit. We begin with some basic
definitions and properties.

Definition 4.1. Fix p, q ∈ N. The dimension drop algebra Zp,q is defined to be
(we identifyMp(C)⊗Mq(C) andMpq(C))
Zp,q =

{
f ∈ C ([0, 1],Mpq(C)) : f(0) ∈Mp(C)⊗ 1q and f(1) ∈ 1p ⊗Mq(C)} ,
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considered as a C*-algebra with the operations inherited from C ([0, 1],Mpq(C)).
A dimension drop algebra Zp,q is prime if p and q are co-prime.
Prime dimension drop algebras are projectionless (i.e., do not have projec-
tions other than 0 and 1). As an inductive limit of projectionless algebras, Z is
projectionless as well, and moreover its K0 coincides with K0 of C.
Given a probability measure 
 on [0, 1], there is a natural trace �
 on Zp,q given
by

�
(f) =
∫ 1
0
�(f(t))d
,

where � is the unique trace onMpq(C). By using Riesz representation theorem for
bounded linear functionals on C ([0, 1]) and the uniqueness of traces on fibres of
Zp,q , one shows that all traces of Zp,q are of this form, hence T (Zp,q) is affinely
homeomorphic to the space of probability measures on [0, 1].
We need to remind the reader of a number of facts about measures before we can
define the classK for whichZ is a Fraı̈ssé limit. We say that a probability measure 

on [0, 1] is faithful and diffuse if the function u(t) = 
([0, t]) is a strictly increasing
and continuous. This will imply that the trace defined above as �
 is faithful and 

is diffuse as a measure i.e., for every F ⊆ [0, 1] with 
(F ) > 0, there is E ⊂ F such
that 
(E) < 
(F ).
Fact 4.2. If 
 is a faithful and diffuse probability measure on [0, 1] and u(t) =

([0, t]) then for any f ∈ C ([0, 1]),∫ 1

0
fd
 =

∫ 1
0
f(u(t))dt,

where dt is Lebesgue measure on [0, 1].
Wewill say that a trace �
 onZp,q is faithful anddiffuse if the associatedmeasure is.
Fact 4.3. Suppose that �
 and �� are two faithful and diffuse traces on a prime
dimension drop algebra Zp,q , then there is an automorphism � of Zp,q such that
�
 = �� ◦ �.
Proof. It suffices to prove this when � is Lebesgue measure on [0, 1]. Let u(t) =

([0, t]). Then the map � : Zp,q → Zp,q given by �(f) = f(u) is easily seen to be
the desired automorphism. 

The class K that we will consider is the class of all pairs (Zp,q , �) where p and q
are co-prime and � is a faithful and diffuse trace on Zp,q . The language for this class
will contain the usual language of C*-algebras together with a relation for a trace.
The original construction of the Jiang-Su algebra was as an inductive limit of a
sequence of prime dimension drop algebras. It has a unique (definable) trace which
when we refer to it, we will call �. When we considerZ as a structure in our language
with a relation for the trace, we will mean that Z is expanded by this unique trace.
The key properties of Z that we will need are contained in the following lemmas.
Lemma 4.4. Every (A, �) ∈ K embeds in a trace-preserving manner into Z . In
fact, Z is an inductive limit of a chain (An, �n) from K where (A0, �0) = (A, �). In
particular, Z is a K-structure.
Proof. These facts follow immediately from the main construction in [20]; see
Propositions 2.5 and 2.8. 
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The following result is implicit in Section 3 of [20]; we give a proof for
completeness.

Lemma 4.5. K has the joint embedding property.
Proof. Suppose (p, q) = 1. We will show that A = Zp,q embeds into B = Zpq,k
for any prime k > pq. Because of this inequality, we can write k = ap + bq for
some positve a and b. Define a *-homomorphism ϕ̃ : Zp,q → C ([0, 1],Mpqk(C)) as
follows, for t ∈ [0, 1]:

ϕ̃(f)(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f(0) . . . 0
...

. . .
...

0 . . . f(0)
f(t) . . . 0
...

. . .
...

0 . . . f(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where there are ap copies off(0) and bq copies off(t) on the diagonal. ϕ̃(f)(0) =
f(0)⊗ id and we can find a unitary u(1) such that u∗(1)ϕ̃(f)u(1) ∈ id ⊗Mk(C).
If we choose a continuous path of unitaries u on [0, 1] from id to u(1) then ϕ(f) =
u∗ϕ̃(f)u is our desired map. We now want to see that ϕ can be chosen to be trace-
preserving in our class K. In light of Fact 4.3, if � is the trace induced on B by
Lebesgue measure, we need to show that � restricted to the image of A under ϕ is a
faithful and diffuse trace on A. But from the form of ϕ̃, this is clear.
Finally, suppose (p, q) = 1 and (p′, q′) = 1. Let n be a common multiple of pq

and p′q′ and k some prime bigger than n. Then from above, both Zp,q and Zp′ ,q′
embed into Zn,k preserving any faithful and diffuse trace. 

The following lemma will be critical for establishing that K has the near amal-
gamation property. Here, if u is a unitary, Ad (u) : x �→ uxu∗ denotes the inner
automorphism associated with u.

Lemma 4.6. Suppose that A ∈ K and ϕ,� : A → Z are trace-preserving
embeddings. If ā ∈ A and ε > 0, then there is a unitary u ∈ Z such that

‖(Ad(u) ◦ ϕ)(ā)− �(ā)‖ < ε.
Proof. This is an immediate consequence of Robert’s [29, Theorem 1.0.1] once
we make some observations. Theorem 1.0.1 proves a result about algebras that
are noncommutative CW (NCCW) complexes and ones which have stable rank
one. Dimension-drop algebras are examples of NCCW complexes. In order for an
algebra to be stable rank one, the invertible elements of that algebra must be dense.
We shall check the assumptions of Robert’s theorem hold for Z . Every invertible
in Zp,q is a continuous function from [0, 1] into the set of invertible elements of
Mpq(C). Since invertible elements are dense inMpq(C), it is an exercise in topology
of [0, 1] to show that the invertible elements are dense in Zp,q . Since every unitary
inMpq(C) is of the form exp(ia) for a self-adjoint a, a similar exercise shows that
every unitary in Zp,q is of the form exp(ia) for a self-adjoint a and in particular
that the unitary group of Zp,q is connected. This shows that the groupK1 of Zp,q is
trivial (this is the only fact about K1 that we will need; we refer the reader to [30]
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for more information). In particular, Z is an inductive limit of NCCW complexes
with trivialK1 and is stable rank one.
Since prime dimension drop algebras are projectionless so is their inductive
limit, Z . Additionally, Z has a unique trace � and two positive elements a and
b in Z are approximately unitarily equivalent if and only if �(an) = �(bn), for all n.
A very special case of Robert’s theorem [29, Theorem 1.0.1] implies that if A
has stable rank 1 and B is an inductive limit of NCCW complexes with trivial K1,
unique trace, and the above property of Z , then the following hold (see Section 3
for the definition of Φ∗).
(1) For every trace � of A there is a unital *-homomorphism ϕ : A → B such
that ϕ∗(�) = �.

(2) Two homomorphism ϕ,� : A→ B are approximately unitarily equivalent if
and only if ϕ∗(�) = �∗(�).

The lemma now follows. 

We can now prove the main result.

Theorem 4.7. The Jiang-Su algebra Z with its distinguished trace is the Fraı̈ssé
limit of the Fraı̈ssé class K.
Proof. This is automatic by Lemma 4.6 if we can see that K is a Fraı̈ssé class.
Lemma 4.5 directly shows that K has the joint embedding property. Since every
element of K embeds into Z , K has the weak Polish property. We are left to show
that K satisfies the near amalgamation property. Towards this end, suppose that
A,B, and C are in K and that ϕ : A→ B and � : A→ C . By Lemma 4.5, we can
chooseD ∈ K and maps ϕ′ : B → D and �′ : C → D. Now by Lemma 4.4, we can
assume that Z is an inductive limit of Dn from K such that D0 = D. So resetting
the notation, we have maps ϕ,� from A into D and D begins an inductive chain
〈Dn : n ∈ N〉 leading toZ . By Lemma 4.6, for a fixed ε > 0, there is a unitary u ∈ Z
such that

‖(Ad(u) ◦ ϕ)(ā)− �(ā)‖ < ε/3,
where ā are generators for A. By the definability of unitaries, there are some n ∈ N

and some unitary u′ ∈ Dn so that ‖u − u′‖ < ε/3. Dn will now work as the near
amalgam of ϕ and �. 

Remark 4.8. Although this proof shows that the Jiang-Su algebra is a Fraı̈ssé
limit, it is a bit unsatisfactory in that it uses the existence of the algebra itself to
establish the key properties of the Fraı̈ssé class. Additionally, it relies heavily on [29]
in order to prove near amalgamation. In an earlier version of the present paper,
we asked whether there was a self-contained proof that K is a Fraisse class. Such a
proof was found by Masumoto in [25].

§5. Lévy automorphism groups. A Polish group G is extremely amenable if every
continuous action ofG on a compact space has a fixed point (see [27]). Suppose that
(Hn, dn)n∈N

is a sequence of compact metric groups equipped with their normalized
Haar measures 
Hn . The sequence (Hn)n∈N

has the Lévy concentration property if
for any sequence An ⊂ Hn of Borel subsets such that lim infn 
Hn (An) > 0 and for
every ε > 0

lim
n→∞
Hn {x ∈ Hn : ∃a ∈ An, d (a, x) ≤ ε} = 1;
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see also [27, Definition 1.2.6 and Remark 1.2.9]. A Polish group is Lévy if it admits
an increasing sequence (Hn)n∈N

of compact subgroups with dense union with the
Lévy concentration property with respect to the metrics induced by a compatible
metric on G . Every Lévy group is extremely amenable [27, Theorem 4.1.3].
IfM is a II1 factor then the automorphism group Aut(M ) ofM is a Polish group
with respect to the topology of pointwise convergence in trace-norm. Similarly, if
A is a separable C*-algebra then the automorphism group Aut(A) of A is a Polish
group with respect to the topology of pointwise convergence in norm.
Let Un denote the unitary group ofMn(C). It can be naturally identified with a
subgroup of the unitary group of both the hyperfinite II1 factor R, as well as of
the unitary group of a UHF algebra whose supernatural number is divisible by n.
The metrics induced by these embeddings correspond to the trace-norm and to the
operator norm, respectively. The groups SUn = {u ∈ Un : det(u) = 1} form a
Lévy sequence with respect to either metric ([27, Theorem 4.1.14]). We note that all
automorphisms ofMn(C) are inner and that Aut(Mn(C)) is naturally isomorphic
to SUn, via u �→ Ad u.
The proof of the first two parts of the following Proposition are well-known
(cf. [15]), but for the convenience of the reader, we include outlines of their proofs,
as well as a more detailed proof of the third claim.

Proposition 5.1. The automorphism groups of

(1) the hyperfinite II1 factor,
(2) UHF algebras, and
(3) the AF algebras obtained in Theorem 3.9

are Lévy and, in particular, extremely amenable.

Proof. By the above, for n ∈ N the group Hn := {Ad u : u ∈ SUn} can
be identified with a compact subgroup of Aut(R). These groups have the Lévy
approximation property, and since

⋃
n∈N
Un is dense U (R) and all automorphisms

of R are approximately inner,⋃n Hn is dense in Aut(R). Therefore (1) follows.
The proof of (2) is identical, although the groups Hn are now considered with a
different metric.
In order to prove (3), fix m ≥ 2 and let A be one of the AF algebras constructed
in Theorem 3.9 with Bratteli diagram of width m. Since K0 (A) is linearly ordered,
all automorphisms of A are approximately inner by Elliott’s classification of AF
algebras [4, Theorem IV.4.3]. Writing A as an inductive limit of finite-dimensional
algebras An , we represent U (A) as an inductive limit of U (An) and Aut(A) as
an inductive limit of Aut(An). The algebra An is a direct sum of matrix algebras
Mk(i)(C) for 1 ≤ i ≤ m and thereforeAut(An) ∼=

∏
i≤m SUk(i). An inspection of the

proof of Theorem 3.9 shows that limnmini≤m k(i) =∞. It is now an easy exercise
to show that the sequence Aut(An) has the Lévy property, and (3) follows. 


§6. A Ramsey theorem for matrix algebras. In this section, we deduce from
Proposition 5.1 Ramsey-type results for matrix algebras. We will use the corre-
spondence between extreme amenability of a Fraı̈ssé limit and the Ramsey property
of the corresponding Fraı̈ssé class established in [26, Theorem 3.10] building on a
previous results in the discrete case from [21].
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Suppose thatK is a Fraı̈ssé class in the sense ofDefinition 2.4. IfA,B are elements
ofKwith distinguished set of generators ā forA, denote by AB space of embeddings
of A inside B endowed with the metric

�ā (ϕ,�) = max
i
d
(
ϕ(ai), �(ai )) .

A coloring of AB is a 1-Lipschitz map 
 : AB → [0, 1].
Suppose that K satisfies the property that AB is compact for every A,B ∈ K.
In this case, the definition of the approximate Ramsey property ([26], Def. 3.3) is
equivalent to: for every A,B ∈ K and every ε > 0, there is C ∈ K such that for any
coloring 
 of AC there is 	 ∈ BC such that 
(	 ◦ −) varies by at most ε on AB.
In [26], a version of the following is proved as Proposition 3.4.
Proposition 6.1. Suppose that K is a Fraı̈ssé class with limit M and for all
A,B ∈ K, AB is compact then the following are equivalent:
(1) K has the approximate Ramsey property.
(2) For every A,B ∈ K, ε > 0, and every coloring 
 of AM , there is 	 ∈ BM
such that 
(	 ◦ −) varies by at most ε on AB; we sayM has the approximate
Ramsey property.

The following result can be proved with the same methods as [26, Theorem 3.10].
Theorem 6.2. Suppose that M is the limit of a Fraı̈ssé class K. The following
statements are equivalent:
(1) Aut(M ) is extremely amenable.
(2) K has the approximate Ramsey property.
Suppose that B is a unital subalgebra of the hyperfinite II1 factorR. Endow the
space Mk(C)B of unital embeddings ofMk(C) into B with the metric

d2 (α,α′) = sup
‖x‖≤1

‖(α − α′) (x)‖2 .

The following is an immediate corollary of Proposition 6.1, Theorem 6.2 and the
extreme amenability of Aut(R).
Theorem 6.3. The class of matrix algebras equipped with the metric d2 and its
Fraı̈ssé limit, R, have the approximate Ramsey property.
Using the extreme amenability of the automorphism groups of infinite typeUHF
algebras, one can obtain similar results for matrix algebras with respect to the
operator norm. If q =

∏
p p
np for np ∈ {0,∞}, then we denote by Mq the infinite

type UHF algebras with associated supernatural number q. For A ⊂ Mq , define
Mk(C)A to be the set of embeddings ofMk (C) into A endowed with the metric

d (α,α′) = sup
‖x‖≤1

‖(α − α′) (x)‖ .

Theorem 6.4. For any supernatural number q, bothMq and its associated Fraı̈ssé
class have the approximate Ramsey property.
Finally one can use the fact that the algebra K(H ) of compact operators is the
Fraı̈ssé limit of the class of full matrix algebras, and that Aut

(K(H )) is extremely
amenable to obtain the analogues of the above results where one considers not
necessarily unital injective *-homomorphisms as embeddings. The same results hold
for the finite width AF algebras and their associated Fraı̈ssé classes as described in
Section 3.
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§7. Future work. Both the Jiang-Su algebra and the infinite type UHF algebras
are examples of strongly self-absorbing C*-algebras ([37]). A unital C*-algebra D
is strongly self-absorbing if there is a sequence of unitaries un in D ⊗D such that

Φ(a) = lim
n
un(a ⊗ 1)u∗n

is well-defined for all a ∈ D and Φ is an isomorphism between D and D ⊗D.
In addition to Z and the infinite type UHF algebras, the only other currently
known examples of strongly self-absorbing algebras are the Cuntz algebrasO2 and
O∞ together with the tensor products with O∞ and infinite type UHF algebras.
Strongly self-absorbing algebras play a pivotal role in Elliott’s classification program
for nuclear, simple, separable, unital C*-algebras (see [31, Chapters 5 and 7] for the
role ofO2 andO∞ and the more recent [8] and [33] for the role ofZ) These algebras
also have remarkable model-theoretic properties (see [9, Section 2.2 and Section
4.5] and [11]). Every strongly self-absorbing C*-algebra is an atomic model of its
theory, and all atomic models can be viewed as Fraı̈ssé limits of their type space.
Nevertheless, strongly self-absorbing C*-algebras share a number of properties with
the Fraı̈ssé limits not common to all atomic models, and it is natural to conjecture
that all known, and perhaps all, strongly self-absorbing algebras can be construed as
Fraı̈ssé limits of Fraı̈ssé classes from which information about their automorphism
group may be extracted.

Problem 7.1. Let A be a strongly self-absorbing C*-algebra. Is A a nontrivial
Fraı̈ssé limit?

Since all strongly self-absorbing algebras are singly generated, andO2 is moreover
the universal algebra with two generators satisfying particularly simple relations,
it may be necessary to consider Fraı̈ssé categories other than C*-algebras, such as
(unital) operator spaces (see [24]).
The important first step in proving that a nuclear algebra A is strongly self-
absorbing is to prove that it is tensorially self-absorbing, i.e., that A ⊗ A ∼= A.
Proofs that O2 and Z enjoy this property are nontrivial, and Elliott’s proof that
O2 ⊗O2 ∼= O2 in particular precipitated remarkable progress (see [31], [8]).
In the case of Z , we note that if one considers the class K of dimension-drop
algebras with distinguished traces as used in Section 4, we could modify the con-
struction by considering a new class K′ which is just the closure of K under taking
finite tensor products together with the induced traces. It would be interesting to
know if this class is a Fraı̈ssé class. If so, this would give a direct proof that Z is
self-absorbing.
It is possible that viewing other strongly self-absorbing algebras as Fraı̈ssé limits
may result in new proofs of tensorial self-absorbtion. Such proofs would give infor-
mation about these algebras, and this techniquemay also be useful in understanding
Jacelon’s non-unital analogue of Z ([19]).
Problem 7.2. Is Jacelon’s simple, monotracial, stably projectionless C*-algebraW
a nontrivial Fraı̈ssé limit? IsW ⊗W ∼=W?
The construction of W resembles the construction of Z , with the role of
dimension-drop algebras being played by the so-called Razak building blocks
([28]).
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Another goal of this research is to shed new light on the automorphisms groups
of strongly self-absorbing C*-algebras such as Z , O2, and O∞. For example an
affirmative answer to Problem 7.1 would be the first step towards the solution of the
following problem.

Problem 7.3. SupposeA is strongly self-absorbing. Is Aut(A) extremely amenable?

Problem 7.4 ([32, Question 9.1]). Is Aut(O2) a universal Polish group?
Note that [13, Theorem 7.4] and the main result of [32] together imply that
Aut(O2) induces the universal orbit equivalence relation for Polish group actions.
Moreover by Kirchberg’s O2-absorption theorem [22] every simple, separable,
nuclear, and unital C*-algebra A satisfies A ⊗ O2 ∼= O2. In particular, the auto-
morphism group of A embeds into the automorphism group of O2 via the map
α �→ α ⊗ idO2 .
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formula. Pacific Journal of Mathematics, vol. 98 (1982), pp. 399–445.
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