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SUMMARY
This paper presents a systematic approach to compute the angularity and the axiality indices for a
Schönflies parallel manipulator. Angularity index may be considered as a measure of the sensitivity
of the mobile platform to changes in rotation, while axiality index can be used to measure the
sensitivity of the OP of the mobile platform to changes in translation. Since both indices were
inspired by very fundamental concepts of classical kinematics (angular velocity vector and helicoidal
velocity field), they offer a clear and simple physical meaning, which may be useful to the designer
of parallel manipulators. Moreover, both dexterity indices do not require obtaining a dimensionally
homogeneous Jacobian matrix, nor do they depend on having similar types of actuators in each
manipulator’s leg. Detailed numerical examples are given in order to illustrate the computation of
the dexterity indices.
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1. Introduction
Several dexterity indices have been proposed in order to design more efficient parallel manipulators,
see Table 1 for a representative list. These indices are related to a number of concepts including
the condition number of the Jacobian matrix,1–4 manipulability ellipsoid,5–7 examination of the
Jacobian’s singular values,8 rotation sensitivity,9 and point-displacement sensitivity.9 In general, all
these approaches are usually based on a first order (velocity) analysis whose typical form4 is given
by Fẋ = Gq̇, where q̇ is a vector containing the joint velocities of the actuated joints, F and G are the
so-called Jacobian matrices of the manipulator, and ẋ is a vector associated with the velocity state of
the mobile platform, that is, it may contain the angular velocity vector of the mobile platform and/or
velocities of specially selected points pertaining to the mobile platform. In this context, it should be
noted that, if the manipulator has a mix of revolute and prismatic actuators, or its mobile platform
undergoes a general motion (translation and rotation), the Jacobian matrices F and G are usually
not homogeneous in terms of units. Thus, the computation of the first five dexterity indices shown
in Table 1 would mix translational and rotational capabilities, which is apparently meaningless.2, 7

Particularly important have been the efforts to homogenize1, 10–12 the Jacobian matrices. On the one
hand, Gosselin1 expressed the velocity vectors of three noncollinear points in a local coordinate
frame which is rigidly attached to the mobile platform, but all the actuators were assumed to be of
the revolute type. On the other hand, Kim and Ryu10 proposed the use of the velocity vectors of three
noncollinear points located on the planar mobile platform of a 6-DOF parallel manipulator, which is
actuated by six prismatic actuators. In turn, the effort of Kong et al.11 was focused on the use of the
velocity vectors of three noncollinear points located on the planar mobile platform of a 6-DOF hybrid
parallel manipulator, which is actuated by six revolute-type actuators. Finally, Liu et al.12 resorted
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Table I. Important features related to dexterity indices.

Requirement

Homogeneous Similar
Dexterity index Jacobian matrix actuator type

Condition number Yes Yes
(Isotropy)
Rotation sensitivity Yes Yes
Point-displacement Yes Yes
sensitivity
Manipulability Yes Yes
ellipsoid
Jacobian’s Yes Yes
singular values
Angularity No No
Axiality No No

to the use of five points and eight special axes associated with a virtual tetrahedron pertaining to
the mobile platform of a parallel manipulator which is actuated with only one type of motor, either
rotational or translational. However, although dimensionless Jacobian matrices are obtained, all the
proposed approaches require that the parallel manipulator has only one type of actuator, which is a
limitation to be taken into account.

In order to overcome the problem of dealing with nonhomogeneous Jacobian matrices, two novel
dexterity indices have been recently introduced to estimate the motion performance of the mobile
platform of a parallel manipulator undergoing a general motion.13 On the one hand, the angularity
index may be used to measure the sensitivity of the mobile platform to changes in rotation. On
the other hand, the axiality index can be used to measure the sensitivity of the OP of the mobile
platform to changes in translation. Since both indices were inspired by very fundamental concepts
of classical kinematics (angular velocity vector and helicoidal velocity field), they offer a clear and
simple physical meaning, which may be useful to the designer of parallel manipulators. Moreover,
the proposed indices do not require obtaining a dimensionally homogeneous Jacobian matrix, nor do
they depend on having similar types of actuators in each manipulator’s leg. Hence, the objective of
this paper is to apply the angularity and axiality indices to a particular Schönflies parallel manipulator
in order to know about its kinematic performance.

2. The Schönflies Parallel Manipulator
In a recent work, Cervantes-Sánchez et al.13 applied the angularity and axiality indices on a 3-
PRS spatial parallel manipulator, which allows a combined motion of translation and rotation of its
mobile platform. Now, the main objective of this paper is to apply the angularity and axiality indices
to a different parallel manipulator. Therefore, it was selected a spatial parallel manipulator whose
mobile platform has an interesting pattern motion, namely, a Schönflies motion, which is composed
of three independent translations in space and one rotation about an axis with constant orientation.
Thus, according to the approach proposed by Pérez-Soto et al.,14 the manipulator under study was
obtained by assembling four legs. These four legs include two types of basic legs proposed by Kong
and Gosselin,15 which were designed to generate a Schönflies motion. However, it is important to
mention that this particular manipulator, as a whole, is not explicitly reported by Kong and Gosselin.15

On the other hand, one more reason to choose this manipulator was based on the fact that it
is actuated by different types of actuators, namely, two rotational actuators and two translational
actuators. In consequence, the application of the first five dexterity indices shown in Table 1 on the
proposed Schönflies manipulator would face a major problem: the Jacobian matrices involved in their
calculation are not homogeneous in terms of units. Therefore, only the angularity and axiality indices
can be successfully applied to measure the kinematic dexterity of the Schönflies manipulator under
study.
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Fig. 1. Layout of the Schönflies parallel manipulator.

2.1. Kinematic architecture of the Schönflies parallel manipulator
The Schönflies parallel manipulator under study is composed of four nonidentical five-degrees-of-
freedom serial chains in a parallel array, sharing one common base (link 0) and one common moving
platform (link 5), which is displayed in Fig. 1.

Referring to Fig. 1, leg one (links 10-11-12-13-14-15) and leg three (links 30-31-32-33-34-35) are
made up of five revolute (R) joints. In this type of leg, the second and fifth joint axes are parallel to the
first joint axis, whereas the fourth joint axis is parallel the third joint axis. Moreover, the third joint
axis intersects the second perpendicularly, and the fifth joint axis intersects the fourth perpendicularly.
Furthermore, a rotational actuator is used to drive the first joint of the leg where the motor is installed
on the fixed platform.

On the other hand, leg two (links 20-21-22-23-24-25) and leg four (links 40-41-42-43-44-45) are
built with one prismatic joint (P) and four revolute (R) joints. For this type of leg, the second and
fifth joint axes are parallel to the first joint axis, whereas the fourth joint axis is parallel the third
joint axis. Moreover, the third joint axis intersects the second perpendicularly, and the fifth joint axis
intersects the fourth perpendicularly. Furthermore, the first moving link of this type of leg is driven
by a translational actuator mounted on the fixed platform.

2.2. Geometry of the manipulator
For the spatial parallel manipulator shown in Fig. 1, the four fixed points O1, O2, O3, and O4 define
the geometry of the fixed platform, and the four moving points 1, 2, 3, and 4 define the geometry of
the mobile platform.
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Fig. 2. General geometry of the fixed and mobile platforms.

Fig. 3. Geometry of the first leg.

It should be noted that, although the particular manipulator’s platforms shown in Fig. 1
are symmetrical, both platforms, the fixed platform and the mobile platform, may be arbitrary
quadrilaterals, see Fig. 2.

On the other hand, Figs. 3–6 have been specially drawn in order show the link lengths and joint
variables associated with the four manipulator’s legs.

It is important to mention that unit vectors e1, e2, e3, and e4 denote the joint axes of those revolute
joints that join links 12 and 13, 22 and 23, 32 and 33, and 42 and 43, respectively. Moreover, the pose
of the mobile platform can be specified in terms of the position of point P , and an orientation angle,
φ. Furthermore, the origin of the fixed coordinate frame X0Y0Z0 is located at point O.

3. Kinematic Position Analysis
In order to conduct a systematic numerical computation, a velocity analysis requires a previous
kinematic position analysis. Basically, a direct kinematic position analysis (DKPA), is formulated in
this section to achieve the objectives pursued in this paper. Firstly, it should be noted that angles ϕ1,
ϕ2, ϕ3, ϕ4, β1, β2, β3, β4, γ1, γ2, γ3, and γ4 are passive joint variables, whereas θ1, p2, θ3, and p4 are
active joint variables, see Figs. 3–6. On the other hand, vector rP/O = (x, y, z)T denotes the position
vector of moving point P with respect to fixed point O, which is measured in the X0Y0Z0 coordinate
frame, and φ denotes the rotation of the mobile platform about the Z0 axis, see Fig. 2. Thus, the
objective of the DKPA is to find the pose of the mobile platform, represented by x, y, z, and φ, in
terms of the actuator displacements θ1, p2, θ3, and p4.

3.1. Formulation of the constraint equations
The formulation of the constraint equations begins by writing a loop-closure equation for each leg:

rOi/O + rAi/Oi
+ rBi/Ai

+ rCi/Bi
+ rDi/Ci

+ ri/Di
= rP/O + ri/P , i = 1, 2, 3, 4, (1)

where rj/k stands for the position vector of point j with respect to point k.
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Fig. 4. Geometry of the second leg.

Fig. 5. Geometry of the third leg.
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Fig. 6. Geometry of the fourth leg.

Writing Eq. (1) for i = 1, 2, 3, 4, and taking the X0Y0Z0 coordinate frame as a reference, it is
obtained that:

R1X + b1 cos θ1 + L1 sin(θ1 + ϕ1) cos β1 = x + ρ1X cos φ (2)

b1 sin θ1 − L1 cos(θ1 + ϕ1) cos β1 = y + ρ1X sin φ (3)

a1 + h1 + L1 sin β1 + d1 = z (4)

R2X−L2 cos ϕ2 cos β2 cos α2+(b2+L2 sin ϕ2 cos β2) sin α2 =x+ρ2X cos φ−ρ2Y sin φ (5)

R2Y −L2 cos ϕ2 cos β2 sin α2−(b2+L2 sin ϕ2 cos β2) cos α2 =y+ρ2X sin φ+ρ2Y cos φ (6)

p2 + h2 + L2 sin β2 + d2 = z (7)

R3X + {b3 cos θ3 + L3 sin(θ3 + ϕ3) cos β3} cos α3

− {b3 sin θ3 − L3 cos(θ3 + ϕ3) cos β3} sin α3 = x + ρ3X cos φ − ρ3Y sin φ (8)

R3Y + {b3 cos θ3 + L3 sin(θ3 + ϕ3) cos β3} sin α3

+ {b3 sin θ3 − L3 cos(θ3 + ϕ3) cos β3} cos α3 = y + ρ3X sin φ + ρ3Y cos φ (9)

a3 + h3 + L3 sin β3 + d3 = z (10)

R4X+L4 cos ϕ4 cos β4 cos α4−(b4+L4 sin ϕ4 cos β4) sin α4=x+ρ4X cos φ−ρ4Y sin φ (11)

R4Y+L4 cos ϕ4 cos β4 sin α4+(b4+L4 sin ϕ4 cos β4) cos α4=y+ρ4X sin φ+ρ4Y cos φ (12)

p4 + h4 + L4 sin β4 + d4 = z (13)

which are the constraint equations sought.
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3.2. Solution of the direct kinematic position problem
The solution of the kinematic position problem can be started by realizing that Eqs. (2)–(13) are
linear in the sines and cosines of passive joint variables ϕ1, ϕ2, ϕ3, and ϕ4. Thus, from simultaneous
solution of Eqs. (2), and (3), (5), and (6), (8), and (9), (11), and (12), respectively, it is found
that:

sin ϕ1 = ρ1X cos(φ − θ1) + (x − R1X) cos θ1 + y sin θ1 − b1

L1 cos β1
(14)

cos ϕ1 = −ρ1X sin(φ − θ1) + (x − R1X) sin θ1 − y cos θ1

L1 cos β1
(15)

sin ϕ2 = −ρ2X sin(φ − α2)−ρ2Y cos(φ − α2)−R2X sin α2+R2Y cos α2+x sin α2−y cos α2−b2

L2 cos β2

(16)

cos ϕ2 = −ρ2X cos(φ − α2) + ρ2Y sin(φ − α2) + R2X cos α2 + R2Y sin α2 − x cos α2 − y sin α2

L2 cos β2

(17)

sin ϕ3 = ρ3X cos(φ−θ3 − α3)−ρ3Y sin(φ−θ3−α3)

L3 cos β3

− R3X cos(θ3 + α3)+R3Y sin(θ3+α3)−x cos(θ3+α3)−y sin(θ3+α3)+b3

L3 cos β3
(18)

cos ϕ3 = −ρ3X sin(φ−θ3−α3)+ρ3Y cos(φ−θ3−α3)

L3 cos β3

+ −R3X sin(θ3+α3)+R3Y cos(θ3+α3)+x sin(θ3+α3)−y cos(θ3+α3)

L3 cos β3
(19)

sin ϕ4 = ρ4X sin(φ − α4) + ρ4Y cos(φ − α4) + R4X sin α4 − R4Y cos α4 − x sin α4 + y cos α4 − b4

L4 cos β4

(20)

cos ϕ4 = ρ4X cos(φ − α4) − ρ4Y sin(φ − α4) − R4X cos α4 − R4Y sin α4 + x cos α4 + y sin α4

L4 cos β4
.

(21)

Introducing the trigonometric identities sin2 ϕi +cos2 ϕi =1, for i = 1, 2, 3, and 4, Eqs. (14)–(21)
become:

2ρ1X{x cos φ + y sin φ − b1 cos(φ − θ1) − R1X cos φ + ρ1X/2}
− 2b1(x cos θ1 + y sin θ1 − R1X cos θ1)

+ (R1X − x)2 + y2 + b2
1 − L2

1 cos2 β1 = 0 (22)

2ρ2X{x cos φ + y sin φ + b2 sin(φ − α2) − R2X cos φ − R2Y sin φ + ρ2X/2}
− 2ρ2Y {x sin φ − y cos φ − b2 cos(φ − α2) − R2X sin φ + R2Y cos φ − ρ2Y /2}
− 2b2{x sin α2 − y cos α2 − R2X sin α2 + R2Y cos α2 − b2/2}
+ (R2X − x)2 + (R2Y − y)2 − L2

2 cos2 β2 = 0 (23)
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2ρ3X{x cos φ + y sin φ − b3 cos(φ − θ3 − α3) − R3X cos φ − R3Y sin φ + ρ3X/2}
− 2ρ3Y {x sin φ − y cos φ − b3 sin(φ − θ3 − α3) − R3X sin φ + R3Y cos φ − ρ3Y /2}
− 2b3{x cos(θ3 + α3) + y sin(θ3 + α3) − R3X cos(θ3 + α3) − R3Y sin(θ3 + α3) − b3/2}
+ (R3X − x)2 + (R3Y − y)2 − L2

3 cos2 β3 = 0 (24)

2ρ4X{x cos φ + y sin φ − b4 sin(φ − α4) − R4X cos φ − R4Y sin φ + ρ4X/2}
− 2ρ4Y {x sin φ − y cos φ + b4 cos(φ − α4) − R4X sin φ + R4Y cos φ − ρ4Y /2}
+ 2b4{x sin α4 − y cos α4 − R4X sin α4 + R4Y cos α4 + b4/2}
+ (R4X − x)2 + (R4Y − y)2 − L2

4 cos2 β4 = 0. (25)

Now, Eqs. (4), (7), (10), and (13) are solved for sin β1, sin β2, sin β3, and sin β4, respectively, and
then squared. Next, Eqs. (22)–(25) are solved for cos2 β1, cos2 β2, cos2 β3, and cos2 β4, respectively.
Thus, by introducing the trigonometric identities sin2 βi +cos2 βi =1, for i = 1, 2, 3, 4, the following
equations are obtained:

x2 + y2 + z2 + k11x + k12y + k13z + k14 = 0 (26)

x2 + y2 + z2 + k21x + k22y + k23z + k24 = 0 (27)

x2 + y2 + z2 + k31x + k32y + k33z + k34 = 0 (28)

x2 + y2 + z2 + k41x + k42y + k43z + k44 = 0 (29)

which is a system composed of four nonlinear Eqs. (26)–(29) in four unknowns, x, y, z, and φ. In
fact, angle φ appears in parameters kij , which are given by:

k11 ≡ 2ρ1X cos φ − 2b1 cos θ1 − 2R1X

k12 ≡ 2ρ1X sin φ − 2b1 sin θ1

k13 ≡ −2(a1 + d1 + h1)

k14 ≡ 2b1{R1X cos θ1 − ρ1X cos(φ − θ1)} − 2R1Xρ1X cos φ + (a1 + d1 + h1)2 + b2
1

+ R2
1X + ρ2

1X − L2
1

k21 ≡ 2ρ2X cos φ − 2ρ2Y sin φ − 2b2 sin α2 − 2R2X

k22 ≡ 2ρ2X sin φ + 2ρ2Y cos φ + 2b2 cos α2 − 2R2Y

k23 ≡ −2(p2 + d2 + h2)

k24 ≡ 2b2{ρ2X sin(φ − α2) + ρ2Y cos(φ − α2)

+ R2X sin α2 − R2Y cos α2}
+ 2R2X{ρ2Y sin φ − ρ2X cos φ} − 2R2Y {ρ2X sin φ + ρ2Y cos φ}
+ (p2 + d2 + h2)2 + b2

2 + R2
2X + R2

2Y + ρ2
2X + ρ2

2Y − L2
2.

k31 ≡ 2ρ3X cos φ − 2ρ3Y sin φ − 2b3 cos(θ3 + α3) − 2R3X

k32 ≡ 2ρ3X sin φ + 2ρ3Y cos φ − 2b3 sin(θ3 + α3) − 2R3Y

k33 ≡ −2(a3 + d3 + h3)

k34 ≡ 2b3{−ρ3X cos(φ − θ3 − α3) + ρ3Y sin(φ − θ3 − α3) + R3X cos(θ3 + α3) + R3Y sin(θ3 + α3)}
+ 2R3X{ρ3Y sin φ − ρ3X cos φ} − 2R3Y {ρ3X sin φ + ρ3Y cos φ}
+ (a3 + d3 + h3)2 + b2

3 + R2
3X + R2

3Y + ρ2
3X + ρ2

3Y − L2
3.
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k41 ≡ 2ρ4X cos φ − 2ρ4Y sin φ + 2b4 sin α4 − 2R4X

k42 ≡ 2ρ4X sin φ + 2ρ4Y cos φ − 2b4 cos α4 − 2R4Y

k43 ≡ −2(p4 + d4 + h4)

k44 ≡ 2b4{−ρ4X sin(φ − α4) − ρ4Y cos(φ − α4) − R4X sin α4 + R4Y cos α4}
+ 2R4X{ρ4Y sin φ − ρ4X cos φ} − 2R4Y {ρ4X sin φ + ρ4Y cos φ}
+ (p4 + d4 + h4)2 + b2

4 + R2
4X + R2

4Y + ρ2
4X + ρ2

4Y − L2
4.

System of Eqs. (26)–(29) can be simplified by performing the following operations. Subtracting
Eqs. (27)–(29) from Eq. (26) yields:

(k11 − k21)x + (k12 − k22)y + (k13 − k23)z + k14 − k24 = 0 (30)

(k11 − k31)x + (k12 − k32)y + (k13 − k33)z + k14 − k34 = 0 (31)

(k11 − k41)x + (k12 − k42)y + (k13 − k43)z + k14 − k44 = 0. (32)

Equations (30)–(32) can be written in the following matrix form:

[
u1 u2 u3

]
p = b, Up = b, (33)

where:

u1 ≡
⎡
⎣ k11−k21

k11−k31

k11−k41

⎤
⎦ , u2 ≡

⎡
⎣ k12−k22

k12−k32

k12−k42

⎤
⎦ , u3 ≡

⎡
⎣ k13−k23

k13−k33

k13−k43

⎤
⎦ ,

p≡ rP/O =
⎡
⎣x

y

z

⎤
⎦ , b≡

⎡
⎣ k24−k14

k34−k14

k44−k14

⎤
⎦ .

Equation (33) may be symbolically solved as follows:

p = U−1b, (34)

where inverse matrix U−1 may be expressed in terms of its columns explicitly, without introducing
components:16, 17

U−1 = 1

(u1 × u2) · u3

⎡
⎣ (u2 × u3)T

(u3 × u1)T

(u1 × u2)T

⎤
⎦ . (35)

Equations (34) and (35) are now combined to yield:

x = (u2 × u3) · b
(u1 × u2) · u3

(36)

y = (u3 × u1) · b
(u1 × u2) · u3

(37)

z = (u1 × u2) · b
(u1 × u2) · u3

. (38)
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If Eqs. (36)–(38) are substituted into any of Eqs. (26)–(29), a 12th-degree polynomial in τ is
obtained:

m12τ
12 + m11τ

11 + m10τ
10 + m9τ

9 + m8τ
8 + m7τ

7 + m6τ
6

+ m5τ
5 + m4τ

4 + m3τ
3 + m2τ

2 + m1τ + m0 = 0, (39)

where τ ≡ tan(φ

2 ). Because of all the coefficients m0, m1, . . . , m12 depend only on the input
displacements, namely, θ1, p2, θ3, and p4, Eq. (39) may be considered as a closed form solution
for φ.

3.3. Vector solution of the loop-closure equations
The loop-closure Eq. (1) can be solved as follows:

rDi/Ci
= rP/O + ri/P − rOi/O − rAi/Oi

− rBi/Ai
− rCi/Bi

− ri/Di
, i = 1, 2, 3, 4. (40)

Thus, based on the geometry shown in Figs. 3–6, and, if the fixed coordinate system X0Y0Z0 is
taken as reference, Eq. (40) leads to:

rD1/C1 =
⎡
⎣x + ρ1X cos φ − b1 cos θ1 − R1X

y + ρ1X sin φ − b1 sin θ1

z − a1 − h1 − d1

⎤
⎦ (41)

rD2/C2 =
⎡
⎣ x + ρ2X cos φ − ρ2Y sin φ − R2X − b2 sin α2

y + ρ2X sin φ + ρ2Y cos φ − R2Y + b2 cos α2

z − p2 − h2 − d2

⎤
⎦ (42)

rD3/C3 =
⎡
⎣x + ρ3X cos φ − ρ3Y sin φ − b3 cos α3 cos θ3 + b3 sin α3 sin θ3 − R3X

y + ρ3X sin φ + ρ3Y cos φ − b3 sin α3 cos θ3 − b3 cos α3 sin θ3 − R3Y

z − a3 − h3 − d3

⎤
⎦ (43)

rD4/C4 =
⎡
⎣ x + ρ4X cos φ − ρ4Y sin φ + b4 sin α4 − R4X

y + ρ4X sin φ + ρ4Y cos φ − b4 cos α4 − R4Y

z − p4 − h4 − d4

⎤
⎦ . (44)

At this point it is important to realize that input displacements θ1, p2, θ3, and p4, are implicitly
related to position vectors rD1/C1 , rD2/C2 , rD3/C3 , and rD4/C4 , through Eqs. (41)–(44), respectively.
Moreover, values of angle φ and Cartesian coordinates x, y, and z, can be computed from Eqs. (39),
(36), (37), and (38), respectively. The relevance of computing position vectors rD1/C1 , rD2/C2 , rD3/C3 ,
and rD4/C4 will be evident in the following sections.

4. Velocity Analysis
The goal of this section is to solve the direct kinematic velocity problem. Therefore, given the input
joint velocities of the Schönflies manipulator, namely, q̇I ≡ (θ̇1, ṗ2, θ̇3, ṗ4)T , it is required to compute
the velocity state of the mobile platform, namely, V5/0 ≡ (ω5/0, vP/O)T , where vP/O = (ẋ, ẏ, ż)T is
the velocity vector of point P , ω5/0 = φ̇ k0 is the angular velocity vector of the mobile platform, and
k0 is a unit vector along axis Z0.
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Firstly, by means of a velocity analysis, it can be obtained the following relationship between the
input and the output velocities:

⎡
⎢⎢⎣

μ1 rT
D1/C1

μ2 rT
D2/C2

μ3 rT
D3/C3

μ4 rT
D4/C4

⎤
⎥⎥⎦

[
φ̇

vP/O

]
=

⎡
⎢⎣

λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

⎤
⎥⎦

⎡
⎢⎣

θ̇1

ṗ2

θ̇3

ṗ4

⎤
⎥⎦ , Aṡ = Bq̇I (45)

where:

μ1 ≡ (k0 × r1/P ) · rD1/C1, λ1 ≡ (k0 × rB1/A1 ) · rD1/C1,

μ2 ≡ (k0 × r2/P ) · rD2/C2, λ2 ≡ k0 · rD2/C2,

μ3 ≡ (k0 × r3/P ) · rD3/C3, λ3 ≡ (k0 × rB3/A3 ) · rD3/C3,

μ4 ≡ (k0 × r4/P ) · rD4/C4, λ4 ≡ k0 · rD4/C4,

with:

r1/P =
⎡
⎣ρ1X cos φ

ρ1X sin φ

0

⎤
⎦ , r2/P =

⎡
⎣ρ2X cos φ − ρ2Y sin φ

ρ2X sin φ + ρ2Y cos φ

0

⎤
⎦ (46)

r3/P =
⎡
⎣ρ3X cos φ − ρ3Y sin φ

ρ3X sin φ + ρ3Y cos φ

0

⎤
⎦ , r4/P =

⎡
⎣ρ4X cos φ − ρ4Y sin φ

ρ4X sin φ + ρ4Y cos φ

0

⎤
⎦ (47)

rB1/A1 =
⎡
⎣b1 cos θ1

b1 sin θ1

0

⎤
⎦ , rB3/A3 =

⎡
⎣b3 cos α3 cos θ3 − b3 sin α3 sin θ3

b3 sin α3 cos θ3 + b3 cos α3 sin θ3

0

⎤
⎦ . (48)

It should be noted that all the position vectors involved in the coefficients μ1, μ2, μ3, μ4, λ1, λ2,
λ3, and λ4, can be readily computed by resorting to Eqs. (41)–(44), and (46)–(48).

4.1. Velocity vector of point P
The objective of this section is to obtain an explicit equation for the velocity vector of point P in
terms of the input joint velocities q̇I ≡ (θ̇1, ṗ2, θ̇3, ṗ4)T . To this end, Eq. (45) can be rearranged as
follows:

vP/O · rD1/C1 + μ1φ̇ = λ1θ̇1 (49)

vP/O · rD2/C2 + μ2φ̇ = λ2ṗ2 (50)

vP/O · rD3/C3 + μ3φ̇ = λ3θ̇3 (51)

vP/O · rD4/C4 + μ4φ̇ = λ4ṗ4. (52)

Successive elimination of φ̇ from Eqs. (49)–(52) leads to:

⎡
⎣mT

1
mT

2
mT

3

⎤
⎦ vP/O =

⎡
⎣μ2λ1 −μ1λ2 0 0

μ3λ1 0 −μ1λ3 0
μ4λ1 0 0 −μ1λ4

⎤
⎦

⎡
⎢⎣

θ̇1

ṗ2

θ̇3

ṗ4

⎤
⎥⎦ , MvP/O = Nq̇I , (53)
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where:

m1 ≡ μ2rD1/C1 − μ1rD2/C2

m2 ≡ μ3rD1/C1 − μ1rD3/C3

m3 ≡ μ4rD1/C1 − μ1rD4/C4 .

Assuming that matrix M is nonsingular, then Eq. (53) can be transformed into:

vP/O = (M−1N)q̇I , (54)

where, inverse matrix is given by:16, 17

M−1 =
(

1

m1 · (m2 × m3)

)
[ m2 × m3 m3 × m1 m1 × m2 ]. (55)

Thus, Eq. (54) provides the result sought.

4.2. Angular velocity of the mobile platform
Since the mobile platform rotates about Z0 axis, its angular velocity vector is given by ω5/0 = φ̇ k0.
Thus, once vP/O is known, the angular velocity scalar φ̇ can be computed from any of Eqs. (49)–(52),
that is:

φ̇ = λiθ̇i − vP/O · rDi/Ci

μi

= λj ṗj − vP/O · rDj /Cj

μj

, i = 1, 3, and j = 2, 4, (56)

thus having four options to choose.

4.3. Velocity of the attachment points
An attachment point is usually located at the physical center of the joint that connects the terminal
link of a leg with the mobile platform. Thus, for the parallel manipulator under study, there are four
attachment points, namely, points 1, 2, 3, and 4, see Figs. 1–2.

From basic concepts of rigid body kinematics, the following equations can be readily formulated:

v1/O ≡ v1 = vP/O + ω5/0 × r1/P (57)

v2/O ≡ v2 = vP/O + ω5/0 × r2/P (58)

v3/O ≡ v3 = vP/O + ω5/0 × r3/P (59)

v4/O ≡ v4 = vP/O + ω5/0 × r4/P , (60)

where position vectors r1/P , r2/P , r3/P , and r4/P are given by Eqs. (46)–(47). Thus, a systematic
computation of the velocity vectors of the attachment points can be readily performed by resorting
to Eqs. (57)–(60).

5. Angularity Index
The angularity index can be used as a measure to estimate the manipulator’s ability to convert
the velocity of the legs—characterized by the velocities of the attachment points—into the angular
velocity of the mobile platform.13 This index is denoted by Greek symbol η, and it is defined as
follows:

η = ‖v21 × v31‖
‖v21‖‖v31‖ , 0 ≤ η ≤ 1, (61)
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where:

v21 ≡ v2 − v1, v31 ≡ v3 − v1 (62)

are the so-called kinematic generators, which are responsible for the generation of the angular velocity
vector of the mobile platform of the manipulator. Geometrically, a value of the angularity η close to
0 means that the mobile platform has a small sensitivity to changes in rotation, whereas a value of the
angularity η close to 1 means that the mobile platform has a large sensitivity to changes in rotation.

Equations (61) and (62) show that the computation of the angularity index requires only the
knowledge of the velocity vectors of any three attachment points of the mobile platform.

6. Axiality Index
The operation point (OP) of a parallel manipulator is that point on the mobile platform which is used
to position the workpiece being manipulated. Intuition shows that dexterity on positioning depends
on the choice of the OP. Hence, the location of the OP is important in order to describe the dexterity
of a parallel manipulator to position a workpiece. The sensitivity of a parallel manipulator to position
a workpiece can be measured by using the axiality index,13 which is denoted by Greek symbol σ , and
it is given by:

σ ≡ cos ϕ, 0 ≤ σ ≤ 1, (63)

where:

ϕ = arctan

{(
1

δP

)( ||v‖||
φ̇

)}
(64)

v‖ = vP/O · k0 = v1 · k0 = v2 · k0 = v3 · k0 = v4 · k0 (65)

δP =
√

b2 − a2 (66)

a =
{

rO�/O − rP/O

}
· k0 (67)

b =
√{

rO�/O − rP/O

} · {
rO�/O − rP/O

}
(68)

rO�/O =
(

1

φ̇2

){
ω5/0 × {

v1 − ω5/0 × r1/O

}}
(69)

ω5/0 = φ̇ k0 (70)

r1/O = rP/O + r1/P = (x + ρ1X cos φ, y + ρ1X sin φ, z)T . (71)

Geometrically, a value of the axiality σ close to 0 means that the OP has a small sensitivity to
changes in translation, whereas a value of the axiality σ close to 1 means that the OP has a large
sensitivity to changes in translation.

For a detailed derivation of the angularity and axiality indices, the reader is referred to ref. [13].

7. Computational Algorithm
The computational algorithm shown in Table II has been specially developed in order to achieve a
systematic computation of the angularity and axiality indices.

It is expected that Table II serves as a systematic and quick guide to compute the angularity and
axiality indices associated with the Schönflies manipulator under study.
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Table II. Computational algorithm to obtain dexterity indices.

Computational algorithm

Parameter(s) Equation(s)

1. Design parameters. Given-Section 8.1
2. Input motion profiles. Given-Section 8.2
3. Rotation angle φ. (39)
4. Cartesian coordinates x, y, z. (36)–(38)
5. Position vectors rD1/C1 , rD2/C2 , rD3/C3 , rD4/C4 . (41)–(44)
6. Velocity vector, vP/O . (54)
7. Angular velocity φ̇. (56)
8. Velocities of attachment points v1/O, v2/O, v3/O, v4/O . (57)–(60)
9. Kinematic generators v21 and v31. (62)

10. Angularity index, η. (61)
11. Position vector, r1/O . (71)
12. Angular velocity vector, ω5/0. (70)
13. Position vector, rO∗/O . (69)
14. Distance, b. (68)
15. Distance, a. (67)
16. Distance, δP . (66)
17. Velocity vector, v‖. (65)
18. Angle ϕ. (64)
19. Axiality index, σ . (63)

8. Case Study
This section shows the numerical results associated with the motion capabilities for a particular design
of the Schönflies parallel manipulator under study.

8.1. Design parameters
For this case study, based on the construction of a computer solid model of the manipulator under
analysis, it was selected the following set of design parameters:

a1 = a2 = a3 = a4 = 113.00 mm,
b1 = b2 = b3 = b4 = 40.00 mm,
d1 = d2 = d3 = d4 = 103 mm,
h1 = h2 = h3 = h4 = 123.00 mm,
L1 = L2 = L3 = L4 = 100.00 mm,
R1X = 215.50 mm, R2X = 10.10 mm, R2Y = 167.85 mm,
R3X = −216.36 mm, R3Y = 23.60 mm,
R4X = −9.24 mm, R4Y = −191.44 mm,
ρ1X = 181.10 mm, ρ2X = 13.25 mm, ρ2Y = 167.85 mm,
ρ3X = −176.69 mm, ρ3Y = 39.75 mm,
ρ4X = −17.67 mm, ρ4Y = −159.02 mm,
α2 = 353.53◦, α3 = 0.00◦, α4 = 353.53◦,

which are symbolically shown in Figs. 2–6.

8.2. Input motions
In order to study the motion capabilities of the Schönflies parallel manipulator, it is convenient to
propose input motions (displacement and velocity) to be produced by the manipulator’s actuators. To
this end, the typical displacement and velocity profiles shown in Figs. 7–10 are used as input motions.

8.3. Numerical values for angle φ

Analyzing the computational algorithm shown in Table II, it may be noted that a key issue of the
proposed approach is related to the computation of the numerical values of angle φ. To this end, it
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Fig. 7. Profiles for the input angle θ1: (a) displacement, and, (b) velocity.

Fig. 8. Profiles for the input motion p2: (a) displacement, and, (b) velocity.

should be firstly noted that Eq. (39) admits 12 solutions for parameter τ ≡ tan(φ/2) (φ = 2 arctan(τ )),
whether real or complex, among which only the real solutions are of practical interest.

Several numerical examples were evaluated. Typically, four real solutions and eight complex
solutions were obtained. From the initial real solutions (t = t0), it was arbitrarily selected one,
φ0, for which the manipulator could be assembled. Next, time was updated, t = t0 + �t , each
new real solution was compared with the previous assembly solution, and the closest solution was
chosen. This process was repeated for t0 = 0.0s ≤ t ≤ tF = 1.0s, with a step size �t = 0.0025s.
The resulting numerical values of φ were compared with those numerical results generated by means
of a commercial software for the simulation of mechanical systems. This comparison is graphically
illustrated by means of the plots shown in Fig. 11, where it may be observed that both plots are
identical.

8.4. Graphical illustration of velocity patterns
Figures 12–15 were specially conceived in order to get a complete visualization of the different
velocity vectors involved into the computation of the dexterity indices. These are three dimensional
drawings specially focused on the velocity patterns of points 1, 2, and 3 of the mobile platform.
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Fig. 9. Profiles for the input angle θ3: (a) displacement, and, (b) velocity.

Fig. 10. Profiles for the input motion p4: (a) displacement, and, (b) velocity.

On the one hand, the upper part of Figs. 12–15 shows the velocity distribution related to three
chosen points in the mobile platform. Such a graphical illustration was inspired by the work presented
in reference.18

In all these figures, it is preserved the principle of rigidity, namely, that the velocity vectors of
points 1 and 2, for example, have components along the corresponding line L21 that are equal, and
that all of velocity vectors of points located along line L21 have their tips distributed in a straight line
array. A similar reasoning is also valid for points 1 and 3, and, 2 and 3, respectively. In this way, it is
thus assured that the set of three chosen points is a velocity-consistent set.

On the other hand, the lower part of Figs. 12–15 shows the velocity vectors at three points 1,
2, and 3 in the moving platform, and also the relative orientation between the so-called kinematic
generators, namely, v21 and v31. 2 It is important to mention that the term ISA, appearing in the lower
part of Figs. 12–15, stands for instantaneous screw axis, see reference19 for additional details.

Additionally, Figs. 12–15 show also that, regardless of their size, kinematic generators v21 and v31

maintain a constant angle of 29.05◦ between them at any configuration of the manipulator. As it will
be shown later, this fact is directly related to the angularity index.
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Fig. 11. Plots of angle φ: (a) using Eq. (39), and, (b) using a commercial software.

8.5. Angularity plot
Considering Figs. 7–10 as input motion profiles, and based on Table II, Eq. (61) was implemented in
a worksheet of a commercial software package, which has symbolic computation capabilities. As a
result of such implementation, there was obtained the angularity plot shown in Fig. 16.

As it is shown in Fig. 16, the angularity index maintains a constant value of η = 0.4856 for
any value of parameter t . This is due to the fact that all the points on the mobile platform have
the same velocity component along Z0 axis, which agrees with the motion features associated with
the Schönflies manipulator under study. In consequence, and because of their definition, namely,
v21 ≡ v2 − v1, and v31 ≡ v3 − v1, it may be observed that kinematic generators v21 and v31 must lie
on a plane containing points 1, 2, and 3 in the mobile platform. Additionally, vector v21 must be also
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Fig. 12. Graphical illustration of velocity pattern for t = 0.2 s.

Fig. 13. Graphical illustration of velocity pattern for t = 0.4 s.

perpendicular to a line L21 passing through points 1 and 2, whereas vector v31 must be perpendicular
to a line L31 passing through points 1 and 3.13, 19

From the foregoing observations, it may be concluded that kinematic generators maintain a constant
orientation angle between them at any configuration of the manipulator. If such angle is denoted by
symbol γ , then, from Eq. (61):

η = ‖v21 × v31‖
‖v21‖‖v31‖ = ‖v21‖‖v31‖ sin γ

‖v21‖‖v31‖ = sin γ. (72)
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Fig. 14. Graphical illustration of velocity pattern for t = 0.6 s.

Fig. 15. Graphical illustration of velocity pattern for t = 0.8 s.
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Fig. 16. Plot of the angularity index.

Fig. 17. Plot of the axiality index.

Furthermore, a careful observation of Figs. 12–15 reveals that γ = 29.05◦. Therefore, from
Eq. (72), it is obtained that η = sin(29.05◦) = 0.4855.

Finally, it should be observed that angle γ is equal to the angle formed by lines L21 and L31.

8.6. Axiality plot
Considering Figs. 7–10 as input motion profiles, and based on the computational algorithm shown
in Table II, Eq. (63) was implemented in a worksheet of a commercial software package, which has
symbolic computation capabilities. As a result, there was obtained the axiality plot shown in Fig. 17.

On the other hand, because of Fig. 17 shows a plot of the axiality of the manipulator, it may
serve to measure the sensitivity of the mobile platform to changes in translation. This plot presents a
maximum value σMAX = 0.8924 at t = 0.433 s, and a minimum value σMIN = 0.03975 at t = 0.583 s.
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Fig. 18. Schönflies manipulator designed to produce η = 1.

This means that the best sensitivity of the mobile platform to changes in translation is achieved when
time t = 0.433 s.

9. Extended Application
It was previously concluded that, for the Schönflies manipulator under study, the angle between
kinematic generators v21 and v31 is equal to the angle formed by lines L21 and L31, which maintains
a constant value for any configuration of the manipulator.

This conclusion motivated the idea of designing the mobile platform in such a way that line L21 be
perpendicular to L31, that is, γ = 90◦. A computer solid model of the Schönflies manipulator with
this particular design is shown in Fig. 18. The geometry of the corresponding mobile platform is
given by the following dimensions:

ρ1X = 110.36 mm,
ρ2X = 94.03 mm, ρ2Y = 139.04 mm,
ρ3X = −130.47 mm, ρ3Y = −28.28 mm,
ρ4X = −73.91 mm, and ρ4Y = −110.75 mm.

For the special architecture of the mobile platform shown in Fig. 18, it was obtained the maximum
value that angularity can reach, that is, η = sin(90◦) = 1.000. This means that kinematic generators
v21 and v31 are oriented in such a way that their contribution to generation of rotational motion is
maximum.

On the other hand, in order to provide more design guidelines for the Schönflies manipulator under
study, two additional designs are now introduced. It is important to note that each design involves
different angles between lines L21 and L31. The main geometric features of each design are the
following:

(1) Lines L21 and L31 form an angle γ = 60◦. For this special architecture of the mobile
platform is computed a value of angularity η = sin(60◦) = 0.8660. The dimensions of
the mobile platform are: ρ1X = 118.03 mm, ρ2X = 40.38 mm, ρ2Y = 130.31 mm, ρ3X =

https://doi.org/10.1017/S0263574715000090 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000090


2436 Angularity and axiality of a Schönflies parallel manipulator

Fig. 19. Schönflies manipulator designed to produce η = 0.8660.

−121.62 mm, ρ3Y = −3.30 mm, ρ4X = −36.78 mm, ρ4Y = −127.00 mm. A picture of this
particular manipulator is shown in Fig. 19.

(2) Line L21 forms an angle γ = 45◦ with line L31. For this special architecture of the mobile
platform is expected a value of angularity η = sin(45◦) = 0.7071. The dimensions of the mobile
platform are: ρ1X = 137.81 mm, ρ2X = 31.74 mm, ρ2Y = 106.06 mm, ρ3X = −137.81 mm,
ρ3Y = 0.00 mm, ρ4X = −31.74 mm, ρ4Y = −106.06 mm. A layout of this particular manipulator
is shown in Fig. 20.

Additionally, Fig. 21 shows the angularity indices for the manipulators’ architectures discussed
previously. It may be concluded from this figure that kinematic generators v21 and v31 are oriented
in such a way that their contribution to generation of rotational motion is maximum when the angle
between lines L21 and L31, namely, angle γ , is equal to 90◦.

On the other hand, Fig. 22 shows the axiality profiles for the manipulators’ architectures discussed
previously.

It is known that the accuracy on the translational motion of a manipulator is closely related to
the axiality index.13 This number is to be kept close to 1, which is the maximum value that can be
reached, while the smallest value that it can be attained is 0. From the foregoing discussion, Fig. 22
reveals that the axiality profile offered by the mobile platform with angle γ = 90◦ is better than the
axiality profile associated with γ = 60◦. In turn, the axiality profile offered by the mobile platform
with angle γ = 60◦ is better than the axiality profile associated with γ = 45◦.

9.1. Discussion
On the one hand, analyzing the Jacobian matrices that appear in Eq. (45), it should be noted that
both matrices, A and B, are dimensionally inconsistent, i.e., all their corresponding entries do not
share the same units. This is because of: (a) the manipulator has a mix of revolute and prismatic
actuators, and, (b) the motion of the mobile platform includes a combination of both, translational
and rotational motions. In consequence, the first five indices shown in Table 1 cannot be used in the
dexterity analysis of the manipulator under study.

On the other hand, based only in the dexterity indices that can be used, namely, angularity, and
axiality, and taking the plots shown in Figs. 21 and 22 as evidence, it can be concluded that, from
the three designs taken as examples, a mobile platform with angle γ = 90◦ offers the best kinematic
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Fig. 20. Schönflies manipulator designed to produce η = 0.7071.

Fig. 21. Angularity plots for the Schönflies manipulators with γ = 90◦, γ = 60◦, and γ = 45◦.

performance. Such a kinematic performance is thought in the sense of quantifying the ability of
the Schönflies manipulator to position and orient its mobile platform, which is a very appreciated
figure of merit for any parallel manipulator. This is because the ease of changing the position and the
orientation of the mobile platform of a parallel manipulator is beneficial for design, control, and task
planning purposes.
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Fig. 22. Axiality plots for the Schönflies manipulators with γ = 90◦, γ = 60◦, and γ = 45◦.

10. Conclusions
Angularity and axiality indices can be used to quantify the ability of a parallel manipulator to position
and orient its mobile platform, regardless of the type of actuator used. It was shown that special designs
of the mobile platform may improve the kinematic performance of the Schönflies manipulator under
study. This research work may serve as a guide to obtain improved designs of Schönflies parallel
manipulators in the sense of achieving optimum kinematic performances, which is expected to be
beneficial for design, control, and task planning purposes.
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