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The classical plume model due to Morton, Taylor & Turner (Proc. R. Soc. Lond. A,
vol. 234, 1956, pp. 1–23) is re-cast in terms of the non-dimensional plume radius, the
plume ‘laziness’ defined as the squared ratio of the source radius and the jet length,
and the buoyancy flux. It is shown that many of the key results of this classical
model can then be read straight from the equations without recourse to solving
them. Based on this observation, derivative models that consider plumes propagating
through stratified environments or undergoing chemical reactions are similarly
re-cast. We show again that key results can be read straight from the governing
equations and results that have previously only been demonstrated numerically
can be found analytically. In particular, we unify two previously distinct
models that consider plumes propagating through stable and unstable stratified
environments whose stratification has a power-law dependence on height. We present
analytical solutions for the range of stratification power-law decay rates for which
straight-sided plumes are possible. This result unifies the sets of solutions by
Batchelor (Q. J. R. Meteorol. Soc., vol. 80, 1954, pp. 339–358) and Caulfield & Woods
(J. Fluid Mech., vol. 360, 1998, pp. 229–248). We are able to explain the unstable
behaviour previously found when the power lies in the range (−4, −8/3). Finally
we show that this method also has limited advantages when applied to plumes with
unsteady source conditions.

Key words: plumes/thermals, stratified flows

1. Introduction
We focus on various steady or quasi-steady straight-sided solutions to the plume

equations of Morton, Taylor & Turner (1956) (MTT). The original MTT model
consisted of a set of coupled first-order ordinary differential equations for the fluxes
of the plume volume, momentum and buoyancy. The system of equations was closed
using the entrainment assumption in which the mean horizontal inflow velocity into
the plume due to entrainment is proportional to the mean vertical velocity in the
plume at that height. This approach differed from the closure scheme of Priestly &
Ball (1955) who assumed a conical shape for the plume at all heights with a universal
radial growth with height.

† Email address for correspondence: nbkaye@clemson.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

21
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.214


Solutions to the plume flux equations 565

The MTT model has been used to predict the volume flow rate in a plume as a
function of height (Baines 1983), the rise height in a linearly stratified environment
(Batchelor 1954; MTT), virtual origin corrections for non-ideal source conditions
(Morton 1959; Caulfield & Woods 1995; Hunt & Kaye 2001; Scase, Caulfield &
Dalziel 2008), the rise height of turbulent fountains (Baines, Turner & Campbell 1990;
Kaye & Hunt 2006), and plumes in nonlinearly stratified environments (Caulfield &
Woods 1998). More recently, modified versions of the MTT equations have been
used to model chemically reacting plumes, in which there is a change in buoyancy
flux due to the heat of reaction (Diez & Dahm 2007; Conroy, Smith & Caulfield
2005; Conroy & Llewellyn Smith 2008; Campbell & Cardoso 2010), and plumes with
unsteady source conditions (Scase, Caulfield & Dalziel 2006a; Scase et al. 2006b).

We revisit these models and show that the steady straight-sided solutions (i.e. plumes
for which the radii of the mean profiles of buoyancy and velocity increase linearly with
height) found under certain source conditions can be easily calculated by re-casting
the governing equations in terms of the plume local radius, flux balance parameter Γ

(see Morton 1959; Morton & Middleton 1973), and buoyancy flux, which is constant.
This approach was introduced by Hunt & Kaye (2005) who showed that the classical
‘pure plume’ solution, Γ = 1, and the ‘pure jet’ solution, Γ = 0, can be read directly
from the re-cast equations, and the steady power-law equations for the volume flux
can be found without having to solve the governing differential equations. The model
was extended in Kaye & Hunt (2006) to predict the rise height of a turbulent fountain
for a broad range of source conditions.

The remainder of the paper is structured as follows. In the next section, we review
the modelling approach of Hunt & Kaye (2005) and re-state their results for jets
and plumes. We then apply this modelling approach to the work of Caulfield &
Woods (1998), on plume propagation through non-uniformly stratified environments,
and Diez & Dahm (2007), Conroy et al. (2005), Conroy & Llewellyn Smith (2008)
and Campbell & Cardoso (2010) on chemically reacting plumes. Finally we examine
certain properties of the straight-sided solutions of the unsteady plume equations of
Scase et al. (2006a,b).

2. Pure jets and plumes
We begin with a brief review of the work of Hunt & Kaye (2005) to demonstrate the

analysis technique that will later be used to analyse plumes in stratified environments,
chemically reacting plumes and plumes with time varying source conditions. Following
MTT, we define a volume flux, momentum flux and buoyancy flux, respectively, as

πQ =

∫ 2π

0

∫ b

0

wr dr dθ, πM =

∫ 2π

0

∫ b

0

w2r dr dθ, πF =

∫ 2π

0

∫ b

0

wg′r dr dθ, (2.1 a–c)

where r is the radial coordinate and θ is the azimuthal coordinate. We assume top
hat profiles where b is the radius of the profile, w is the vertical velocity and g′ is the
reduced gravity. It should be noted that different authors have used slightly different
definitions of Q, M and F . The governing equations describing the evolution of the
three fluxes, Q, M and F with height for an unstratified ambient were shown by MTT
to be

dQ

dz
= 2αM1/2,

dM

dz
=

QF

M
and

dF

dz
= 0. (2.2 a–c)
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566 N. B. Kaye and M. M. Scase

The general source conditions are

Q|
z=0 = Q0, M |

z=0 = M0, F |
z=0 = F0. (2.3)

From these source conditions, two length scales, based upon the source radius and
the source jet length, can be defined and are given by

LQ0 =
5

6α

Q0

M
1/2
0

and LM0 =

(
10

9α

M
3/2
0

F0

)1/2

, (2.4)

respectively. The ratio of the square of these length scales is the source flux balance
parameter, referred to as the source ‘laziness’,

Γ0 =
L2

Q0

L2
M0

=
5

8α

Q2
0F0

M
5/2
0

, (2.5)

where Γ0 = 0 for a ‘pure jet’ and Γ0 = 1 for a ‘pure plume’ (see Morton & Middleton
1973). Although Γ has typically been used to characterize the source fluxes (e.g. ‘lazy’
for Γ0 > 1, or ‘forced’ for Γ0 < 1), it can be defined at any height

Γ (z) =
5

8α

Q(z)2F (z)

M(z)5/2
. (2.6)

If the ambient fluid is homogeneous, it can be shown that for Γ0 �= 0, as z → ∞, Γ → 1,
i.e. provided the source conditions are not those of a pure jet, the plume fluxes tend
towards those of a pure plume as z → ∞. Far from the source, it is as if a pure plume
has originated from a point source at a ‘virtual origin’ (Hunt & Kaye 2005; Scase
et al. 2008).

Scaling the fluxes on their source value and height on LQ0, we get the non-
dimensional variables

q =
Q

Q0

, m =
M

M0

, f =
F

F0

and ζ =
z

LQ0

. (2.7)

The radius b(z) and vertical velocity W (z) are also scaled on their source values,

β =
b

b0

=
q

m1/2
and w =

W

W0

=
m

q
. (2.8 a, b)

Note that the radius scaling is not b/LQ0 but 5b/(6αLQ0). The non-dimensional
version of (2.2) is, therefore,

dq

dζ
=

5

3
m1/2,

dm

dζ
=

4Γ0

3

qf

m
and

df

dζ
= 0. (2.9 a–c)

The local value of Γ may be expressed, relative to the source value as

Γ

Γ0

=
q2f

m5/2
. (2.10)

Rewriting (2.9 a, b) in terms of Γ and β rather than q and m, we have

dβ

dζ
=

1

3
(5 − 2Γ ),

dΓ

dζ
=

10Γ

3β
(1 − Γ ). (2.11 a, b)

By inspection, we see that there are two possible constant Γ solutions to (2.11), namely
the pure jet (Γ =0, b =2αz), and the pure plume (Γ = 1, b = 6αz/5). To demonstrate
the value of this approach in analysing plume equations, we present analysis of the
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Solutions to the plume flux equations 567

governing equations applied to plumes in a stratified environment, chemically reacting
plumes and plumes with unsteady source fluxes, in which we re-cast the equations
in terms of Γ , β and any additional dimensionless parameters required to close the
problem.

3. Plumes in a stratified ambient
The solution for the finite rise height of a plume in a linearly stratified (constant

buoyancy frequency) ambient environment was solved numerically by MTT and
analytically by Scase et al. (2006a). However, it was shown by Caulfield & Woods
(1998) that it is possible to attain straight-sided solutions to the governing equations
for plumes propagating through stratified ambient environments in which there
is a power-law decay in the buoyancy frequency of the ambient with height.
Further, Batchelor (1954) showed that solutions also exist for an unstable power-
law stratification and a zero initial buoyancy flux. In both cases, the governing
equations become

dQ

dz
= 2αM1/2,

dM

dz
=

QF

M
and

dF

dz
= −QN2

0

(
z

zs

)κ

, (3.1 a–c)

where zs is the height of the plume source and N0 is the buoyancy frequency at the
source height. Caulfield & Woods (1998) considered the case of N2

0 > 0 and Batchelor
(1954) considered N2

0 < 0.
We define a new dimensionless source parameter

Π0 =
5

6α

Q2
0N

2
0

F0M
1/2
0

(
LQ0

zs

)κ

(3.2)

that represents the rate at which the stratification decays relative to the source volume
flux length scale. Again, this parameter can be defined at any height as

Π

Π0

=
q2

f m1/2
. (3.3)

The buoyancy flux equation (3.1c) may, therefore, be rewritten as

df

dζ
= −Π0qζ κ . (3.4)

Following the same analysis technique as the previous section, we re-cast (3.1) in
terms of Γ , β and Π to get

dβ

dζ
=

1

3
(5 − 2Γ ),

dΓ

dζ
=

Γ

3β
[10 (1 − Γ ) − 3Πζκ ],

dΠ

dζ
=

Π

3β
[10 − 2Γ + 3Πζκ ].

(3.5 a–c)
For all modifications to the steady plume equation systems that we consider, it
is only the buoyancy flux equation that changes between systems. Therefore, the
equation for the plume radius (3.5a) is unchanged as β = q/m1/2 and the volume flux
and momentum flux equations are unchanged. This implies that any straight-sided
solution to modified versions of the MTT equations considered herein will have a
constant Γ value. Therefore, any solution to dΓ/dζ = 0 will be straight sided.

We, therefore, seek solutions that tend to constant values of Γ as ζ → ∞. That is
Γ → Γs , say, and dΓ/dζ → 0 as ζ → ∞. It is not necessarily true that Γs = Γ0. Hence,
for large ζ

3Πζκ = 10(1 − Γs) and β = βs + 1
3
(5 − 2Γs)ζ, (3.6 a, b)
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568 N. B. Kaye and M. M. Scase

therefore substituting into (3.5c) and integrating yields

Π

Πs

=

(
1 +

5 − 2Γ

3βs

ζ

)(20−12Γs )/(5−2Γs )

. (3.7)

In order for (3.7) to be consistent with (3.6) as ζ → ∞, substitution of (3.7) into (3.5b)
requires

dΓ

dζ
=

Γs

3βs

{
10 (1 − Γs) − 3Πs

(
1 +

5 − 2Γs

3βs

ζ

)(20−12Γs )/(5−2Γs )

ζ κ

}
. (3.8)

For consistency, we require the right-hand side of (3.8) to tend to zero as ζ → ∞,
such that Γ tends to a constant value. This can only occur when

κ � −20 − 12Γs

5 − 2Γs

= κc. (3.9)

Two possible solution sets exist, κ = κc and κ <κc. When κ <κc the second term in
the curly brackets on the right-hand side of (3.8) tends to zero as ζ → ∞, Γ → Γs =1,
and κc = −8/3. For κ = κc, we get the condition that

Πs =
10

3
(1 − Γs)

(
3βs

5 − 2Γs

)κc

. (3.10)

Straight-sided solutions can only occur for 0 � Γs < 5/2 as negative Γ yields
fountains with finite rise heights, while for Γ � 5/2 it follows that dβ/dζ � 0 and
the plume is not conical in shape. Using ‘∼’ to denote ‘scales as’, given Π ∼ ζ −κc from
(3.6a), and β = q/m1/2 ∼ ζ from (2.8a) it follows from (3.3) that we can write

Π ∝ q2

f m1/2
∼ ζ −κc or f ∼ q ζ 1+κc . (3.11)

We seek solutions to the fluxes of volume, momentum and buoyancy that are power-
law functions of height. That is,

q ∼ ζ φq , m ∼ ζ φm and f ∼ ζ φf . (3.12)

Solution of (3.11) and (3.12) leads to

φq =
κc + 6

2
, φm = κc + 4 and φf =

3κc + 8

2
(3.13)

(cf. (4.3) in Caulfield & Woods 1998). A plot of κc and the flux power-law exponents
φq , φm and φf , as a function of Γs are shown in figure 1.

The restriction that 0 � Γs < 5/2 results in the full range of possible κc values found
by Caulfield & Woods (1998) and Batchelor (1954), namely −4 � κc. For κc < −4 we
have that φm < 0 and, therefore, the momentum flux decreases with height so the
plume must eventually stall. For Γ =1, κc = −8/3, f is constant with height (φf = 0)
and the pure plume solution is attained. However, for Γs < 1 (φf < 0), the buoyancy
flux decreases with height and, therefore, Π0 > 0 as considered by Caulfield & Woods
(1998). For Γs > 1, the buoyancy flux increases with height (φf > 0) and Π0 < 0 as
considered by Batchelor (1954). It is interesting to note that Caulfield & Woods (1998)
and Batchelor (1954) are entirely consistent and that there is a smooth transition in
all parameters over the range 0 � Γs < 5/2 with only a change in the sign of Π0 at
Γs = 1 as shown in figure 1.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

21
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.214


Solutions to the plume flux equations 569

–4

–3

–2

–1

0

1

2

3

4

0 0.5 1.0 1.5 2.0 2.5

κ
c,

 φ
i, 

Π
s

Γs

κc

φq

φm

φf

Πs

Figure 1. Plot of the power-law exponents for the stratification, fluxes of momentum,
buoyancy and volume and the critical initial value of Π0 as a function of Γ .

Specific results from Caulfield & Woods (1998) and Batchelor (1954) can also be
established. When κc = −4, we recover the Γs = 0 jet solution. If κc = −8/3 the pure
plume Γs = 1 solution is attained and Π0 can be either positive or negative. Further,
taking the example given in Batchelor (1954), if κc = −1 then the exponents for q

and f are equal (φq =φf = 5/2) implying that the buoyancy g′ = f/q is constant with
height.

Finally, Caulfield & Woods (1998) showed numerically that the κc = (20−12Γs)/(5−
2Γs) solution was unstable. Slight variations in source conditions lead the solution
to diverge. They also established numerically the condition under which the solution
exists. The solution approach presented herein leads to an analytical solution for the
stability condition, specifically (3.10).

4. Chemically reacting plumes
We now consider plumes with internally generated buoyancy. This problem has

been addressed in the context of buoyancy generated by phase changes (Bhat &
Narasimha 1996; Basu & Narasimha 1999) and buoyancy generated by chemical
reactions (Conroy et al. 2005; Diez & Dahm 2007; Conroy & Llewellyn Smith 2008;
Campbell & Cardoso 2010). Buoyancy generated by latent heat release in clouds was
analysed experimentally by Bhat & Narasimha (1996) who ran experiments in which
the buoyancy flux of a plume was increased linearly with height. The steady solution
to the MTT equations for a linear increase in buoyancy flux with height was solved
by Hunt & Kaye (2005) who showed that the resulting plume is narrower than a pure
plume (Γ = 5/4) and has a constant velocity.

Various models have been proposed for chemically reacting plumes in which one
of the reactants is supplied in the plume and a second is in the surrounding ambient
(Conroy et al. 2005; Diez & Dahm 2007; Conroy & Llewellyn Smith 2008). In
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570 N. B. Kaye and M. M. Scase

this case, additional equations are required to keep track of the two reactants and
the reaction product. Buoyancy flux terms are added to account for heat release
and changes in fluid density due to the species change in the reaction (Conroy &
Llewellyn Smith 2008). Various flows can develop depending on the speed of the
reaction relative to the rate at which reactants are mixed across the entire plume
width and the rate at which fluid is transported vertically within the plume. If the
reaction rate is fast compared to the time taken to mix the reactants across the whole
width of the plume then the integral modelling approach is invalid (see Cardoso &
McHugh 2010). If the reaction rate is slower than this then the change in buoyancy
flux is controlled by the rate of mixing of the reactants, assumed equivalent to the rate
of entrainment dQ/dz. Both Diez & Dahm (2007) and Conroy & Llewellyn Smith
(2008) present the buoyancy flux equation to be of the form

dF

dz
= h

dQ

dz
= 2αhM1/2, (4.1)

where h is a constant and a property of the reaction. In general, h can be either
positive (exothermic) or negative (endothermic). Straight-sided solutions are possible
for upward flowing plumes with h > 0 and downward flowing plumes with h < 0.
Equation (4.1) results in another dimensionless source parameter

Φ0 = h
Q0

F0

, (4.2)

where the local value of Φ is given by Φ = Φ0 q/f .
The plume equations written in terms of Γ , β and Φ are

dβ

dζ
=

1

3
(5 − 2Γ ),

dΓ

dζ
=

5Γ

3β
(2 [1 − Γ ] + Φ),

dΦ

dζ
=

5Φ

3β
(1 − Φ). (4.3 a–c)

A straight-sided plume will develop such that Φ = 1 and Γ = 3/2 provided there is
sufficient reactant available and the density change due to species change during
the reaction is small compared to the density change due to heat release. These
constraints also allow us to ignore the additional equations that track individual
species concentrations. The Γ = 3/2 flow is an accelerating plume that is narrower
than a pure plume (Γ =1). Conroy & Llewellyn Smith (2008) presented an analytical
solution for MTT equations for a high reaction rate chemically reacting plume in
terms of gamma functions and found the same result, that is a steady plume with
Γ =3/2. This result is different to the model of Diez & Dahm (2007) as they assumed
that the radial growth rate of the plume is constant and equal to that of a pure
plume, as opposed to making the entrainment assumption. The approach presented
allows the solution to be established without integration but simply by solution of a
pair of linear equations in Φ and Γ .

Cardoso & McHugh (2010) also consider plumes that undergo chemical reactions
as they propagate. As above, they consider a plume whose buoyancy flux may vary
as a result of a reaction between the plume fluid and the ambient. The reaction they
consider is controlled by a parameter, G, which describes the generation of buoyancy
within the plume. Their system has similar governing volume and momentum flux
equations to the systems described above, but their buoyancy flux equation (see
Cardoso & McHugh 2010, (2.17)) is

dF

dz
= −N2

0 Q + GF0

Q

M
(4.4)
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Solutions to the plume flux equations 571

(their factor γ may be scaled out) where N0 is the constant buoyancy frequency of
the ambient fluid.

We introduce the non-dimensional quantity Λ, a ratio of the reaction rate to the
local plume velocity, defined by Λ = LQ0 GQ/M =Λ0 q/m. The governing system may
then be written as

dβ

dζ
=

1

3
(5 − 2Γ ),

dΛ

dζ
=

Λ

3β
(5 − 4Γ ),

dΓ

dζ
=

10Γ

3β
(1 − Γ )+

Γ0

Λ3
0

Λ2

β
(Λ2−Λ0Π0β

2).

(4.5 a–c)
For straight-sided solutions we again require constant Γ , and so it follows that the

right-hand side of (4.5c) must vanish. It can be seen that in the case of a homogeneous
ambient, no stratification Π0 = 0, it must also be necessary to have constant Λ. The
solution is given by Γ =5/4, Λ = 5/6, and β = βs + (5/6)ζ . This corresponds to the
Bhat & Narasimha (1996) plume, with constant velocity, and a linear increase in
buoyancy flux with height. As above, as ζ → ∞ the plume tends towards a straight-
sided solution and Γ → 5/4, Λ → 5/6. This would have been observed in figure 1 of
Cardoso & McHugh (2010) had they continued their calculation out to Ẑ ≈ 25 (their
notation), although this was far out of the range of their experiments for practical
reasons. In the case of a stratified ambient, straight-sided point source solutions are
only possible when N2

0 has the exact z−4/3 dependence required.

5. Plumes with time varying buoyancy flux
Recently, plumes whose source conditions may change in time have received

attention. In many real-life applications the strength, or indeed the size, of a plume’s
source may vary significantly in time. For example, a catastrophic failure or plugging
of a volcanic vent (see e.g. Houghton et al. 2004) or volcanic eruption, or the ignition
of fuel storage containers (see e.g. Johnson et al. 1991; Mather et al. 2007). In order to
model such unsteady plumes Scase et al. (2006b) rederived the steady model of MTT,
using the vertical Euler equation as the starting point, preserving the terms involving
temporal gradients. In so doing, they derived a system of three partial differential
equations for the mass, momentum and buoyancy fluxes. Specifically, it was shown
that

∂

∂t

(
Q2

M

)
+

∂Q

∂z
= 2αM1/2,

∂Q

∂t
+

∂M

∂z
=

QF

M
,

∂

∂t

(
QF

M

)
+

∂F

∂z
= 0. (5.1 a–c)

These equations may be non-dimensionalized based upon a reference source buoyancy
flux, as described in Scase et al. (2008), yielding identical equations except that the
coefficient of M1/2 in the right-hand side of (5.1a) is replaced by 1. As in the
previous sections, we re-cast the equations in terms of a non-dimensional plume
radius, β , vertical velocity, ω, and the plume laziness parameter Γ . The same non-
dimensionalization as used earlier is employed, but a scale is required for time and we
take TQ0 = 5Q2

0M
−3/2
0 /(6α). This particular non-dimensionalization is only valid when

Q0 �= 0 and M0 �= 0. Writing β = (β, ω, Γ )T, we find

∂β

∂τ
+

⎛
⎜⎝

ω β/2 0

0 ω 0

0 Γ/2 ω

⎞
⎟⎠ ∂β

∂ζ
=

ω

6β

⎛
⎜⎝

5β

2ω(4Γ − 5)

−Γ (16Γ − 15)

⎞
⎟⎠. (5.2)

The advantage of casting the system (5.1) in this form is that it is straightforward
to show that there are only three sets of solutions for straight-sided plumes with
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constant laziness. This is demonstrated by substituting Γ (z, t) =Γ is constant and
β ∝ ζ into (5.2). The first and third rows immediately yield that either Γ =0, the
jet solution, or the constant of proportionality for β is (8Γ − 5)/3. It then follows
from the third row that ω = f (τ )ζ −(16Γ −15)/(8Γ −5). Substitution back into the second
row reveals

df

dτ
=

20(Γ − 1)

8Γ − 5
ζ −4(6Γ −5)/(8Γ −5)f (τ )2. (5.3)

Solutions to (5.3) only exist when there is no ζ dependence on the right-hand side,
i.e. for Γ = 1, the classical steady plume, or Γ = 5/6, the neck.

Alternatively, following the approach of Scase et al. (2006b), we seek a straight-sided
solution

Γ = Γs, β = Cζ and w = Aζaτ b (5.4)

subject to the condition b �= 0. Substituting into the second row of (5.2) yields the two
exponents a = 1 and b = −1. The constants can then be evaluated explicitly using, in
order, rows 1, 3 and then 2 to yield

β =
5

9
ζ, Γ =

5

6
and w =

ζ

2τ
(5.5)

as found by Scase et al. (2006b). While the analysis approach is similar to that of
Scase et al. (2006b), the re-cast equations only require the evaluation of two exponents
and three pre-factors, rather than six exponents and three pre-factors. This is because
we are able to take advantage of the fact that the solution will have a constant Γ

value and be straight sided. No such simplifying assumptions can be made when
directly seeking solutions to the fluxes of volume, momentum and buoyancy.

6. Conclusions
One motivation for expressing the governing plume equations in terms of a volume,

momentum and buoyancy flux is that these quantities lend themselves to accurate
measurement in both the laboratory and the field. These quantities can be accurately
measured not only at the source of the plume, but also throughout the vertical extent
of the plume. However, as first demonstrated by Hunt & Kaye (2005), these are not
necessarily the most helpful quantities to work with analytically. By re-casting the
equations in terms of plume radius, vertical velocity and laziness, strong statements
and significant physical insight, about the behaviour of the plume can be made
without any solution of the governing equations being required.

We have presented analytical solutions for the range of background stratification
power-law decay rates for which straight-sided plumes are possible. This demonstrates
the usefulness of the technique presented here, as this result has only previously been
fully attained by numerical search.

It has been shown that the models of Batchelor (1954) and Caulfield & Woods
(1998) are two halves of the same continuum of solutions, and there is a smooth
transition between the two solution sets across the critical decay rate of κ = −8/3.
For κ < −8/3 the buoyancy flux of a straight-sided plume decays with height, and
so for the plume to continue rising, the stratification must be stable. Conversely, for
κ > −8/3 the buoyancy flux of a straight-sided plume increases with height, and hence
an unstable stratification is required.

Similarly, previous results for chemically reacting plumes are recovered
straightforwardly. However, for the case of the unsteady plume model, the method of
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re-casting the equations into plume radius, vertical velocity and plume laziness results
in only modest simplifications.

M.M.S. gratefully acknowledges funding under the University of Nottingham’s
Early Career Research and Knowledge Transfer Scheme.
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