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Abstract

We consider the pricing of discretely sampled volatility swaps under a modified Heston
model, whose risk-neutralized volatility process contains a stochastic long-run variance
level. We derive an analytical forward characteristic function under this model, which
has never been presented in the literature before. Based on this, we further obtain an
analytical pricing formula for volatility swaps which can guarantee the computational
accuracy and efficiency. We also demonstrate the significant impact of the introduced
stochastic long-run variance level on volatility swap prices with synthetic as well as
calibrated parameters.
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1. Introduction

Managing financial risk attracts much attention from researchers and market practi-
tioners, which contributes to the high volume of trading volatility derivatives in real
markets, since it is an easy way to trade volatility and hedge risk. Volatility swaps, as
one important volatility derivative, have received considerable attention. A number of
authors have worked on the pricing of a volatility swap.

Volatility swaps can be mainly classified into two categories according to the
sampling method, that is, continuously sampled and discretely sampled ones. In
the first category, general model independent results are presented by Carr and Lee
[7, 8], while other authors focus on pricing volatility swaps under different stochastic
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volatility models [12, 14, 18, 20]. Despite their appealing results, the underlying
assumption is not consistent with practice, as volatility swaps traded in real markets
are usually discretely sampled. This can cause mis-valuation problems if one makes
use of these results, as suggested by a number of authors [11, 24].

To properly reflect the discrete sampling effect and be closer to financial reality,
it is very popular to consider the valuation of discretely sampled volatility swaps. In
particular, Zhu and Lian [29] presented an analytical pricing formula for volatility
swaps under the well-known Heston model [19]. Despite their appealing results, the
study of pricing volatility swaps should not be stopped, since the Heston model is
not perfect for modelling the underlying dynamics. For example, the square root
specification for the so-called volatility of volatility is generally rejected as a model of
stock index returns [1, 26], while evidence of the substantial nonlinear mean-reverting
property for a volatility process has been provided by a number of authors (for
example, Bakshi et al. [2]). All of these drawbacks have led to the development of
different modifications to the Heston model, trying to incorporate more stochastic
factors. These variations have also been applied in volatility derivative pricing,
including a regime switching Heston model [11], Heston model with stochastic interest
rate [4, 6, 16] and Heston model with stochastic interest rate as well as regime
switching [5]. A hybrid constant elasticity of variance (CEV) and stochastic volatility
model were adopted by Cao et al. [3], while stochastic volatility was combined with
the Hawkes jump-diffusion process by Liu and Zhu [25]. A general framework for
variance swap pricing under stochastic volatility models with jumps was established
by Cui et al. [10].

Recently, multi-factor stochastic volatility models have started to gain attention,
because they have been shown to provide a better fit to market data [9]. In fact,
there have already been various results on the pricing of volatility derivatives under
multi-factor stochastic volatility models. For example, for variance swap pricing, Pun
et al. [27] considered a combination of multi-factor stochastic volatility and jumps,
while Wu et al. [28] introduced the stochastic interest rate into a double Heston
stochastic volatility model. A double exponential Ornstein–Uhlenbeck stochastic
volatility was adopted by Kim and Kim [22]. Both variance and volatility swaps were
valued under a two-factor Heston model with an additional regime switching factor
[17] and a multi- factor Heston stochastic volatility model [21]. Being quite similar to
these multi-factor stochastic volatility models, another trend for introducing additional
stochastic factors is to make the parameters of stochastic volatility models as random
variables to increase the flexibility of the model. Belonging to this category, Lee et al.
[23] considered multiscale stochastic volatility of volatility, while He and Chen [15]
introduced a stochastic long-run variance level into the risk-neutralized Heston model
and obtained a closed-form solution for European option prices.

In this paper, we focus on pricing volatility swaps under the model proposed
by He and Chen [15], which assumes a stochastic long-run variance level under
the risk-neutralized Heston model. Although the considered model is much more
complicated than the original Heston model due to the involvement of an additional
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stochastic source, we have still successfully obtained an analytical pricing formula
for volatility swaps, based on the forward characteristic function of the underlying
price derived in closed form. The contribution of this paper can be summarized from
two aspects. On the one hand, we present an analytical formulation of the forward
characteristic function under the considered model, which has not been presented
before. This leads to an analytical solution being available for volatility swap prices.
In this case, computational time can be significantly reduced and computational
accuracy can be greatly improved, compared with the case to which numerical methods
have to be resorted. On the other hand, we demonstrate the significant impact of the
introduced stochastic long-run variance level under the risk-neutralized Heston model
with synthetic and calibrated model parameters.

The rest of the paper is organized as follows. In Section 2, the adopted model is
briefly introduced, and the forward characteristic function of the underlying price is
derived, followed by the closed-form pricing formula for volatility swaps. In Section 3,
numerical experiments are conducted to show various properties of the newly derived
formula. Concluding remarks are given in Section 4.

2. Closed form solution

In this section, the modified Heston model proposed by He and Chen [15] will be
briefly introduced, after which the price of discretely sampled volatility swaps will
be worked out based on the derived forward characteristic function of the underlying
price.

2.1. The modified Heston model We start with a filtered probability space
(Ω,F , P,Ft∈[0,T]), which describes the uncertainty of the economy, with P representing
a probability measure (typically a risk-neutral measure considered in this paper) and
T denoting a finite time horizon. All stochastic processes involved are assumed to
be Ft∈[0,T] adapted. Let {St, t ≥ 0} and {vt, t ≥ 0} denote the underlying price and the
volatility process, respectively. The modified Heston model under the risk-neutral
measure is characterized as

dSt

St
= r dt +

√
vt dW1

t ,

dvt = k(v̄ + θt − vt)dt + σ1
√

vt dW2
t ,

dθt = λ dt + σ2 dW3
t ,

(2.1)

where W1
t , W2

t and W3
t are standard Brownian motions [15]. We further assume that

W3
t is independent of W1

t and W2
t , with dW1

t dW2
t = ρ dt. We remark that following

a number of different authors including Heston [19], we analyse the model in terms
of the risk-neutralized volatility process instead of the “true” process under the
physical measure throughout the paper, since the risk-neutralized process exclusively
determines prices. Therefore, we know that k, v̄, θt and σ respectively represent the
mean reversion speed, constant part of the long-run variance level, stochastic part
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of the long-run variance level at time t (stochastic long-run variance level for short
hereafter) and volatility of volatility, associated with the risk-neutralized volatility
process. The stochastic part θt can actually be viewed as corrections to the constant
part due to outside information, which can explain the independence between W3

t and
the other two Brownian motions. We also note that this model will degenerate to the
Heston model if both λ and σ2 take the value of zero, in which case θt becomes a
constant.

2.2. Volatility swaps For the completeness of this paper, we first sketch the
derivation of a general formula for the delivery price in a volatility swap contract,
while the full details can be found in the existing literature [17].

One of the most popular measures of the realized volatility σR can be specified as

σR = 100
√
π

2NT

N∑
i=1

∣∣∣∣∣Sti − Sti−1

Sti−1

∣∣∣∣∣,
where ti, i = 0, . . . , N, represents the ith observation time of the realized volatility with
ti = iT/N, i = 0, . . . , N. According to the risk-neutral pricing rule, as well as the fact
that the value of volatility swaps should equal to zero when it is entered, we obtain

K = E(σR) =

√
π

2NT

N∑
i=1

E
(∣∣∣∣∣Sti − Sti−1

Sti−1

∣∣∣∣∣|S0, v0, θ0
)
.

If we assume that xt,T = ln(ST ) − ln(St), t < T with the current time being 0, and let
p(xti−1,ti ) be the probability density function of the stochastic variable xti−1,ti , the target
expectation can be calculated as

E
(∣∣∣∣∣Sti − Sti−1

Sti−1

∣∣∣∣∣|S0, v0, θ0
)
=

∫ ∞
0

(exti−1,ti − 1)p(xti−1,ti ) dxti−1,ti

+

∫ 0

−∞
(−exti−1,ti + 1)p(xti−1,ti ) dxti−1,ti . (2.2)

We further define f (φ; t, T , v0, θ0) as the conditional forward characteristic function
of xt,T . By making use of the Gil–Pelaez theorem [13] that relates the characteristic
function and the cumulative function of a random variable, we obtain

P1,i �
∫ ∞

0
p(xti−1,ti ) dxti−1,ti =

1
2
+

1
π

∫ ∞
0

Re
[ f (φ; ti−1, ti, v0, θ0)

jφ

]
dφ

and

P2,i �
∫ ∞

0
exti−1,ti p(xti−1,ti ) dxti−1,ti

= f (−j; ti−1, ti, v0, θ0)
{1

2
+

1
π

∫ ∞
0

Re
[ f (φ − j; ti−1, ti, v0, θ0)

jφf (−j; ti−1, ti, v0, θ0)

]
dφ
}
,
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where Re(·) denotes the real part of the argument. In this case, equation (2.2) can be
further simplified as

E
(∣∣∣∣∣Sti − Sti−1

Sti−1

∣∣∣∣∣|S0, v0, θ0
)
= (1 − 2P1,i) − f (−j; ti−1, ti, v0, θ0)(2P2,i − 1)

=
2
π

∫ ∞
0

Re
[ f (φ − j; ti−1, ti, v0, θ0) − f (φ; ti−1, ti, v0, θ0)

jφ

]
dφ.

Therefore, it is clear that our task is converted into finding the conditional forward
characteristic function f (φ; t, T , v0, θ0), the solution to which is presented in the
following proposition.

PROPOSITION 2.1. If the underlying asset price St follows the dynamics (2.1), then the
conditional forward characteristic function can be derived as

f (φ; t, T , v0, θ0) = eC(φ;τ)+C̄(φ;t)+D̄(φ;t)v0+Ē(φ;t)θ0

with τ = T − t, and

D̄(φ; t) =
2k
σ2

1

1
1 − (1 − 2k/σ2

1D(φ; τ))ekt
,

Ē(φ; t) = E(φ; τ) +
2k
σ2

1

{
kt − ln

(
1 −
(
1 − 2k
σ2

1D(φ; τ)

)
ekt
)
+ ln
( 2k
σ2

1D(φ; τ)

)}
,

C̄(φ; t) =
1
2
σ2

2

∫ t

0
Ē2(φ; s) ds + λ

∫ t

0
Ē(φ; s) ds + v̄[Ē(φ; t) − E(φ; τ)],

C(φ; τ) = v̄E + jrφτ +
1
2
σ2

2

∫ τ
0

E2(φ; s) ds + λ
∫ τ

0
E(φ; s) ds,

D(φ; τ) =
d − ( ρσ1jφ − k)

σ2
1

1 − edτ

1 − gedτ ,

E(φ; τ) =
k
σ2

1

{
[d − ( ρσ1jφ − k)]τ − 2 ln

(1 − gedτ

1 − g

)}
,

d =
√

( ρσ1jφ − k)2 + σ2
1(jφ + φ2),

g =
( ρσ1jφ − k) − d
( ρσ1jφ − k) + d

.

The proof of this proposition is left in the Appendix.
Having worked out the conditional forward characteristic function, the final solution

of the delivery price K can be expressed as

K = 100
√
π

2NT

∫ ∞
0

N∑
i=1

Re
[ f (φ − j; ti−1, ti, v0, θ0) − f (φ; ti−1, ti, v0, θ0)

jφ

]
dφ.
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By now, we have derived the closed-form pricing formula for volatility swaps under
the modified Heston model. In the next section, the accuracy of our newly derived
formula will be verified by comparing numerical results obtained from our formula and
those through Monte Carlo simulation [17]. Also, we will show the difference caused
by the introduction of the stochastic long-run variance level through the comparison
of our results and those under the Heston model [29].

3. Numerical experiments and examples

In this section, numerical experiments are carried out to study the properties of
volatility swap prices under the modified Heston model. In particular, we first show
the accuracy of our formula by comparing numerical results obtained with our formula
and those from Monte Carlo simulation. With confidence in our formula, we further
show the influence of introducing the stochastic long-run variance level into the
volatility process by comparing volatility swap prices under our adopted model and
the original Heston model. As mentioned earlier, we focus on analysing the model
with risk-neutralized parameters instead of the “true” ones, since the risk-neutralized
process actually determines prices, as pointed out by Heston [19]. In addition, all of
our calculations in this paper are done on a laptop with the following specifications:
Intel(R) Core(TM), i5-1135G7 CPU@2.40 GHz and 16.0 GB of RAM.

What is presented in Table 1 is the comparison of volatility swap prices obtained
through our formula (Ours) with those from Monte Carlo (MC) simulation. The MC
simulation is implemented with 500 000 sample paths, and it is accompanied by a
98% confidence interval provided in the parentheses. One can clearly observe from
this table that our results are quite close to those obtained through MC simulation. We
also provide the absolute relative error (RE) between the two prices to demonstrate
the accuracy of our formula. It is not difficult to find that the maximum absolute
relative error in this test case is only 0.06%, which implies that our formula is accurate.
However, the CPU time cost by our formula (t1) is far less than that consumed by MC
simulation (t2). It should be remarked that the CUP time cost by our formula reported
here measures the computational time when the involved integrals are computed using
the trapezoidal rule. It can be highly reduced if one uses some software built-in
functions, such as integral in MATLAB.

Once we are confident of our formula, the pricing performance of our model is
compared with that of the Heston model, the dynamics of which are specified as

dS
S
= r dt +

√
v dW1

t ,

dv = k( ṽ − v) dt + σ
√

v dW2
t .

Note that if we make ṽ = v̄ + θ0, and let λ and σ2 be equal to zero, our model would
become exactly the same as the Heston model. Thus, it is not difficult to deduce that
with all the other corresponding parameters being the same, our results will approach
the results under the Heston model when the values of λ and σ2 approach zero.
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TABLE 1. Our prices versus Monte Carlo prices.

N 4 6 8 10 12 14 16 18

Ours 28.3079 28.2010 28.1470 28.1140 28.0934 28.0761 28.0651 28.0580
MC 28.3087 28.2152 28.1422 28.1167 28.0844 28.0642 28.0764 28.0568

(±0.036) (±0.029) (±0.025) (±0.023) (±0.021) (±0.019) (±0.018) (±0.017)
RE(%) 2.48 × 10−3 5.05 × 10−2 1.70 × 10−2 9.65 × 10−3 3.19 × 10−2 4.21 × 10−2 4.03 × 10−2 4.35 × 10−3

t1 4.37 7.44 9.31 13.55 16.36 17.02 19.91 22.39
t2 27.46 40.53 60.98 80.36 94.79 112.47 123.12 144.40

N 20 22 24 26 28 30 32 34

Ours 28.0501 28.0435 28.0408 28.0372 28.0327 28.0282 28.0261 28.0217
MC 28.0537 28.0363 28.0352 28.0370 28.0363 28.0390 28.0339 28.0274

(±0.016) (±0.015) (±0.015) (±0.014) (±0.014) (±0.013) (±0.013) (±0.012)
RE(%) 1.29 × 10−2 2.59 × 10−2 1.97 × 10−2 7.08 × 10−4 1.29 × 10−2 3.88 × 10−2 2.78 × 10−2 2.05 × 10−2

t1 26.87 31.47 33.93 35.02 37.32 40.51 43.36 45.81
t2 158.52 181.90 187.78 208.25 224.97 266.56 298.72 326.28

N 36 38 40 42 44 46 48 50

Ours 28.0199 28.0182 28.0164 28.0121 28.0103 28.0084 28.0066 28.0042
MC 28.0202 28.0200 28.0095 28.0294 28.0213 28.0153 28.0084 28.0064

(±0.012) (±0.012) (±0.012) (±0.011) (±0.011) (±0.011) (±0.011) (±0.010)
RE(%) 1.21 × 10−3 6.51 × 10−3 2.47 × 10−2 6.17 × 10−2 3.90 × 10−2 2.47 × 10−2 6.51 × 10−3 7.80 × 10−3

t1 49.38 51.15 53.92 55.88 57.98 59.99 61.56 63.66
t2 362.41 407.71 446.61 482.32 518.14 552.93 583.66 618.89
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FIGURE 1. Comparison of our prices and Heston prices with different value of the scale param-
eter. Parameters are T = 1,σ1 = 0.1,σ2 = 0.01, λ = 0.01, k = 10, ρ = −0.5, v̄ = 0.05, r = 0.05, v0 = 0.03,
θ0 = 0.03, S0 = 10.

To smoothly show this phenomenon, we introduce a scale parameter z, which varies
within [0,1]. We then assume that λ = λ̄z and σ2 = σ̄2z, so that the two prices could
be depicted with respect to z, which is shown in Figure 1. As expected, our price will
be the same as the Heston price (the star line that is very closed to the x-axis) when
z = 0, while they can become quite different when z takes large values.

With the time to expiry being unchanged and the sampling frequency being altered,
a similar phenomenon could be observed in Figure 2 that our price is always lower
than the Heston price under the current parameter settings. This can be explained by
the negative value of λ, which contributes to the decrease in the long-run variance
level of the risk-neutralized volatility and thus the lower volatility swap prices. We
also observe that both prices are the decreasing function of the sampling frequency. In
other words, the delivery price of a volatility swap would decrease if sampling times
per year are increased.

As shown in Figure 3, the delivery price of volatility swaps under the Heston model
is a monotonic increasing function of the time to expiry, while that under our model
shows an increasing trend before it starts to decrease. This is in fact reasonable, as
the negative value of λ typically leads to a smaller long-run variance level of the
risk-neutralized volatility, and this can result in the decrease of the realized volatility
as well as the delivery price when the time to expiry is large.

All the above sensitivity analysis was carried out by setting the corresponding
parameters of both models to be the same. One may also be interested in whether
the two models would behave differently when the parameters are calibrated to
real market data. Therefore, we make use of the parameters calibrated to European
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FIGURE 2. Comparison of our prices and Heston prices with different value of the time to expiry.
Parameters are N = 52, T = 1,σ1 = 0.1,σ2 = 0.01, λ = −0.01, k = 10, ρ = −0.5, v̄ = 0.05, r = 0.05,
v0 = 0.03, θ0 = 0.03.
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FIGURE 3. Comparison of our prices and Heston prices with different value of the sam-
pling frequency. Parameters are N = 52,σ1 = 0.1,σ2 = 0.01, λ = −0.001, k = 10, ρ = −0.5, v̄ = 0.05,
r = 0.05, v0 = 0.03, θ0 = 0.03.

options written on the S&P 500 index from He and Chen [15] for calculating the
delivery prices of volatility swaps under both models. With the calibrated parameters
for our model being k = 5.4897, θ0 = 0.0523,σ1 = 0.7751, λ = 0.0822,σ2 = 0.0074,
ρ = −0.7439, v0 = 0.0342, and for the Heston model being k = 4.4766, ṽ = 0.0702,
σ = 1.0371, ρ = −0.4230, v0 = 0.0356, the results with respect to different sampling
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FIGURE 4. Market test with different sampling frequency.
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FIGURE 5. Market test with different time to expiry.

frequency are presented in Figure 4. We observe that there is a large difference between
the two models, and such difference is further widened when the sampling frequency
increases. A similar phenomenon is shown in Figure 5, where the delivery prices
are plotted against different time to expiry. With the lifetime of the contract being
larger, a greater gap between the two model prices is generated. We then conclude that
the inclusion of a stochastic long-run variance level in the risk-neutralized volatility
process can make a significant difference in volatility swap prices. Thus, the adopted
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model can serve as an alternative to the Heston model in practice when pricing
volatility swaps.

4. Conclusion

In this paper, we present a closed-form pricing formula for discretely sampled
volatility swaps under the modified Heston model, after successfully working out the
forward characteristic function of the underlying price. The newly derived formula is
shown to be accurate through numerical comparison with the results from the Monte
Carlo simulation. The influence of introducing the stochastic long-run variance level
into the risk-neutralized Heston model on volatility swap prices is also shown to be
significant, implying that the modified Heston model may serve as a competitor to the
Heston model for volatility swap pricing.
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Appendix

Following is the proof of Proposition 2.1.

PROOF. According to the tower rule of expectation, the conditional forward character-
istic function f (φ; t, T , v0, θ0) can be calculated as

f (φ; t, T , v0, θ0) = E(e jφxt,T |v0, θ0)

= E[E(e jφxt,T |vt, θt)|v0, θ0].

As a result, the calculation of f (φ; t, T , v0, θ0) can be divided into two steps, that is, the
inner expectation and outer expectation. If we define

h(φ; τ, vt, θt) = E(e jφxt,T |vt, θt),

as the inner expectation with τ = T − t, then h can be formulated as

h(φ; τ, vt, θt) = eC(φ;τ)+D(φ;τ)vt+E(φ;τ)θt+jφxt,t ,

according to the results in [15]. With the expressions of C(φ; τ), D(φ; τ) and E(φ; τ),
the forward characteristic function f (φ; t, T , v0, θ0) can be expressed as

f (φ; t, T , v0, θ0) = E(eC(φ;τ)+D(φ;τ)vt+E(φ;τ)+θt+jφxt,t |v0, θ0),

= eC(φ;τ)E(eD(φ;τ)vt+E(φ;τ)θt |v0, θ0), (A.1)
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by noticing the fact that xt,t = 0. Hence, what remains is to work out the expectation
shown in equation (A.1). If we define

m(φ; 0, t, v0, θ0) = E(eD(φ;τ)vt+E(φ;τ)θt |v0, θ0),

the Feynman–Kac theorem shows that m should satisfy⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂m
∂s
+

1
2
σ2

1v
∂2m
∂v2 +

1
2
σ2

2
∂2m
∂θ2
+ k(v̄ + θ − v)

∂m
∂v
+ λ
∂m
∂θ

,

m(φ; 0, t, v0, θ0) = eD(φ;τ)v+E(φ;τ)θ.

(A.2)

With careful observation of the expression for the terminal condition, we further
assume that

m(φ; s, t, vs, θs) = eC̄(φ;t)+D̄(φ;t)v+Ē(φ;t)θ,

and substitute it into the partial differential equation (A.2). In this case, we could also
obtain three ordinary differential equations (ODEs):

∂D̄
∂τ
=

1
2
σ2

1D̄2 − kD̄,

∂Ē
∂τ
= kD̄,

∂C̄
∂τ
=

1
2
σ2

2Ē2 + λĒ + kv̄D̄,

with the terminal condition C̄(φ; t) = 0, D̄(φ; t) = D(φ; τ), Ē(φ; t) = E(φ; τ). We could
reach the final solution by solving these three ODEs. This completes the proof of the
proposition. �
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