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This paper considers the propagation of shallow-water solitary and nonlinear periodic
waves over a gradual slope with bottom friction in the framework of a variable-
coefficient Korteweg–de Vries equation. We use the Whitham averaging method, using
a recent development of this theory for perturbed integrable equations. This general
approach enables us not only to improve known results on the adiabatic evolution
of isolated solitary waves and periodic wave trains in the presence of variable
topography and bottom friction, modelled by the Chezy law, but also, importantly,
to study the effects of these factors on the propagation of undular bores, which are
essentially unsteady in the system under consideration. In particular, it is shown that
the combined action of variable topography and bottom friction generally imposes
certain global restrictions on the undular bore propagation so that the evolution
of the leading solitary wave can be substantially different from that of an isolated
solitary wave with the same initial amplitude. This non-local effect is due to nonlinear
wave interactions within the undular bore and can lead to an additional solitary wave
amplitude growth, which cannot be predicted in the framework of the traditional
adiabatic approach to the propagation of solitary waves in slowly varying media.

1. Introduction
There have been many studies of the propagation of water waves over a slope,

sometimes also subject to the effects of bottom friction. Many of these works have
considered linear waves, or have been numerical simulations in the framework of
various nonlinear long-wave model equations. Our interest here is in the propagation
of weakly nonlinear long water waves over a slope, simultaneously subject to bottom
friction, a combination apparently first considered by Miles (1983a, b), albeit for the
special case of a single solitary wave, or a periodic wavetrain. An appropriate model
equation for this scenario is the variable-coefficient perturbed Korteweg–de Vries
(KdV) equation (see Grimshaw 1981; Johnson 1973a, b),

At + cAx +
cx

2
A +

3c

2h
AAx +

ch2

6
Axxx = −CD

c

h2
|A|A. (1.1)

Here A(x, t) is the free surface elevation above the undisturbed depth h(x) and
c(x) =

√
gh(x) is the linear long-wave phase speed. The bottom friction term on the

right-hand side is represented by the Chezy law, modelling a turbulent boundary
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layer. Here CD is a non-dimensional drag coefficient, often assumed to have a value
around 0.01 (Miles 1983a, b). Other forms of friction could be used (see, for instance,
Grimshaw, Pelinovsky & Talipova 2003) but the Chezy law seems to be the most
appropriate for water waves in a shallow depth. In (1.1) the first two terms on the
left-hand side are the dominant terms, and by themselves describe the propagation of
a linear long wave with speed c. The remaining terms on the left-hand side represent,
respectively, the effect of varying depth, weakly nonlinear effects and weak linear
dispersion. The equation is derived using the usual KdV balance in which the linear
dispersion, represented by ∂2/∂x2, is balanced by nonlinearity, represented by A. Here
we have added to this balance weak inhomogeneity so that cx/c scales as h2∂3/∂x3,
and weak friction so that CD scales with h∂/∂x. Within this basic balance of terms,
we can cast (1.1) into the asymptotically equivalent form

Aτ +
hτ

4h
A +

3

2h
AAX +

h

6g
AXXX = −CD

g1/2

h3/2
|A|A, (1.2)

where

τ =

∫ x

0

dx ′

c(x ′)
, X = τ − t. (1.3)

Here we have h = h(x(τ )), explicitly dependent on the variable τ which describes
evolution along the path of the wave.

The governing equation (1.2) can be cast into several equivalent forms. That most
commonly used is the variable-coefficient KdV equation, obtained here by putting

B = (gh)1/4A, (1.4)

so that

Bτ +
3

2g1/4h5/4
BBX +

h

6g
BXXX = −CD

g1/4

h7/4
|B|B. (1.5)

This form shows that, in the absence of friction term, i.e. when CD ≡ 0, equation
(1.2) has two integrals of motion with the densities proportional to h1/4A and h1/2A2.
These are often referred to as laws for the conservation of ‘mass’ and ‘momentum’.
However, these densities do not necessarily correspond to the corresponding physical
entities. Indeed, to leading order, the ‘momentum’ density is proportional to the wave
action flux, while the ‘mass’ density differs slightly from the actual mass density. This
latter issue has been explored by Miles (1979), where it was shown that the difference
is smaller than the error incurred in the derivation of (1.4), and is due to reflected
waves.

Our main concern in this paper is with the behaviour of an undular bore over a
slope in the presence of bottom friction, using the perturbed KdV equation (1.2),
where we were originally motivated by the possibility that the behaviour of a
tsunami approaching the shore might be modelled in this way. The undular bore
solution to the unperturbed KdV equation can be constructed using the well-known
Gurevich–Pitaevskii (GP) (1974) approach (see also Fornberg & Whitham 1978).
In this approach, the undular bore is represented as a modulated nonlinear periodic
wavetrain. The main feature of this unsteady undular bore is the presence of a solitary
wave (which is the limiting wave form of the periodic cnoidal wave) at its leading edge.
The original initial-value problem for the KdV equation is then replaced by a certain
boundary-value problem for the associated modulation Whitham equations. We note,
however, that so far, the simplest, ‘(x/t)’-similarity solutions of the modulation
equations have been used for the modelling of undular bores in various contexts (see
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Grimshaw & Smyth 1986, Smyth 1987 or Apel 2003, for instance). These solutions,
while effectively describing many features of undular bores, are degenerate and fail
to capture, even qualitatively, some important effects associated with non-self-similar
modulation dynamics. In particular, in the classical GP solution for the resolution of
an initial jump in the unperturbed KdV equation, the amplitude of the lead solitary
wave in the undular bore is constant (twice the value of the initial jump). On the
other hand, the modulation solution for the undular bore evolving from a general
monotonically decreasing initial profile shows that the lead solitary wave amplitude
in fact grows with time (Gurevich, Krylov & Mazur 1989; Gurevich, Krylov & El
1992; Kamchatnov 2000). As we shall see, the very possibility of such variations in
the modulated solutions of the unperturbed KdV equation has a very important fluid
dynamics implication: in a general setting, the undular bore lead solitary wave cannot
be treated as an individual KdV solitary wave but rather represents a part of the global
nonlinear wave structure. In other words, while at every particular moment of time
the lead solitary wave has the spatial profile of the familiar KdV soliton, generally,
the temporal dependence of its amplitude cannot be obtained in the framework of
single solitary wave perturbation theory.

In the unperturbed KdV equation, the growth of the lead solitary wave amplitude
is caused by the spatial inhomogeneity of the initial data. Here, however, the presence
of a perturbation due to topography and/or friction serves as an alternative and/or
additional cause for variation of the lead solitary wave amplitude. Thus, in the present
case, the variation in the amplitude will have two components (which generally, of
course, cannot be separated because of the nonlinear nature of the problem); one is
local, described by the adiabatic perturbation theory for a single solitary wave, and
the other one is non-local, which in principle requires the study of the full modulation
solution. Depending on the relative values of the small parameters associated with
the slope, friction and spatial non-uniformity of the initial modulations, we can take
into account only one of these components, or a combination of them.

The structure of the paper is as follows. First, in § 2, we reformulate the basic
model (1.1) as a constant-coefficient KdV equation perturbed by terms representing
topography and friction. Then we derive in § 3 the associated perturbed Whitham
modulation equations using methods recently developed by Kamchatnov (2004). Next,
in § 4, this Whitham system is integrated in the solitary-wave limit. Our purpose here
is primarily to obtain the equation of a multiple characteristic, which defines the
leading edge of a shoaling undular bore in the case when the modulations due to the
combined action of the slope and bottom friction are small compared to the existing
spatial modulations due to non-uniformity of the initial data. As a by-product of this
integration, we reproduce and extend the known results on the adiabatic variation of
a single solitary wave (Miles 1983a, b). Then, in § 5, we carry out an analogous study
of a cnoidal wave, propagating over a gradual slope and subject to friction, a case
studied previously by Miles (1983b) but under the restriction of zero mean flow, which
is removed here. Finally, in § 6 we study the effects of a gradual slope and bottom
friction on the front of an undular bore which represents a modulated cnoidal wave
transforming into a system of weakly interacting solitons near its leading edge.

2. Problem formulation
For the purpose of the present paper it is convenient to recast (1.2) into the stan-

dard KdV equation form with constant coefficients, modified by certain perturbation
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h(x)

x0

(a)

(b)
h(x)

x0

Figure 1. Isolated solitary wave (a) and undular bore (b) entering the variable
topography/bottom friction region.

terms. Thus we introduce the new variables

U =
3g

2h2
A, T =

1

6g

∫ τ

0

h dτ =
1

6g3/2

∫ x

0

√
h(x) dx. (2.1)

so that

UT + 6UUX + UXXX = R = F (T )U − G(T )|U |U, (2.2)

where

F (T ) = −9hT

4h
, G(T ) = 4CD

g1/2

h1/2
. (2.3)

In this form, the governing equation (2.2) has the structure of the integrable KdV
equation on the left-hand side, while the separate effects of the varying depth and
the bottom friction are represented by the two terms on the right-hand side. This
structure enables us to use the general theory developed in Kamchatnov (2004) for
perturbed integrable systems.

For much of the subsequent discussion, it is useful to assume that h(x) = constant,
CD =0 for x < 0 in the original equation (1.1), which corresponds to F (T ) = G(T ) = 0
for T < 0 in (2.2). We shall also assume that A= 0 for x > 0 at t = 0, which corresponds
to U = 0 for X > 0 on X = τ (T ) (see (2.1)). Then we shall propose two types of initial-
value problem for (1.1), and correspondingly for (2.2).

(a) Let a solitary wave of a given amplitude a0 initially propagating over a flat
bottom without friction (i.e. a soliton described by an unperturbed KdV equation),
enter the variable topography and bottom friction region at t = 0, x = 0 (figure 1a).

(b) Let an undular bore of a given intensity propagate over a flat bottom without
friction (the corresponding solution of the unperturbed KdV equation will be discussed
in § 5). Let the lead solitary wave of this undular bore have the same amplitude a0 and
enter the variable topography and bottom friction region at t = 0, x = 0 (figure 1b).

In particular, we shall be interested in the comparison of the slow evolution of these
two, initially identical, solitary waves in the two different problems described above.
The expected essential difference in the evolution is due to the fact that the lead
solitary wave in the undular bore is generally not independent of the remaining part
of the bore and can exhibit features that cannot be captured by a local perturbation
analysis. The well-known example of such a behaviour, when a solitary wave is
constrained by the condition of being a part of a global nonlinear wave structure, is
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provided by the undular bore solution of the KdV–Burgers (KdV–B) equation

ut + 6uux + uxxx = µuxx, µ � 1. (2.4)

Indeed, the undular bore solution of the KdV–B equation (2.4) is known to have
a solitary wave at its leading edge (see Johnson 1970; Gurevich & Pitaevskii 1987;
Avilov, Krichever & Novikov 1987) and this solitary wave: (a) is asymptotically close
to a soliton solution of the unperturbed KdV equation; and (b) has the amplitude,
say a0, that is constant in time. At the same time, it is clear that if one takes an
isolated KdV soliton of the same amplitude a0 as initial data for the KdV–Burgers
equation, it would damp with time due to dissipation. The physical explanation of
such a drastic difference in the behaviour of an isolated soliton and a lead solitary
wave in the undular bore for the same weakly dissipative KdV–B equation is that the
action of weak dissipation on an expanding undular bore is twofold: on the one hand,
the dissipation tends to decrease the amplitude of the wave locally but, on the other
hand, it ‘squeezes’ the undular bore so that the interaction (i.e. momentum exchange)
between separate solitons within the bore becomes stronger than in the absence of
dissipation and this acts as the amplitude-increasing factor. The additional momentum
is extracted from the upstream flow with a greater depth (see Benjamin & Lighthill
1954). As a result, in the case of the KdV–B equation, an equilibrium non-zero value
for the lead solitary wave amplitude in the undular bore is established. Of course, for
other types of dissipation, a stationary value of the lead soliton amplitude would not
necessarily exist, but in general, due to the expected increase of the soliton interactions
near the leading edge, the amplitude of the lead soliton of the undular bore would
decay more slowly than that of an isolated soliton. Indeed, the presence here of
variable topography as well can result in an additional ‘non-local’ amplitude growth.

While the problem (a) can be solved using traditional perturbation analysis for a
single solitary wave, which leads to an ordinary differential equation along the solitary
wave path (see Miles 1983a, b), the undular bore evolution problem (b) requires a
more general approach which can be developed on the basis of Whitham’s modulation
theory leading to a system of three nonlinear hyperbolic partial differential equations
of the first order. Since the Whitham method, being equivalent to a nonlinear multiple
scale perturbation procedure, contains the adiabatic theory of slow evolution of a
single solitary wave as a particular (albeit singular) limit, it is instructive for the
purposes of this paper to treat both problems (a) and (b) using the general Whitham
theory.

3. Modulation equations
The original Whitham method (Whitham 1965, 1974) was developed for con-

servative constant-coefficient nonlinear dispersive equations and is based on the
averaging of appropriate conservation laws of the original system over the period of
a single-phase periodic travelling wave solution. The resulting system of quasi-linear
equations describes the slow evolution of the modulations (i.e. of the mean value, the
wavenumber, the amplitude, etc.) of the periodic travelling wave. Here, that approach
is extended to the perturbed KdV equation (2.1) following the general approach
of Kamchatnov (2004), which extends earlier results for certain specific cases (see
Gurevich & Pitaevskii 1987, 1991, Avilov, Krichever & Novikov 1987, and Myint &
Grimshaw 1995, for instance).

We suppose that the evolution of the nonlinear wave is adiabatically slow, that is,
the wave can be locally represented as a solution of the corresponding unperturbed
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KdV equation (i.e. (2.2) with zero on the right-hand side) with its parameters slowly
varying with space and time. The one-phase periodic solution of the KdV equation
can be written in the form

U (X, T ) = λ3 − λ1 − λ2 − 2(λ3 − λ2)sn
2(

√
λ3 − λ1 θ, m) (3.1)

where sn(y, m) is the Jacobi elliptic sine function, λ1 � λ2 � λ3 are parameters and
the phase variable θ and the modulus m are given by

θ = X − V T, V = −2(λ1 + λ2 + λ3), (3.2)

m =
λ3 − λ2

λ3 − λ1

, (3.3)

L =

∮
dθ =

∫ λ3

λ2

dµ√
−P (µ)

=
2K(m)√
λ3 − λ1

, (3.4)

where K(m) is the complete elliptic integral of the first kind, L is the ‘wavelength’ along
the X-axis (which is actually a retarded time rather than a true spatial coordinate).
Here we have used the representation of the basic ordinary differential equation for
the KdV travelling wave solution (3.1) in the form (see Kamchatnov 2000 for a
general motivation behind this representation)

dµ

dθ
= 2

√
−P (µ), (3.5)

where

µ = 1
2
(U + s1), s1 = λ1 + λ2 + λ3 (3.6)

and

P (µ) =

3∏
i=1

(µ − λi) = µ3 − s1µ
2 + s2µ − s3, (3.7)

that is the solution (3.1) is parameterized by the zeros λ1, λ2, λ3 of the polynomial
P (µ).

In a modulated wave, the parameters λ1, λ2, λ3 are allowed to be slow functions
of X and T , and their evolution is governed by the Whitham equations. For the
unperturbed KdV equation, the evolution of the modulation parameters is due to
a spatial non-uniformity of the initial distributions for λj , j = 1, 2, 3 and the typical
spatio-temporal scale of the modulation variations is determined by the scale of the
initial data.

In the case of the perturbed KdV equation (2.2), the evolution of the parameters
λ1, λ2, λ3 is caused not only by their initial spatial non-uniformity, but also by the
action of the weak perturbation, so that, generally, at least two independent spatio-
temporal scales for the modulations can be involved. However, at this point we shall
not introduce any scale separation within the modulation theory and derive general
perturbed Whitham equations assuming that the typical values of F (T ) and G(T ) are
O(∂λj /∂T , ∂λj /∂X) within the modulation theory.

It is instructive to first introduce the Whitham equations for the perturbed KdV
equation (2.2) using the traditional approach of averaging the (perturbed) conserva-
tion laws. To this end, we introduce the averaging over the period (3.4) of the cnoidal
wave (3.1) by

〈F〉 =
1

L

∮
F dθ =

1

L

∫ λ3

λ2

Fdµ√
−P (µ)

. (3.8)
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In particular,

〈U〉 = 2〈µ〉 − s1 = 2(λ3 − λ1)
E(m)

K(m)
+ λ1 − λ2 − λ3, (3.9)

〈U 2〉 = 8

[
−s1

6
(λ3 − λ1)

E(m)

K(m)
− 1

3
s1λ1 +

1

6

(
λ2

1 − λ2λ3

)]
+ s2

1 , (3.10)

where E(m) is the complete elliptic integral of the second kind. Now, one represents
the KdV equation (2.2) in the form of the perturbed conservation laws

∂Pj

∂T
+

∂Qj

∂X
= Rj, j = 1, 2, 3, Rj � 1, (3.11)

where Pj and Qj are the standard expressions for the conserved densities (Kruskal
integrals) and ‘fluxes’ of the unperturbed KdV equation. Just as in the Whitham
(1965) theory for unperturbed dispersive systems, the number of conservation laws
required is equal to the number of free parameters in the travelling wave solution,
which is three in the present case. Next, one applies the averaging (3.8) to the system
(3.11) to obtain (see Dubrovin & Novikov 1989)

∂〈Pj 〉
∂T

+
∂〈Qj 〉
∂X

= 〈Rj 〉, j = 1, 2, 3. (3.12)

The system (3.12) describes the slow evolution of the parameters λj in the cnoidal
wave solution (3.1).

Along with this derived perturbed conservative form of the Whitham equations, we
introduce the wave conservation law which is a general condition for the existence
of slowly modulated single-phase travelling wave solutions (3.1) (see for instance
Whitham 1974) and must be consistent with the modulation system (3.12). This
conservation law has the form

∂k

∂T
+

∂ω

∂X
= 0, (3.13)

where

k =
2π

L
, ω = kV (3.14)

are the ‘wavenumber’ and the ‘frequency’ respectively (we have put quotation
marks here because the actual wavenumber and frequency related to the physical
variables x, t are different quantities from those in (3.14), but are related through
the transformations (1.3), (2.1)). The wave conservation law (3.13) can be introduced
instead of any of three inhomogeneous averaged conservation laws comprising the
Whitham system (3.12).

It is known that the Whitham system for the homogeneous constant-coefficient KdV
equation can be represented in diagonal (Riemann) form (Whitham 1965, 1974) by an
appropriate choice of the three parameters characterizing the periodic travelling wave
solution. In fact, in our solution (2.2) the parameters λj have already been chosen so
that they coincide with the Riemann invariants of the unperturbed KdV modulation
system. Introducing them explicitly into the perturbed system (3.12) we obtain (see
Kamchatnov 2004)

∂λi

∂T
+ vi

∂λi

∂X
=

L

∂L/∂λi

× 〈(2λi − s1 − U )R〉
4

∏
j �=i(λi − λj )

, i = 1, 2, 3, (3.15)
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where R is the perturbation term on the right-hand side of the KdV equation (2.2)
and

vi = −2
∑

λi +
2L

∂L/∂λi

, i = 1, 2, 3, (3.16)

are the Whitham characteristic velocities corresponding to the unperturbed KdV
equation.

It should be noted that the straightforward realization of the above lucid general
algorithm for obtaining perturbed modulation system in diagonal form is quite a
laborious task. In fact, to derive system (3.15), the so-called finite-gap integration
method incorporating the integrable structure of the unperturbed KdV equation has
been used. The modulation system (3.15) in a more particular form corresponding
to specific choices of the perturbation term was obtained by Myint and Grimshaw
(1995) using a multiple-scale perturbation expansion. In that latter setting, the wave
conservation law (3.13) is an inherent part of the construction, while in the averaging
approach used here, it can be obtained as a consequence of the system (3.15).

To obtain an explicit representation of the Whitham equations for the present case
of equation (2.2), we must substitute the perturbation R from the right-hand side of
(2.2) and perform the integration (3.8) with U given by (3.1). From now on, we are
going to consider only the flows where U � 0 so that the perturbation term assumes
the form

R(U ) = G(T )U − F (T )U 2. (3.17)

Substituting (3.17) into (3.15), we obtain, after some detailed calculations (see the
Appendix), the perturbed Whitham system in the form

∂λi

∂T
+ vi

∂λi

∂X
= ρi = Ci[F (T )Ai − G(T )Bi], i = 1, 2, 3, (3.18)

where

C1 =
1

E
, C2 =

1

E − (1 − m)K
, C3 =

1

E − K
; (3.19)

A1 = 1
3
(5λ1 − λ2 − λ3)E + 2

3
(λ2 − λ1)K,

A2 = 1
3
(5λ2 − λ1 − λ3)E − (λ2 − λ1)

(
1
3

+
λ2

λ3 − λ1

)
K,

A3 = 1
3
(5λ3 − λ1 − λ2)E −

[
λ3 + 1

3
(λ2 − λ1)

]
K;

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.20)

B1 = 1
15

(
−27λ2

1 − 7λ2
2 − 7λ2

3 + 2λ1λ2 + 2λ1λ3 + 22λ2λ3

)
E

− 4
15

(λ2 − λ1)(3λ1 + λ2 + λ3)K,

B2 = 1
15

(
−7λ2

1 − 27λ2
2 − 7λ2

3 + 2λ1λ2 + 22λ1λ3 + 2λ2λ3

)
E

+ 1
15

λ2 − λ1

λ3 − λ1

(
7λ2

1 + 15λ2
2 + 11λ2

3 − 6λ1λ2 − 18λ1λ3 + 6λ2λ3

)
K,

B3 = 1
15

(
−7λ2

1 − 7λ2
2 − 27λ2

3 + 22λ1λ2 + 2λ1λ3 + 2λ2λ3

)
E

+ 1
15

(
7λ2

1 + 11λ2
2 + 15λ2

3 − 18λ1λ2 − 6λ1λ3 + 6λ2λ3

)
K;

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.21)
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and the characteristic velocities are:

v1 = −2
∑

λi +
4(λ3 − λ1)(1 − m)K

E
,

v2 = −2
∑

λi − 4(λ3 − λ2)(1 − m)K

E − (1 − m)K
,

v3 = −2
∑

λi +
4(λ3 − λ2)K

E − K
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.22)

The equations (3.18)–(3.22) provide a general setting for studying the nonlinear
modulated wave evolution over variable topography with bottom friction. In the
absence of the perturbation terms (i.e. when F (T ) ≡ 0, G(T ) ≡ 0), the system (3.18),
(3.22) indeed coincides with the original Whitham equations (Whitham 1965) for
the integrable KdV dynamics. In that case the variables λ1, λ2, λ3 become Riemann
invariants, so in this general (perturbed) case we shall call them Riemann variables.

It is important to study the structure of the perturbed Whitham equations (3.18)–
(3.22) in two limiting cases when the underlying cnoidal wave degenerates into (i) a
small-amplitude sinusoidal wave (linear limit), when λ2 = λ3 (m = 0), and (ii) a solitary
wave when λ2 = λ1 (m = 1). Since in both these limits the oscillations do not contribute
to the mean flow (they are infinitely small in the linear limit and the distance between
them becomes infinitely long in the solitary wave limit) one should expect that in
both cases one of the Whitham equations will transform into the dispersionless limit
of the original perturbed KdV equation (2.2) i.e.

UT + 6UUX = F (T )U − G(T )U 2. (3.23)

Indeed, using formulae (3.18)–(3.22) we obtain for m = 0:

λ2 = λ3,

∂λ1

∂T
− 6λ1

∂λ1

∂X
= λ1F + λ2

1G,

∂λ3

∂T
+ (6λ1 − 12λ3)

∂λ3

∂X
= λ1F + λ2

1G.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.24)

Similarly, for m = 1, one has

λ2 = λ1,

∂λ1

∂T
− (4λ1 + 2λ3)

∂λ1

∂X
=

1

3
(4λ1 − λ3)F +

1

15

(
7λ2

3 − 24λ1λ3 + 32λ2
1

)
G,

∂λ3

∂T
− 6λ3

∂λ3

∂X
= λ3F + λ2

3G

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.25)

We see that, in both cases, one of the Riemann variables (taken with inverted
sign) coincides with the solution of the dispersionless equation (3.23) (recall that in
the derivation of the Whitham equations we assumed U � 0 everywhere), namely
U = 〈U〉 = −λ1 when λ2 = λ3 (m = 0) and U = 〈U〉 = −λ3 when λ2 = λ1 (m = 1).

To conclude this section, we present expressions for the physical wave parameters
such as the surface elevation wave amplitude a, mean elevation 〈A〉, speed and
wavenumber in terms of the modulation solution λj (X, T ). Using (2.1) and (3.1) we
obtain for the wave amplitude (peak to trough) and the mean elevation

a =
4h2

3g
(λ3 − λ2), 〈A〉 =

2h2

3g
〈U〉, (3.26)
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where the dependence of 〈U〉 on λj (X, T ), j = 1, 2, 3 is given by (3.9) and X =X(x, t),
T = T (x, t) by (1.3), (2.1). In order to obtain the physical wavenumber κ and the
frequency Ω we first note that the phase function θ(X, T ) defined in (3.2) is replaced by
a more general expression defined so that k = θX and kV = −θT are the ‘wavenumber’
and ‘frequency’ in the X − T coordinate system. Then we define the physical phase
function Θ(x, t) = θ(X, T ) so that we get

κ = Θx, Ω = −Θt. (3.27)

It now follows that

κ =
k

c

(
1 − hV

6g

)
, Ω = k,

Ω

κ
=

c

1 − hV/6g
. (3.28)

Note that the physical frequency is the ‘wavenumber’ in the X −T coordinate system,
and that the physical phase speed is Ω/κ . Since the validity of the KdV model (1.1)
requires inter alia that the wave be right-going, it follows from this expression that
the modulation solution remains valid only when hV < 6g. Of course, the validity of
(1.1) also requires that the amplitude remains small, and this would normally also
ensure that V remains small.

4. Modulation solution in the solitary wave limit
In this section, we shall integrate the perturbed modulation system (3.18) along

the multiple characteristic corresponding to the merging of two Riemann variables
λ2 and λ1. As we shall see later, this characteristic specifies the motion of the leading
edge of the shoaling undular bore in the case when the perturbations due to variable
topography and bottom friction can be considered as small compared with the existing
spatial modulations within the bore. At the same time, as the case λ2 = λ1 (i.e. m =1)
corresponds to the solitary wave limit in the travelling wave solution (3.1), our results
here are expected to be consistent with the results from the traditional perturbation
approach to the adiabatic variation of a solitary wave due to topography and bottom
friction (see Miles 1983a, b).

In the limit m → 1 the periodic solution (3.1) of the KdV equation goes over to its
solitary wave solution

U (X, T ) = U0 sech2[
√
λ3 − λ1(X − VsT )] − λ3, (4.1)

where

U0 = 2(λ3 − λ1), Vs = −(4λ1 + 2λ3) (4.2)

are the solitary wave amplitude and ‘velocity’ respectively. The solution (4.1) depends
on two parameters λ1 and λ3 whose adiabatic slow evolution is governed by the
reduced modulation system (3.25). It is important that the second equation in this
system is decoupled from the first one. Hence, evolution of the pedestal −λ3 on which
the solitary wave rides, can be found from the solution of this dispersionless equation
by the method of characteristics. When λ3(X, T ) is known, evolution of the parameter
λ1 can be found from the solution of the first equation (3.25). As a result, we arrive
at a complete description of adiabatic slow evolution of the solitary wave parameters
taking account of its interaction with the (given) pedestal.

However, it is important to note here that while this description of the adiabatic
evolution of a solitary wave is complete as far as the solitary wave itself is concerned,
it fails to describe the evolution of a trailing shelf, which is needed to conserve total
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‘mass’ (see, for instance, Johnson 1973b, Grimshaw 1979 or Grimshaw 2007). This
trailing shelf has a very small amplitude, but a very large length scale, and hence can
carry the same order of ‘mass’ as the solitary wave. But note that the ‘momentum’
of the trailing shelf is much smaller than that of the solitary wave, whose adiabatic
deformation is in fact governed to leading order by conservation of ‘momentum’, or
more precisely, by conservation of wave action flux (strictly speaking, conservation
only in the absence of friction).

The situation simplifies if the solitary wave propagates into a region of still water
so that there is no pedestal ahead of the wave, that is λ3 = 0 in X > τ (T ). But then,
since λ3 = 0 is an exact solution of the degenerate Whitham system (3.25) for this
solitary wave configuration, we can put λ3 = 0 both in the solitary wave solution,

U (X, T ) = −2λ1 sech2[
√

−λ1(X − VsT )], Vs = −4λ1, (4.3)

and in (3.25) for the parameter λ1 to obtain

∂λ1

∂T
− 4λ1

∂λ1

∂X
=

4

3
Fλ1 +

32

15
Gλ2

1. (4.4)

As we see, the solitary wave moves with the instantaneous velocity

dX

dT
= −4λ1, (4.5)

and the parameter λ1 changes with T along the solitary wave trajectory according to
the ordinary differential equation

dλ1

dT
=

4

3
F (T )λ1 +

32

15
G(T )λ2

1. (4.6)

It can be shown that (4.6) is consistent with the equation for the solitary wave half-
width γ =

√
−λ1 obtained by the traditional perturbation approach (see Grimshaw

1979, for instance).
Next, we rewrite (4.6) in terms of the original independent x-variable. We find from

(2.1) that

dT =
(
h1/2/6g3/2

)
dx, (4.7)

F = −27

2

(
g

h

)3/2
dh

dx
, G = 4CD

(
g

h

)1/2

. (4.8)

Then substituting these expressions into (4.6) yields the equation

dλ1

dx
= −3

1

h

dh

dx
λ1 +

64

45

CD

g
λ2

1, (4.9)

which can be easily integrated to give

1

λ1

= h3

(
−C0 − 64

45

CD

g

∫ x

0

dx

h3

)
, (4.10)

where C0 is an integration constant and x = 0 is a reference point where h = h0.
According to (4.3), U0 = −2λ1 is the amplitude of the soliton expressed in terms of
variable U (X, T ). Returning to the original surface displacement A(x, t) by means of
(2.1) and denoting C0 = 4/(3ga0h0), we find the dependence of the surface elevation
soliton amplitude a = (2h2/3g)U0 on x in the form

a = a0

(
h0

h

)[
1 +

16

15
CDa0h0

∫ x

0

dx

h3

]−1

, (4.11)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

68
17

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007006817


224 G. A. El, R. H. J. Grimshaw and A. M. Kamchatnov

where a0 is the solitary wave amplitude at x = 0. We note that for CD = 0 this reduces
to the classical Boussinesq (1872) result a ∼ h−1, while for h = h0 it reduces to the
well-known algebraic decay law a ∼ 1/(1 + constant x) due to Chezy friction. Miles
(1983a, b) obtained this expression for a linear depth variation, although we note that
there is a factor of 2 difference from (4.11) (in Miles 1983a, b, the factor 16CD/15 is
8CD/15). The trajectory of the soliton can be now found from (4.5) and (4.10):

X =

∫ x

0

dx√
gh

− t =
a0h0

2
√

g

∫ x

0

dx ′h−5/2(x ′)

[
1 +

16

15
CDa0h0

∫ x ′

0

dx

h3(x)

]−1

. (4.12)

This expression determines implicitly the dependence of x on t along the solitary
wave path and provides the desired equation for the multiple characteristic of the
modulation system for the case m =1.

It is instructive to derive an explicit expression for the solitary wave speed by
computing the derivative dx/dt from (4.12), or more simply, directly from (3.28),

vs =
dx

dt
=

c

1 − a/2h
. (4.13)

The formula (4.13) yields the restriction for the relative amplitude γ = a/h < 2 which
is clearly beyond the applicability of the KdV approximation (wave breaking occurs
already at γ = 0.7; see Whitham 1974). In the frictionless case (CD = 0), equation
(4.11) gives a/h= a0h0/h2, and so the expression (4.13) for the speed must fail as
h → 0. It is interesting to note that this failure of the KdV model as h → 0 due to
appearance of infinite (and further negative!) solitary wave speeds is not apparent
from the expression (4.11) for the solitary wave amplitude, and the implication is that
the model cannot be continued as h → 0. Curiously this restriction of the KdV model
seems never to have been noticed before in spite of numerous works on this subject.
Note that taking account of bottom friction leads to a more complicated formula for
the solitary wave speed as a function of h but the qualitative result remains the same.

It is straightforward to show from (4.9) or (4.11) that

ax

a
= −hx

h
− 16

15

CDa0h0

h3

[
1 +

16

15
CDa0h0

∫ x

0

dx

h3

]−1

. (4.14)

It follows immediately that for a wave advancing into increasing depth (hx > 0), the
amplitude decreases due to a combination of increasing depth and bottom friction.
However, for a wave advancing into decreasing depth, there is a tendency to increase
the amplitude due to the depth decrease, but to decrease the amplitude due to bottom
friction. Hence, whether or not the amplitude increases is determined by which of
these effects is larger, and this in turn is determined by the slope, the depth, and the
consolidated drag parameter CDa0/h0.

To illustrate, let us consider the bottom topography in the form

h(x) = h1−α
0 (h0 − δx)α, α > 0, (4.15)

which satisfies the condition h(0) = h0; the parameter δ characterizes the slope of the
bottom. In this case the formula (4.11) becomes

a = a0

(
h0

h

) [
1 +

16

15

CDa0

δ(3α − 1)h0

{(
h0

h

)(3α−1)/α

− 1

}]−1

(4.16)
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if α �= 1/3. One can see now that if α < 1/3, then the bottom friction term is relatively
unimportant due to the smallness of CD . Of course, for this case we again recover the
Boussinesq result, now slightly modified,

a ≈ a0

h0

h

[
1 +

16

15

CDa0

δ(1 − 3α)h2
0

]−1

, 0 < α < 1
3
, h � h0. (4.17)

Of course, this result is impractical in the KdV context as the KdV approximation
used here requires the ratio a/h to remain small.

If α > 1/3 we obtain the asymptotic formula

a ≈ 15(3α − 1)δ

16CD

h0

(
h0

h

)1/α−2

, h � h0, (4.18)

which is independent of the initial amplitude a0. This expression is consistent with
the small-amplitude KdV approximation as long as (3α − 1)δ/CD is of order unity.
Simple inspection of (4.18) shows that the solitary wave amplitude

(i) increases as h → 0 if 1/3 <α < 1/2,
(ii) is constant as h → 0 if α = 1/2,
(iii) decreases as h → 0 if α > 1/2.

Thus for 1/3 <α < 1/2, as for the case α < 1/3, the amplitude will increase as the
depth decreases, in spite of the presence of (sufficiently small) friction. However, for
α > 1/3, even although there is usually some initial growth in the amplitude, eventually
even small bottom friction will take effect and the amplitude decreases to zero. We
note that if α =1/3 then the integral

∫ x

0
h−3dx in (4.11) diverges logarithmically as

h → 0, which just slightly modifies the result (4.18) for h � h0 and implies growth of
the amplitude ∝ lnh/h as h → 0.

Of particular interest is the case α = 1. In that case formula (4.16) becomes

a = a0

(
h0

h

)[
1 +

8

15

CDa0

δh0

{(
h0

h

)2

− 1

}]−1

. (4.19)

a ≈ 15

8

δ

CD

h, h � h0 (4.20)

These expressions (4.19), and (4.20) were obtained by Miles (1983a, b) using wave
energy conservation (as above, note, however, that in Miles 1983a, b the numerical
coefficient is 15/4 rather than 15/8). Thus, these results obtained from the Whitham
theory are indeed consistent, to leading order, with the traditional perturbation
approach for a slowly varying solitary wave.

5. Adiabatic deformation of a cnoidal wave
Next we consider a modulated cnoidal wave (3.1) in the special case when the

modulation does not depend on X. While this case is, strictly speaking, impractical,
as it assumes there is an infinitely long wavetrain, it can nevertheless provide some
useful insights into the qualitative effects of gradual slope and friction on undular
bores which are locally represented as cnoidal waves. In the absence of friction, the
slow dependence of the cnoidal wave parameters on T was obtained by Ostrovsky &
Pelinovsky (1970, 1975) and Miles (1979) (see also Grimshaw 2007), assuming that
the surface displacement had a zero mean (i.e. 〈U〉 = 0), while the effects of friction
were taken into account by Miles (1983b) using the same zero-mean displacement
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assumption. However, this assumption is inconsistent with our aim to study undular
bores where the value of 〈U〉 is essentially non-zero. Hence, we need to develop a more
general theory enabling us to take into account variations in all the parameters in the
cnoidal wave. Such a general setting is provided by the modulation system (3.18).

Thus we consider the case when the Riemann variables in (3.18) do not depend on
the variable X so that the general Whitham equations become ordinary differential
equations in T , which can be conveniently reformulated in terms of the original
spatial x-coordinate using the relationship (4.7):

dλi

dx
= Ci

[
−9

4

1

h

dh

dx
Ai − 2CD

3g
Bi

]
, i = 1, 2, 3, (5.1)

where all variables are defined above in § 3, see (3.19), (3.20), (3.21). This system can
be readily solved numerically. But it is instructive, however, to indicate first some
general properties of the solution.

First, the solution to the system (5.1) must have the property of conservation of
‘wavelength’ L (or ‘wavenumber’ k = 2π/L)

L =
2K(m)√
λ3 − λ1

= constant. (5.2)

Indeed, the wave conservation law (3.13) in the absence of X-dependence assumes
the form

∂k

∂T
= 0, (5.3)

which yields (5.2). Thus the system of three equations (5.1) can be reduced to two
equations.

Next, applying Whitham averaging directly to (2.2) yields

dM

dx
= −9

4

1

h

dh

dx
M − 2CD

3g
P̃ , M = 〈U〉, P̃ = 〈|U |U〉, (5.4)

dP

dx
= −9

2

1

h

dh

dx
P − 4CD

3g
Q̃, P = 〈U 2〉, Q̃ = 〈|U |3〉. (5.5)

The equation set (5.2), (5.4), (5.5) comprises a closed modulation system for three
independent modulation parameters, say M , P̃ and m. While this system is not as
convenient for further analysis as the system (3.18) in Riemann variables, it does
not have a restriction U > 0 inherent in (3.18), and allows for some straightforward
inferences regarding the possible existence of modulation solutions with zero mean
elevation, that is with M = 0. Indeed, one can see that the solution with the zero mean
is actually not generally permissible when CD �= 0, a situation overlooked in Miles
(1983b). Indeed, M = 0 immediately then implies that P̃ = 0 by (5.4). But then, due
to (5.2), we have all three modulation parameters fixed, which is clearly inconsistent
with the remaining equation (5.5) (except for the trivial case M = 0, P = 0, Q̃= 0).
However, in the absence of friction, when CD = 0, equation (5.4) uncouples and
permits a non-trivial solution with a zero mean. In general, when CD = 0, (5.4) and
(5.5) can be easily integrated to give

d = Mh9/4 = constant; σ = Ph9/2 = constant. (5.6)
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Then, using (3.9), (3.10), (5.2), one readily gets the formula for the variation of the
modulus m, and hence of all the other wave parameters, as a function of h:

K2[2(2 − m)EK − 3E2 − (1 − m)K2] =

(
4

3

)5
(σ − d2)L4

h9/2
. (5.7)

Formula (5.7) generalizes to the case M �= 0 (i.e. d �= 0) the expressions of Ostrovsky &
Pelinovsky (1970, 1975), Miles (1979) and Grimshaw (2006) (note that in Grimshaw
2007, the zero mean restriction is actually not necessary). We note here that, again
with CD = 0, equation (1.5) implies conservation of 〈B〉 and 〈B2〉 (the averaged wave
action flux), which, together with (5.2), also yield (5.7).

The physical frequency Ω and wavenumber κ in the modulated periodic wave under
study are given by the formula (3.28), and we recall here that k = 2π/L is constant; see
(5.2). As discussed before, at the end of § 3, we must require that the phase speed stays
positive as the wave evolves, and here that requires that the physical wavenumber
κ > 0. Since a/h (and hence hV/6g) is supposed to be small within the range of
applicability of the KdV equation (1.2) the expression (3.28) implies the behaviour
κ  Ω/

√
gh, which of course agrees with the well-known result for linear waves on a

sloping beach (see Johnson 1997, for instance). This effect will be slightly attenuated
for the nonlinear cnoidal wave, since V h/6g > 0, but the overall effect will be a ‘squeez-
ing’ of the cnoidal wave, a result important for our further study of undular bores.
Next we study numerically the combined effect of slope and friction on a cnoidal wave.

As we have shown, in the presence of Chezy friction M �= 0, and we have also
assumed that U > 0, which is necessary when we come to study undular bores. Now
we use the stationary modulation system (5.1) in Riemann variables, which was
derived using this assumption. We solve the coupled ordinary differential equation
system (5.1) for the case of a linear slope

h(x) = h0 − δx (5.8)

with h0 = 10, δ = 0.01, and with the initial conditions

λ1 = −0.441, λ2 = 0.147, λ3 = 0.294 at x = 0, (5.9)

which corresponds to a nearly harmonic wave with m =0.2, a/h0 = 0.2, 〈A〉/h0 ≈ 0.3
at x = 0 (see (3.26)). Also we note that for the chosen parameters we have V =0, so at
x = 0 we have κ = Ω/

√
gh0 as in linear theory. It is instructive to compare solutions

with (CD = 0.01) and without (CD =0) friction. In figure 2 the dependence of the
modulus m on x is shown for both cases. We see that for the frictionless case m → 1
with decrease of depth, i.e. the wave crests assume the shape of solitary waves when
one approaches the shoreline. When CD �= 0 the modulus also grows with decrease of
depth but never reaches unity. The dependence on x of the mean surface elevation
〈A〉 for the cases without and with friction is shown in figure 3. We have checked
that the ‘wavelength’ L (5.2) is constant for both solutions. Also, one can see from
figure 3(b) that the value h1/4〈A〉 ∝ d is indeed conserved in the frictionless case but
is not constant if friction is present (the same holds true for the value h1/2〈A2〉 ∝ σ

but we do not present the graph here). Finally, in figure 4 the dependence of the
physical elevation wave amplitude a on the spatial coordinate x is shown. One can
see that the amplitude adiabatically grows with distance in the frictionless case due
to the effect of the slope (without friction) but, not unexpectedly, gradually decreases
in the case when bottom friction is present, where the decrease for these parameter
settings is comparable in magnitude to the effect of the slope. In both cases the main
qualitative changes occur in the wave shape and the wavelength.
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Figure 2. Dependence of the modulus m on the physical space coordinate x in the cases
without and with bottom friction in the X-independent modulation solution.
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Figure 3. (a) Dependence of the mean value 〈A〉 in the X-independent modulation solution
on the physical space coordinate x without (dashed line) and with (solid line) bottom friction;
(b) The same but multiplied by the Green’s law factor, h1/4.
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Figure 4. Dependence of the surface elevation amplitude a on the space coordinate x. The
dashed line corresponds to the frictionless case and the solid line to the case with bottom
friction.
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Overall, we can infer from these results that the main local effect of a slope and
bottom friction on a cnoidal wave, along with the adiabatic amplitude variations, is
twofold: a wave with a m < 1 at x =0 tends to transform into a sequence of solitary
waves as x increases, and at the same time the distance between subsequent wave
crests tends to decrease. This is in sharp contrast with the behaviour of modulated
cnoidal waves in problems described by the unperturbed KdV equation, where growth
of the modulus m is accompanied by an increase of the distance between the wave
crests. Generally, in the study of behaviour of unsteady undular bores in the presence
of a slope and bottom friction we will have to deal with the combination of these
two opposite tendencies.

6. Undular bore propagation over variable topography with bottom friction
6.1. The Gurevich–Pitaevskii problem for the flat-bottom zero-friction case

We now turn to the problem (b) outlined in § 2. We study the evolution of an
undular bore developing from an initial surface elevation jump ∆ > 0, located at
some point x0 < 0. As discussed below, the undular bore will expand with time so
that at some t = t0 its lead solitary wave enters the gradual slope region, which
begins at x = 0 (see figure 1b). We assume that for x < 0 one has h =h0 = constant
and CD ≡ 0. We shall first present a formulation of the Gurevich–Pitaevskii problem
for the perturbation-free KdV equation and reproduce the well-known similarity
modulation solution describing the evolution of the undular bore until the moment
it enters the slope. We emphasize that, although this formulation and, especially, this
similarity solution are known very well and have been used by many authors, some
of the inferences important for the present application to fluid dynamics have not
been widely appreciated, as far as we can discern. Pertinent to our main objective
in this paper, we undertake a detailed study of the characteristics of the Whitham
modulation system in the vicinity of the leading edge of the undular bore solution,
and show that the boundary conditions of Gurevich–Pitaevskii type permit only two
possible characteristics configurations, implying two qualitatively different types of
the leading solitary wave behaviour. Next, we shall show how this Gurevich–Pitaevskii
formulation of the problem applies to the perturbed modulation system in the form
(3.18) and finally we will study the effects of the perturbation on the modulations in
the vicinity of the leading edge of the undular bore.

In the case of a flat, frictionless bottom the original equation (1.1) becomes the
constant-coefficient KdV equation which can be cast into the standard form

ηζ + 6ηηξ + ηξξξ = 0 (6.1)

by introducing the new variables

η =
2

3h0

A, ξ =
3

2h0

(x + x0 −
√

gh0t), ζ =
9

16

√
g

h0

t, (6.2)

where x0 < 0 is an arbitrary constant. In the Gurevich–Pitaevskii (GP) approach, one
considers a large-scale initial disturbance η(ξ, 0) = f (ξ ), in the form of a decreasing
profile, f ′(ξ ) < 0 (e.g. a smooth step: f (ξ ) → 0 as ξ → +∞; f (ξ ) → η0 > 0 as ξ → −∞),
whose initial evolution until some critical (breaking) time ζb can be described by the
dispersionless limit of the KdV equation, i.e. by the Hopf equation,

ζ < ζb : η ≈ r(ξ, ζ ), rζ + 6rrξ = 0, r(ξ, 0) = f (ξ ). (6.3)
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The evolution (6.3) leads to wavebreaking of the r(ξ )-profile at some ζ = ζb, with
the consequence that the dispersive term in the KdV equation then comes into
play, and an undular bore forms, which can be locally represented as a single-phase
travelling wave. This travelling wave is modulated in such a way that it acquires
the form of a solitary wave at the leading edge ξ = ξ+(ζ ) and gradually degenerates,
via the nonlinear cnoidal-wave regime, to a linear wave packet at the trailing edge
ξ = ξ−(ζ ). It is important that this undular bore is essentially unsteady, i.e. the region
ξ−(ζ ) < ξ < ξ+(ζ ) expands with time ζ .

The single-phase travelling wave solution of the KdV equation (6.1) has the form
(cf. (3.1))

η(ξ, ζ ) = r3 − r1 − r2 − 2(r3 − r2)sn
2(

√
r3 − r1θ, m), (6.4)

θ = ξ + 2(r1 + r2 + r3)ζ, m =
r3 − r2

r3 − r1

. (6.5)

The parameters r1 � r2 � r3 � 0 in the undular bore are slowly varying functions of
ξ, ζ , whose evolution is governed by the Whitham equations

∂rj

∂ζ
+ vj (r1, r2, r3)

∂rj

∂ξ
= 0, j = 1, 2, 3. (6.6)

The characteristic velocities in (6.6) are given by (3.22). We stress that, although
analytical expressions (6.4) and (3.1) (as well as (6.6) and the homogeneous version of
(3.18)) are identical, they are written for completely different sets of variables, both
dependent and independent.

The Riemann invariants rj (ξ, ζ ) are subject to special matching conditions at the
free boundaries, ξ = ξ±(ζ ) defined by the conditions m =0 (trailing edge) and m = 1
(leading edge), formulated in Gurevich & Pitaevskii (1974) (see also Kamchatnov
2000 or El 2005 for a detailed description).

At the trailing (harmonic) edge, where the wave amplitude a = 2(r3 − r2) vanishes
and m = 0, we have

ξ = ξ−(ζ ) : r2 = r3, −r1 = r. (6.7)

At the leading (soliton) edge, where m = 1, we have

ξ = ξ+(ζ ) : r2 = r1, −r3 = r. (6.8)

In both (6.7) and (6.8), r(ξ, ζ ) is the solution of the Hopf equation (6.3).
The curves ξ = ξ±(ζ ) are defined for the solution of the GP problem (6.6), (6.7),

(6.8) by the ordinary differential equations

dξ−

dζ
= v−(ξ−, ζ ),

dξ+

dζ
= v+(ξ+, ζ ), (6.9)

where v± are calculated as the values of double characteristic velocities of the
modulation system at the undular bore edges,

v− = v2(r1, r3, r3)|ξ=ξ−(ζ ) = v3(r1, r3, r3)|ξ=ξ−(ζ ), (6.10)

v+ = v2(r1, r1, r3)|ξ=ξ+(ζ ) = v1(r1, r1, r3)|ξ=ξ+(ζ ) (6.11)

These equations (6.9) essentially represent kinematic boundary conditions for the
undular bore (see El 2005). Indeed, the double characteristic velocity v2(r1, r3, r3) =
v3(r1, r3, r3) can be shown to coincide with the linear group velocity of the small-
amplitude KdV wavepacket while the double characteristic velocity v2(r1, r1, r3) =
v1(r1, r1, r3) is the soliton speed.
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One might infer from this GP formulation of the problem that, since the leading edge
of the undular bore specified by (6.9) and (6.11) is a characteristic of the modulation
system, then the value of the double Riemann invariant r+ ≡ r2 = r1 is constant. Then,
on considering an undular bore propagating into still water, where r =0, one would
obtain from the matching condition (6.8) at the leading edge that r3|ξ = ξ+ = 0, and
thus the amplitude of the lead solitary wave a+ = 2(r3 − r1)|ξ = ξ+ = −r+ would always
be constant as well. However, this contradicts the general physical reasoning that
the amplitude of the lead solitary wave should be allowed to change in the case of
general initial data. The apparent contradiction is resolved by noting that the leading
edge specified by (6.9) and (6.11) can be an envelope of the characteristic family, i.e. a
caustic, rather than necessarily a regular characteristic, and hence there is no necessity
for the double Riemann invariant r+ to be constant along the curve ξ = ξ+(ζ ) in the
general case. On the other hand, since the leading edge is defined by the condition
m = 1, the wave form at the leading edge will coincide with the spatial profile of the
standard KdV soliton. Thus we arrive at the conclusion that, in general, the amplitude
of the leading KdV solitary wave will vary, even in the absence of the perturbation
terms. Of course, in the unperturbed KdV equation, such varying solitary waves
cannot exist on their own, and require the presence of the rest of the undular bore.
We also stress that these variations of the leading solitary wave in the undular bore,
as described here, have a completely different physical nature to the variations of the
parameters of an individual solitary wave due to small perturbations as described in
§ 4. They are caused by nonlinear wave interactions within the undular bore rather
than by a local adiabatic response of the solitary wave to a perturbation induced by
topography and friction. Importantly for our study, however, it will transpire that the
action of these same perturbation terms on the undular bore can lead to both a local
and a non-local response of the leading solitary wave.

6.2. Undular bore developing from an initial jump

Next we consider the simplest solution of the modulation system, which describes an
undular bore developing from an initial discontinuity placed at the point x = −x0. In
(η; ξ, ζ )-variables we have the initial conditions

η(ξ, 0) = ∆ for ξ < 0 ; η(ξ, 0) = 0 for ξ > 0, (6.12)

where ∆ > 0 is a constant. Then, on using (6.3), the initial conditions (6.12) are readily
translated into the free-boundary matching conditions (6.7) and (6.8) for the Riemann
invariants. Because of the absence of a length scale in this problem, the corresponding
solution of the modulation system must depend on the self-similar variable τ = ξ/ζ

alone, which reduces the modulation system to the ordinary differential equations

(vi − τ )
dri

dτ
= 0, i = 1, 2, 3. (6.13)

The boundary conditions for (6.13) follow from the matching conditions (6.7) and
(6.8) using the initial condition (6.12):

τ = τ− : r2 = r3, r1 = −∆,

τ = τ+ : r2 = r1, r3 = 0, (6.14)

where τ± are self-similar coordinates (speeds) of the leading and trailing edges,
ξ± = τ±ζ . Taking into account the inequality r1 � r2 � r3, one obtains the well-known
modulation solution of Gurevich & Pitaevskii (1974) (see also Fornberg & Whitham
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Figure 5. (a) Behaviour of Riemann invariants in the similarity modulation solution for the
flat-bottom zero-friction case. (b) The corresponding undular bore profile η(ξ ).

1978) in the form

r1 = −∆, r3 = 0, r2 = −m∆, (6.15)

ξ

ζ
= v2(−∆, −m∆, 0) = 2∆

[
(1 + m) − 2m(1 − m)K(m)

E(m) − (1 − m)K(m)

]
. (6.16)

This modulation solution (6.15), (6.16) (see figure 5a) represents the replacement, due
to averaging over the oscillations, of the unphysical formal three-valued solution of
the dispersionless KdV equation (i.e. of the Hopf equation) which would have taken
place in the absence of the dispersive regularisation by the undular bore. We see that
(6.16) describes an expansion fan in the characteristic (ξ, ζ )-plane and thus is a global
solution. Substituting (6.15), (6.16) into the travelling wave solution (6.4), we obtain
the asymptotic wave form of the undular bore (see figure 5b), which then can be readily
represented in terms of the original physical variables using the relationships (6.2).

The equations of the trailing and leading edges of the undular bore are determined
from (6.16) by putting m =0 and m =1 respectively:

ξ−

ζ
= τ− = v2(−∆, 0, 0) = −6∆,

ξ+

ζ
= τ+ = v2(−∆, −∆, 0) = 4∆. (6.17)

The leading solitary wave amplitude is η0 = 2(r3 − r1) = 2∆, which is exactly twice the
height of the initial jump. This corresponds to the amplitude of the surface elevation
a =3h0∆ (see (6.2)). Note that, to get the leading solitary wave of the same initial
amplitude a0 as for the separate solitary wave considered in § 4, one should use the
jump value ∆0 = a0/3h0, which of course is just 2∆̃, where ∆̃= 3h0∆/2 is the initial
discontinuity in the surface elevation.

6.3. Structure of the undular bore front

We are especially interested in the behaviour of the modulation solution (6.15), (6.16)
in the vicinity of the leading edge ξ = ξ+(ζ ). This behaviour is essentially determined
by the manner in which the pair of characteristics corresponding to the velocities v2

and v1 merge into a multiple eigenvalue v+ of the modulation system at ξ = ξ+(ζ ).
First, one can readily infer from the modulation solution (6.15), (6.16) that the

phase velocity c = −2(r1 + r2 + r3) = 2∆(1 + m) >v2(−∆, −m, 0) for m < 1 and c = v2

for m =1. Thus, any individual wave crest generated at the trailing edge of the
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Figure 6. Characteristics’ behaviour for the similarity modulation solution near the leading
edge ξ+(ζ ): (a) families Γ1: dξ/dζ = v1 and Γ2: ξ = C2ζ , (b) family Γ3: dξ/dζ = v3.

undular bore moves towards the leading edge, i.e. for any crest m → 1 as ζ → ∞. Thus,
for any particular wave crest, except for the very first one, the solitary wave ‘status’
is achieved only asymptotically as ζ → ∞.

Without loss of generality we assume in this section that ∆ =1 in (6.15), (6.16).
First, as we have already mentioned, the characteristic family Γ2 : dξ/dζ = v2 is an
expansion fan in the (ξ, ζ )-plane,

Γ2 : ξ = C2ζ, (6.18)

parametrized by a constant C2, −6 � C2 � 4. Next, in (6.16) we make an asymptotic
expansion of v2(−1, −m, 0) for small (1 − m) � 1, to get

2(1 − m) ln(16/(1 − m))  τ+ − ξ/ζ (6.19)

or, with logarithmic accuracy,

(τ+ − ξ/ζ ) � 1 : 1 − m  τ+ − ξ/ζ

2 ln[1/(τ+ − ξ/ζ )]
. (6.20)

Next, expanding v1(−1, −m, 0) for (1−m) � 1 and using (6.20), we get the asymptotic
equation for the characteristics family Γ1,

dξ

dζ
= v1 = τ+ + (τ+ − ξ/ζ ) + O(1 − m), (6.21)

which is readily integrated to leading order to give

Γ1 : ξ  τ+ζ − C1

ζ
, (6.22)

where C1 � 0 is an arbitrary constant ‘labelling’ the characteristics; C1 = 0 corresponds
to the leading edge of the undular bore. This asymptotic formula (6.22) is valid as
long as ζ � 1. The behaviour of the characteristics belonging to the families Γ1 and
Γ2 near the leading edge is shown in figure 6(a).

Next, expanding the equation for the third characteristic family, Γ3: dξ/dζ =
v3(−1, −m, 0) for (1 − m) � 1, we get, on using (6.20),

dξ

dζ
=

τ+ − ξ/ζ

ln(1/(τ+ − ξ/ζ ))
+ O(τ+ − ξ/ζ ). (6.23)

Integrating (6.23), we obtain to first order

Γ3 : ξ  C3 − g(ζ ), (6.24)
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where

g(ζ ) =

∫
1

ζ

τ+ζ − C3

ln |τ+ζ − C3| − ln ζ
dζ, g(C3/τ

+) = 0, (6.25)

C3 being an arbitrary constant. The asymptotic formula (6.24) is valid as long as
g(ζ )/C3 � 1. Since the characteristics Γ3 intersect the leading edge ξ = τ+ζ we must
indicate their behaviour outside the undular bore. It follows from the matching
condition (6.8), and the limiting structure (3.25) of the characteristic velocities of
the Whitham system, that the characteristics from the family Γ3 match with the
Hopf equation characteristics dξ/dζ =6r carrying the value of the Riemann invariant
r = 0, corresponding to still water upstream of the undular bore. Therefore, the sought
external characteristics are simply vertical lines ξ = C3. The qualitative behaviour of
the characteristics from the family Γ3 is shown in figure 6b.

It is clear from the asymptotic behaviour of the characteristics that the edge
characteristic ξ = τ+ζ corresponding to the motion of the leading solitary wave
intersects only with characteristics of the family Γ3 carrying the Riemann invariant
value r3 = 0 into the undular bore domain. Since, according to the matching condition
(6.14), r3 ≡ 0 everywhere along the edge characteristic, one can infer that the leading
solitary wave motion is completely specified by its amplitude at ζ = 0. Indeed, in this
case, the leading edge represents a genuine multiple characteristic of the modulation
system, along which the Riemann invariant r+ = r2 = r1 is a constant. Given the
constant value of r1 = −1 for the solution (6.16), one infers that the amplitude of the
lead soliton of the self-similar undular bore, η0 = 2(r3 − r+) = 2, is also a constant
value. Thus, in the undular bore evolving from an initial jump, the leading solitary
wave represents an independent soliton of the KdV equation. Of course, this fact
follows directly from the modulation solution (6.16) but now we have established its
meaning in the context of the characteristics, which will play an important role below.

Next we discuss the structure of the undular bore front in the case when the initial
profile η(ξ, 0) is not a simple jump discontinuity, and instead has the form of a
monotonically decreasing function, for instance, (−ξ )1/2 when ξ � 0 and η(ξ, 0) = 0
for ξ > 0. In that case, the modulation solution for the undular bore no longer
possesses x/t-similarity as in the jump resolution case and, as a result, the speed (and
therefore, the amplitude) of the lead solitary wave is not constant. For instance, for
the aforementioned square-root initial profile the amplitude of the lead solitary wave
grows as ζ 2 (see Gurevich Krylov & Mazor 1989, or Kamchatnov 2000). Clearly,
such an amplitude variation is impossible if the leading edge ξ+(ζ ) was a regular
characteristic carrying a constant value of the Riemann invariant r+. As discussed
above, however, the GP matching conditions (6.7)–(6.11) admit another possibility:
the leading edge curve is the envelope of the characteristic families Γ1: dξ/dζ = v1

and Γ2: dξ/dζ = v2 merging when m = 1. This configuration is shown in figure 7(a).
In this case, the behaviour of the modulus m in the vicinity of the leading edge is
given by the asymptotic formula found in Gurevich & Pitaevskii (1974):

(1 − m)2
(

ln
16

1 − m
+

1

2

)
=

2

(r+)2
dr+

dζ
(ξ+ − ξ ), (6.26)

where the function r+(ζ ) �= constant is assumed to be known. Another specific feature
of this (general) configuration is that dr1,2/dξ → ±∞ as ξ → ξ+ (see figure 7b, also
found in Gurevich & Pitaevskii 1974; see also Kamchatnov 2000), which is in drastic
contrast to the similarity solution (see figure 6a). This particular difference was
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dξ
 = v1dζ

dξ
 = v2dζ

(a)

r1

r3

r2

(b)

ζ

ξ+(ζ)

ξ

ξ– ξ+

Figure 7. (a) Leading edge ξ+(ζ ) of non-self-similar undular bore as an envelope of
pairwise-merging characteristics from the families dξ/dζ = v1 and dξ/dζ = v2. (b) Behaviour
of the Riemann invariants in non-self-similar modulation solution with r3 ≡ 0.

discussed in relation with undular bores in the KdV–Burgers equation in Gurevich &
Pitaevskii (1987).

In summary, we see from (6.26) that the structure of the modulation solution in the
vicinity of the leading edge of an undular bore defined as a characteristic envelope
is qualitatively different compared to that for the similarity case, see (6.19). The
more general (but qualitatively similar to (6.26)) asymptotic formula, which takes into
account small perturbations due to a variable topography and bottom friction, will
be derived later. At the moment, it is important for us that, in this configuration,
when the leading edge is a characteristic envelope rather than just a characteristic,
the value r+, and thus the leading solitary wave amplitude, are allowed to vary.

The analysis of the corresponding modulation solution in Gurevich et al. (1989)
showed that, while in the case of an initial jump the wave crests generated at the
trailing edge reach the leading edge (and therefore, transform into solitary waves)
only asymptotically as t → ∞, for the more general case of decreasing initial data
each wave crest generated at the trailing edge reaches the leading edge in finite
time and replaces (overtakes) the existing leading solitary wave. This process is
manifested as a continuous amplitude growth of the (apparent) leading solitary wave.
As in classical soliton theory, an alternative explanation of the leading solitary wave
amplitude growth can be made in terms of the momentum exchange between the
‘instantaneous’ leading solitary wave and solitary waves of greater amplitude coming
from the left. Indeed, as the rigorous analysis of Lax, Levermore & Venakides
showed (see Lax, Levermore & Venakides 1994 and the references therein), the
whole modulated structure of the undular bore can be asymptotically described in
terms of the interactions of a large number of KdV solitons initially ‘packed’ into a
non-oscillating large-scale initial profile.

This latter interpretation is especially instructive for our purposes. Our point is
that the specific cause of the enhanced soliton interactions resulting in amplitude
growth at the leading edge is not essential; it can be large-scale spatial variations
of the initial profile as just described, but it could also equally well be an effect
of small perturbations in the KdV equation itself. Indeed, in the weakly perturbed
KdV equation, the local wave structure of the undular bore must be described to
leading order by the periodic solution (6.4) of the unperturbed KdV equation; so if
one assumes the GP boundary conditions analogous to (6.7)–(6.11) for the perturbed
modulation system (3.18), one will invariably have to deal with one of the two possible
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types of behaviour of the characteristics (shown in figures 6a and 7a) in the vicinity of
the leading edge of the undular bore, because this qualitative behaviour is determined
only by the structure of the GP boundary conditions and by the associated asymptotic
structure of the characteristic velocities of the Whitham system for (1−m) � 1, which
are the same for both unperturbed and perturbed modulation systems. Next, we will
show that, by using the knowledge of this qualitative behaviour of the characteristics,
one is able to construct the asymptotic modulation solution for the undular bore front
in the presence of variable topography and bottom friction even if the full solution
of the perturbed modulation system is not available.

6.4. The Gurevich–Pitaevskii problem for the perturbed modulation system

We now investigate how the GP matching problem applies to the perturbed modula-
tion system (3.18). As in the original GP problem, we postulate the natural physical
requirement that the mean value 〈U〉 is continuous across the undular bore edges,
which represent free boundaries and are defined by the conditions m =0 (trailing
edge X = X−(T )) and m =1 (leading edge X = X+(T )). Also, we consider propagation
of the undular bore into still water, hence 〈U〉|X =X+(T ) = 0. Now, using the explicit
expression (3.9) for 〈U〉 in terms of complete elliptic integrals and calculating its
limits as m → 0 and m → 1, we have

X = X−(T ): λ2 = λ3, 〈U〉 = −λ1 = u,
(6.27)

X = X+(T ): λ2 = λ1, 〈U〉 = −λ3 = 0,

where u(X, T ) is solution of the dispersionless perturbed KdV equation (2.2), i.e.

uT + 6uuX = F (T )u − G(T )u2, (6.28)

with the boundary conditions

u

(
τ,

1

6g

∫ τ

0

h dτ

)
=

9g

2h0

∆0 if τ < τ0; u

(
τ,

1

6g

∫ τ

0

h dτ

)
= 0 if τ > τ0,

(6.29)

where τ0 = −x0/
√

gh0. The boundary conditions (6.29) correspond to a discontinuous
initial surface elevation A(x, t) at x = −x0, obtained by using transformations (1.3)
and (2.1) where one sets t = 0. As earlier, ∆0 = a0/(3h0) is the value of the discontinuity
in A, chosen in such a way that the amplitude of the lead solitary wave in the undular
bore was exactly a0 in the flat-bottom zero-friction region (see § 6.2).

This free-boundary matching problem is then complemented by the kinematic
conditions explicitly defining the boundaries X =X±(T ). These are formulated using
the multiple characteristic directions of the perturbed modulation system (3.18) in the
limits as m → 0 and m → 1 (cf. (6.9)–(6.11)),

dX−

dT
= V −(X−, T ),

dX+

dT
= V +(X+, T ), (6.30)

where
V − = v2(u, λ−, λ−) = v3(u, λ−, λ−), (6.31)

V + = v2(λ
+, λ+, 0) = v1(λ

+, λ+, 0), (6.32)

λ− = λ2(X
−, T ) = λ3(X

−, T ), λ+ = λ2(X
+, T ) = λ1(X

+, T ). (6.33)

Thus, for the perturbed KdV equation the leading and trailing edges of the undular
bore are defined mathematically in the same way as for the unperturbed one, albeit
for a different set of variables.
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6.5. Deformation of the undular bore front due to variable topography
and bottom friction

Finally we study the effects of gradual slope and bottom friction on the leading front
of the self-similar expanding undular bore described in § 6.2 and § 6.3. The result will
essentially depend on the relative values of the small parameters appearing in the
problem. We note that in general there are three distinct relevant small parameters,

ε =
h0

x0

� 1, δ = max(hx) � 1, CD � 1. (6.34)

The first small parameter is determined by the ratio of the equilibrium depth in the
flat bottom region, to the distance from the beginning of the slope region to the
location of the initial jump discontinuity in the surface displacement. This measures
the typical relative spatial variations of the modulation parameters in the undular
bore when it reaches the beginning of the slope. The second and third parameters are
contained in the KdV equation (1.1) itself, and measure the values of the slope and
bottom friction respectively. In terms of the transformed variables appearing in (2.2),
|F (T )| ∼ δ, |G(T )| ∼ CD; see (2.3). Generally we assume δ ∼ CD (the possible orderings
δ � CD or CD � δ can be then considered as particular cases).

To obtain a quantitative description of the vicinity of the leading edge of the
undular bore we perform an expansion of the Whitham modulation system (3.18) for
(1 − m) � 1. We first introduce the substitutions

λi(X, T ) = λ+(T ) + li(X̃, T ), vi = V + + v′
i , ρi = ρ+ + ρ ′

i , i = 1, 2. (6.35)

where

X̃ = X+ − X, V + = −4λ+, ρ+ =
4

3
F (T )λ+ +

32

15
G(T )(λ+)2. (6.36)

Since λ2 � λ1, v2 � v1 one always has l2 � l1, v
′
2 � v′

1. Assuming X̃/X+ � 1 ⇔ 1−m � 1
and using that λ3 = 0 to leading order in the vicinity of the leading edge (see the
matching condition (6.27)), we have from asymptotic expansions of (3.19)–(3.22) as
(1 − m) � 1:

v′
1 = M1(l2 − l1) ≡ −2

[
1 +

ln(16/(1 − m))

1 + 1
4
(1 − m) ln(16/(1 − m))

]
(l2 − l1),

v′
2 = M2(l2 − l1) ≡ −2

[
1 − ln(16/(1 − m))

1 − 1
4
(1 − m) ln(16/(1 − m))

]
(l2 − l1),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.37)

ρ ′
1 = N1(l2 − l1) ≡

{
− 1

3

[
1 + ln

l2 − l1

−16λ+

]
F

− 4

15

[
2λ+ ln

l2 − l1

−16λ+
− 3λ+

]
G

}
(l2 − l1),

ρ ′
2 = N2(l2 − l1) ≡

{
1

3

[
5 + ln

l2 − l1

−16λ+

]
F

+
4

15

[
2λ+ ln

l2 − l1

−16λ+
+ 13λ+

]
G

}
(l2 − l1).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.38)
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X

O

l1

l2

(a)

X

O

X +X +

l1

l2
(b)

Figure 8. Behaviour of Riemann variables in the vicinity of the leading edge of the undular
bore propagating over gradual slope with bottom friction. (a) Adiabatic variations of the
similarity GP regime, δ � ε, CD � ε. (b) General case, δ ∼ CD ∼ ε.

Naturally, v′
i and ρ ′

i vanish when l2 = l1. Now, substituting (6.35), (6.36) into the
modulation system (3.18), we obtain

dλ+

dT
+

∂li

∂X̃

dX+

dT
− (V + + v′

i)
∂li

∂X̃
= ρ+ + ρ ′

i , i = 1, 2. (6.39)

On using the kinematic condition (6.30) at the leading edge, this reduces to

dλ+

dT
− v′

i

∂li

∂X̃
= ρ+ + ρ ′

i , i = 1, 2. (6.40)

There are two qualitatively different cases to consider:
(i) limX̃→0 |dli/dX̃| < ∞, i = 1, 2 (figure 8a),
(ii) limX̃→0 |dli/dX̃| = ∞, i = 1, 2 (figure 8b).

The case (i) implies that, to leading order, (6.40) reduces to

dλ+

dT
= ρ+, (6.41)

which, together with the kinematic condition dX+/dT = −4λ+, defines the leading edge
curve X+(T ). One can observe that this system coincides with (4.6), (4.5), defining
the motion of a separate solitary wave over a gradual slope with bottom friction.
Its integral expressed in terms of original physical x, t-variables is given by (4.12).
Therefore, in the case(i), the lead solitary wave in the undular bore to leading order
is not restrained by interactions with the remaining part of the bore and behaves as
a separate solitary wave. Physically this case corresponds to adiabatic deformation
of the similarity modulation solution (6.15), (6.16) and implies the following small
parameter ordering: δ � ε, CD � ε.

Next, we study the structure of this weakly perturbed similarity modulation solution
in the vicinity of the leading edge. The next leading order of the system (6.40) yields

−v′
i

∂li

∂X̃
= ρ ′

i , i = 1, 2, (6.42)

that is,

∂l1

∂X̃
= − N1

M1

,
∂l2

∂X̃
= − N2

M2

. (6.43)

Subtraction of one equation (6.43) from another, taking account of the relationship
l2 − l1 ∼= −λ+(1 − m), leads consistently, to leading order, to the differential equation
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for 1 − m:

∂(1 − m)

∂X̃
= 2

[
F (T )

−3λ+
− 16G(T )

15

](
ln

16

1 − m

)−1

. (6.44)

This equation should be solved with the initial condition

1 − m = 0 at X̃ = 0. (6.45)

Elementary integration gives, with accuracy O(1 − m) (cf. (6.19)),

(1 − m) ln
16

1 − m
= −2

[
1

3
F (T ) − 16

15
λ+G(T )

]
X+ − X

−λ+
. (6.46)

This formula determines the dependence of the modulus m on T and X (as long as
1 − m � 1).

Now, we make use of the solution λ+ of equation (6.41) given by (4.10) with
C0 = 4/(3ga0h0) (see (4.11)). Under the assumption that the integral

∫ x
h−3 dx diverges

as h → 0, so that turbulent bottom friction plays an essential role in the undular bore
front behaviour (see § 4 for a similar approximation for an isolated solitary wave), we
obtain for h � h0

(1 − m) ln
16

1 − m
=

64

15
CD

(
2 + 3h2

∫ x

0

dx

h3

)
(X+ − X). (6.47)

Finally, if the bottom topography is approximated by the dependence (4.15), we get
with the same accuracy

(1 − m) ln
16

1 − m
=

64

15
CD

[
2 +

3

(3α − 1)δ

(
h

h0

)1/α
]

(X+ − X), (6.48)

where α > 1/3. The second term in square brackets tends to zero as h → 0. However,
the region where it can be neglected may be very narrow because of smallness of the
parameter δ. We recall that in this formula X+ is given by (4.12) and X is defined by
(1.3) in terms of the original physical independent variables x and t .

Summarizing, if the conditions δ, CD � ε are satisfied, the lead solitary wave of the
undular bore behaves as an individual (non-interacting) solitary wave adiabatically
varying under small perturbation due to variable topography and bottom friction.
The modulation solution in the vicinity of the leading edge also varies adiabatically;
however, its qualitative structure considered in § 6.4 (see figures 5 and 6) remains
unchanged.

In sharp contrast to the described case of adiabatic deformation of an undular
bore front is case (ii), when the second term on the left-hand side of (6.40)
contributes to the leading order, i.e. to the motion of the leading edge itself. Namely,
we have

dλ+

dT
= ρ+ + v′

i

∂li

∂X̃
, i = 1, 2. (6.49)

Now dλ+/dT �= ρ+, which means that the amplitude of the lead solitary wave a = −2λ+

varies essentially differently compared to the case of an isolated solitary wave. Indeed,
the term ρ+ on the right-hand side of (6.49) is responsible for local adiabatic variations
of the solitary wave, while the term v′

i∂li/∂X̃ describes non-local parts of the variations
associated with the wave interactions within the undular bore. Using asymptotic
formulae (6.37) implying v′

2 � 0, v′
1 � 0, and the condition limX̃→0 |dl1,2/dX̃| = ∞ along
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with l2 � l1, it is not difficult to show that this non-local term is always non-negative,
i.e. the lead solitary wave in the undular bore propagating over a gradual slope with
bottom friction always moves faster (and therefore has greater amplitude) than an
isolated solitary wave of the same initial amplitude in the beginning of the slope.
Indeed, as we have shown in § 5, the presence of a slope and bottom friction always
result in ‘squeezing’ the cnoidal wave, hence increasing momentum exchange between
solitary waves in the vicinity of the leading edge of the undular bore and acceleration
of the lead solitary wave itself. The situation here is qualitatively analogous to that
described in § 6.4, where the general global modulation solution for the unperturbed
KdV equation was discussed. As in that case, the leading edge now represents a
characteristic envelope – a caustic (otherwise we are back in the case (i) implying
dλ+/dT = ρ+) (see figure 6a).

Unlike the case of adiabatic variations of the leading edge, determination of
the function λ+(T ) now requires knowledge of the full solution of the perturbed
modulation system (3.18) with the matching conditions (6.27). While the analytic
methods to construct such a solution for inhomogeneous quasilinear systems are not
at present available, it is instructive to assume that dλ+/dT − ρ+ is a known function
of T and to study the structure of the solution in close vicinity of the leading edge.
With an account of the explicit form (6.37) of the velocity corrections, equations
(6.49) assume the form

∂l2

∂X̃
= −dλ+/dT − ρ+

2(l2 − l1)

[
1

ln[16/(1 − m)]
+

1

4
(1 − m)

]
, (6.50)

∂l1

∂X̃
= −dλ+/dT − ρ+

2(l2 − l1)

[
− 1

ln[16/(1 − m)]
+

1

4
(1 − m)

]
. (6.51)

Taking the difference of (6.50) and (6.51), we transform it into the form

∂(1 − m)

∂X
=

dλ+/dT − ρ+

(λ+)2
1

(1 − m) ln[16/(1 − m)]
. (6.52)

This equation can be readily integrated with the initial condition (6.45) to give

(1 − m)2
(

ln
16

1 − m
+

1

2

)
=

2(dλ+/dT − ρ+)

(λ+)2
(X+ − X). (6.53)

This solution coincides with the asymptotic formula (6.26) for the behaviour of the
modulus in the vicinity of the leading edge of the undular bore in general unperturbed
GP problem (Gurevich & Pitaevskii 1974), but instead of the derivative dλ+/dT in
(6.26) we have the difference dλ+/dT − ρ+ (which is always positive, as we have
established).

7. Conclusions
We have studied the effects of a gradual slope and turbulent (Chezy) bottom

friction on the propagation of solitary waves, nonlinear periodic waves and undular
bores in shallow-water flows in the framework of the variable-coefficient perturbed
KdV equation. The analysis has been performed in the most general setting provided
by the associated Whitham equations, describing slow modulations of a periodic
travelling wave due to the slope, bottom friction and spatial non-uniformity of initial
data. This modulation theory, developed in general form for perturbed integrable
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equations in Kamchatnov (2004), was applied here to the perturbed KdV equation
and allowed us to take into account slow variations of all three parameters in the
cnoidal wave solution. The particular time-independent solutions of the perturbed
modulation equations were shown to be consistent with the adiabatically varying
solutions for a single solitary wave and for a periodic wave propagating over a slope
without bottom friction obtained in Ostrovsky & Pelinovsky (1970, 1975) and Miles
(1979, 1983a). It was shown, however, that the assumption of zero mean elevation
used in these papers for the description of slow variations of a cnoidal wave, ceases
to be valid in the case when the turbulent bottom friction is present. In this case,
a more general solution was obtained numerically, improving the results of Miles
(1983b).

Further, the derived full time-dependent modulation system was used for the
description of the effects of variable topography and bottom friction on the
propagation of undular bores, in particular on the variations of the undular bore
front representing a system of weakly interacting solitary waves. By the analysis
of the characteristics of the Whitham system in the vicinity of the leading edge of
the undular bore, two possible configurations have been identified, depending on
whether the leading edge of the undular bore represents a regular characteristic
of the modulation system or its singular characteristic, i.e. a caustic. The first
case was shown to correspond to adiabatically slow deformations of the classical
Gurevich–Pitaevskii modulation solution, and is realized when the perturbations due
to variable topography and bottom friction are small compared with the existing
spatial non-uniformity of modulations in the undular bore (which is supposed to be
formed outside the region of variable topography/bottom friction). In the case when
modulations due to the external perturbations are comparable in magnitude with
the existing modulations in the undular bore, the leading edge becomes a caustic,
and this situation was shown to correspond to enhanced solitary wave interactions
within the undular bore front. These enhanced interactions have been shown to lead
to a ‘non-local’ leading solitary wave amplitude growth, which cannot be predicted
in the frame of the traditional local adiabatic approach to propagation of an isolated
solitary wave in a variable environment. As we mentioned in the Introduction, one of
our original motivations for this study was the possibility of modelling a shoreward
propagating tsunami as an undular bore. In this context, we would suggest that the
second scenario described above is the more relevant, which has the implication that
the growth and eventual breaking of the leading waves in a tsunami wavetrain cannot
be modelled as a local effect for that particular wave, but is determined instead by
the whole structure of the wavetrain.

This work was started during the visit of A.M.K. to the Department of
Mathematical Sciences, Loughborough University, UK. A.M.K. is grateful to EPSRC
for financial support.

Appendix. Derivation of the perturbed modulation system
We express the integrand function on the right-hand side of (3.15) in terms of the

µ-variable (3.6):

(2λi − s1 − U )R = 8Gµ3 − [8Gλi + 4(F + 2s1G)]µ2

+ [4(F + 2s1G)λi + 2s1(s1G + F )]µ − 2s1(s1G + F )λi . (A 1)
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Then we obtain with the use of (3.4), (3.5) and (3.7) the following expressions:

〈µ〉 =
1

L

∮
µdθ =

1

L

∮
µ

dθ

dµ
dµ =

1

L

∮
µdµ

2
√

−P (µ)
= − 2

L

∂I

∂s2

,

〈µ2〉 =
1

L

∮
µ2dθ =

2

L

∂I

∂s1

〈µ3〉 =
1

L

∮
µ3dθ = − I

L
+ s1〈µ2〉 − s2〈µ〉 + s3,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A 2)

where I is a known integral

I =

∫ λ3

λ2

√
(λ3 − µ)(µ − λ2)(µ − λ1) dµ

=
4

15
(λ3 − λ1)

5/2[(1 − m + m2)E(m) − (1 − m)(1 − m/2)K(m)], (A 3)

K(m) and E(m) being the complete elliptic integrals of the first and second kind,
respectively. The derivatives of I with respect to λi are also known table integrals
(Gradshtein & Ryzhik 1980):

∂I

∂λ1

= −1

2

∫ λ3

λ2

√
(λ3 − µ)(µ − λ2)

µ − λ1

dµ

= −1

3

√
λ3 − λ1[(λ2 + λ3 − 2λ1)E − 2(λ2 − λ1)K],

∂I

∂λ2

= −1

2

∫ λ3

λ2

√
(λ3 − µ)(µ − λ1)

µ − λ2

dµ

= −1

3

√
λ3 − λ1[(λ3 − λ1)K + (λ1 + λ3 − 2λ2)E],

∂I

∂λ3

=
1

2

∫ λ3

λ2

√
(µ − λ2)(µ − λ1)

λ3 − µ
dµ

=
1

3

√
λ3 − λ1[(2λ3 − λ1 − λ2)E − (λ2 − λ1)K].

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 4)

We can easily express the si-derivatives in terms of λi-derivatives by differentiation of
the formulae (see (3.7))

s1 = λ1 + λ2 + λ3, s2 = λ1λ2 + λ1λ3 + λ2λ3, s3 = λ1λ2λ3 (A 5)

and solving the linear system for differentials. Simple calculation gives

∂λi

∂sk

=
(−1)3−k∏

j �=i(λi − λj )
. (A 6)
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Then, combining (A 4) and (A 6), we obtain the derivatives ∂I/∂si and hence the
expressions

I

L
=

2

15
(λ3 − λ1)

[(
s2
1 − 3s2

)E

K
− 1

2
(λ2 − λ1)(λ2 + λ3 − 2λ1)

]
,

1

L

∂I

∂s1

=
1

6

[
2s1

E

K
+ s1λ1 + λ2

1 − λ2λ3

]
,

1

L

∂I

∂s2

= −1

2

[
(λ3 − λ1)

E

K
+ λ1

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A 7)

To complete the calculation of the right-hand side of (3.15), we also need expressions

L

∂L/∂λ1

= 2(λ2 − λ1)
K

E
,

L

∂L/∂λ2

= −2(λ3 − λ2)(1 − m)K

E − (1 − m)K
,

L

∂L/∂λ3

=
2(λ3 − λ2)K

E − K
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A 8)

Collecting all contributions into perturbation terms, we obtain the Whitham equations
in the form

∂λi

∂T
+ vi

∂λi

∂X
= ρi = Ci[F (T )Ai − G(T )Bi], (A 9)

where Cj , Aj , Bj and vj , j =1, 2, 3 are specified by formulae (3.19)–(3.21).
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