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Abstract In this paper, for each n > g > 0 we consider the moduli stack Ũns
g,n of curves

(C, p1, . . . , pn , v1, . . . , vn) of arithmetic genus g with n smooth marked points pi and nonzero tangent

vectors vi at them, such that the divisor p1+ · · ·+ pn is nonspecial (has h1
= 0) and ample. With

some mild restrictions on the characteristic we show that it is a scheme, affine over the Grassmannian
G(n− g, n). We also construct an isomorphism of Ũns

g,n with a certain relative moduli of A∞-structures

(up to an equivalence) over a family of graded associative algebras parametrized by G(n− g, n).
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Introduction

This paper continues the study of connections between moduli spaces of curves and
A∞-algebras, started in [10]. Recall that in [10] we gave an interpretation of the moduli of
curves of arithmetic genus g with g (distinct smooth) marked points forming a nonspecial
divisor, as a certain moduli space of A∞-algebras. In the present paper, we consider a
generalization of this picture to the case of curves with n marked points, where n > g.

The second motivation for this work is the relation, pointed out in [6], between the
moduli space of curves (C, p1, . . . , pn) of arithmetic genus 1 such that H1(C,O(pi )) = 0
for every i and one of the moduli spaces studied by Smyth in [14] and [15]. For each
1 6 m < n he constructed an alternate compactification M1,n(m) of the moduli space of
n-pointed curves of genus 1 consisting of m-stable curves. The moduli space that shows
up in [6] is M1,n(n− 1). In the present paper, we consider a bigger moduli stack of curves
of genus 1, so that Smyth’s moduli spaces for all m > (n− 1)/2 admit natural regular
morphisms to our moduli stack (see Section 1.5).

Let us fix n > g. The main object of study of this paper is the moduli stack Uns
g,n of

(C, p1, . . . , pn), where C is a reduced connected projective curve of arithmetic genus
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1296 A. Polishchuk

g, p1, . . . , pn are distinct smooth points on C such that H1(C,O(p1+ · · ·+ pn)) = 0
and O(p1+ · · ·+ pn) is ample. We also consider the Gn

m-torsor over this stack, Ũns
g,n ,

corresponding to choices of nonzero tangent vectors v1, . . . , vn at the marked points.

Note that the vanishing of H1(C,O(p1+ · · ·+ pn)) is equivalent to the surjectivity of

the map

H0(C,OC (p1+ · · ·+ pn)/OC )→ H1(C,OC ). (0.0.1)

Hence, its kernel is (n− g)-dimensional. Thus, we have a natural morphism

π : Ũns
g,n → G(n− g, n), (0.0.2)

where G(n− g, n) is the Grassmannian of (n− g)-dimensional subspaces in the

n-dimensional space, associating with (C, p1, . . . , pn, v1, . . . , vn) the kernel of the map

(0.0.1), where H0(C,OC (p1+ · · ·+ pn)/OC ) is trivialized using the basis v1, . . . , vn .

Note that some closely related moduli stacks were considered in [11]. Namely,

the preimages of the standard cells in G(n− g, n) under π are the open substacks

Ũns
g,n(S) ⊂ Ũns

g,n , for subsets S ⊂ {1, . . . , n} such that |S| = g, given by the condition

H1(C,OC (
∑

i∈S pi )) = 0. These stacks are precisely the stacks Ũns
g,n(a), defined in [11]

for collections a = (a1, . . . , an) ∈ Zn
>0 such that

∑
i ai = g, in the case when each ai is

either 0 or 1.

Working over Q we proved in [11] that each Ũns
g,n(S) is in fact an affine scheme of

finite type, and identified it with the quotient of a certain locally closed subset of the

Sato Grassmannian of subspaces in H =
⊕n

i=1 k((ti )) by the free action of the group of

changes of variables. The first result of this paper, Theorem A below, gives analogous

statements for Ũns
g,n (in this case the morphism π is affine of finite type).

As in [11] we consider the closed subset ASG of the Sato Grassmannian consisting of

W that are subalgebras of H. Let ASGns
⊂ ASG be the open subset consisting of W such

that

W ∩
n⊕

i=1

k[[ti ]] = k, dim
(
H/
(

W +
n⊕

i=1

k[[ti ]]
))
= g, and H = W +

n⊕
i=1

t−1
i k[[ti ]].

There is a natural action on ASGns of the group G of changes of variables of the form

ti 7→ ti + c1i t2
i + c2i t3

i + · · · , i = 1, . . . , n.

Theorem A (see Theorem 1.2.2). (i) Assume that either

• n > g > 1, n > 2 and the base is Spec(Z[1/2]), or

• n = g = 1 and the base is Spec(Z[1/6]), or

• g = 0, n > 2 and the base is Spec(Z).
Then the stack Ũns

g,n is isomorphic to a scheme, affine of finite type over the Grassmannian

G(n− g, n), so that the preimages of the standard open cells US ⊂ G(n− g, n), for

S ⊂ {1, . . . , n}, |S| = g, are the moduli schemes Ũg,n(aS), where aS has 1’s at the places

corresponding to S and 0’s elsewhere.

(ii) Now let us work over Spec(Q). Then the action of G on ASGns is free, and the

Krichever map induces an isomorphism

Ũns
g,n ' ASGns/G.
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Note that part (i) of this Theorem is an improvement of [10, Theorem 1.2.4] (where

the case n = g was considered, but over Z[1/6]) and of the special case of [11, Theorem

A(i)] when a is a collection of 0’s and 1’s.

Next, generalizing the work [10] (corresponding to the case n = g), we consider

A∞-algebras associated with curves (C, p•, v•) in Ũns
g,n . Namely, we consider the object

G = OC ⊕Op1 ⊕ · · ·⊕Opn (0.0.3)

in the perfect derived category of C and consider the natural minimal A∞-structure on the

corresponding algebra Ext∗(G,G) (which arises from a dg-model of this Ext-algebra and

is defined uniquely up to a gauge equivalence). The key observation is that the associative

algebra structure on Ext∗(G,G) depends only on the corresponding (n− g)-dimensional

subspace in kn .

More precisely, let Qn be the quiver with n+ 1 vertices marked as O,Op1 , . . . ,Opn and

with the arrows

Ai : Opi → O, Bi : O→ Opi , i = 1, . . . , n.

Let J0 be the two-sided ideal in the path algebra k[Qn] of Qn , generated by the elements

Ai Bi Ai , Bi Ai Bi , Ai B j ,

where i 6= j . For an (n− g)-dimensional subspace W ⊂ kn we define JW ⊂ k[Qn] to be

the ideal generated by J0 together with the additional relations∑
xi Bi Ai = 0 for every

∑
xi ei ∈ W,

and consider the corresponding quotient algebra

EW = k[Qn]/JW . (0.0.4)

We equip EW with the Z-grading by deg(Ai ) = 0, deg(Bi ) = 1.

Now for a curve (C, p•, v•) ∈ Ũns
g,n there is a canonical isomorphism of associative

algebras

Ext∗(G,G) ' EW ,

for W = π(C, p•, v•). Thus, from such a curve we get an A∞-structure on the algebra EW .

The family of associative algebras EW defines a sheaf of O-algebras Eg,n over

G(n− g, n). Extending the techniques developed in [10] we consider the relative moduli

space M∞ over G(n− g, n), classifying minimal A∞-structures on the fibers of Eg,n (for

a precise definition, see Definition 2.2.5). We prove that in fact M∞ is an affine scheme

over G(n− g, n) (over Z[1/6]), and the above construction of A∞-structures associated

with curves gives an isomorphism of the moduli spaces.

Theorem B (see Theorem 2.3.11). Under the assumptions of Theorem A(i) we have a

natural isomorphism

Ũns
g,n

∼- M∞

of affine schemes over G(n− g, n), compatible with the Gn
m-action, where (λi ) ∈ Gn

m
acts on Ũns

g,n by rescaling the tangent vectors at the marked points and on M∞ by the

rescalings

Ai 7→ Ai , Bi 7→ λi Bi .
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Note that in the case n = g > 2 (respectively, n > 3, g = 0) this result is a strengthening

of a similar isomorphism in [10, Theorem A] (respectively, [10, Theorem 5.2.1]), since we

now work over Z[1/2] (respectively, Z), not over a field.

The construction of the scheme M∞ of minimal A∞-structures on Eg,n is a particular

case of a more general construction (see Theorem 2.2.6) of the affine scheme classifying

equivalence classes of minimal A∞-structures on a sheaf of O-algebras E over a scheme

S, such that E is locally free of finite rank as an O-module, and the associative algebras

given by the fibers Es , for s ∈ S, satisfy the following vanishing condition:

HHi (Es)<0 = 0 for i 6 1, for every point s ∈ S. (0.0.5)

As in [10], the important part of the proof of Theorem B is identifying the curves in
Ũns

g,n such that the corresponding A∞-algebras are homotopically trivial, i.e., have mi = 0
for i > 3. In the case n = g, considered in [10], there is only one such curve, Ccusp

g , which is

the union of g cuspidal curves of genus 1, glued at the cusp. In general, there is a family

of such curves, parametrized by G(n− g, n). Namely, these are precisely the invariant

points for the action of the diagonal Gm ⊂ Gn
m on Ũns

g,n . We refer to curves in this family

as special curves. In Theorem 1.2.2 we prove that special curves form a section of the

projection (0.0.2). Special curves are used in the proof of Theorem B as follows. Since

the Gm-action contracts both spaces, Ũns
g,n and M∞, to the Gm-invariant locus (which is

G(n− g, n) in both cases), it is enough to study deformations of each special curve and

show that they precisely correspond to deformations of EW as an A∞-algebra. This is

done using the same ideas as in the case n = g, although there are some new features

that appear because we now work with a family of associative algebras (see Proposition

2.3.10).

Note that our moduli scheme of A∞-structures M∞ has a natural extension to a

derived stack that can be constructed as in [2, (3.2)]. It would be interesting to find an

interpretation of this derived extension in terms of moduli of curves.

The paper is organized as follows. Section 1 is devoted to geometric aspects of the

moduli stacks Ũns
g,n . In particular, in § 1.1 we describe a family of special curves in Ũns

g,n .

Then in § 1.2 we prove Theorem A. In § 1.3 we describe the natural gluing morphism

that associates with a pair of curves from the moduli spaces Ũns
g1,n1

and Ũns
g2,n2

, each

equipped with an additional point different from all the marked points, a glued curve

in Ũns
g1+g2,n1+n2

. In §§ 1.4 and 1.5 we study the case g = 1: we describe explicitly the

space Ũns
1,2, as well as construct regular morphisms from the Smyth’s moduli spaces of

m-stable curves to Uns
1,n for m > (n− 1)/2. Section 2 is devoted to the relative moduli of

A∞-structures. After proving some technical results in § 2.1, we give in § 2.2 a general

construction of the affine scheme parametrizing A∞-structures over a given family of

associative algebras (under the assumption (0.0.5)). Finally, in § 2.3 we prove Theorem B.

1. Moduli of curves with nonspecial divisors

1.1. Some special curves

First, we are going to construct some special curves that will play an important role in

our study of the moduli spaces Ũns
g,n .
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Definition 1.1.1. (i) Let x1, . . . , xn be independent variables, and let R be a

commutative ring. For a subset S ⊂ {1, . . . , n} with |S| = g let us consider the

subalgebra in
⊕n

i=1 R[xi ] given by

B(S) := R · 1+
⊕
i∈S

x2
i R[xi ].

Next, let (h j )16 j6n, j 6∈S be a collection of linear combinations of (xi )i∈S with

coefficients in R. We define the R-algebra A(h•) as the B(S)-subalgebra in⊕n
i=1 R[xi ] generated by the elements h j = x j + h j , j 6∈ S. We view A(h•) as a

graded R-algebra, where deg(xi ) = 1.

(ii) We define two relative curves, one affine and another projective over R, by

Caff(h•) = Spec(A(h•)),

C(h•) = Proj(R(A(h•))),

where R(A(h•)) =
⊕

m>0 Fm is the Rees algebra associated with the increasing

filtration (Fm) on A(h•) coming from the grading. Note that we have an action of Gm
on C(h•) associated with the grading on A(h•), and that Caff(h•) is a Gm-invariant

affine open in C(h•).

Proposition 1.1.2. (i) For any matrix (ai j )i∈S, j 6∈S with entries in R, let A be the graded

R-algebra defined by the generators ( fi , hi , hS, j )i∈S, j 6∈S subject to the equations

fi fi ′ = 0, fi hi ′ = 0, hi hi ′ = 0, h2
i = f 3

i ,

hS, j hS, j ′ =
∑
i∈S

ai j ai j ′ fi ,

fi hS, j = ai j hi ,

hi hS, j = ai j f 2
i ,

(1.1.1)

where i, i ′ ∈ S, i 6= i ′, j, j ′ 6∈ S, j 6= j ′, and the grading is given by

deg(hS, j ) = 1, deg( fi ) = 2, deg(hi ) = 3.

Then there is an injective homomorphism of graded R-algebras

ρ : A→
n⊕

i=1

R[xi ],

such that

ρ( fi ) = x2
i , ρ(hi ) = x3

i , i ∈ S,

ρ(hS, j ) = x j +
∑
i∈S

ai j xi , j 6∈ S,

inducing an isomorphism A ' A(h•), where

h j =
∑
i∈S

ai j xi .
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The elements

( f n
i , f n

i hi , hm
S, j ), i ∈ S, j 6∈ S,m > 1, n > 0, (1.1.2)

form a basis of A as an R-module.

(ii) Assume now R = k, where k is a field. Let C = C(h•), Caff
= Caff(h•) be as

in Definition 1.1.1. Then C \Caff consists of n smooth points p1, . . . , pn on C.

Furthermore, C is a union of n components Ci , joined in a single point q, which is

the only singular point of C (with pi ∈ Ci \ {q}). Each component Ci is either P1,

or the cuspidal curve of arithmetic genus 1.

Proof. (i) It is easy to see that ρ is well defined, and that the elements (1.1.2) span A
over R. On the other hand, one immediately checks that their images under ρ are linearly

independent over R and generate the subalgebra A(h•). This implies our assertions.

(ii) The complement C \Caff is naturally identified with

Proj A(h•) ' Proj
( n⊕

i=1

k[xi ]

)
=

n⊔
i=1

pi .

The ring extension B(S) ⊂ A(h•) induces a finite morphism

φ : Caff
→ Spec B(S).

Note that Spec B(S) is the transversal union of g affine cuspidal curves glued at the

cusp (numbered by i ∈ S), and our morphism is given by the functions ( fi , hi )i∈S . The

fiber over the cusp is the union of the coordinate axes in An−g. We claim that over the

complement to the cusp φ is an isomorphism. Say, hi = fi = 0 for all i 6= i0, and hi0 , fi0

are invertible. Then the equations

hS, j hS,l = ai0 j ai0l fi0 , fi0 hS, j = ai0 j hi0 , hi0 hS, j = ai0 j f 2
i0

are equivalent to

hS, j = ai0 j
hi0

fi0

,

for j 6∈ S.

Thus, Caff has n irreducible rational components Caff
i , all joined at one point, where

hi = fi = hS, j = 0. More precisely, for j 6∈ S, we have Caff
j ' A1: Caff

j is given by the

equations fi = hi = 0, hS,l = 0 for l 6= j , and x j = hS, j is the coordinate on it.

For i ∈ S there are two cases:

Case 1. There exists j 6∈ S such that ai j 6= 0. In this case Caff
i ' A1 with the coordinate

xi = hS, j/ai j , and the restriction of φ to Caff
i is the normalization of the ith component

of Spec B(S). Note that if ail 6= 0 for some other l 6∈ S then hS, j/ai j = hS,l/ail on Caff
i .

Case 2. ai j = 0 for all j 6∈ S. Then all hS, j = 0 on Caff
i , so Caff

i is the cuspidal curve with

the coordinate xi on the normalization of Caff
i such that x2

i = fi , x3
i = hi . The restriction

of φ to Caff
i maps it isomorphically to the ith component of Spec B(S).

Note the map ρ is precisely the map associating with a function f ∈ A its

pull-backs to normalizations of the irreducible components Caff
1 , . . . ,Caff

n , where we choose
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coordinates xi as above. Let Ci be the closure of Caff
i . The point at infinity pi ∈ Ci

corresponds either to the point on P1 where xi = ∞, or to the infinite point on the

projective closure of the cuspidal curve (corresponding to xi = ∞ on its normalization).

In particular, all pi are smooth.

Note that the curve C(h) is determined by the corresponding subspace

W := 〈x j + h j | j 6∈ S〉 ⊂
n⊕

i=1

k · xi ' kn,

which can be any point of the open cell in G(n− g, n) where W + kS
= kn . Later we will

show that each curve C(h) with the marked points pi and the natural tangent vectors at

them induced by x−1
i (viewed as elements of the local ring of C(h) at pi ) defines a point

in Ũns
g,n , which we denote simply by CW . We refer to the curves of the form CW as special

curves.

Remark 1.1.3. The special curves above are particular cases of the curves considered in

[11, § 2.1]. Note that in the case g = 0 there is a unique special curve for each n: the

union of n projective lines joined in a rational n-fold point.

1.2. Moduli spaces

Recall that for each collection a1, . . . , an > 0 such that a1+ · · ·+ an = g, we considered

in [11] the stack Ũns
g,n(a1, . . . , an) of curves (C, p1, . . . , pn) of arithmetic genus g such that

H1(C,O(
∑

ai pi )) = 0 and O(p1+ · · ·+ pn) is ample, equipped with nonzero tangent

vectors at the marked point. Working over Z[1/N ] for sufficiently divisible N , we proved

that all of these are affine schemes of finite type, and related them (working over Q) to

certain subschemes of the Sato Grassmannian via the Krichever map.

The moduli spaces considered below are glued from various Ũns
g,n(a1, . . . , an), where ai ’s

are all 0’s and 1’s.

Definition 1.2.1. Let us denote by Uns
g,n the moduli stack of (reduced connected projective)

curves (C, p1, . . . , pn) of arithmetic genus g and n smooth distinct marked points, such

that H1(C,O(p1+ · · ·+ pn)) = 0 and OC (p1+ · · ·+ pn) is ample. Let Ũns
g,n denote the

Gn
m-torsor over Uns

g,n corresponding to choices of nonzero tangent vectors at all the marked

points.

For each subset S ⊂ {1, . . . , n} such that |S| = g, we consider the open substack

Ũg,n(S) ⊂ Ũns
g,n corresponding to curves (C, p1, . . . , pn) for which H1(C,OC (

∑
i∈S pi )) =

0. This is equivalent to requiring that H0(C,OC (
∑

i∈S pi )/OC ) surjects onto H1(C,OC ).

Thus, we have

Ũg,n(S) = π−1(US)

where US ⊂ G(n− g, n) is the open cell in the Grassmannian corresponding to subspaces

W ⊂ kn such that W + kS
= kn .
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It follows that Ũns
g,n is the union of open substacks Ũg,n(S), where S ranges over subsets

of {1, . . . , n} such that |S| = g. On the other hand, by definition, we have

Ũg,n(S) = Ũns
g,n(a1, . . . , an),

where ai = 1 for i ∈ S and a j = 0 for j 6∈ S.

We have a natural action of Gn
m on Ũns

g,n , so that for λ = (λ1, . . . , λn),

λ · (C, p1, . . . , pn, v1, . . . , vn) = (C, p1, . . . , pn, λ
−1
1 v1, . . . , λ

−1
n vn).

Note that the map π : Ũns
g,n → G(n− g, n) (see (0.0.2)) is Gn

m-equivariant, where Gn
m acts

on G(n− g, n) via the embedding Gn
m ⊂ GL(n) and the natural action of GL(n) on the

Grassmannian.

As in [11], we consider the locally closed subset SG1(g) in the Sato Grassmannian of

subspaces of H =
⊕n

i=1 k((ti )), consisting of W such that 1 ∈ W ,

• W ∩H>0 = 〈1〉 and

• dimH/(W +H>0) = g,

where H>0 =
⊕n

i=1 k[[ti ]]. We denote by ASG ⊂ SG1(g) the closed subscheme

consisting of W which are subalgebras in H. We denote by SGns
⊂ SG1(g) the open

subset consisting of W such that

W +
n⊕

i=1

t−1
i k[[ti ]] = H,

and we set ASGns
= ASG∩ SGns . All of these schemes can be defined over Z (see [11,

§ 1.1] for details).

Let Uns,(∞)
g,n be the torsor over Uns

g,n corresponding to choices of formal parameters

(t1, . . . , tn) at the marked points. Using [11, Proposition 1.1.5] we see that there is a

natural morphism (Krichever map)

Kr : Uns,(∞)
g,n → ASGns

: (C, p•, t•) 7→ H0(C \ {p1, . . . , pn},O) ⊂ H, (1.2.1)

where the embedding into H is given by the Laurent expansions with respect to the

formal parameters (t•). This morphism is G-equivariant, where G =
∏n

i=1 Gi , and Gi is

the group of changes of ti of the form ti 7→ ti + c1t2
i + c2t3

i + · · · .

Theorem 1.2.2. Assume that either n > g > 1, n > 2 and the base is Spec(Z[1/2]), or

n = g = 1 and the base is Spec(Z[1/6]), or g = 0, n > 2 and the base is Spec(Z).

(i) The stack Ũns
g,n is a scheme, the morphism π : Ũns

g,n → G(n− g, n) is affine of finite

type and Gn
m-equivariant.

(ii) The diagonal subgroup Gm ⊂ Gn
m acts on the ring of functions on each open

affine Ũg,n(S), where S ⊂ {1, . . . , n}, |S| = g, with nonnegative weights. There is

a Gn
m-equivariant section

σ : G(n− g, n)→ Ũns
g,n

of the morphism π , such that the locus of Gm-invariant points in Ũns
g,n coincides

with the image of σ . These Gm-invariant points correspond to the special curves

considered in Proposition 1.1.2.
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(iii) Now let us work over Q. Then the Krichever map (1.2.1) induces an isomorphism

Kr : Ũns
g,n ' ASGns/G,

where the action of G on ASGns is free.

Proof. (i) The case n = g = 1 is well known (see e.g., [10, Theorem 1.2.4] or [6, Theorem

A]), while the case n > 3, g = 0 is [10, Theorem 5.1.4]. The case n = 2, g = 0 is elementary

(and can be worked out as in [10, Lemma 5.1.2]): one has Ũns
0,2 ' A1, with the universal

affine curve C \ {p1, p2} given by the equation x1x2 = t (where t is the coordinate on A1).

Thus, we assume that n > g > 1 and n > 2.

Since G(n− g, n) is covered by affine open cells US , it is enough to prove that each
Ũg,n(S) is an affine scheme of finite type over the base. As in [10, Theorem 1.2.4] and

[11, Theorem A], the main point is to find a canonical basis of the algebra H0(C \
{p1, . . . , pn},O) for a family of curves in Ũg,n(S) with any affine base Spec(R).

Set DS =
∑

i∈S pi . We start by constructing an R-basis of the algebra H0(C \ DS,O).
Similarly to [10, Theorem 1.2.4], using the condition H1(C,O(DS)) = 0 we choose

elements

fi ∈ H0(C,O(pi + DS)), hi ∈ H0(C,O(2pi + DS)), for i ∈ S,

with fi ≡
1
t2
i

mod 1
ti

R[[ti ]], hi ≡
1
t3
i

mod 1
t2
i

R[[ti ]], where ti are some formal parameters at

pi , compatible with the chosen tangent vectors. The elements ( fi , hi ) are defined uniquely

up to the following transformations

(hi , fi ) 7→ (hi + ai fi + bi , fi + ci ), (1.2.2)

for some ai , bi , ci ∈ R. The assumption that H1(C,O(DS)) = 0 implies that

H0(C,O(DS)) = R, hence, the monomials ( f m
i , f m

i hi )i∈S,m>0 form an R-basis of H0(C \
DS,O) (cf. [10, Lemma 1.2.1(ii)]). By considering the polar parts, as in [10, Lemma 1.2.1],

we see that the generators ( fi , hi ) should satisfy relations of the following form:

fi f j = α j i hi +αi j h j + γ j i fi + γi j f j +
∑

k 6=i, j

ck
i j fk + ai j ,

fi h j = di j f 2
j + t j i hi + vi j h j + r j i fi + δi j f j +

∑
k 6=i, j

ek
i j fk + bi j ,

hi h j = β j i f 2
i +βi j f 2

j + ε j i hi + εi j h j +ψ j i fi +ψi j f j +
∑

k 6=i, j

lk
i j fk + ui j ,

h2
i = f 3

i + qi hi fi + ri f 2
i + ui hi +

∑
j 6=i

g j
i h j +πi fi +

∑
j 6=i

k j
i f j + si ,

where i 6= j (the coefficients are some elements of R). Since we assume that 2 is invertible,

choosing ai and bi in (1.2.2) appropriately we can make the coefficients qi and ui in the

last equation to be zero. This fixes the ambiguity in a choice of hi . Assume now that

g > 2. Then to fix the ambiguity in a choice of fi we observe that by making appropriate

changes fi 7→ fi + ci we can make γi i0 = 0 for i 6= i0, γi0i1 = 0 for fixed i0, i1 ∈ S (i0 6= i1).

In the case g = 1 we leave the ambiguity in choosing fi for now and fix it later.

https://doi.org/10.1017/S1474748017000408 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000408


1304 A. Polishchuk

Next, for each j 6∈ S we have h0(p j + DS) = 2, so we can choose hS, j ∈ H0(C,O(p j +

DS)) with the polar part 1/t j at p j , uniquely up to an additive constant. Let us set

D :=
∑n

i=1 pi . Then

( f m
i , f m

i hi , hm+1
S, j ), i ∈ S, j 6∈ S,m > 0 (1.2.3)

is an R-basis of O(C \ D). Indeed, (hm
S, j )m>1, j 6∈S generate arbitrary polar parts at points

p j , j 6∈ S, while ( f m
i , f m

i hi )i∈S,m>0 form a basis of H0(C \ DS,O).
Let us define ai j (S) ∈ R, where i ∈ S, j 6∈ S, by

hS, j ≡
ai j (S)

ti
mod R[[ti ]]

at pi . Then using the basis (1.2.3) we see that in addition to the relations satisfied by

( fi , hi )i∈S we should have relations of the following form:

hS, j hS, j ′ = c j ′ j (S)hS, j + c j j ′(S)hS, j ′ +
∑
i∈S

ai j (S)ai j ′(S) fi + const

fi hS, j = bi j (S)hS, j + ai j (S)hi +
∑
l∈S

dl
i j (S) fl + const

hi hS, j = ei j (S)hS, j + ai j (S) f 2
i + ri j (S)hi +

∑
l∈S

sl
i j (S) fl + const

where i ∈ S, j, j ′ 6∈ S. Note that c j j ′(S) = hS, j (p j ′), bi j (S) = fi (p j ), ei j (S) = hi (p j ).

Using these relations we can get rid of the ambiguity in adding a constant to each hS, j

by requiring that d i0
i0 j (S) = 0 for fixed i0 ∈ S. Also, in the case g = 1 we can now fix the

ambiguity in adding a constant to fi by requiring bi j0(S) = 0 for a fixed j0 6∈ S (which

exists since |S| = 1 and n > 2).

As in [10, Lemma 1.2.2(i)], Buchberger’s algorithm gives a system of equations on the

constants in the relations between the generators fi , hi , hS, j , which is equivalent to (1.2.3)

being a basis of H0(C \ DS,O) as an R-module. This system of equations defines an affine

scheme SG B of finite type over Z[1/2]. Thus, we get a morphism Ũg,n(S)→ SG B . The

remainder of the proof is similar to that of [10, Theorem 1.2.4]: starting from Groebner

relations of the above form we construct a family of curves with required properties,

which gives an inverse morphism SG B → Ũg,n(S) (to see that this is indeed the inverse

morphism one uses the ampleness of O(p1+ · · ·+ pn)).

(ii) The action of λ ∈ Gn
m on the coordinates on Ũg,n(S) is induced by the rescalings

fi 7→ λ2
i fi , hi 7→ λ3

i hi , hS, j 7→ λ j hS, j .

From this we see that the diagonal action of Gm does not change (ai j ) and acts with

positive weights on all the other coordinates. In particular, the Gm-invariant points

correspond to the (C, p•, v•) such that the affine curve C \ {p1, . . . , pn} is given by

equations (1.1.1) (where we think of fi and hi as independent variables). So these are

exactly the equations of the special curves considered in Proposition 1.1.2.

Conversely, from part (i), we see that Ũg,n(S) can be identified with the affine scheme

SG B parametrizing commutative algebras with generators ( fi , hi , hS, j ) and relations of
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the form specified in (i), such that the elements (1.2.3) form a basis. Thus, by Proposition

1.1.2, the family of special curves over US gives a morphism

σ : US → Ũg,n(S).

It remains to check that this morphism is a section of the projection π : Ũg,n(S)→ US .

By definition, we have to prove that for C = C(ai j ) as in Proposition 1.1.2, where (ai j )

is the matrix with i ∈ S, j 6∈ S, the kernel of the map

H0(C,OC (p1+ · · ·+ pn)/OC )→ H1(C,OC )

gets identified with the subspace W ⊂ kn spanned by (e j +
∑

i∈S ai j ei ) j 6∈S , where

H0(C,O(pi )/O) is trivialized using the rational function xi that has a pole of order

1 at pi . But this follows from the fact that x j +
∑

i∈S ai j xi = hS, j defines a global section

of OC (p1+ · · ·+ pn).

(iii) We have seen that Ũns
g,n is the union of Ũns

g,n(a), over a consisting of 0’s and 1’s.

Similarly, ASGns is the union of ASGa (where ASGa
= ASG∩ SGa with SGa being the

open cell of the Sato Grassmannian defined in [11, § 1.3]), over the same set of a, and

the Krichever map is compatible with these open coverings. Hence, the assertion follows

from [11, Theorem B].

Note that Theorem A is a part of Theorem 1.2.2.

Remarks 1.2.3. (1) If C has arithmetic genus 0 then the vanishing of H1(C,O(p1+

· · · pn)) is automatic, so the moduli scheme Ũns
0,n is exactly the space Ũ0,n[ψ] of

ψ-prestable curves (with tangent vectors at the marked points) considered in [10,

§ 5.1]. This case of Theorem 1.2.2(i)(ii) was considered in [10, Theorem 5.1.4]. Note

that one of the GIT quotients of Ũns
0,n by Gn

m is the space of Boggi-stable (or ψ-stable)

curves studied in [1], [3, § 4.2.1] and [4, § 7.2].

(2) The schemes Ũns
g,n can be reducible. For example, by [9, Theorem (11.10)], if C is

the union of n generic lines through one point in Pn−3, then C is not smoothable

for n > 15. It is easy to see that equipping each component of C with a marked

point we get a curve (C, p1, . . . , pn) satisfying H1(C,O(p1+ · · · , pn)) = 0. Thus,

we deduce that Ũns
3,n , for n > 15, has a component with nonsmoothable curves.

Definition 1.2.4. Let us denote by Uns,′
g,n (respectively, Ũns,′

g,n ) the moduli stack, defined

exactly like Uns
g,n (respectively, Ũns

g,n), but without the condition of ampleness of O(p1+

· · ·+ pn).

Proposition 1.2.5. There is a natural morphism Uns,′
g,n → Uns

g,n sending a curve

(C, p1, . . . , pn) to the curve (C, p1, . . . , pn), where C is the image of C under the

morphism to a projective space induced by the linear system |OC (N (p1+ · · ·+ pn))| for

N � 0.

Proof. We will construct a Gn
m-equivariant morphism

Ũns,′
g,n → Ũns

g,n, (1.2.4)
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as sketched in [11, Remark 1.7.2.2] (where Ũns,′
g,n → Uns,′

g,n is the Gn
m-torsor corresponding to

choices of nonzero tangent vectors at marked points). Let us restrict to the open substack

Ũns,′
g,n (S), defined by the condition h1(O(

∑
i∈S pi )) = 0, for a fixed subset S ⊂ {1, . . . , n},

|S| = g (it will be clear that our morphisms are the same on the intersections).

Let R be a commutative ring, and let (C, p•, v•) be a family in Ũns,′
g,n (S)(R). Now

repeating literally the first part of the proof of Theorem 1.2.2(i), we construct a canonical

basis of the R-algebra

A = H0(C \ {p1, . . . , pn},O)

and use it to get an R-point in the scheme SG B from that proof (note that this part of

the proof does not require the ampleness of O(p1+ · · ·+ pn)). Since the construction is

functorial in R, we get a morphism

Ũns,′
g,n (S)→ SG B .

It remains to recall that by the proof of Theorem 1.2.2(i), we have a natural isomorphism
Ũns

g,n ' SG B . Thus, we get the required morphism (1.2.4). By the definition, to a curve

(C, p1, . . . , pn) our morphism associates the curve C := Proj(R(A)) with the induced

marked points, where R(A) =
⊕

m Fm is the Rees algebra associated with the filtration

on A by the order of pole along p1+ · · ·+ pn . This curve can be identified with the image

of C in the projective embedding given by |OC (N (p1+ · · ·+ pn))| for N � 0.

1.3. Gluing morphism

Let C̃ns
g,n → Ũns

g,n denote the universal affine curve, i.e., the complement to the sections

p1, . . . , pn in the universal curve. By definition, the stack C̃ns
g,n classifies the data

(C, p1, . . . , pn, v1, . . . , vn; q), where (C, p•, v•) is in Ũns
g,n and q is a point of C , different

from the marked points p1, . . . , pn (where C can be singular at q). In the case when the

marked points are in bijection with a finite set I we use the notation Ũns
g,I and C̃ns

g,I for

these moduli stacks.

Example 1.3.1. In the case n = g = 1 we need to invert 6 to ensure that the stack Ũns
1,1

is a scheme. However, it is easy to see that already the stack C̃ns
1,1×Spec(Z[1/2]) is a

scheme. Indeed, starting with a family (C, p, v; q) in C̃ns
1,1(R), where R is a commutative

ring, we can normalize functions f ∈ H0(C,O(2p)), h ∈ H0(C,O(3p)), with the Laurent

expansions f = 1
t2 + · · · , g = 1

t3 + · · · at p (where the local parameter t is compatible

with the tangent vector v) by the conditions f (q) = h(q) = 0, so that the only remaining

ambiguity is h 7→ h+ c f . We can fix this ambiguity by requiring that

h2
− f 3

= α f 2
+βh+ γ f

for uniquely defined constants α, β, γ ∈ R (note that there is no f h term on the right-hand

side). This gives an isomorphism C̃ns
1,1 ' A3 over Z[1/2].

Proposition 1.3.2. Assume that either n > g > 1, n > 2, and we work over Z [1/2], or

g = 0, n > 2, and we work over Z.
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(i) For every partition [1, n] = I t J into nonempty subsets and a pair of numbers

h 6 |I |, k 6 |J |, such that h+ k = g, there is a natural gluing morphism

ρ
h,k
I,J : C̃

ns
h,I × C̃ns

k,J → Ũns
g,n, (1.3.1)

sending a pair of curves C I , CJ (equipped with the marked points, tangent vectors

and with the extra points qI , qJ ) to the curve C = C I ∪CJ , where C I and CJ are

glued transversally, so that the points qI and qJ are identified. The curve C is

equipped with n marked points (and tangent vectors at them), so that the points

indexed by I come from the marked points on C I , while those indexed by J come

from CJ .

(ii) The morphism ρ
h,k
I,J is compatible with the projections to the Grassmannians and

with the morphism

G(|I | − h, |I |)×G(|J | − k, |J |)→ G(n− g, n)

sending a pair of subspaces (V, V ′) to V ⊕ V ′.

(iii) The morphism ρ
h,k
I,J is a closed embedding that factors through the closed subscheme

Z I,J ⊂ Ũns
g,n, given by the conditions

(1) H1(C,O(
∑

i∈S pi )) 6= 0 for all S ⊂ [1, n], such that |S| = g and either |S ∩ I | <
h or |S ∩ J | < k;

(2) for every S ⊂ [1, n] and s, t ∈ [1, n], such that |S| = g, |S ∩ I | = h, |S ∩ J | = k,

and either s ∈ S ∩ I , t ∈ S ∩ J or s ∈ S ∩ J , t ∈ S ∩ I , the morphism

H0
(

C,O
(

2ps +

n∑
i=1

pi

))
→ H0(C,O(pt )/O)⊕

⊕
i 6∈S

H0(C,O(pi )/O)

has rank 6 n− g.

Note that the nonvanishing of H1 in (1) can also be expressed as a degeneracy

locus of the morphism of vector bundles over Ũns
g,n, so we have a natural subscheme

structure on Z I,J . Furthermore, there exists a retraction morphism from Z I,J onto

the image of ρh,k
I,J .

Proof. (i,ii) The fact that C I and CJ are glued transversally means that there is an exact

sequence

0→ OC → OC I ⊕OCJ → Oq → 0.

This leads to an isomorphism

H1(OC ) ' H1(OC I )⊕ H1(OCJ ), (1.3.2)

so the arithmetic genus of C is h+ k = g. Similarly, the exact sequence

0→ OC (p1+ · · ·+ pn)→ OC I

(∑
i∈I

pi

)
⊕OCJ

(∑
j∈J

p j

)
→ Oq → 0

shows that

H1(OC (p1+ · · ·+ pn)) = H1
(
OC I

(∑
i∈I

pi

))
⊕ H1

(
OCJ

(∑
j∈J

p j

))
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(since the constants in H0(OC I (
∑

i∈I pi )) surject onto H0(Oq)). Similar argument works

in families, so our morphism is well defined. The compatibility with the morphism of

Grassmannians follows from the decomposition (1.3.2), which is compatible with the

similar decomposition of H1(OC (p1+ · · ·+ pn)/OC ).

(iii) For any subset S ⊂ [1, n] we have an exact sequence

0→ OC

(∑
i∈S

pi

)
→ OC I

( ∑
i∈S∩I

pi

)
⊕OCJ

( ∑
j∈S∩J

p j

)
→ Oq → 0

which gives an isomorphism

H1
(

C,OC

(∑
i∈S

pi

))
' H1

(
C I ,O

( ∑
i∈S∩I

pi

))
⊕ H1

(
CJ ,O

( ∑
j∈S∩J

p j

))
.

Thus, if |S ∩ I | < h then H1(C I ,O(
∑

i∈S∩I pi )) 6= 0, so that H1(C,OC (
∑

i∈S pi )) 6= 0.

Similarly, we get the nonvanishing of H1(C,OC (
∑

i∈S pi )) if |S ∩ J | < k. Assume now

that S is as in condition (2), s ∈ S ∩ I and t ∈ S ∩ J . Using the exact sequence

0→ OC

(
2ps +

n∑
i=1

pi

)
→ OC I

(
2ps +

∑
i∈I

pi

)
⊕OCJ

(∑
j∈J

p j

)
→ Oq → 0

we see that the degeneracy required in (2) is equivalent to the condition that the

morphism

H0
(

C I ,O
(

2ps +
∑
i∈I

pi

))
⊕ H0

(
CJ ,O

(∑
j∈J

p j

))
→ H0(Oq)⊕ H0(O(pt )/O)⊕

⊕
i 6∈S

H0(O(pi )/O)

has rank 6 n− g+ 1. But this follows from the fact that the composition of this morphism

with the projection to H0(O(pt )/O)⊕
⊕

j∈J\S H0(O(p j )/O) has rank 6 |J | − k. Indeed,

this composition factors through a map

H0
(

CJ ,O
(∑

j∈J

p j

))
→ H0(O(pt )/O)⊕

⊕
j∈J\S

H0(O(p j )/O)

whose cokernel is H1(CJ ,O(
∑

j∈S∩J\{t})) 6= 0. This shows that our morphism factors

through the subscheme Z I,J .

Next, we are going to construct a retraction

r : Z I,J → C̃ns
h,I × C̃ns

k,J . (1.3.3)

It is enough to construct compatible morphisms on all the affine opens Z I,J ∩ Ũg,n(S),
where S ⊂ [1, n], |S| = g. By condition (1), the intersection is nonempty only when |S ∩
I | = h and |S ∩ J | = k. Let (C, p•, v•) be the restriction of the universal family to Z I,J ∩

Ũg,n(S).
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Recall that over Ũg,n(S) we have generators fi , hi , hS, j of O(C \ D), where D = p1+

· · ·+ pn (see the proof of Theorem 1.2.2). Let us consider their restrictions over Z I,J
(denoted in the same way). We claim that for every i ∈ S ∩ I and i ′ ∈ I \ S the functions

fi , hi and hS,i ′ are regular at any p j , where j ∈ S ∩ J . Indeed, for hS,i ′ this follows from

the exact sequence

H0
(

C,O
(

pi ′ +
∑
i∈S

pi

))
→ H0(C,O(pi ′)/O)→ H1

(
C,O

(
pi ′ +

∑
i∈S\{ j}

pi

))
→ 0

since by condition (1) the first arrow is zero (due to the way we represent the nonvanishing

of H1 as a degeneracy locus). Since over Ũg,n(S), for i ∈ S ∩ I , we have an exact sequence

0→ H0
(

C,O
(

2pi +
∑
i ′∈S

pi ′

))
→ H0

(
C,O

(
2pi +

n∑
i ′=1

pi ′

))
→

⊕
i ′ 6∈S

H0(O(pi ′)/O)→ 0,

condition (2) implies the vanishing of the morphism

H0
(

C,O
(

2pi +
∑
i ′∈S

pi ′

))
→ H0(O(p j )/O)

for any j ∈ S ∩ J . This shows that fi and hi have no poles along p j for such j , proving

our claim.

Now we construct two families of curves over Z I,J . Let us set

AI := O(C \ {pi | i ∈ I }), AJ := O(C \ {pi | i ∈ J }),

C I := ProjR(AI ), CJ := ProjR(AJ ),

where R(AI ) (respectively, R(AJ )) are the Rees algebras associated with the filtrations

by the order of pole along
∑

i∈I pi (respectively,
∑

j∈J p j ). Note that the algebra AI is

a free module over O(Z I,J ) with the basis

( f m
i , f m

i hi , hm+1
S,i ′ ), i ∈ S ∩ I, i ′ ∈ I \ S,m > 0.

Indeed, this is checked easily by considering polar parts at pi with i ∈ I , similarly to

checking that (1.2.3) is a basis of O(C \ D). This implies that the generators ( fi , hi , hS,i ′),

where i ∈ S ∩ I , i ′ ∈ I \ S, satisfy similar relations as the full set of generators of O(C \ D),
and so, as in the proof of [10, Theorem 1.2.4], we get that C I is a curve of arithmetic

genus |S ∩ I | = h, that extends to a family in Ũns
h,I . Similar argument works for CJ , so we

get a morphism

r : Z I,J → Ũns
h,I × Ũns

k,J .

Note that we have natural morphisms C → C I and C → CJ . Let us consider the

compositions

q : Z I,J
p j0- C → C I , q ′ : Z I,J

pi0- C → CJ ,

for some fixed indices i0 ∈ I , j0 ∈ J . These allow to lift the morphism r to the required

morphism (1.3.3). One can immediately check that r ◦ ρh,k
I,J is the identity morphism. This

implies that ρh,k
I,J is a closed embedding.
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Example 1.3.3. In the case g = 0 the subscheme Z I,J coincides with the whole space Ũns
0,n .

Thus, in this case the embedding ρ0,0
I,J admits a retraction defined on Ũns

0,n .

Remark 1.3.4. One can also consider the gluing morphism that associates with a

curve (C, p1, . . . , pn) of arithmetic genus g− 1, equipped with extra two points q1 6= q2
(possibly singular), different from p1, . . . , pn , the curve (C, p1, . . . , pn) of arithmetic

genus g, where C is obtained by transversally identifying q1 and q2 on C . In order to

guarantee that H1(C,O(p1+ · · ·+ pn)) = 0 one has to assume that H1(C,O(p1+ · · ·+

pn)) = 0 and in addition the morphism

evq2 − evq1 : H0(C,O(p1+ · · ·+ pn))→ k,

is surjective (where evqi is the evaluation at qi ).

1.4. Case g = 1, n = 2

In this section, we work over Spec(Z[1/6]). The scheme Ũns
1,2 is glued from two affine open

pieces U1 and U2 determined by the conditions H1(C,O(p1)) = 0 and H1(C,O(p2)) = 0,

respectively.

Note that we have U1 = Ũns
1,2(1, 0). The latter moduli space was described explicitly

in [11, § 3.1] as the affine 4-space with coordinates (a, b, e, π). Let us rename these

coordinates on U1 as a12, b12, e12, π1. Thus, the universal affine curve C \ {p1, p2} over

U1 is given by the equations

h2
1 = f 3

1 +π1 f1+ s1, (1.4.1)

f1h12 = a12h1+ b12h12+ a12e12, (1.4.2)

h1h12 = a12 f 2
1 + e12h12+ a12b12 f1+ a12(π1+ b2

12), (1.4.3)

where s1 = e2
12− b12(π1+ b2

12). Note that the projection U1 → A1
⊂ P1 is given by the

coordinate a12.

Let us denote by f2, h2, h21 the generators of the algebra of functions on the universal

affine curve C \ {p1, p2} over U2, so that h21 ∈ H0(C,O(p1+ p2)) and h21 ≡ 1/t1 at p1.

Let also a21, b21, e21, π2 be the coordinates on U2 similar to those on U1. Note that over

U1 ∩U2 the function h21−
1

a12
h12 is constant along the fibers of the projection to the base.

Hence, h21 ≡
1

a12t2
at p2, so we have

a21 =
1

a12
.

Lemma 1.4.1. Over U1 ∩U2 one has

h21 = a21h12, f2 = h2
12− a2

12 f1− a2
12b12, h2 = h3

12− a3
12h1− 3a2

12b12h12− 2a3
12e12,

b21 = a2
12b12, e21 = a3

12e12, π2 = a4
12π1, s2 = a6

12s1.

Proof. Note that U1 ∩U2 is the open subset in U1, where a12 does not vanish. On this

open subset, we can express h1 in terms of f1 and f12 using (1.4.2):

h1 =
f1h12

a12
−

b12h12

a12
− e12. (1.4.4)
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Substituting into (1.4.3) we get

f 2
1 −

(
h2

12

a2
12
− b12

)
f1+

b12h2
12

a2
12
+ 2e12

h12

a12
+π1+ b2

12 = 0

which is the single equation defining the universal C \ {p1, p2} ((1.4.1) follows from this

and (1.4.4)). Note that this is a quadratic equation in f1. Therefore, we can define an

involution of C \ {p1, p2} over U1 ∩U2 by

(h12, f1) 7→

(
h12,

h2
12

a2
12
− b12− f1

)
.

We claim that this involution extends to an involution τ of C permuting p1 and p2.

Indeed, this immediately follows from the fact that it preserves the filtration by the degree

of pole along p1+ p2 (so that deg(h12) = 1, deg( f1) = 2), together with the observation

that τ ∗( f1) has a pole at p2.

Note that

τ ∗( f1) =
h2

12

a2
12
− b12− f1, (1.4.5)

which has the expansion 1
a2

12t2
2
+ · · · at p2. Similarly

τ ∗(h1) =
h12

a12
τ ∗( f1)−

b12h12

a12
− e12 ≡

1

a3
12t3

2
+ · · ·

at p2. Now the equation

τ ∗(h1)
2
= τ ∗( f1)

3
+π1τ

∗( f1)+ s1

(obtained from (1.4.1)), together with the definition of ( f2, h2), shows that

τ ∗( f1) =
1

a2
12

f2, τ ∗(h1) =
1

a3
12

h2, (1.4.6)

π2 = a4
12π1, s2 = a6

12s1.

We also have

b21 = f2(p1) = a2
12(τ

∗ f1)(p1) = a2
12 f1(τ (p1)) = a2

12 f1(p2) = a2
12b12.

Similarly, we get that e21 = a3
12e21. Finally, we get the required formulas for f2 and h2

by using (1.4.5), (1.4.6) and (1.4.4).

The above lemma shows that the functions b12, e12, π1 (respectively, b21, e21, π21)

defined on U1 (respectively, U2) actually extend to regular functions on the entire moduli

space.

Proposition 1.4.2. Let us work over Z[1/6]. The scheme Ũns
1,2 is isomorphic as a

P1-scheme to the total space of the vector bundle O(−2)⊕O(−3)⊕O(−4) over P1. This

isomorphism is G2
m-equivariant, where we use the natural action of G2

m ⊂ GL2 on P1 and

its standard lifting to O(i).
Proof. The morphism π : Ũns

1,2 → P1 is given by (1 : a12) on U1 and by (a21 : 1) on U2,

where a12 = a−1
21 on the intersection. Since Ũns

1,2 is glued from the open subsets U1 and
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U2, using the identifications of U1 and U2 with A4 and the transition formulas from

Lemma 1.4.1, we obtain that Ũns
1,2 is isomorphic to the subscheme of P1

×A6 given by the

equations

t2
1 b21 = t2

2 b12, t3
1 e21 = t3

2 e12, t4
1π2 = t4

2π1,

where (t1 : t2) are homogeneous coordinates on P1. Hence, b12/t2
1 , e12/t3

1 and π1/t4
1 extend

naturally to regular sections of π∗O(−2), π∗O(−3) and π∗O(−4), respectively. This gives

a morphism from Ũns
1,2 to the total space of O(−2)⊕O(−3)⊕O(−4) over P1. Since it

restricts to isomorphisms over the open subsets t1 6= 0 and t2 6= 0, it is an isomorphism.

Remark 1.4.3. Under the isomorphism of Proposition 1.4.2, the Gm-invariant points

in Ũns
1,2 (see Theorem 1.2.2(ii)) get identified with the zero section in the total space

of O(−2)⊕O(−3)⊕O(−4) over P1. Over P1
\ {0,∞} the corresponding curve is the

tacnode, while at 0 and ∞ we get the union of the genus 1 cuspidal curve and of the

projective line, joined to the cusp transversally.

In the remainder of this section, we work over an algebraically closed field k of

characteristic 6= 2, 3.

Corollary 1.4.4. The graded algebra

A =
⊕
n>0

H0(Ũns
1,2, π

∗O(n)) =
⊕
n>0

H0(P1, S(O(2))⊗ S(O(3))⊗ S(O(4))(n))

can be identified with the k[t1, t2]-subalgebra of k[t1, t2, x, y, z] (where t1, t2, x, y, z are

independent variables), such that the nth graded component An is spanned by the

monomials

t i
1t j

2 xk yl zm with i + j = 2k+ 3l + 4m+ n.

This identification is compatible with the G2
m-actions, where x, y, z are G2

m-invariant,

while t1 and t2 have G2
m-weights (1, 0) and (0, 1), respectively.

Proof. We use the G2
m-invariant regular sections of π∗O(−2), π∗O(−3) and π∗O(−3),

x = b12/t2
1 , y = e12/t3

1 , z = π1/t4
1 .

Using the above description we can describe the GIT quotients Ũns
1,2 //χ G

2
m with respect

to the G2
m-linearizations on the line bundle O(1) on Ũns

1,2, which differ from the standard

G2
m-equivariant structure by (rational) characters χ(λ0, λ1) = λ

u
0λ
v
1 of G2

m (if u and v are

fractional this means that we really work with O(N ) for some N).

We have

Ũns
1,2 //χ G

2
m = Proj(A(u, v)),

where A(u, v) ⊂ A is the corresponding subalgebra of invariants with respect to the

χ -twisted G2
m-action on the algebra A:

A(u, v) :=
⊕
n>0

(An ⊗χ
−n)G

2
m
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(here, if χ is not integral, we have to pass to a Veronese subalgebra of A). Using Corollary

1.4.4 we see that the A(u, v)n is spanned by the monomials

tnu
1 tnv

2 xk yl zm with n(u+ v− 1) = 2k+ 3l + 4m. (1.4.7)

Note that A(u, v) reduces to constants if either u < 0 or v < 0 or u+ v < 1. In the

case u > 0, v > 0, u+ v = 1, the algebra A(u, v) has a basis of monomials tnu
1 tnv

2 , so it is

isomorphic to an algebra of polynomials in one variable t Nu
1 t Nv

2 , where N > 0 is minimal

such that Nu, Nv are integers. Thus, in this case the GIT quotient reduces to a point.

Proposition 1.4.5. Assume u > 0, v > 0, u+ v > 1. Then A(u, v) is isomorphic to a

Veronese subalgebra in k[x, y, z], where deg(x) = 2, deg(y) = 3, deg(z) = 3. Hence, for

u+ v > 1 the GIT quotient Ũns
1,2 //χ G

2
m is isomorphic to the weighted projective plane

P(2, 3, 4). The χ-unstable locus in Ũns
1,2 is the union of the locus of Gm-invariant points

and of π−1(t Nu
1 = 0)∪π−1(t Nv

2 = 0), where N > 0 is such that Nu, Nv ∈ Z.

Proof. Let N > 0 be minimal such that Nu, Nv are integers. We associate with each

monomial (1.4.7) the corresponding monomial xk yl zm . This gives an isomorphism of

A(u, v) with the subalgebra of k[x, y, z] spanned by all such monomials with n := 2k+3l+4m
u+v−1

belonging to NZ. Let n0 be minimal such n > 0. Then this subalgebra is precisely the

Veronese subalgebra corresponding to n0(u+ v− 1). The identification of the unstable

locus follows from the form of the monomials (1.4.7), since the locus of Gm-invariant

points coincides with the locus where all the sections x, y, z vanish.

1.5. Case g = 1, arbitrary n>2: connection to Smyth’s moduli

As before, we work over Z[1/6].
Recall that for integers 1 6 m < n, Smyth defined in [14] the moduli stack M1,n(m) of

n-pointed m-stable curves of arithmetic genus 1, parametrizing curves (C, p1, . . . , pn) of

arithmetic genus 1 with n distinct smooth marked points such that

• C has only nodes and elliptic l-fold points, with l 6 m, as singularities;

• if E ⊂ C is any connected subcurve of arithmetic genus 1 then |E ∩C \ E | + |E ∩
{p1, . . . , pn}| > m;

• H0(C, TC (−p1− · · ·− pn)) = 0, where TC is the tangent sheaf.

Smyth showed that M1,n(m) is a proper irreducible Deligne–Mumford stack.

Proposition 1.5.1. Assume m > n−1
2 . Then there exists a morphism

M1,n(m)→ Uns
1,n

extending the obvious map on the locus of smooth curves.

Proof. It is enough to check that M1,n(m) is an open substack of Uns,′
1,n (see Definition

1.2.4) for these values of m. Indeed, then we can compose this open embedding with the

morphism Uns,′
1,n → Uns

1,n constructed in Proposition 1.2.5.

Now we recall (see [14, Lemma 3.1]) that every m-stable curve has a fundamental

decomposition

C = E ∪ R1 ∪ · · · ∪ Rk,
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where E is the minimal elliptic subcurve, i.e., the connected subcurve of arithmetic genus

1 without disconnecting nodes, and each Ri is a connected nodal curve of arithmetic

genus 0 meeting E in a unique point such that E ∩ Ri is a node of C (and Ri ∩ R j = ∅

for i 6= j).
We claim that there is at least one marked point pi on E . Indeed, otherwise the

m-stability of C implies that k > m > n−1
2 , i.e., k > n+1

2 . But each Ri contains at least

two marked points (due to the last condition in the definition of m-stability), so the total

number of marked points is > 2k > n, which is a contradiction.

Let pi ∈ E . Then one has

H1(C,OC (pi )) = H1(E,OE (pi )) = 0.

Indeed, the vanishing of H1(E,O(pi )) can be deduced from the classification of the

possible minimal elliptic subcurves (see [14, Lemma 3.3]): E is either a smooth elliptic

curve, or an irreducible nodal curve, or a wheel of projective lines, or an elliptic l-fold

curve (which includes the cuspidal curve for l = 1). Hence, we have h1(C,O(p1+ · · ·+

pn)) = 0, as required.

Remark 1.5.2. Recall that for each i = 1, . . . , n we have an open subset Ũ1,n(i) =
π−1(Ui ) ⊂ Ũns

1,n consisting of (C, p•, v•) such that h1(pi ) = 0. The intersection ∩n
i=1Ũ1,n(i)

corresponds to the curves (C, p•, v•) such that h1(pi ) = 0 for each i . As shown in [11,

Proposition 3.3.1], there is a natural projection
n⋂

i=1

Ũ1,n(i)→ Ũ sns
1,n ,

which is a Gn−1
m -torsor, where the space Ũ sns

1,n classifies (C, p•, ω), where C is of arithmetic

genus 1, h1(pi ) = 0 for each i and ω is a nonzero global section of the dualizing sheaf on

C (and O(p1+ · · ·+ pn) is ample). The space Ũ sns
1,n was studied in [6], where we showed

in particular that considering the GIT quotients of Ũ sns
1,n by the Gm-action rescaling ω,

we recover Smyth’s moduli space of (n− 1)-stable curves M1,n(n− 1). Proposition 1.5.1

suggests that for m > n−1
2 , there should be a close relation between Smyth’s moduli spaces

M1,n(m) and some GIT quotients of Ũns
1,n by Gn

m . In [12] we showed that for m > n− 3, the

morphism M1,n(m)→ Uns
1,n factors through a certain open substack of GIT-semistable

points in Uns
1,n .

2. A∞-moduli

2.1. Nice quotients

Below we work with schemes and group schemes over a fixed base scheme S.

Definition 2.1.1. Let G be a group scheme, X be a G-scheme. We say that a G-invariant

morphism π : X → Q is a nice quotient for the G-action on X if locally over S (in Zariski

topology) there exist a section σ : Q → X of π and a morphism ρ : X → G, such that

x = ρ(x)σ (π(x)) and ρ(σ(x)) = 1. (2.1.1)

We say that π is a strict nice quotient if ρ and σ can be defined globally over S.
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In the case when S is a point we obtain precisely the situation of [10, Definition 4.2.2],

where we called σ(Q) a nice section for the action of G on X .

Note that a nice quotient is automatically a categorical quotient (in the category

of S-schemes). Indeed, let f : X → Z be a G-invariant morphism, where Z has trivial

G-action. Then f (x) = f (σ (π(x))), so f is a composition of f ◦ σ : Q → Z with π . This

implies that the existence of a nice quotient is a local question in S. Namely, if X i → Qi
are nice quotients for X i = p−1(Ui ), where (Ui ) is an open covering of S, p : X → S is a

projection, then we can glue them into a global morphism π : X → Q.

Remark 2.1.2. If π : X → Q is a nice quotient for the G-action on X then π is a universal

geometric quotient (see [8]). Indeed, any base change of π is still a nice quotient. The

following properties are clear: π is surjective, U ⊂ Q is open if and only if π−1(U ) is open,

geometric fibers are precisely the orbits of geometric points. Finally, we claim that OQ
coincides with G-invariants in π∗OX . Indeed, given a G-invariant function f on π−1(U )
then f (x) = f (σ (π(x))), so it descends to the function f ◦ σ on U .

Let us consider the topology on the category SchS of S-schemes, such that open

coverings of p : T → S are pull-backs under p of Zariski open coverings of S. We call

this S-Zariski topology. Let us consider the following presheaf of sets on SchS :

T 7→ X (T )/G(T ).

Lemma 2.1.3. Let π : X → Q be a nice quotient for the G-action then the sheafification

of the above presheaf with respect to the S-Zariski topology is naturally isomorphic to

the functor represented by Q. Thus, a T -point of Q can be represented by a collection of

Vi -points of X , where Vi = f −1(Ui ) for some open covering (Ui ) of S, such that for any

i , j , the corresponding Vi j -points of X , where Vi j = Vi ∩ V j , differ by G(Vi j )-action.

Proof. We have a natural morphism from X (T )/G(T ) to the sheaf represented by Q,

which becomes an isomorphism over an open affine covering of S (due to the existence

of a decomposition (2.1.1)). This immediately implies the assertion.

We have the following relative analog of [10, Lemma 4.2.3].

Lemma 2.1.4. Let G be a group scheme over S acting on a scheme X over S. Assume

that G fits into an exact sequence of group schemes

1→ H → G → G ′→ 1

and that the projection G → G ′ admits a section s : G ′→ G which is a morphism of

schemes (not necessarily compatible with the group structures). Suppose we have a scheme

X ′ with an action of G ′ and a morphism f : X → X ′ compatible with the G-action via the

homomorphism G → G ′. Assume that there exist a nice quotient πH : X → Q H for the

H -action on X and a nice quotient π ′ : X ′→ Q′ for the G ′-action on X ′. Finally, assume

that the following condition holds: for any S-scheme T and any points x ∈ X (T ), g ∈ G(T )
such that f (gx) = f (x) there exist an open covering T = ∪Ti and a point hi ∈ H(Ti ) for

each i , such that gx = hi x. Then there exists a nice quotient for the G-action on X . The

same assertion holds for strict nice quotients.
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Proof. It is enough to prove the assertion for strict nice quotients. Without loss of

generality we can assume that the section s : G ′→ G satisfies s(1) = 1. By assumption,

we have sections σH : Q H → X and σ ′ : Q′→ X ′ and the corresponding maps ρH :

X → H and ρ′ : X ′→ G ′ satisfying (2.1.1). Let us define morphisms ρ f : X → G and

π f : X → X by

ρ f = s ◦ ρ′ ◦ f, π f (x) = ρ f (x)−1x .

One immediately checks that

f ◦π f = σ
′
◦π ′ ◦ f.

In particular, π f (x) ∈ f −1(σ ′(Q′)). Let us set Q̃ = f −1(σ ′(Q′)) ⊂ X . Note that for x ∈ Q̃
we have

ρ f (x) = s(ρ′( f (x))) = s(1) = 1,

since ρ′|σ ′(Q′) = 1. Hence, for x ∈ Q̃ we have π f (x) = x . Now we set

Q = σ−1
H (Q̃) ⊂ Q H ,

and define the maps π : X → Q and ρ : X → G required for the definition of a nice

quotient by

π = πH ◦π f ,

ρ(x) = ρ f (x)ρH (π f (x)).

Note that π is well defined. Indeed, we need to show that (σHπHπ f )(x) ∈ Q̃. But π f (x) ∈
Q̃, so this follows from the identity

(σHπHπ f )(x) = ρH (π f (x))−1π f (x)

and the fact that Q̃ is preserved by the action of H . We also have a section σ : Q → X
of π given by σ = σH |Q . As in [10, Lemma 4.2.3], we check that our data defines a strict

nice quotient for the G-action on X (to prove that π is G-invariant, we observe that our

assumption implies that π f (gx) and π f (x) locally in T belong to the same H -orbit).

2.2. General A∞-moduli

We follow the same conventions on the notions related to A∞-structures as in [10]. In

particular, by gauge transformation of minimal A∞-structures (i.e., those with m1 = 0)

on the fixed graded space we mean the A∞-morphism ( f1, f2, . . .) with f1 = id (the

same terminology is used in [13]). We refer to A∞-morphisms, for which the map f1 is

only required to be invertible, as extended gauge transformation. We say that a minimal

A∞-structure is trivial if it has mn = 0 for all n > 3, and homotopically trivial if it is

gauge equivalent to a trivial A∞-structure.

For a graded sheaf F of locally free O-modules over a scheme S we denote by

C H s+t (F/S)t the sheaf of homomorphisms of O-modules F⊗s
→ F of degree t . We

have a natural notion of an An-structure (respectively, A∞-structure) on F , given by
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a collection of global sections

m = (m1, . . . ,mn) ∈ H0(S,C H2(F/S)1× · · ·×C H2(F/S)2−n)

(respectively, m = (m1,m2, . . .) with mn ∈ C H2(F/S)2−n), satisfying the standard

A∞-identities involving only m1, . . . ,mn (respectively, all A∞-identities). Note that in

the case when 2 is invertible on S the identities for An-structures can be written as∑r
i=1[mi ,mr+1−i ] = 0, for r = 1, . . . , n, where [·, ·] is the Gerstenhaber bracket.

The action of the group of gauge transformations on the set of minimal An-structures

also immediately generalizes to the relative context: we have a sheaf of groups G over S,

where an element of G(U ) is a collection of sections

f = ( f1 = id, f2, . . .) ∈ H0(U,C H1(F/S)−1×C H1(F/S)−2× · · · ),

with the product rule obtained by interpreting f as a coalgebra automorphism of the

bar-coalgebra of F (see [10, Definition 4.1.3]). We use the notation G[2, n− 1] := G/G>n ,

introduced in [10, § 4.2], for the quotient of G acting on the set of minimal An-structures

on F . We denote the projection G→ G[2, n− 1] by u 7→ u6n−1.

Remark 2.2.1. The above definition of an An-algebra over a scheme is a bit naive. A more

flexible notion should involve defining mi ’s only over an open covering Ui of S, and the

gluing should be given by a collection of higher homotopies defined on intersections Ui1 ∩

· · · ∩Uir . We do not need the most general definition since we only aim at constructing

the usual space as a moduli space of A∞-structures (in good situations), not an∞-stack.

Even at this level we need a certain gluing procedure, but a much simpler one.

Now let us fix a scheme S and a sheaf E of graded associative OS-algebras over S.

We assume also that E is locally free of finite rank over OS . We denote by Es the fiber

of E over a point s ∈ S. Roughly speaking, our goal is to classify families of minimal

A∞-algebras, up to gauge equivalence, such that the corresponding family of graded

associative algebras is induced by E .

To begin with, for every n > 2 we define the functor An = An,E (respectively,

A∞ = A∞,E ) on the category of S-schemes, which associates with f : T → S the set

of minimal An-structures (respectively, A∞-structures) extending the sheaf of graded

associative OT -algebras f ∗E . This functor is clearly represented by an affine scheme

An(E) over S. Namely, An(E) is the closed subscheme in the total space of the vector

bundle C H2(E/S)−1⊕ · · ·⊕C H2(E/S)2−n given by the A∞-equations. We have a natural

projection

πn : An → An−1 : m 7→ m6n−1. (2.2.1)

Next, we have the sheaf of groups G of gauge transformations acting on each functor

An through the quotient G[2, n− 1], and we make the following definition.

Definition 2.2.2. Let M̃n denote the quotient-functor associating to an S-scheme f : T →
S the set An(T )/G[2, n− 1](T ) of gauge equivalence classes of minimal An-structures on

f ∗E . We denote by M̃∞ the similar quotient-functor for gauge equivalence classes of

minimal A∞-structures.
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Note that the sheaf of groups G[2, n− 1] is representable by a unipotent affine group

scheme over S which we still denote as G[2, n− 1]. Note also that the projection

G→ G[2, n− 1] admits a section (not compatible with the group structures) and so is

universally surjective. However, the quotient-functor M̃n is not necessarily representable.

For a bundle V over a scheme S, and a point s of S, we denote by Vs the fiber of V
over s, which is a vector space over the residue field of s.

Lemma 2.2.3. (i) Let (V •, d) be a bounded below complex of vector bundles over S such

that H i (V •s ) = 0 for i < p for every point s ∈ S. Then for i < p, the image im(d i )

of the differential d i
: V i
→ V i+1 is a subbundle of V i+1.

(ii) If in addition S is affine then there exist decompositions of vector bundles V i
=

Bi
⊕ K i , for i 6 p, such that for i < p one has d i (K i ) = Bi+1 and the map

d i
|K i : K i

→ Bi+1

is an isomorphism. In this situation for any f : T → S the complex H0(T, f ∗V •)
is exact in degrees < p.

Proof. (i) It is enough to prove that im(d p−1) is a subbundle in V p. Without loss of

generality we can assume that V i
= 0 for i < 0 and p > 0. Then the map ds : V 0

s → V 1
s

is injective for every s ∈ S. We claim that this implies that d : V 0
→ V 1 is the embedding

of a subbundle. Indeed, it is enough to prove the similar assertion for a morphism f :
Am
→ An of free modules over a local ring A, such that f modm is injective, where m ⊂ A

is a maximal ideal. But in this case we can choose a projection p : An
→ Am to a subset

of m coordinates, such that p ◦ f modm is an isomorphism. This implies that det(p ◦ f )
is nonzero modm, hence it is invertible in A. Thus, the composition p ◦ f : Am

→ Am is

an isomorphism, so coker( f ) is free.

Hence, V 1/d(V 0) is a vector bundle, and we can replace our complex with

0→ V 1/d(V 0)→ V 2
→ · · ·

and iterate the same argument.

(ii) The first assertion follows from part (i): we set Bi
:= im(d i−1) and let K i be the

image of any splitting of the projection V i
→ V i/Bi (which exists since S is affine). These

decompositions carry over to the complex H0(T, f ∗V •), which implies its exactness in

degrees < p.

We denote the Hochschild differential [m2, ?] on C H∗(E/S) by δ and its graded

components as

δi
t : C H i (E/S)t → C H i+1(E/S)t .

As usual, the second grading on the complex C H∗ induces the second grading on the

Hochschild cohomology HH∗.

Lemma 2.2.4. Let S be an affine scheme.

(i) Let us fix an integer d > 2. Assume that HHi (Es)− j = 0 for every point s ∈ S, for

i 6 1 and j = 1, . . . , d − 2. Now let f : T → S be a morphism of schemes, and let
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m and m′ be a pair of minimal An-structures on f ∗E for some n > d, such that

m is gauge equivalent to m′ (over T ) and m6d = m′6d . Then there exists a gauge

equivalence u over T , such that u6d−1 = id and m′ = u ·m.

(ii) Assume that HHi (Es)<0 = 0 for every s ∈ S, for i 6 1. Then the natural map

M̃∞(T )→ lim
←−

n
M̃n(T )

is an isomorphism for every S-scheme T .

Proof. (i) The proof is similar to that of [10, Lemma 4.1.6]. By assumption, we have

a gauge equivalence ũ ∈ G(T ) such that ũm = m′. Then ũ6d sends m6d to itself.

Now Lemma 2.2.3(ii), applied to the Hochschild complexes (C H∗(E)− j , δ), implies that

HH1(H0(T, f ∗E)/O(T ))− j = 0 for j = 1, . . . , d − 2. Hence, arguing as in [10, Lemma

4.1.6], we can correct ũ to a gauge equivalence u ∈ G(T ) such that u ·m = m′ and

u6d−1 = id.

(ii) The proof is identical to the argument in the proof of [10, Corollary 4.2.5], with part

(i) replacing the reference to [10, Lemma 4.1.6].

Definition 2.2.5. Let us denote by Mn (respectively, M∞) the sheafification of the functor
M̃n (respectively, M̃∞) with respect to the S-Zariski topology.

The following theorem, which is a relative version of [10, Theorem 4.2.4, Corollary

4.2.5, Corollary 4.2.6], shows that under certain vanishing assumptions on the Hochschild

cohomology, the functor Mn (respectively, M∞) is representable by an affine S-scheme.

Note that these assumptions are slightly stronger than in [10, Theorem 4.2.4].

Theorem 2.2.6. Assume that HHi (Es)− j = 0 for i 6 1 and 1 6 j 6 n− 3, for every point

s ∈ S.

(i) There exists a nice quotient An(E)/G[2, n− 1] for the action of G[2, n− 1] on

An(E). This quotient An(E)/G[2, n− 1], which is affine of finite type over S,

represents the functor Mn. If in addition S is affine then there exists a strict

nice quotient An(E)/G[2, n− 1], and the natural map of functors M̃n →Mn is

an isomorphism.

(ii) Assume that HHi (Es)− j = 0 for i 6 1 and j > 1, for every s ∈ S. Then the scheme

lim
←−n

Mn, affine over S, represents the functor M∞. In the case when S is affine,

the natural map M̃∞→M∞ is an isomorphism.

(iii) Assume that HHi (Es)− j = 0 for i 6 1, j > 1, and in addition HH2(Es)− j = 0 for

j > n− 2, for every s ∈ S. Then the morphism M∞→Mn is a closed embedding.

If in addition HH3(Es)− j = 0 for j > n− 2, for every s ∈ S, then M∞→Mn is an

isomorphism.

Proof. (i) It is enough to prove the existence of a strict nice quotient for the G[2, n−
1]-action on An = An(E) in the case when S is affine. Indeed, then it would follow that

M̃n is represented by this quotient, and hence, the map M̃n →Mn is an isomorphism.
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Similarly to the proof of [10, Theorem 4.2.4] the existence of a strict nice quotient is

proved by the induction on n, using Lemma 2.1.4. Assume that n > 2 and we already

have a section Sn−1 for the G[2, n− 2]-action on An−1. We have an exact sequence of

sheaves of groups over S,

0→ C H1(E)2−n → G[2, n− 1] → G[2, n− 2] → 0.

We want to find a section for the C H1(E)2−n-action on An . By Lemma 2.2.3(ii), there

exists a complement K2
2−n ⊂ C H2

2−n to the subbundle im δ1
2−n . Let A′n denote the closed

subset of An given by the condition mn ∈ K2
2−n . Since the action of x ∈ C H1(E)2−n on

(m2, . . . ,mn) ∈ An changes mn to mn + δ
1(x) and does not change (m2, . . . ,mn−1), we see

that A′n is a section for the C H1(E)2−n-action on An . Now we can apply Lemma 2.1.4

to the projection (2.2.1) and the compatible actions of G[2, n− 1] → G[2, n− 2]. Note

that to apply this Lemma we need to check that the intersection of an G[2, n− 1]-orbit

with a fiber of πn is a C H1(E)2−n-orbit. But this follows from Lemma 2.2.4(i). Thus, we

deduce that

Sn := A′n ∩π−1
n (Sn−1)

is a section for the G[2, n− 1]-action on An .

(ii) First, assume that S is affine. Then, combining part (i) with Lemma 2.2.4(ii), we

derive that the functor M̃∞ is represented by the scheme lim
←−n

Mn , affine over S. Hence,

in this case the map M̃∞→M∞ is an isomorphism. Thus, in the case of general S the

map of sheaves M∞→ lim
←−n

Mn becomes an isomorphism over an affine open covering

of S, hence, it is an isomorphism.

(iii) We can assume S to be affine. For the first assertion, it is enough to prove that if

HH62(Es)−n+1 = 0 for all s then the projection Sn+1 → Sn is a closed embedding. To this

end we recall that An+1 is a closed subset of An ×C H2
1−n given by the equation

δ2(mn+1) = −φn(m6n),

where φn : An → C H3
1−n is a certain morphism (see [10, Lemma 4.1.2(ii)]) such that

δ3
◦φn = 0. Now by Lemma 2.2.3(ii), there exist decompositions of vector bundles

C H2(E)1−n = B2
⊕K2, C H3(E)1−n = B3

⊕K3

such that B3 is the image of δ2 and the restriction δ2
|K2 : K2

→ B3 is an isomorphism.

Let (φB, φK) be the components of φn with respect to the decomposition of CH3
1−n . Then

the equations defining An+1 become

δ2(mn+1) = φB(m6n), 0 = φK(m6n).

Thus, on the subscheme A′n+1 cut out by the condition mn+1 ∈ K2, we can

solve the first equation for mn+1, which shows that the projection A′n+1 →

An is a closed embedding. Hence, the same is true for the projection

Sn+1 → Sn .

For the last statement, we observe that the assumption HH63(Es)−n+1 = 0 for all s
gives in addition the vanishing of the component φK. Thus, in this case the projection

A′n+1 → An is an isomorphism, and hence the same is true for the projection Sn+1 →

Sn .
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2.3. A∞-structures associated to curves

We want to study the relative moduli space of A∞-structures on the family of graded

associative algebras (EW ) over the Grassmannian G(n− g, n) (see (0.0.4)).

First, let us describe more precisely the corresponding sheaf of O-algebras Eg,n over

G(n− g, n).
Let R be a commutative ring, and let J0 be the two-sided ideal in the path algebra

R[Qn] of Qn generated by the elements

Ai Bi Ai , Bi Ai Bi , Ai B j ,

where i 6= j . Given an R-submodule W ⊂ Rn such that Rn/W is locally free of rank r ,

we define JW ⊂ R[Qn] as the ideal generated by J0 and ι(W ), where ι : Rn
→ R[Qn] is

the embedding of R-modules given by

ι(ei ) = Bi Ai , i = 1, . . . , n.

The corresponding quotient algebra

EW = R[Qn]/JW

is projective as an R-module. In the case when Rn/W is a free R-module with a basis

(b j ), the algebra EW is also free as R-module, with the basis given by the elements

(Ai ), (Bi ), (ι(b j )).

For an n-tuple of invertible elements λ = (λ1, . . . , λn) = (R∗)n we have a natural

isomorphism

EW → Eλ·W : Ai 7→ Ai , Bi 7→ λi Bi ,

where the transformation W 7→ λ ·W is induced by the rescaling of the basis e1, . . . , en
of Rn .

Applying the above construction to the tautological subbundle over an affine covering

of the Grassmannian G(n− g, n) and gluing, we obtain a Gn
m-equivariant sheaf Eg,n

of O-algebras over G(n− g, n), where Gn
m acts naturally on G(n− g, n) (as diagonal

matrices). We can consider the corresponding relative moduli of minimal A∞-structures

defined in § 2.2.

Definition 2.3.1. The moduli functor M̃∞ on G(n− g, n)-schemes associates with f :
S→ G(n− g, n) the set of gauge equivalence classes of minimal A∞-structures on f ∗Eg,n .

The functor M∞ is obtained from M̃∞ by the sheafification with respect to G(n−
g, n)-Zariski topology.

Similarly to [10, § 3] we have a natural morphism of functors

Ũns
g,n →M∞. (2.3.1)

Namely, for every open affine subset U ⊂ Ũns
g,n we can construct a minimal A∞-structure

on π∗Eg,n|U . This minimal A∞-structure is obtained by applying the homological

perturbation procedure to the sheaf of dg-algebras over S and homotopies on it defined

using some relative formal parameters along the marked points as described in [10, § 3].

Note that if we choose different formal parameters with the same underlying tangent

vectors, then we get an isomorphic sheaf of dg-algebras over S but it will be equipped
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with different homotopies needed for the homological perturbation. However, it is well

known that the minimal A∞-structure obtained by the homological perturbation does

not depend on a choice of homotopies up to gauge equivalence. Thus, the map (2.3.1) is

well defined. Furthermore, it is compatible with the Gn
m-actions, where the Gn

m-action on

M∞ is induced by the rescalings

Ai 7→ Ai , Bi 7→ λi Bi ,

for (λ1, . . . , λn) ∈ Gn
m .

Next, we want to prove that M∞ is represented by an affine scheme of finite type over

G(n− g, n). For this we want to apply the criterion of Theorem 2.2.6, which requires some

information about the Hochschild cohomology of the algebras EW . As in [10], we will get

this information geometrically by identifying HH∗(EW ) with the Hochschild cohomology

of the corresponding special curve.

Lemma 2.3.2. Let CW = (C(h), p•, v•) ∈ Ũns
g,n be the special curve corresponding to W ∈

G(n− g, n) (see Proposition 1.1.2). Then the natural A∞-structure on Ext∗(G,G) for G
given by (0.0.3) is homotopically trivial, and hence, we have an isomorphism

HH∗(CW ) ' HH∗(EW ),

where W = π(C, p1, . . . , pn). The second grading on HH∗(EW ) corresponds to the weights

of the Gm-action, coming from the natural Gm-action on CW .

Proof. This is similar to [10, Proposition 4.4.1].

Lemma 2.3.3. Let C be a reduced projective curve over a field k with a Gm-action, which is

the union of irreducible components Ci , i = 1, . . . , n, joined in a single point q. Assume

that C \ {q} is smooth and that each normalization map C̃i → Ci is a bijection, with

C̃i ' P1. Assume also that the action of Gm on the Zariski tangent space at q has negative

weights. Then

(i) the action of Gm on H1(C,OC ) has positive weights.

(ii) Assume in addition that C = CW for some subspace W ⊂ kn, where W = 0 if n = 1.

Assume also that char(k) 6= 2, and if n = 1 then also char(k) 6= 3. Then H1(C, T ) =
0, and the action of Gm on H0(C, T ) has weights 0 and 1.

(iii) Keep the assumptions of (ii). Let pi ∈ Ci \ {q} be the unique Gm-invariant point,

and let D =
∑

i pi . Then one has

H0(C, T (−D)) = H0(C, T )Gm , H0(C, T (−2D)) = 0.

Also, the natural map H0(C, T (nD))→ H0(C, T (nD)|D) is surjective for n > 0.

(iv) For W = kn, with n > 2, the assertions of (ii) and (iii) hold without any restrictions

on the characteristic of k.

Proof. (i) Let V = C \ {q}. We can choose a coordinate xi on an affine part of C̃i '

P1 containing q such that xi (q) = 0 and xi has positive weight wi with respect to the

Gm-action. Let U be an affine neighborhood of q obtained by deleting on each Ci the
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point where xi has a pole. We can calculate H1(C,OC ) as the quotient of O(U \ {q}) by

O(V )+O(U ). Since every xn
i with n 6 0 extends to a regular function on V , we see that

H1(C,OC ) is spanned by positive powers of xi ’s, so Gm has only positive weights on it.

(ii) The case n = 1 and W = 0 corresponds to the cuspidal curve, for which the

assertions of (ii) and (iii) are known (see e.g., [10, Lemma 4.4.2]). So we assume n > 2.

We use the coordinates xi on affine parts of the normalizations C̃i from Definition 1.1.1.

The space H0(C, TC ) embeds into the space of vector fields on V ' tn
i=1(Ci \ {q}), which

is spanned by xm
i ∂xi with m 6 2. Exactly as in the proof of [10, Lemma 4.4.2(ii)] we check

that if a vector field v = (Pi (xi , x−1
i )∂xi ) on U \ {q} extends to a derivation of O(U ) then

Pi ∈ xi k[xi ] for every i (this uses the assumption char(k) 6= 2). Thus, if v extends to a

global section of TC then each Pi is a linear combination of xi and x2
i , which implies

that the weights of Gm on H0(C, TC ) are 0 and 1. Similarly, we see that if Pi ∈ x2
i k[xi ]

for every i then v extends to a derivation of O(U ). Thus, H0(U, T ) and H0(V, T ) span

H0(U \ {q}, T ), which gives the vanishing of H1(C, TC ).

(iii) A vector field on U \ {q} has zero (respectively, double zero) along D if each Pi ∈

xi k[x−1
i ] (respectively, Pi ∈ k[x−1

i ]). Together with calculations of (ii) this immediately

implies our assertions about H0(C, T (−D)) and H0(C, T (−2D)). Next, similarly to (ii)

we can represent sections of H0(C, TC (nD)) as vector fields v = (Pi (xi )∂xi ) on U \ {q}
with deg(Pi ) 6 n+ 2, and the last assertion follows from the fact that v extends to a

regular derivation of O(U ) whenever Pi ∈ x2
i k[xi ].

(iv) We can argue as in the proof of [10, Lemma 4.4.2(ii)], with x2
i replaced by xi

(complemented by zeros in all other places), to show that vector fields on V that extend

to U are precisely v = (Pi∂xi ) with Pi ∈ xi k[xi ]. The rest of the proof is the same as in

(ii) and (iii).

Remark 2.3.4. One can check that the assertions of Lemma 2.3.3 hold for C = CW
without any restrictions on the characteristic of k, provided n > g+ 2 and W is not

contained in any of the coordinate hyperplanes kn−1
⊂ kn .

Corollary 2.3.5. Let k be a field of characteristic 6= 2 (respectively, 6= 2, 3 if n = 1). Then

for any subspace W ⊂ kn, where W = 0 if n = 1, one has

HH0(EW )<0 = HH1(EW )<0 = 0.

The same result holds for W = kn, n > 2, with no restrictions on the characteristic.

Proof. By Lemma 2.3.2, we have HH1(EW ) ' HH1(CW ), where CW is the corresponding

special curve, and the second grading is induced by the Gm-action on CW . Now

HH0(CW ) = H0(CW ,O) lives in degree 0. For HH1 we use the exact sequence

0→ H1(CW ,O)→ HH1(CW )→ H0(CW , T )→ 0

(see [5, § 4.1.3]). Now the assertion follows from Lemma 2.3.3(i)(ii).

Proposition 2.3.6. Let us work over Z[1/2] if n > 2, or over Z[1/6] if n = 1, or over Z if

g = 0. Assume that either n > 2 or g = 1. Then the functor M∞ of A∞-structures (up to
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a gauge equivalence) on the family (EW ) is represented by an affine scheme of finite type

over G(n− g, n).

Proof. Due to Corollary 2.3.5, the criterion of Theorem 2.2.6(ii) implies that M∞

(respectively, Mn) is represented by an affine scheme (respectively, of finite type) over

G(n− g, n). Next, we note that by Lemma 2.3.2, HHi (EW ) is finite-dimensional for every

i . Hence, by Theorem 2.2.6(iii), we derive that M∞ 'Mn for sufficiently large n, so it

is of finite type over G(n− g, n).

For a scheme S over a field k we denote by L S the cotangent complex of S over k.

Lemma 2.3.7. Assume that either W = kn and n > 2, or k has characteristic 6= 2
(respectively, 6= 2, 3 if n = 1). Let C = CW be a special curve over k, where W = 0 if

n = 1, and let D = p1+ · · ·+ pn, U = C \ D. Then the natural morphism

Ext1(LC ,OC (−2D))→ Ext1(LC ,OC (−D)) (2.3.2)

is surjective, while the natural morphism

Ext1(LC ,OC (−D))→ Ext1(LU ,OU )

is an isomorphism. The natural morphism

Ext2(LC ,OC (−2D))→ Ext2(LU ,OU )

is an isomorphism.

Proof. The proof is almost the same as that of [10, Lemma 4.4.5], using Lemma 2.3.3.

The difference is that in our case the map

H0(C, T (−D))→ H0(C, T (−D)|D)

is not necessarily surjective, so we cannot assert that the map (2.3.2) is an isomorphism,

only that it is surjective.

Now we can use the results of [10] to compare the deformation theory of a special curve

CW with that of EW , viewed as an A∞-algebra.

We refer to [7] for the basic deformation theory and for some terminology used below,

such as deformation functor, smooth (étale) map of deformation functors, etc. Let us fix a

field k and consider the category Art(k) of local Artinian algebras with fixed identifications

of the residue field with k. Morphisms in this category are local homomorphisms inducing

the identity on the residue field. Given a curve (C, p1, . . . , pn, v1, . . . , vn) with smooth

distinct marked points and nonzero tangent vectors at them, we have the corresponding

deformation functor

Def(C, p•, v•) : Art(k)→ Sets

associating with R the set of isomorphism classes of flat proper families of curves πR :

CR → Spec(R) with sections pR
1 , . . . , pR

n , and trivializations of the relative tangent bundle

along them, such that the induced data over Spec(k) ⊂ Spec(R) is (C, p•, v•).
On the other hand, for any finite-dimensional minimal A∞-algebra E we have the

deformation functor

Def(E) : Art(k)→ Sets
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of extended gauge equivalence classes of minimal A∞-algebras ER over R, reducing to

E over k. Thus, for a fixed (n− g)-dimensional subspace W ⊂ kn , we have the functor

Def(EW ), where we equip EW with the trivial A∞-structure. We also consider the relative

deformation functor

Def(EW /G(n− g, n)) : Art(k)→ Sets

associating with R the set of pairs (WR,m•), where WR is an R-point of G(n− g, n),
reducing to W over k, and m• is a minimal A∞-structure on EWR , extending the given

m2 and reducing to the trivial A∞-structure on EW , viewed up to a gauge equivalence

reducing to the identity modulo the maximal ideal. The difference of this functor from

Def(EW ) is that we do not allow arbitrary variations of m2 but only the ones coming

from varying W in the Grassmannian.

As in [10, Lemma 4.5.1], one can show (using Corollary 2.3.5) that Def(EW /G(n−
g, n))(R) can be identified with the fiber of the map M∞(R)→M∞(k) over the point

corresponding to the gauge equivalence class of the trivial A∞-structure on EW . It follows

that the functor Def(EW /G(n− g, n)) is prorepresented by the formal completion of the

scheme M∞ at this point. We have a natural forgetful morphism

Def(EW /G(n− g, n))→ Def(EW ).

Lemma 2.3.8. The tangent space to the functor Def(EW /G(n− g, n)) can be identified

with

HH2(EW )<0⊕ TW G(n− g, n).

There is a complete obstruction theory for this functor with values in HH3(EW )<0.

Proof. The tangent space classifies pairs ( f,m•), where f : Spec(k[t]/(t2))→ G(n− g, n)
is a morphism sending the closed point to W , and m• is a minimal A∞-structure on

f ∗E , extending the given m2, reducing to the trivial one modulo (t), up to a gauge

equivalence. Then f corresponds to a tangent vector in TW G(n− g, n), while the class of

(m3,m4, . . .) is an element in HH3(EW )<0 (see e.g., [10, Lemma 4.5.2]). The obstruction

theory is obtained from the usual obstruction theory for A∞-structures (see e.g., [10,

Lemma 4.5.2]) using the fact that G(n− g, n) is smooth.

Remark 2.3.9. In general the spaces HHi (EW )<0 are given by the products of the

components HHi (EW ) j for j < 0. However, in our case the spaces HHi (EW ) are
finite-dimensional, by Lemma 2.3.2, so for each i there is only finitely many j with

HHi (EW ) j 6= 0.

For each special curve CW = (CW , p•, v•) ∈ Ũns
g,n corresponding to a subspace W ∈

G(n− g, n)(k), where k is a field, the morphism (2.3.1) induces a morphism of deformation

functors

Def(CW )→ Def(EW /G(n− g, n)). (2.3.3)

Proposition 2.3.10. Assume that either n > 2 and g = 0, or n > 2 and the characteristic

of k is 6= 2, or n = g = 1 and the characteristic of k is 6= 2, 3. Then the morphism (2.3.3)

is an isomorphism.
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Proof. Let UW be the affine curve CW \ D, where D = p1+ · · ·+ pn . Let also C be the

(non-full) subcategory in the A∞-enhancement of the derived category of Qcoh(CW ) with

the objects (OC ,Op1 , . . . ,Opn ,OUW ), all morphisms (including Ext∗) between OC , (Opi ),

and all morphisms from OC to OUW and from OUW to OUW (but we do not consider any

other morphisms between these objects). As in the proof of [10, Proposition 4.5.4], we

consider additional functors Def(UW ), Defnc(UW ) and Def(C) (in [10] they are denoted by

FUW , FUW ,nc and FC), corresponding to deformations of UW , of O(UW ) as an associative

algebra, and of C as an A∞-category. These functors fit into a commutative diagram

Def(UW ) � Def(CW ) - Def(EW /G(n− g, n))

Defnc(UW )
?

� Def(C)
?

- Def(EW )
?

(2.3.4)

It is easy to see that each functor in this diagram is a deformation functor in the

sense of [7, Definition 2.5], as it describes deformations of some algebraic structure with

coefficients in R (to check the first condition in the definition one can use the appropriate

obstruction theory).

Step 1. The map Def(C)→ Def(EW ) is étale. This is proved in the same way as in Step

1 of [10, Proposition 4.5.4].

Step 2. The map Def(CW )→ Def(UW ) is smooth, while the map Def(UW )→ Defnc(UW )

is étale.

First, we observe that the maps on tangent spaces induced by these maps are

Ext1(LCW ,O(−2D))→ Ext1(LUW ,OUW )→ HH2(UW ),

the first of which is surjective by Lemma 2.3.7, while the second is an isomorphism by

[10, Lemma 4.4.6]. Similarly the maps of obstruction spaces are

Ext2(LCW ,O(−2D))→ Ext2(LUW ,OUW )→ HH3(UW ),

of which the first is an isomorphism by Lemma 2.3.7, while the second is injective by

[10, Lemma 4.4.6]. Hence, the maps Def(CW )→ Def(UW ) and Def(UW )→ Defnc(UW ) are

smooth and the second is étale (see [7, Proposition 2.17]).

Step 3. The map Def(CW )→ Def(C) (respectively, Def(C)→ Defnc(UW )) induces a

surjection (respectively, isomorphism) on tangent spaces.

Indeed, Step 2, together with the commutativity of diagram (2.3.4), implies that

Def(C)→ Defnc(UW ) induces a surjection on tangent spaces. But

HH2(UW ) ' HH2(CW ) ' HH2(EW ),

so the dimensions of tangent spaces are the same. Hence, Def(C)→ Defnc(UW ) induces

an isomorphism on tangent spaces.

It follows that the maps induced on tangent spaces by Def(CW )→ Def(C) and by

Def(CW )→ Defnc(UW ) are isomorphic, so the required surjectivity follows from Step 2.
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Step 4. The map Def(CW )→ Def(EW /G(n− g, n)) (respectively, Def(EW /G(n− g, n))→
Def(EW )) induces an isomorphism (respectively, surjection) on tangent spaces.

Note that by Steps 1 and 3, we know that the map Def(CW )→ Def(EW ) induces

a surjection on tangent spaces. Hence, the same is true for Def(EW /G(n− g, n))→
Def(EW ). We claim that there is a commutative diagram with exact rows

kn α - Ext1(LCW ,O(−2D))
β - HH2(C) - 0

kn

=

?
α′- HH2(EW )<0⊕ TW G(n− g, n)

γ

?
β ′- HH2(EW )60

γ ′

?
- 0

(2.3.5)

where the arrow α (respectively, α′) is induced by the Gn
m-action on the functor Def(CW )

(respectively, Def(EW /G(n− g, n))), while the right commutative square is induced by

the right commutative square in (2.3.4) (flipped about the diagonal). Note that we already

know that γ ′ is an isomorphism and β ′ is surjective. To see the exactness of the top row

we observe that by Steps 1 and 2, the map β can be identified with the morphism

Ext1(LCW ,O(−2D))→ Ext1(LCW ,O(−D)) ∼- Ext1(LUW ,OUW ),

where the second arrow is an isomorphism by Lemma 2.3.7. Hence, its kernel is the

image of the coboundary map H0(CW , T (−D)|D)→ Ext1(LCW ,O(−2D)), which can be

identified with α. The exactness of the bottom row in (2.3.5) would follow from the

exactness in the middle of the sequence

kn
→ TW G(n− g, n)→ HH2(EW )0 → 0,

where the second arrow is the tangent map to the map W → EW , and the first arrow

corresponds to the Gn
m-action on G(n− g, n). But this follows from the observation that

a k[t]/(t2)-point of G(n− g, n), W, can be recovered from the isomorphism class of the

corresponding algebra EW up to a Gn
m-action.

Note that diagram (2.3.5), together with the fact that γ ′ is an isomorphism,

immediately implies that γ is surjective. It remains to prove that the restriction of γ

to im(α) is injective. To this end we use the fact that each point CW ∈ Ũns
g,n lies in the

section σ(G(n− g, n)) of the projection to G(n− g, n), and that the Gn
m-orbit of CW

still lies in σ(G(n− g, n)). Hence, the tangent space to this orbit maps injectively to

TW G(n− g, n), which implies our assertion.

Step 5. The morphisms Def(CW )→ Defnc(UW ), Def(CW )→ Def(C) and Def(CW )→

Def(EW ) are smooth, and the morphism Def(CW )→ Def(EW /G(n− g, n)) is an

isomorphism.

The first morphism is equal to the composition

Def(CW )→ Def(UW )→ Defnc(UW ),

where both arrows are smooth by Step 2. But it is also equal to the composition

Def(CW )→ Def(C)→ Defnc(UW ).
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By Step 3, the first arrow induces a surjection on tangent spaces. Hence, by [10, Lemma

4.5.3], the morphism Def(CW )→ Def(C) is smooth. Using Step 1 again we deduce that

Def(CW )→ Def(EW ) is smooth. Thus, the composition

Def(CW )→ Def(EW /G(n− g, n))→ Def(EW )

is smooth, and the first arrow induces an isomorphism of tangent spaces. Hence, by [10,

Lemma 4.5.3], the morphism Def(CW )→ Def(EW /G(n− g, n)) is smooth, and hence,

étale. But the functor Def(EW /G(n− g, n)) is homogeneous, since it is prorepresented

by the formal completion of the scheme M∞, so our morphism is an isomorphism by [7,

Corollary 2.11].

Theorem 2.3.11. Assume that either n > g > 1, n > 2 and the base is Spec(Z[1/2]), or

n = g = 1 and the base is Spec(Z[1/6]), or g = 0, n > 2 and the base is Spec(Z). Then

the morphism Ũns
g,n →M∞ (see (2.3.1)) is an isomorphism.

Proof. We know that both schemes are affine of finite type over G(n− g, n) (by Theorem

1.2.2 and Proposition 2.3.6), and that the morphism (2.3.1) is compatible with Gm-action.

Furthermore, the Gm-invariant loci of each scheme provide a section of the projection to

G(n− g, n), and over each open affine cell US ⊂ G(n− g, n) our morphism corresponds

to a homomorphism f : A→ B of nonnegatively graded algebras such that f0 : A0 → B0
is an isomorphism (here we use the fact that Gm acts on O(Ũg,n(S)) with nonnegative

weights by Theorem 1.2.2(ii)). Furthermore, by Proposition 2.3.10, for every closed point

of Spec(A0) ' Spec(B0), the map f induces an isomorphism of deformation functors.

Hence, applying Lemma 2.3.12 below we deduce that f is an isomorphism.

Lemma 2.3.12. Let f : A→ B be a morphism of degree zero of nonnegatively graded

commutative algebras such that the induced map A0 → B0 is an isomorphism. Assume

that A0 is Noetherian, A and B are finitely generated as algebras over A0 ' B0, and

for every maximal ideal m ⊂ A0 the map f induces an isomorphism Â→ B̂ of the

completions with respect to the maximal ideals m+ A>0 and m+ B>0, respectively. Then

f is an isomorphism.

Proof. It is enough to prove that f induces an isomorphism A/AN
>0 → B/B N

>0 for each

N > 0. Note that A/AN
>0 (respectively, B/B N

>0) is a finitely generated module over A0
(respectively, B0). Note that for any maximal ideal m ⊂ A0 ' B0, the (m+ A>0)-adic

topology on A/AN
>0 is equivalent to the m-adic topology, and similarly on B/B N

>0. Thus,

we have a morphism

A/AN
>0 → B/B N

>0

of finitely generated A0-modules, inducing an isomorphism of m-adic completions of

localizations at every maximal ideal m ⊂ A0. Since A0 is Noetherian, such a morphism

is an isomorphism.

Remark 2.3.13. For g > 1 let us define the open subset U ⊂ G(n− g, n) to be the

complement to the union of the images of n embeddings G(n− g, n− 1) ⊂ G(n− g, n)
associated with the coordinate hyperplanes kn−1 ↪→ kn . It is easy to see that the
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preimage π−1(U ) ⊂ Ũns
g,n parametrizes (C, p•, v•) such that H1(C,O(D− pi )) = 0 for

every i (where D = p1+ · · ·+ pn). Using Remark 2.3.4 one can see that the analog

of Proposition 2.3.6 gives a relative moduli of A∞-structures on the family (EW ) over

U , when working over Spec(Z), provided n > g+ 2. Similarly, Proposition 2.3.10 holds

without any restrictions on the characteristic, for W ∈ U and n > g+ 2. This suggests

that for n > g+ 2, working over Spec(Z), one could still show that the morphism

π−1(U )→ U is affine of finite type. Then the analog of Theorem 2.3.11 would give

an isomorphism of π−1(U ) with the corresponding relative moduli of A∞-structures

over U .
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