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Longitudinal and transverse flow over a cavity
containing a second immiscible fluid
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An analytical solution for the low-Reynolds-number flow field of a shear flow over
a rectangular cavity containing a second immiscible fluid is derived. While flow of a
single-phase fluid over a cavity is a standard case investigated in fluid dynamics, flow
over a cavity that is filled with a second immiscible fluid has received little attention.
The flow field inside the cavity is considered to define a boundary condition for the
outer flow, which takes the form of a Navier slip condition with locally varying slip
length. The slip-length function is determined heuristically from the related problem
of lid-driven cavity flow. Based on the Stokes equations and complex analysis, it is
then possible to derive a closed analytical expression for the flow field over the cavity
for both the transverse and the longitudinal case. The result is a comparatively simple
function, which displays the dependence of the flow field on the cavity geometry and
the medium filling the cavity. The analytically computed expression agrees well with
results obtained from a numerical solution of the Navier–Stokes equations.
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1. Introduction
Flows in and over cavities are important blueprints for many phenomena in fluid

dynamics. On a reduced scale, they illustrate phenomena occurring in various, often
more complex, applications. These might, for example, be in aerodynamics, where the
vortices forming inside cavities or grooves in surfaces are studied (Moffatt 1963; Pan
& Acrivos 1967; Higdon 1985; Shankar & Deshpande 2000). The corresponding flow
patterns affect the drag to which a fluid streaming over the surface is subjected (Shen
& Floryan 1985; Prasad & Koseff 1989). Traditionally, such troughs, or more generally
surface roughness features, have always been perceived as unwanted, since the vortices
forming inside the cavities may lead to higher drag or acoustic disturbances. Yet,
at higher Reynolds numbers, riblets may also reduce drag, which has been of great
interest more recently (Viswanath 2002; Jovanović, Frohnapfel & Delgado 2010).

In all these investigations, only a single fluid phase flowing over the cavity and
filling it at the same time is considered. However, there exist numerous applications
where a fluid flows over a cavity filled with a second immiscible fluid. It is well
known that by capillary condensation vapour condenses in sufficiently small capillaries
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Flow over a cavity containing a second immiscible fluid 377

or channels although the vapour pressure is below the bulk saturation pressure (Fisher
& Israelachvili 1979; Fisher, Gamble & Middlehurst 1981; Ciccotti et al. 2008). So
does vapour inside the roughness features of a surface. This may have an immediate
impact on the applications in aerodynamics mentioned above, since the condensed
water has a viscosity different from that of the gas and hence moves at a slower speed.
Moreover, we can also encounter the inverse situation, where small bubbles, often of
nanometre size, are enclosed in the roughness features of the wall of a water-filled
channel (Yang et al. 2007). Additionally, all superhydrophobic, lotus leaf-mimicking
surfaces take advantage of such enclosed gas (Ma & Hill 2006; Lee, Choi & Kim
2008; Nosonovsky & Bhushan 2008; Rothstein 2010). Other examples are the flow
over membranes or porous media, which may be filled with a second immiscible fluid
as well.

Besides the work on flows over cavities, which includes the fluid motion inside
the cavity, there have also been investigations of flows over surfaces with periodically
patterned boundary conditions. In such a context, a cavity is usually represented
by a certain boundary condition to the flow above it. The flow inside is not
considered. Philip (1972) analyses the flow over a no-shear slot within a no-slip
wall in longitudinal and transverse directions. A no-shear interface is certainly the
ideal limit, which is approached when the viscosity ratio between the fluid above and
inside the cavity tends to infinity, but which cannot be reached by a real viscous
fluid. Although this condition is often used for modelling air–liquid interfaces (Lauga
& Stone 2003; Sbragaglia & Prosperetti 2007; Davis & Lauga 2009; Crowdy 2010;
Davis & Lauga 2010), it is not immediately clear how well air fulfils these ideal
characteristics.

The no-shear condition corresponds to an infinite slip length β in the Navier
boundary condition (Navier 1823)

u|boundary = β ∂u

∂y

∣∣∣∣
boundary

, (1.1)

which allows for a non-zero velocity u at the boundary. The slip length β relates
the velocity to its gradient in the direction normal to the surface ∂u/∂y and can be
understood as an imaginary depth below the surface at which the velocity extrapolates
to zero. It has become a standard boundary condition for describing slip, being used
in a variety of calculations (e.g. Cottin-Bizonne et al. 2004; Ybert et al. 2007). Still,
when employing (1.1) for the modelling of a fluid-filled cavity, it is by no means
clear how to specifically choose β. Belyaev & Vinogradova (2010) have calculated
a flow over an array of slots with constant slip length. However, it remains unclear
how β is related to the slot geometry or to the properties of the fluid filling the
cavities. Furthermore, in reality, the slip length will not be constant but will be a
spatially varying quantity. So far, Hocking (1976) has briefly addressed the effect of
the viscosity of the medium inside a cavity, but only found an approximation to the
streamlines in terms of an infinite Fourier series in the case of an infinite slip length.

In this paper, a representation of a rectangular cavity in the form of a boundary
condition for a second immiscible fluid flowing over a surface is described. It is
directly related to the flow pattern inside the cavity, i.e. to the geometry of the cavity
and the viscosity of the fluid it contains. The effect of these properties on the outer
flow can therefore be directly explored.

Based on this, we calculate the flow field of a shear flow directed transversely and
longitudinally with respect to the cavity. The solution to this mixed boundary value
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FIGURE 1. Schematic of the considered cavity with coordinate and velocity directions.

problem can be obtained through a representation of the flow by complex variables.
Unlike with the often employed methods based on Fourier series, we can derive a
closed-form expression and present a simple explicit formula for the flow field.

2. Model of the cavity and boundary conditions
We consider a rectangular cavity of depth h, width b and infinite extension in the

z direction as depicted in figure 1. Fluid 1 flows over the cavity, while fluid 2 fills the
same. The interface between the two fluids is assumed to be flat. For small cavities,
this is usually justified, since surface tension provokes a flattening of the interface and
will only permit negligibly small curvatures (Higdon 1985). In more general terms,
it means that we consider a flow problem at sufficiently small capillary numbers.
Additionally, we do not allow for a pressure gradient to be applied across the interface,
as is sometimes done (Biben & Joly 2008; Tsai et al. 2009), leading to a modification
of the shear stress (Steinberger et al. 2007). By considering the basic case of a flat
interface, we ensure that an analytic solution is possible.

In the following, a boundary condition is derived, describing the effect of the cavity
on the outer flow. It can be employed without the need to calculate the detailed flow
inside the cavity.

2.1. General form of the boundary conditions and the role of viscosity
A first-principles modelling of the cavity is achieved by taking into account the
viscosity of the medium inside the cavity and the geometry of the cavity. The
mathematical framework is exemplified for a flow perpendicular to the cavity. The
longitudinal case is analogous.

At the fluid–fluid interface, continuity of velocity and shear stress applies, i.e.

u1 = u2

η1
∂u1

∂y
= η2

∂u2

∂y

 for |x|< b

2
, y= 0, (2.1)

while at the wall, the no-slip condition

u1 = 0 for |x|> b

2
, y= 0 (2.2)

holds, where u denotes the velocity in the x direction and η is the dynamic viscosity.
The indices 1 and 2 refer to the respective fluids.
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Flow over a cavity containing a second immiscible fluid 379

The boundary conditions (2.1) and (2.2) are valid for problems at a scale large
enough to neglect discontinuities of the velocity at the fluid–fluid and solid–fluid
interfaces. In that context, a distinction has to be made between liquid and gas flows.
For gas flows, the velocity discontinuities, expressed in terms of a slip length, can
be quite large. Depending on the type of reflection boundary condition for the gas
molecules (rather diffuse or rather specular), the slip length is of the order of the
molecular mean free path or even larger (Karniadakis, Beskok & Aluru 2005). For
liquid flows along solid surfaces, the problem of boundary slip has been studied quite
extensively. For simple liquids, significant values of the slip length of the order of
10 nm are preferentially found on hydrophobic surfaces (for an overview, see Lauga,
Brenner & Stone 2005). The problem of slip along liquid–liquid interfaces has been
studied to a much lesser extent. Results from molecular dynamics simulations indicate
that, for that case, the slip length is very small, of the order of a few molecular
diameters (Galliero 2010; Hu, Zhang & Wang 2010). Relating the problem investigated
in this paper to these findings, in each case it has to be ensured that the length scale
characterizing the cavity is much larger than the slip length for the case under study.
Nevertheless, the mathematical method outlined in the course of this paper can also be
employed to compute the flow in cases where a velocity jump occurs at the wall or at
the fluid–fluid interface.

The velocity u2 at the upper side of the cavity can be written as a Navier slip
condition

u2(x, 0)= γ (x) ∂u2

∂y

∣∣∣∣
y=0

, (2.3)

with the local slip-length function γ (x) to be determined. Incorporating this equation,
the two transition conditions (2.1) collapse into one boundary condition, such that the
boundary conditions for fluid 1 are

u1 = Nγ (x)
∂u1

∂y
for |x|< b

2
, y= 0, (2.4)

u1 = 0 for |x|> b

2
, y= 0, (2.5)

with N abbreviating the viscosity ratio of the two fluids, i.e.

N = η1

η2
. (2.6)

Equation (2.4) again has the form of a Navier slip condition with a net slip length for
fluid 1 being the product of the viscosity ratio and the slip-length function.

At low Reynolds numbers, the flow pattern inside the cavity can be assumed to be
independent of the viscosity ratio. Hence, the local slip-length distribution γ (x) solely
stems from the geometry of the cavity. The effects of N and γ (x) on the outer flow
field are therefore decoupled. While N always enters the net slip length linearly, the
slip-length function involves the principal part of the modelling.

As soon as the slip-length function has been determined, the flow over the cavity
can be studied without the need to compute the flow field inside the cavity. This is of
great advantage for analytical calculations. Since, in the following, the focus is on the
flow over the surface outside of the cavity, the subscript 1 is no longer needed and is
dropped from now on.
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380 C. Schönecker and S. Hardt

A 0.25 0.50 1.0 2.0 5.0
d∗/b 0.0875 0.1628 0.24 0.25 0.25

TABLE 1. Centre of the first vortex; after Pan & Acrivos (1967).

2.2. Modelling of the local slip-length function and the role of the cavity geometry

The local slip-length distribution is determined by the geometry of the cavity. Here we
consider a rectangular cavity, characterized by its depth h and width b, but a similar
procedure can also be imagined for a differently shaped cavity.

Basically, we look for a differentiable function γ (x). At the corners x = ±b/2,
obviously γ (x) = 0 to make the two boundary conditions match, i.e. for the flow
velocity to be continuous. At the centre of the cavity at x = 0, the flow is least
suppressed by the walls of the cavity, and hence the slip length reaches a maximum d.

A universal description of the local slip-length function could only be obtained as an
infinite series of eigenfunctions. Therefore, we introduce a heuristic step to incorporate
the influence of the cavity geometry in a simple manner.

Requiring γ (±b/2) = 0 and γ (0) = d, as a first step, we assume γ (x) to be of
elliptic form with semi-axes d and b/2. This particular choice allows a closed-form
solution to be calculated for the flow field, as will become clear in the following
section. In addition, for a wide range of aspect ratios A, it already gives remarkably
good results. It is possible to modify the specific form subsequently. The modelling of
the maximum of the local slip length d is inspired by the investigation of lid-driven
cavity flows. Here, the upper boundary of the cavity is also considered to be flat.

In lid-driven cavities, one or more counter-rotating vortices of decreasing intensity
develop. The greater the aspect ratio A = h/b of the cavity, i.e. the deeper the cavity,
the more vortices are created (Pan & Acrivos 1967; Joseph & Sturges 1978; Higdon
1985; Shankar 1993; Shankar & Deshpande 2000). An important parameter addressed
in those investigations has always been the location of the vortex centres. For low
Reynolds numbers, the centres of these vortices are always located on the centreline
of the cavity x = 0. The distance from the centre of the first of these vortices to the
top of the cavity d∗ should give an upper bound to d. This is due to the shape of the
velocity field (cf. Higdon 1985) being driven by the upper boundary.

Pan & Acrivos (1967) give the centre of the first vortex d∗/b as a function of the
aspect ratio (see table 1). From these results, we can distinguish two regimes. At
low aspect ratios, the position of the first vortex develops nearly linearly with A. The
characteristic length is the cavity depth h. Around an aspect ratio of A = 1, a plateau
is reached, so that at high aspect ratios, the position of the first vortex is constant
and the characteristic length is the cavity width b. Such a behaviour, a nearly linear
dependence suddenly followed by a plateau, is quite generally encountered in a variety
of physical problems, for example, in the diffusion of mass or heat when one boundary
is subject to a sudden change. The solution of these problems is often described by
an error function. Indeed, an ansatz of the form d∗/b= c0 + erf(c1A) fits well the data
given by Pan & Acrivos (1967) with the constants c0 ≈ 0.251 and c1 ≈ 1.319.

This relation describes the order of magnitude of the maximum local slip length
d, since the vortex centre d∗ should be an upper bound to d. It already captures the
essential parametric dependences of the slip-length function; however, a more exact
description can be obtained. As we consider the linear flow regime at small Reynolds
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Flow over a cavity containing a second immiscible fluid 381

numbers, we expect a similar behaviour for d as for d∗. We choose the ansatz

D= d/b= d0 · erf(d1A) (2.7)

with two constants d0 and d1. They can be determined by examination of the two
limiting cases of small and large A.

For very shallow cavities, there is only one vortex present in the cavity. In the limit
of A→ 0, the flow of fluid 2 corresponds to a thin-film flow and is governed by the
lubrication approximation of the Navier–Stokes equations

∂p2

∂x
= η2

∂2u2

∂y2
, (2.8)

∂p2

∂y
= 0. (2.9)

The solution for u2 is readily integrated to be a polynomial of second order. The
boundary conditions

u2|y=0 = d
∂u2

∂y

∣∣∣∣
y=0

, u2|y=−h = 0, (2.10)

and mass conservation ∫ y=0

y=−h
u2 = 0 (2.11)

yield the size of the slip length

D= 1
4 A. (2.12)

In the limit of A→ 0, D thus depends on the aspect ratio with a slope of 1/4, i.e.

lim
A→0

dD

dA
= 1

4
, (2.13)

which is less than the corresponding slope of the vortex centre and thus consistent.
The height of the plateau of D at large A is limited by c0; however, its accurate

value has to be determined numerically. Assuming that the plateau is reached at
A = 10 and that the mean values of the local slip length on the cavity match in the
analytical and numerical cases, a simulation of water flowing over an air-filled cavity
of A= 10, which will be described in more detail later, leads to the condition

lim
A→∞

D= 0.124. (2.14)

Hence, the maximum of the elliptic slip-length distribution for transverse flow can be
described by

Dt = d0,t · erf
( √
π

8d0,t
A

)
(2.15)

with d0,t = 0.124.
For longitudinal flow, when the second fluid can enter and leave the cavity, there is

no backflow and a corresponding calculation leads to

Dl = d0,l · erf
(√

π

2d0,l
A

)
(2.16)

with d0,l = 0.347.
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382 C. Schönecker and S. Hardt

This rather heuristic approach for determining γ (x) can be formalized by
introducing iterative maps

Γ1 : Ui(x)→ γi(x) (2.17)

and

Γ2 : γi(x)→ Ui+1(x). (2.18)

Here Γ1 denotes that, from the solution of the generalized lid-driven cavity problem
with a velocity distribution Ui(x) prescribed at the upper boundary of the cavity, a
slip-length function γi(x) is determined. And Γ2 maps a slip-length function used as a
boundary condition at the top of the cavity to the velocity distribution at this boundary.
Successive application of the map Γ1 ◦ Γ2 generates a series of approximations
γi(x) (i = 1, 2, . . .) to the slip-length function γ (x), i.e. limi→∞ γi(x) = γ (x), provided
that the iteration scheme converges. Below we will show that, when starting with
U1(x) = const., already γ1(x) – determined in a simplified manner – yields a good
approximation to the flow field above the cavity. Therefore, in the framework of this
paper, no further iterations will be performed.

3. Transverse flow
In the following, a fluid flow in the x direction over the cavity is investigated and its

flow field is derived. The fluid is driven by a constant shear stress τ∞ in the x direction
at y→∞.

At sufficiently small Reynolds numbers, the flow obeys the Stokes equations

−∂p

∂x
+ η1

(
∂2u

∂x2
+ ∂

2u

∂y2

)
= 0, (3.1)

−∂p

∂y
+ η1

(
∂2v

∂x2
+ ∂

2v

∂y2

)
= 0, (3.2)

where u and v are the velocities in the x and y directions, respectively, and p is the
pressure. With the stream function

∂Ψ

∂x
=−v and

∂Ψ

∂y
= u, (3.3)

the Stokes equations transform into the biharmonic equation

11Ψ = 0. (3.4)

The solution to the biharmonic equation is given by Goursat’s theorem (Smirnow
1974; Muskhelishvili 1975), a special form of which reads

Ψ = Re ((z̄− z)Wt(z)) . (3.5)

The Goursat function Wt(z) is an analytic function to be found, with the subscript t
indicating the transverse flow direction. Re is the real part and the complex coordinate
is given by

z= x+ iy and z̄= x− iy. (3.6)

In (3.5), the general Goursat theorem containing two Goursat functions has been
reduced to an expression containing only one unknown function by elimination of
the undetermined constant in the stream function. Owing to the impermeability of
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FIGURE 2. Real (solid line) and imaginary (dashed line) part of γt(x).

walls lying on the real axis, the stream function is set to zero at these boundaries
(cf. Garabedian 1966; Philip 1972). Expression (3.5) has been used previously in the
solution of similar problems (Atanacković 1977; Philip 1972).

With the ansatz (3.5) the boundary conditions (2.4) and (2.5) read

Im(Wt)= 2Nγt(x)Re(W ′t ) for |x|< b

2
, y= 0, (3.7)

Im(Wt)= 0 for |x|> b

2
, y= 0. (3.8)

The prime denotes the derivative with respect to z.
As an elementary mathematical case, the slip-length function γt(x) is assumed to

be of elliptic form, fulfilling the conditions of § 2. In complex notation γt(x) can be
written as

γt(x)=−i2Dt

√
x2 − b2

4
, (3.9)

which is real for |x| < b/2 and imaginary for |x| > b/2 (figure 2). This form is
essential for keeping the following calculations analytically tractable. Nevertheless,
one is not restricted to an ellipse. Cherepanov (1977, pp. 68–69) outlined a method
of approximating any arbitrary function that is continuous on a finite interval and
vanishes at its ends as a complex function, whose value is real on the interval
and imaginary outside the interval. This method provides a general framework for
investigation of flow over differently shaped cavities, e.g. triangular or rounded
ones, provided that the local slip-length function is known for the cavity of interest.
However, for convenience we will use the expression of (3.9).

Similarly to the boundary conditions at y = 0, the condition of a given shear stress
τ∞ = η1 ∂u/∂y at infinity can be written in terms of Wt(z) as

Re(W ′t )=
τ∞
4η1

for y→∞. (3.10)

The solution procedure follows the method of Sotkilava & Cherepanov (1974),
originally employed in elasticity theory. An auxiliary function

Ft(z)=W ′t (z)−
1

4DtN

√
z2 − 1

4
b2

Wt(z) (3.11)
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384 C. Schönecker and S. Hardt

is chosen such that the boundary conditions (3.7) and (3.8) take the form

Re(Ft(z))= 0 for |x|< b

2
, y= 0, (3.12)

Im(Ft(z))= 0 for |x|> b

2
, y= 0. (3.13)

The condition at infinity (3.10) is

Re(Ft(z))= τ∞
4 η1

(
1− 1

4DtN

)
for y→∞. (3.14)

The conditions (3.12) and (3.13) constitute a mixed boundary value problem for the
half-plane. Its solution is given by the Keldysh–Sedov formula (Keldysh & Sedov
1937; Muskhelishvili 2008). Since (3.12) and (3.13) are homogeneous, only the
homogeneous part of the Keldysh–Sedov formula is required, which reads

Ft(z)= L(z)√
z2 − 1

4
b2

. (3.15)

In our case, L(z) is a linear function with two real coefficients (Lawrentjew & Schabat
1967) to be determined. This is achieved by requiring the condition at infinity (3.14),
giving

Ft(z)= τ∞
4η1

(
1− 1

4DtN

)
z√

z2 − 1
4

b2

. (3.16)

The auxiliary differential equation (3.11) can now be solved. Its general solution is

Wt(z)=W0(z)

(
C +

∫ z

z0

Ft(Z)W
−1
0 (Z) dZ

)
, (3.17)

with the solution to the homogeneous problem

W0(z)= exp

∫ z

z0

1

4DtN

√
Z2 − 1

4
b2

dZ

 (3.18)

and the constant C to be determined from the condition of symmetry, i.e.

Im(W ′t (z))= 0 at z= 0, (3.19)

ensuring the analyticity of Wt(z).
Integrating from z0 = b/2, i.e. evaluating the Cauchy principal value of the integrals

in (3.17) and (3.18), the result for Wt(z) is computed as

Wt(z)= τ∞
4η1

z+ 4DtN

√
z2 − 1

4
b2

1+ 4DtN
. (3.20)
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Flow over a cavity containing a second immiscible fluid 385

Following Goursat’s theorem (3.5), the expression for the stream function is

Ψ = τ∞
2η1

y

1+ 4DtN

(
y+ 4DtNIm

√
(x+ iy)2−1

4
b2

)
. (3.21)

This result is consistent with the work of Philip (1972), who calculated the transverse
flow over a no-shear slot. In the limit of a very low-viscosity fluid in the cavity, we
obtain

lim
N→∞

Ψ = τ∞
2η1

y Im

√
(x+ iy)2−1

4
b2, (3.22)

which is equivalent to Philip’s result.
When evaluating (3.21) in the second quadrant of z, one should be aware of crossing

a branch cut, which for a square root is usually chosen along the negative real axis. To
avoid ambiguity, one may wish to write i

√
b2/4− z2 instead of

√
z2 − b2/4 for x< 0.

In figure 3, the streamlines are plotted in the form

Ψ̃ = Ψ 8η1

τ∞b2
= Y

1+ 4DtN

(
Y + 4DtN Im

√
(X + iY)2−1

)
, (3.23)

with X = x(2/b) and Y = y(2/b). The only flow-determining parameters are Dt , the
ratio of the maximum local slip length and the cavity width, and the viscosity ratio
N. Figure 3 shows the streamlines for cavities that are deeper than they are wide
(Dt = 0.124) and varying N. Clearly, the higher the viscosity ratio, i.e. the lower the
viscosity of the cavity medium, the more the presence of the cavity influences the flow
over the wall. For a high viscosity ratio, the flow is notably accelerated towards the
cavity; while for a small viscosity ratio, the flow pattern approaches that of a plain
wall.

This behaviour is explicitly apparent from figure 4. The velocity u at the boundary
y= 0 is normalized with up,max , being the maximum achievable velocity for the perfect
slip case N→∞ at x = y = 0. The velocity obviously increases with N. In the same
manner, for low N the shear stress at y= 0 is similar to the average shear stress, while
being reduced towards zero for high N.

It can be further observed that, for the chosen elliptic slip-length distribution γt(x),
the shear stress is constant along the cavity. A similar relationship exists in elasticity
theory, when a flat, rigid stamp, pressed into an elastic material, provokes an elliptic
pressure distribution underneath the stamp (Muskhelishvili 1975). The constant shear
stress also follows from (3.20). At y= 0 and |x|< (b/2), the shear stress is

η1
∂u

∂y
= 4η1 Re(W ′t )=

τ∞
1+ 4DtN

= const. (3.24)

Hence, (3.23) not only describes shear flow over an elliptic slip-length distribution,
but also is a general solution of the biharmonic equation with mixed no-slip and
constant-shear boundary conditions, similar to Philip’s result for mixed no-slip and
no-shear conditions.

It should be noted that for N = 1 the flow field is not identical to the case of a
single-phase flow. The flow profile is modified due to the flat fluid–fluid interface,
which strictly separates both fluids and cannot be crossed.

In the case of water flowing over an air-containing cavity, the maximum velocity
at x = 0 is u0/up,max = 0.965 and the shear stress is τ/τ∞ = 0.035 for cavities that
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FIGURE 3. Transverse flow streamline patterns Ψ̃ for Dt = 0.124 and varying viscosity ratio:
(a) N = 100; (b) N = 10; (c) N = 1; (d) N = 0.1.
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FIGURE 4. Normalized (a) velocity and (b) shear stress along the boundary y= 0.

are deeper than they are wide (Dt = 0.124). These numbers illustrate the accuracy of
previous models, where a vanishing shear stress is assumed at the air–water interface.
For cavities that are deeper than they are wide, the maximum velocity was hence
calculated ∼ 3.5 % too high.

For lower viscosity ratios than for the water–air system (N ≈ 56), the influence of
the cavity depth becomes more prominent, which can be observed from figure 5. Here,
the dependence of the normalized velocity u0/up,max at z= 0 on the aspect ratio of the
cavity A is shown for various values of N. It can be observed that the influence of
a variation of N on u0/up,max , translating to a modification of the outer flow field, is
strongest around N = 1. At very large or small values of N, a variation of N has only
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FIGURE 5. Variation of the velocity at z= 0 with the aspect ratio of the cavity A for a range
of viscosity ratios N.

a small effect. This fact is also apparent in figures 3(a) and 3(b), which differ only
slightly.

As explained above, γ (x) may be a general function, with γ (±b/2) = 0 and a
maximum γ (0) = d. As a minimum model and in order to keep the calculations
analytically tractable, we have employed an elliptic form, with d being described by a
heuristic equation inspired by lid-driven cavity flows. In order to assess the accuracy
of this model, its results are compared to numerical calculations.

Both the fluid inside the cavity as well as the fluid flowing over the cavity
are included in the numerical calculation. As a typical example, water (density
ρ = 103 kg m−3 and dynamic viscosity η = 10−3 Pa s) and air (ρ = 1.2 kg m−3,
η = 1.8 × 10−5 Pa s) have been considered. At the interface between the fluids,
continuity of velocity and stress (2.1) holds. The dimensions of the cavity are
b = h = 50 µm. At a distance to the wall of y = 500 µm, a shear stress of 0.1 Pa
is imposed, so that Re = u|x=0,y=0 bρ/η � 1 for both fluids. It should be noted
that at this point the dimensions of the cavity have only been specified as typical
examples. In the low-Reynolds-number limit, the results for a rescaled cavity are
identical. The Navier–Stokes equations have been solved with the commercial finite-
element software COMSOL Multiphysics (COMSOL Multiphysics GmbH, Göttingen)
in a computational domain of 3 mm width with a triangular mesh of approximately
65 000 elements. The mesh was strongly refined along the fluid–fluid interface to
accommodate the discontinuous change in the boundary condition for the flow over the
cavity between the fluid–solid and fluid–fluid interfaces. Subsequently, the numerically
computed velocity was interpolated and integrated to yield the stream function. In
figure 6, a comparison between analytical and numerical results is displayed for two
different cases: (a) water flowing over an air-filled cavity, and (b) air flowing over a
water-filled cavity. These examples span a wide range of possible viscosity ratios. In
both cases, an excellent agreement between the analytical and the numerical results is
found, even in close proximity to the interface.

At the interface itself, the assumptions made in § 2 can be verified. The basic
assumption was that the flow inside the cavity can be represented by a slip-length
function γ (x). Together with the viscosity ratio, Nγ (x) forms a net local slip
length. A comparison between the analytically and numerically obtained values of
the normalized slip-length function is shown in figure 7(a,b) for water flowing
over an air-filled cavity and vice versa. The analytical distribution is described
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FIGURE 6. (Colour online) Comparison of the transverse flow streamlines calculated
analytically with (3.21) and numerically: (a) water flowing over an air-filled cavity (N ≈
55.56); (b) air flowing over a water-filled cavity (N ≈ 0.02). Note the different scales on the
y axis in the two panels.

by (3.9) and (2.15), while the numerical local slip length explicitly obeys (2.3).
The correspondence between the two curves is reasonable. Of course, the shape of
the slip-length distribution does not coincide exactly, since the elliptic form was
chosen due to mathematical rather than physical reasons. As mentioned before, it
may be possible to calculate the flow field for slip-length distributions other than
the elliptical one. However, in order to have a simple and viable model, it is not
necessary to consider more complicated slip-length functions, since the integral of
the local slip length agrees very well. This is important for the far-field behaviour
of the solution, because the biharmonic equation (3.4) is of diffusive character.
In other words, the biharmonic operator rapidly smears out local features of the
flow field, which is then mainly determined by integral or averaged quantities a
distance away from the boundaries. Nevertheless, figure 6 shows that the agreement
between the assumed and the numerically determined slip-length distributions is
good enough to give an accurate representation of the flow field even close to the
cavity.

In the modelling, we took γt to be a function of the cavity aspect ratio alone,
assuming its independence of the viscosity ratio N. Figure 7(a,b) show a slight
dependence of γt on N in the numerical results. Still, taking into account the large
span of viscosity ratios considered, this dependence is very weak. Furthermore, the
integral local slip length remains unaffected.

Another important factor for the accuracy of the presented model is the order of
magnitude of the maximum net local slip length DtN. Despite having approximately
the same deviations in the local slip-length distribution, the velocities at y = 0 of the
analytical and numerical calculations agree very well in the case of water flowing over
an air-filled cavity, i.e. at high N, while in the reversed case, i.e. at low N, the relation
between the velocity curves resembles more that between the slip-length distributions
(figure 7c,d). This fact is also apparent from the flow solution (3.23), where the term
4DtN/(1 + 4DtN) governs the behaviour of the equation. If the order of magnitude of
DtN is large compared to unity, the flow field approaches the solution of Philip (1972),
which, in fact, is of circular form. The elliptic ansatz is thus especially good at large
DtN. In a way, this can be understood as a natural generalization of the flow over a
perfectly slipping interface. Hence, we conclude that the elliptic slip-length distribution
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FIGURE 7. (Colour online) Comparison of the analytical and numerical results at y = 0.
Normalized slip-length distribution (3.9) and (2.15): (a) water flowing over an air-filled cavity
(N ≈ 55.56); (b) air flowing over a water-filled cavity (N ≈ 0.02). Normalized velocity from
(3.21): (c) water on air; (d) air on water.

is a reasonable assumption, leading to a good agreement between analytical and
numerical calculations over a large range of parameters.

In all calculations, the interface between the two fluids was assumed to be flat. The
order of magnitude of the pressure exerted on the interface due to the shape of the
streamlines will not exceed 1p ∼ ρ (u|x=0,y=0)

2. This pressure could possibly lead to a
deformation of the interface creating a Laplace pressure of 1p = σ/r, with σ being
the interfacial tension and r the radius of curvature. Hence, it will always depend on
the specific combination of fluids investigated. However, assuming that the Reynolds
number Re< 1 as above, the deflection of an air–water interface with σ = 70 mN m−1

and b = 50 µm is less than 2 nm, showing that in characteristic cases the flow field
itself will not cause a significant interface deformation.

Flow over a cavity containing an immiscible fluid may occur in a variety of settings,
for example, in aerodynamics, when capillary condensation takes place in a groove on
a surface. Another special case is the flow over a superhydrophobic surface. It would
be interesting to generalize (3.23) to a periodic array of cavities and subsequently
to deduce an effective slip length for the entire surface. However, the calculation is
not straightforward and cannot easily be performed with the mathematical methods
employed in this paper. Therefore, we do not address such a calculation for now,
and leave it for further investigation. Nevertheless, the flow over a single cavity is
an important first step towards a description of the effective slip of a generalized
superhydrophobic surface with an arbitrary fluid filling the cavities.
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4. Longitudinal flow
We now address longitudinal shear flow over a cavity. The problem is

mathematically closely related to the transverse flow problem. For an infinitely long
cavity, the velocity w in the z direction is governed by the Laplace equation

∂2w

∂x2
+ ∂

2w

∂y2
= 0. (4.1)

The boundary conditions are equivalent to the transverse case, now applied to the
velocity component w, i.e.

w= Nγl(x)
∂w

∂y
for |x|< b

2
, y= 0, (4.2)

w= 0 for |x|> b

2
, y= 0. (4.3)

We can seek the solution to the above problem in terms of an analytic function
Wl(z). The subscript l stands for the longitudinal flow direction. By definition, both the
real and imaginary parts of Wl(z) fulfil the Laplace equation independently, hence we
choose

w= Im(Wl(z)). (4.4)

This leads to the boundary conditions

Im(Wl)= Nγl(x)Re(W ′l ) for |x|< b

2
, y= 0, (4.5)

Im(Wl)= 0 for |x|> b

2
, y= 0, (4.6)

and the condition for the stress at infinity,

Re(W ′l )=
τ∞
η1

for y→∞. (4.7)

Obviously, the structure of this boundary value problem is identical to the transverse
case (3.7) and (3.8). The function Wl(z) is directly related to Wt(z), since both are
analytic and obey boundary conditions differing only by constant factors. Goursat’s
theorem can therefore also be understood as a relation between the transverse and the
longitudinal flows.

Thus, the solution process for the longitudinal case follows exactly the procedure
outlined above. This calculation (for intermediate steps see the Appendix) leads to a
velocity

w= τ∞
η1

1
1+ 2DlN

(
y+ 2DlN Im

√
(x+ iy)2−1

4
b2

)
. (4.8)

The velocity isolines corresponding to several viscosity ratios and the same cavity
geometry as in the previous section are shown in figure 8. Analogously, wp,max is the
maximum velocity at y = 0 for perfect slip. We observe the same flow-enhancing
effect for large N as for the transverse case. Still, velocities are higher for the
longitudinal flow, since wp,max = 2up,max . This is in accordance with previous results
(Philip 1972).
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FIGURE 8. Longitudinal flow velocity w/wp,max for Dl = 0.347 and varying viscosity ratio:
(a) N = 100; (b) N = 10; (c) N = 1; (d) N = 0.1.
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FIGURE 9. (Colour online) Comparison of the longitudinal velocity isolines calculated
analytically with (4.8) and numerically: (a) water flowing over an air-filled cavity (N ≈
55.56); (b) air flowing over a water-filled cavity (N ≈ 0.02). Note the different scales on the y
axis in the two panels.

With Dl being described by (2.16), the agreement between analytical and numerical
calculations is again excellent (figure 9). The behaviour of the solution at y = 0 is
analogous to that of the transverse flow.

5. Conclusions
In this paper, we have investigated the flow over a rectangular cavity that contains a

second immiscible fluid. Such a situation may arise in numerous practical applications,
for example, in situations in which a gas flows along along a rough surface with

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

57
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.577


392 C. Schönecker and S. Hardt

liquid-filled roughness features or when water flows along a superhydrophobic surface
with entrapped gas bubbles.

In the calculation, the cavity is modelled as a boundary condition to the outer
flow. The boundary condition appears in the form of a locally varying slip length,
the functional form of which was determined by referring to previous results from
lid-driven cavity flow. We derived the flow field complying with an elliptic slip-length
distribution over the cavity. Together with a heuristic model for the magnitude of
the local slip length, an analytical description of the flow over a cavity containing a
second immiscible fluid is obtained. Up to now, analytical expressions for the flow
field over such a cavity were known only for some limiting cases like a perfect
viscosity-free fluid filling the cavity or an infinitely deep cavity. We have been able to
formulate the problem in such a way that the flow over the cavity is directly related
to the cavity geometry and the viscosity of the cavity fluid. We studied the flow
in transverse and longitudinal directions. The two cases are connected via Goursat’s
theorem. The influence of the viscosity of the cavity medium on the outer flow
was demonstrated. Naturally, the deviations from the flow field obtained for a solid
wall are stronger for lower viscosity values. All results agree well with the known
limiting cases. The analytical results have been compared to numerical calculations.
The agreement between the two is extremely good.
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Appendix
The mixed boundary value problem

Im(Wl)= Nγl(x)Re(W ′l ) for |x|< b

2
, y= 0, (A 1)

Im(Wl)= 0 for |x|> b

2
, y= 0, (A 2)

Re(W ′l )=
τ∞
η1

for y→∞ (A 3)

is solved by the method of Sotkilava & Cherepanov (1974).
The auxiliary differential equation

Fl(z)=W ′l (z)−
1

2DlN

√
z2 − 1

4
b2

Wl(z) (A 4)

transforms the above problem to

Re(Fl(z))= 0 for |x|< b

2
, y= 0, (A 5)

Im(Fl(z))= 0 for |x|> b

2
, y= 0, (A 6)

Re(Fl(z))= τ∞
η1

(
1− 1

2DlN

)
for y→∞. (A 7)
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The solution for Fl(z) is given by the homogeneous part of the Keldysh–Sedov
formula (3.15). Determining the coefficients according to the boundary conditions
yields

Fl(z)= τ∞
η1

(
1− 1

2DlN

)
z√

z2 − 1
4

b2

. (A 8)

Equation (A 4) can then be solved to give

Wl(z)= τ∞
η1

z+ 2DlN

√
z2 − 1

4
b2

1+ 2DlN
. (A 9)
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condensation of water at crack tips in fused silica glass. J. Non-Cryst. Solids 354, 564–568.
COTTIN-BIZONNE, C., BARENTIN, C., CHARLAIX, É. , BOCQUET, L. & BARRAT, J. L. 2004
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P. Sagaut), Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 110,
pp. 191–197. Springer.

KARNIADAKIS, G., BESKOK, A. & ALURU, N. 2005 Microflows and Nanoflows. Springer.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

57
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.577


394 C. Schönecker and S. Hardt

KELDYSH, M. & SEDOV, L. 1937 Sur la solution effective de quelques problèmes limites pour les
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