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APPROXIMATION OF EXCESSIVE BACKLOG
PROBABILITIES OF TWO TANDEM QUEUES

ALI DEVIN SEZER,∗ Middle East Technical University

Abstract

Let X be the constrained random walk on Z
2+ having increments (1, 0), (−1, 1), and

(0, −1) with respective probabilities λ, μ1, and μ2 representing the lengths of two tandem
queues. We assume that X is stable and μ1 �= μ2. Let τn be the first time when
the sum of the components of X equals n. Let Y be the constrained random walk on
Z × Z+ having increments (−1, 0), (1, 1), and (0, −1) with probabilities λ, μ1, and μ2.
Let τ be the first time that the components of Y are equal to each other. We prove that
Pn−xn(1),xn(2)(τ < ∞) approximates pn(xn) with relative error exponentially decaying
in n for xn = �nx�, x ∈ R

2+, 0 < x(1) + x(2) < 1, x(1) > 0. An affine transformation
moving the origin to the point (n, 0) and letting n → ∞ connect the X and Y processes.
We use a linear combination of basis functions constructed from single and conjugate
points on a characteristic surface associated with X to derive a simple expression for
Py(τ < ∞) in terms of the utilization rates of the nodes. The proof that the relative
error decays exponentially in n uses a sequence of subsolutions of a related Hamilton–
Jacobi–Bellman equation on a manifold consisting of three copies of R

2+ glued to each
other along the constraining boundaries. We indicate how the ideas of the paper can be
generalized to more general processes and other exit boundaries.
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exit time; harmonic system
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1. Introduction and definitions

Let X be a random walk with independent and identically distributed (i.i.d.) increments
{I1, I2, I3, . . .}, constrained to remain in Z

2+, i.e.

X0 = x ∈ Z
2+, Xk+1

.= Xk + π(Xk, Ik), k = 1, 2, 3, . . . ,

Ik ∈ {(1, 0), (−1, 1), (0, −1)}, π(x, v)
.=

{
v if x + v ∈ Z

2+,

0 otherwise,

P(Ik = (1, 0)) = λ, P(Ik = (−1, 1)) = μ1, P(Ik = (0, −1)) = μ2.

Let ∂i
.= {x ∈ Z

2 : x(i) = 0}, i = 1, 2, denote the constraining boundaries of the process
and let σi

.= inf{k : Xk ∈ ∂i}, i = 1, 2, denote the first time that X hits these boundaries.
The components of X represent the number of customers at jump times of a Jackson network
consisting of two tandem queues.

Received 23 June 2016; revision received 26 June 2018.
∗ Postal address: Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey.
Email address: devin.sezer@gmail.com

968

https://doi.org/10.1017/jpr.2018.60 Published online by Cambridge University Press

http://www.appliedprobability.org
mailto:devin.sezer@gmail.com?subject=J. Appl. Prob.%20paper%2016299
https://doi.org/10.1017/jpr.2018.60


Excessive backlog probabilities of two tandem queues 969

We assume that X is stable, i.e. λ < μ1, μ2. We also assume that μ1 �= μ2; see Subsec-
tion 7.1 for a discussion on the μ1 = μ2 case. Define

An = {x ∈ Z
2+ : x(1) + x(2) ≤ n}

and its boundary
∂An = {x ∈ Z

2+ : x(1) + x(2) = n}.
Let τn be the first time that X hits ∂An, i.e.

τn
.= inf{k ≥ 0 : Xk ∈ ∂An}, n ≥ 0. (1)

The set An models a system-wide shared buffer of size n. One can change An to model other
buffer structures, e.g. {x ∈ Z

2+ : x(i) ≤ n, i = 1, 2}, but for the purposes of this paper we will
confine ourselves to An as defined above. For comments on generalizations, see Section 7. Our
aim is to develop an approximation formula for the probability pn(x)

.= Px(τn < τ0), i.e. the
probability that, starting from an initial state x ∈ An, the total number of customers in the system
reaches n before the system empties. If we measure time in the number of independent cycles
that restart each time X hits 0, pn is the probability that the current cycle finishes successfully
(i.e. without a buffer overflow). Knowledge of how to compute pn can be useful in computing
other performance measures, e.g. the expected number of cycles before failure or the expected
cost of operating the system modeled by X. These make pn a natural and useful measure of
reliability. Despite the considerable attention that the analysis of probabilities such as pn has
received over the years (see the literature review below), to the best of the author’s knowledge,
sharp approximation results do not exist in the current literature; the difficulty arises from the
multi-dimensionality of the problem and the constraining boundaries of the process. For this
reason, we focus on one of the simplest two-dimensional constrained random walks: the tandem
walk above. We expect the basic ideas of the paper to apply to more general models than the
two-dimensional tandem walk, we comment on these in Section 7; Subsection 7.5 contains
connections to the analysis of random perturbations of stable dynamical systems.

Since X is a Markov process, pn, as a function of the initial point x, satisfies a system of linear
equations; see (12). Since the number of unknowns grows as n2, the resource requirements for
an exact or numerical solution for this system becomes nontrivial for even moderate n (e.g. for
n = 1000, a system will have half a million unknowns). For larger networks (for d nodes, the
number of unknowns grows as nd ) this point is more pronounced. Therefore, more efficient
approximation techniques are of interest. We develop the following approximation equation
for pn. Let Y be the random walk on Z×Z+ having increments (−1, 0), (1, 1), and (0, −1) with
respective probabilities λ, μ1, and μ2, constrained to be positive only on its second component.
Let τ be the first time that the components of Y equal each other (the relation between X and Y

is explained in the paragraphs below). In Section 3 we derive the following explicit formula:

Py(τ < ∞) = W(y)
.=

(
ρ

y(1)−y(2)
2 − μ2 − λ

μ2 − μ1
ρ

y(1)−y(2)
2 ρ

y(2)
1

)
+ μ2 − λ

μ2 − μ1
ρ

y(1)
1 , (2)

ρi
.= λ/μi , y ∈ Z

2+, y(1) > y(2). Fix x ∈ {x ∈ R
2+ : 0 < x(1) + x(2) < 1} and define xn =

�nx�. In Section 4 we show that W(n − xn(1), xn(2)) approximates pn(xn) with relative error
exponentially vanishing in n (see Proposition 8). In the following paragraphs we summarize
the analysis behind the results stated above.

When X is stable (as we have assumed) and when the initial position X0 = x is away
from the exit boundary ∂An, the event {τn < τ0} rarely happens and its probability pn decays
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exponentially with buffer size n. The classical approximation technique to approximate small
probabilities such as pn is large deviations (LD) analysis, which identifies the exponential decay
rate of pn. To put our approach into context, we summarize the ideas involved in LD analysis.
Note that pn itself decays to 0, which is trivial. To obtain a nontrivial limit transform pn to
Vn

.= −(1/n) log pn, using convex duality we can write the − log of an expectation as an
optimization problem involving the relative entropy function (see [12]) and, thus, Vn can be
interpreted as the value function of a discrete-time stochastic optimal control problem. The LD
analysis consists of the law of large numbers limit analysis of this control problem; the limit
problem is a deterministic optimal control problem whose value function satisfies a first-order
Hamilton–Jacobi–Bellman (HJB) equation (see (38) in Section 4). Thus, LD analysis amounts
to the computation of the limit of a convex transformation of the problem.

We use another (affine) transformation of X for the limit analysis. The proposed transfor-
mation is very simple: observe X from the exit boundary. For the two tandem walk, the most
natural vantage point on the exit boundary ∂An turns out to be the corner (n, 0). Therefore, we
transform the process thus

Yn .= Tn(X), Tn : R
2 → R

2, Tn(x)
.= y, y(2) = x(2), y(1) = n − x(1);

see Figure 1. The transformation Tn is affine and its inverse is equal to itself. The process Yn,
i.e. the process X as observed from the corner (n, 0) is a constrained process on the domain
�n

Y

.= (n − Z+) × Z+. The transformation Tn maps the set An to Bn ⊂ �n
Y , Bn

.= Tn(An), the
corner (n, 0) to the origin of �n

Y , the exit boundary ∂An to ∂Bn
.= {y ∈ �n

Y , y(1) = y(2)}, and
finally the constraining boundary {x ∈ Z

2+, x(1) = 0} to {y ∈ Z
2+ : y(1) = n}. As n → ∞, the

last boundary vanishes and Yn converges to the limit process Y on the domain �Y
.= Z × Z+

and the set Bn to B
.= {y ∈ �Y , y(1) ≥ y(2)}. The exit boundary for the limit problem is

∂B = {y ∈ �Y , y(1) = y(2)}, and the limit stopping time

τ
.= inf{k ≥ 0 : Yk ∈ ∂B}

is the first time Y hits ∂B.
The stability of X and the vanishing of the boundary constraint on ∂1 implies that Y is

unstable/ transient, i.e. with probability 1 it wanders off to ∞. Therefore, in our formulation,
the limit process is an unstable constrained random walk in the same space and time scale as
the original process but with fewer constraints, and the limit problem amounts to whether this
unstable process ever hits the fixed boundary ∂B.

∂B∂Bn

Yn

nen

∂An

X

nen 0

Tn n → ∞
Y

Figure 1: The transformation Tn.
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Fix an initial point y ∈ B in the new coordinates; our first convergence result is Proposi-
tion 1, i.e.

pn = Pxn(τn < τ0) → Py(τ < ∞), (3)

where xn = Tn(y). The proof uses the law of large numbers and LD lower bounds to show
that the difference between the two sides of (3) vanishes with n. With (3) we see that the
limit problem in our formulation is to compute the hitting probability of the unstable Y to the
boundary ∂B.

The convergence statement (3) involves a fixed initial condition for the process Y . In classical
LD analysis, one specifies the initial point in scaled coordinates as follows: xn = �nx� ∈ An

for x ∈ R
d+. Then the initial condition for the Yn process is yn = Tn(xn) (i.e. we do not fix

the y coordinate but the scaled x coordinate). When xn is defined in this way, (3) becomes a
trivial statement since both sides decay to 0. For this reason, Section 4 is devoted to the study
of the relative error

|Pxn(τn < τ0) − Pyn(τ < ∞)|
Pxn(τn < τ0)

; (4)

in Proposition 8 we see that this error converges exponentially to 0 for the case of the two-
dimensional tandem walk (i.e. the process X in Figure 1). The proof relies on showing that the
probability of the intersection of the events {τn < τ0} and {τ < ∞} dominates the probabilities
of both as n → ∞. For this we calculate bounds in Proposition 10 on the LD decay rates of
the probability of the differences between these events using a sequence of subsolutions of an
HJB equation on a manifold; the manifold consists of three copies of R

2+, the zeroth copy glued
to the first along ∂1, and the first to the second along ∂2, where ∂i = {x ∈ R

2+ : x(i) = 0}.
Extension of this argument to more complex processes and domains remains for future work.

The convergence results (3) and (4) reduce the problem of calculating Px(τn < τ0) to that
of Py(τ < ∞). This constitutes the first step of our analysis and we expect it to apply more
generally; see Subsection 7.4.

In Section 3 we apply the principle of superposition of classical linear analysis to the
computation of Py(τ < ∞). The key for its application is to construct the right class of
efficiently computable basis functions to be superposed. The construction of our basis functions
is as follows. The distribution of the increments of Y is used to define the characteristic
polynomial p : C

2 → C. We can represent p both as a rational function and as a polynomial.
We call the 1-level set of p, the characteristic surface of Y and denote it by H ; see (17). The
1-level H is, more precisely, a one-dimensional complex affine algebraic variety of degree 3.
Each point on the characteristic surface H defines a log-linear function (see Proposition 2)
that satisfies the interior harmonicity condition of Y (i.e. defines a harmonic function of the
completely unconstrained version of Y ); similarly, each boundary of the state space of Y

has an associated characteristic polynomial and surface. We can write p as a second-order
polynomial in each of its arguments; this implies that most points on H come in conjugate
pairs. The keystone of the approach developed in Section 3 is the following observation: log-
linear functions defined by two conjugate points on H can be linearly combined to obtain
nontrivial functions which satisfy the corresponding boundary harmonicity condition (as well
as the interior one); see Figure 2 and Proposition 4. In Subsection 3.3 we present a graph
representation of the constructed Y -harmonic functions.

There is a direct connection between our computations and the Balayage operator in [46];
we point out this connection in Subsection 3.4, Remark 2. In Section 5 we provide a numerical
example. In the conclusion (Section 7) we discuss several directions for future research.
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Among these is the application of our approach to constrained diffusion processes and the
associated elliptic equations with Neumann boundary conditions (Subsection 7.2).

There is a wide literature on the approximation of pn and similar quantities. Glasserman and
Kou [23] and Ignatiouk-Robert [27] computed the large deviation limit of pn(x) for x = (1, 0) as

lim
n→∞ −1

n
log pn((1, 0)) = min(− log ρ1, − log ρ2),

where ρi = λ/μi . Since pn is a small probability, i.e. the probability of a rare event, a natural
idea is to use importance sampling (IS) to approximate it via simulation. To the best of the
author’s knowledge, Parekh and Walrand [45] were the first to study the optimal IS simulation of
the two tandem walk model for the boundary ∂An; it was observed that static changes of measure
implied by optimal large deviation sample paths may not lead to optimal IS changes of measure
because of the constraining boundaries of the process. The authors introduced boundary layers
to the problem and allowed the change of measure to depend on whether the process is in these
layers. Glasserman and Kou [23] observed that a simple change of measure implied by LD
analysis (exchange the arrival rate with the smaller of the service rates) can perform poorly for the
exit boundary ∂An = {x : x(1)+x(2) = n} for a range of parameter values. An asymptotically
optimal change of measure for this boundary was developed by Dupius et al. [18] using a
subsolution of a limit HJB equation; similar to the heuristic constructions in [45], the change
of measure developed in [18] is dynamic, i.e. it depends on the position of the process X;
see [16], [17], [52], and [54] for studies in higher dimensions, more general dynamics, and
different exit boundaries using the subsolution approach. Let τ0

.= inf{k > 0 : Xk = 0}, i.e. τ0
is the first return time to the origin. McDonald [39] proposed an alternative approximation
approach to probabilities of the type P0(τn < τ0) for a class of models under a number of
assumptions; the approximation idea in [39] is to replace τ0 with τ�, and the initial position
0 ∈ Z

d+ with a random initial point on � with distribution π�, where � are the constraining
boundaries corresponding to a set of ‘nonsuper-stable’ nodes, τ� is the first nonzero time when
one of these nodes becomes empty, and π� is the stationary measure of the underlying process
conditioned on �; McDonald [39] and its approach are further reviewed in Section 6. Literature
on the analysis and simulation of rare events of constrained random walks in particular, and
on the analysis of constrained random walks in general, is vast; see, e.g. [1], [3]–[6], [8]–[11],
[13], [14], [16], [17], [20], [21], [25], [28]–[30], [32], [33], [35]–[45], [47], [53], [54], [57], see
also [2, Chapter VI], [26, Chapter 11], and [49] for further references. In Section 6 we review
a number of the works listed above in relation to the results and the techniques in this paper.

2. Derivation of the limit problem

In this section we derive the limit problem resulting from the affine transformation Tn.
The derivation is simple enough and we therefore state it for a more general setup: for
the purposes of the present section we assume X to be the embedded random walk of a
d-dimensional stable Jackson network; let, as before, Ik denote the unconstrained i.i.d. in-
crements of X. Define

�1 ∈ R
d×d , �1(j, k) = 0, j �= k, �1(j, j) = 1, j �= 1, �1(1, 1) = −1,

where �1 is the identity operator on R
d except that its first diagonal term is −1 rather than 1.

The affine change of the coordinate map is

Tn = ne1 + �1,
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where e1
.= (1, 0, 0, . . . , 0) ∈ R

d . Define the sequence of transformed increments

Jk
.= �1(Ik).

The domain of the limit Y process is �Y = Z × Z
d−1+ and the limit process has dynamics

Yk+1 = Yk + π1(Yk, Jk),

where

π1(x, v)
.=

{
v if x + v ∈ �Y ,

0 otherwise.

Let An = {x ∈ Z
d+ : x(1) + x(2) + · · · + x(d) ≤ n} and τn be the first time that X hits

∂An = {x ∈ Z
d+ : x(1) + x(2) + · · · + x(d) = n}. The limit exit boundary is ∂B = {y ∈

�Y , y(1) ≥ ∑d
i=2y(i)} and τ is the first time that Y hits ∂B. Set ∂1 = {z ∈ Z

d : z(1) = 0}
with σ1 being the first time that X hits ∂1.

Denote by X the law of large numbers limit of X, i.e. the deterministic function satisfying

lim
n

Pxn

(
sup

k≤t0n

∣∣∣∣Xk

n
− Xk/n

∣∣∣∣ > δ

)
= 0 for any δ > 0, t0 > 0, (5)

where xn ∈ Z
d+ is a sequence of initial positions satisfying xn/n → χ ∈ R

d+; see, e.g. [48,
Proposition 9.5] or [7, Theorem 7.23]. The limit process starts from X0 = χ , is piecewise affine,
and takes values in R

d+; then st
.= ∑d

i=1Xt (i) starts from
∑

iχ(i) and is also piecewise linear
and continuous (and therefore differentiable except for a finite number of points) with values
in R+. The stability and bounded i.i.d. increments of X imply that s is strictly decreasing and

c1 > −ṡ > c0 > 0 for two constants c1 and c0. (6)

These imply that X goes in finite time t1 to 0 ∈ R
d+ and remains there afterward.

Fix an initial point y ∈ �Y for the process Y and set xn = Tn(y); it follows from the
definition of Tn that

xn

n
→ e1

.= (1, 0, 0, . . . , 0) ∈ R
d . (7)

Proposition 1. Let y and xn be as above. Then

lim
n→∞ Pxn(τn < τ0) = Py(τ < ∞).

Proof. Note that xn ∈ An for n > y(1). Define

Mk = max
l≤k

Yl(1), MX
k = min

l≤k
Xl(1).

The process M is increasing and Mτ is the greatest that the first component of Y becomes before
hitting ∂B (if this happens in finite time). The monotone convergence theorem implies that

Py(τ < ∞) = lim
n↗∞ Py(τ < ∞, Mτ < n).

Thus,
Py(τ < ∞) = Py(τ < ∞, Mτ < n) + Py(τ < ∞, Mτ ≥ n) (8)

and the second term goes to 0 with n. Decomposing Pxn(τn < τ0) similarly using MX yields

Pxn(τn < τ0) = Pxn(τn < τ0, M
X
τn

> 0) + Pxn(τn < τ0, M
X
τn

= 0).
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On the set {MX
τn

> 0}, the process X cannot reach the boundary ∂1 before τn; therefore, over
this set:

• the events {τn < τ0} and {τ < ∞} coincide (recall that X and Y are defined on the same
probability space);

• the distribution of (Tn(X), n − MX) is the same as that of (Y, M) up to time τn.

Therefore, this is equal to

Py(τ < ∞, Mτ < n) + Pxn(τn < τ0, M
X
τn

= 0).

The first term on the right-hand side is equal to the first term on the right-hand side of (8).
We know that the second term in (8) goes to 0 with n. Then to complete our proof, it suffices
to show that

lim
n

Pxn(τn < τ0, M
X
τn

= 0) = 0, (9)

where MX
τn

= 0 means that X has hit ∂1 before τn. Then the last probability is equal to

Pxn(σ1 < τn < τ0), (10)

which, we will now argue, goes to 0 (σ1 is the first time X hits ∂1); (7) implies X0 = e1. Define
t1 .= inf{t : Xt (1) = 0} and t0 .= inf{t : Xt = 0 ∈ R

d}. By definition, t1 ≤ t0 < ∞. Now
choose t0 in (5) to be equal to t0, define Cn

.= {supk≤t0n ∈ |Xk/n − Xk/n| > δ}, and partition
(10) with Cn, i.e.

Pxn(σ1 < τn < τ0) = Pxn({σ1 < τn < τ0} ∩ Cn) + Pxn({σ1 < τn < τ0} ∩ Cc
n). (11)

The first of these goes to 0 by (5). The event in the second term behaves as follows: X remains
at most nδ distance away from nX until its nt0th step, hits ∂1 then ∂An and then 0. These
and (6) imply that, for large enough n, any sample path lying in this event can hit ∂An only
after time nt0. Thus, the second probability on the right-hand side of (11) is bounded above by

Pxn({nt0 < τn < τ0} ∩ Cc
n).

The Markov property of X, {σ1 < τn < τ0} ⊂ {τn < τ0}, and (5) imply that the last probability
is less than ∑

x : |x|≤nδ

Px(τn < τ0)Pxn(Xnt0 = x).

For |x| ≤ nδ, the probability Px(τn < τ0) decays exponentially in n (see [23, Theorem 2.3]);
then, the above sum goes to 0. This establishes (9) and completes the proof. �

3. Analysis of the limit problem

In this section and the rest of the paper we will focus on the two tandem queue process and
its limit defined in Section 1. The analysis in the previous section suggests that we approximate

Px(τn < τ0)

with PTn(x)(τ < ∞) = ETn(x)[1{τ<∞}].
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Excessive backlog probabilities of two tandem queues 975

The goal of this section is to develop a framework in which we will derive the following
explicit formula for Py(τ < ∞):

Py(τ < ∞) =
(

ρ
y(1)−y(2)
2 − μ2 − λ

μ2 − μ1
ρ

y(1)−y(2)
2 ρ

y(2)
1

)
+ μ2 − λ

μ2 − μ1
ρ

y(1)
1 ,

y ∈ Z
2+, y(1) ≥ y(2) (recall that we have assumed μ1 �= μ2; for the μ1 = μ2 case, see

Subsection 7.1); the proof of this equation is the final result (Proposition 7) of this section.
It follows from the Markov property of Y that y �→ Py(τ < ∞) is a harmonic function of Y

(or Y -harmonic), i.e. it satisfies

V (y) = Ey[V (Y1)] =
∑
v∈V

V (y + π1(y, v))p(v), y ∈ B, (12)

where

V
.= {(−1, 0), (1, 1), (0, −1)},

π1(x, v)
.=

{
v if x + v ∈ Z × Z+,

0 otherwise.
(13)

Then Py(τ < ∞) = 1 for y ∈ ∂B implies that y �→ Py(τ < ∞) also satisfies the boundary
condition

V |∂B = 1. (14)

A Y -harmonic function h is said to be ∂B-determined if it is of the form

h(y) = E[f (Yτ )1{τ<∞}], y ∈ Z × Z+, y(1) ≥ y(2).

By definition, y �→ Py(τ < ∞) is ∂B-determined. Then y �→ Py(τ < ∞) is the unique
∂B-determined solution of (12) and (14).

Let Z denote the ordinary unconstrained random walk on Z
2 with the same increments as Y .

The unconstrained version of (12) is

V (z) = Ez[V (Z1)] =
∑
v∈V

V (z + v)p(v), z ∈ Z
2. (15)

A function is said to be a harmonic function of the unconstrained random walk Z if it satis-
fies (15).

Our approach to solving (12) and (14) (and, hence, obtaining a formula for Py(τ < ∞)) is
as follows.

1. Construct a class FY of ‘simple’harmonic functions for the process Y (a class of solutions
to (12)), i.e.

(a) construct a class FZ of harmonic functions for the unconstrained process Z of the
form z �→ βz(1)−z(2)αz(2), (β, α) ∈ C

2;

(b) use linear combinations of elements of FZ to find solutions to (12).

2. Represent the boundary condition (14) by linear combinations of the boundary values of
the ∂B-determined members of the class FY .

The definition of the class FZ is as in (20) and that of FY is as in (29).
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We first remark on uniqueness. We have assumed that X is stable. This implies that Yτ∧k,

k = 1, 2, 3, . . . , is unstable and, therefore, the Martin boundary of this process has points at ∞.
Then, one cannot expect all harmonic functions of Y to be ∂B-determined and the system in
(12) and (14) will therefore not have a unique solution. In particular, the constant function
j (y) = 1 solves this system but, as we will see below, j is not ∂B-determined. Hence, once
we obtain a solution to (12) and (14) that we believe to be equal to Py(τ < ∞), we will then
have to prove that it is ∂B-determined.

3.1. Characteristic polynomial and surface

Denote

p(β, α)
.=

∑
v∈V

p(v)βv(1)−v(2)αv(2) = λ
1

β
+ μ1α + μ2

β

α
, (β, α) ∈ C

2, (16)

the interior characteristic polynomial of the process Y ,

p(β, α) = 1

the interior characteristic equation of Y , and

H
.= {(β, α) : p(β, α) = 1} (17)

the interior characteristic surface of Y . We borrow the adjective ‘characteristic’ from the
classical theory of linear ordinary differential equations; the development below parallels that
theory. Note that p is a rational function not a polynomial, but it obviously becomes polynomial
in α (respectively, β) when multiplied by β (respectively, α) or a polynomial in β and α when
multiplied by βα; these polynomial representations are useful when we solve p(β, α) = 1,
but the rational representation is simpler. For this reason, we use the rational representation
whenever possible and switch to the polynomial representations when needed.

In Figure 2 we present a representation of the real section of the characteristic surface of the
walk for λ = 0.1, μ1 = 0.5, and μ2 = 0.4. The characteristic surface H is an affine algebraic
curve of degree 3; see [24, Definition 8.1, p. 32]. The characteristic equation p = 1 becomes a
quadratic equation in α when it is multiplied by α; the discriminant of this quadratic equation is


(β) =
(

λ

β
− 1

)2

− 4μ1μ2β.

Therefore, for β ∈ C, 
(β) �= 0, and β �= 0, points on H come in conjugate pairs (β, α1) and
(β, α2) satisfying

αi = 1

α3−i

μ2β

μ1
, i ∈ {1, 2}. (18)

These conjugate pairs are central to the construction ofY -harmonic functions in Subsection 3.2.2
below.

Any point on H defines a harmonic function of Z as we now show.

Proposition 2. For any (β, α) ∈ H , z �→ βz(1)−z(2)αz(2), z ∈ Z
2, is a harmonic function of Z;

in particular, it satisfies (12) for y ∈ Z
2, y(1), y(2) > 0.

Proof. Condition Z on its first step and use p(β, α) = 1. �
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For (β, α) ∈ C
2, define

[(β, α), ·] : Z
2 �→ C, [(β, α), z] .= βz(1)−z(2)αz(2). (19)

The last proposition yields the class of harmonic functions

FZ
.= {[(β, α), ·], (β, α) ∈ H} for Z. (20)

3.2. log-linear harmonic functions of Y

Define Bo .= {y ∈ Z
2+, y(1) > y(2)}. We write (12) separately for the boundary ∂2 and the

interior Bo − ∂2, i.e.

V (y) =
∑
v∈V

V (y + v)p(v), y ∈ Bo − ∂2, (21)

V (y) = V (y)μ2 +
∑

v∈V, v(2)�=−1

V (y + v)p(v), y ∈ ∂2 ∩ Bo. (22)

Any g ∈ FZ satisfies (21) (since (21) is the restriction of (15) to Bo − ∂2); (21) is linear
and so any finite linear combination of members of FZ continues to satisfy (21). In the next
two subsections we will show that appropriate linear combinations of members of FZ will also
satisfy the boundary condition (22), and define harmonic functions of the constrained process Y .

3.2.1. A Y -harmonic function defined by a single point on H . Recall that members of FZ are
of the form [(β, α), ·] : z → βz(1)−z(2)αz(2) and (β, α) ∈ H ; these define harmonic functions
for Z and they therefore satisfy (21). The simplest way to construct a Y -harmonic function is
to look for [(β, α), ·] which satisfies (12), i.e. which satisfies (21) and (22) at the same time.
Substituting [(β, α), ·] into (22), we see that it is a solution to (22) if and only if (β, α) ∈ H
also satisfies

p2(β, α) = 1, (23)

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

α

β

Figure 2: The real section of the characteristic surface H for λ = 0.1, μ1 = 0.5, and μ2 = 0.4;
the end points of the dashed line are an example of a pair of conjugate points (β, α1) and (β, α2);
together they define the Y -harmonic function hβ(y) = βy(1)−y(2)(C(β, α2)α

y(2)
1 − C(β, α1)α

y(2)
2 ); see

Proposition 4. Each horizontal line intersecting the curve H twice gives a pair of conjugate points defining
a Y -harmonic function.
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where

p2(β, α)
.=

∑
v∈V, v(2)�=−1

p(v)βv(1)−v(2)αv(2) + μ2 = λ
1

β
+ μ1α + μ2,

noting that

p2(β, α) = p(β, α) − μ2

(
β

α
− 1

)
. (24)

We call (23) ‘the characteristic equation of Y on ∂2’ and p2 its characteristic polynomial on
the same boundary. Define the boundary characteristic surface of Y for ∂2 as

H2
.= {(β, α) ∈ C

2 : p2(β, α) = 1}.
For [(β, α), ·] to be Y -harmonic, (β, α) must lie on

H ∩ H2 = {(0, 0), (1, 1), (ρ1, ρ1)} ⊂ C
2;

the last of these points yields our first nontrivial Y -harmonic function as we now show.

Proposition 3. The function

[(ρ1, ρ1), ·] : y �→ ρ
y(1)−y(2)
1 ρ

y(2)
1 = ρ

y(1)
1 is Y -harmonic.

Proof. The fact that [(ρ1, ρ1), ·] satisfies (21) follows from the Markov property of Y and
(ρ1, ρ1) ∈ H , and that [(ρ1, ρ1), ·] satisfies (22) follows from the Markov property of Y and
(ρ1, ρ1) ∈ H2. �
3.2.2. Y -harmonic functions via conjugate points. Define the boundary operator D2 acting on
functions on Z

2 and giving functions on ∂2, i.e.

D2V = g, V : Z
2 → C,

g(y, 0)
.= (μ2 + λV (y − 1, 0) + μ1V (y + 1, 1)) − V (y, 0), y ∈ Z;

D2 is the difference between the left- and the right-hand sides of (22) and indicates how much V

deviates from being Y -harmonic along the boundary ∂2 as we now demonstrate.

Lemma 1. It holds that D2V = 0 if and only if V is Y -harmonic on ∂2.

The proof follows from the definitions involved. For (β, α) ∈ C
2 and β, α �= 0,

[D2([(β, α), ·])](y, 0) = (p2(β, α) − 1)βy,

where the left-hand side denotes the value of the function D2([(β, α), ·]) at (y, 0), y ∈ Z.
By definition, p(β, α) = 1 for (β, α) ∈ H ; this and the last display and (24) imply that

[D2([(β, α), ·])](y, 0) = μ2

(
1 − β

α

)
βy (25)

if (β, α) ∈ H . One can write the function (y, 0) �→ βy as [(β, α), ·]|∂2 = [(β, 1), ·]|∂2 ; in
addition, define

C(β, α)
.= μ2

(
1 − β

α

)
. (26)

With these, (25) can be written as

D2([(β, α), ·]) = C(β, α)[(β, 1), ·]|∂2 . (27)
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The key observation here is that D2([(β, α), ·]) is a constant multiple of [(β, 1), ·]|∂2 . This and
the linearity of D2 imply that for α1 �= α2,

(β, α1), (β, α2) ∈ H ,

i.e. when (β, α1) and (β, α2) are conjugate points on H , [(β, α1), ·] and [(β, α2), ·] can be
linearly combined to cancel out each other’s value under D2. In the next proposition, we use
these conjugate pairs and the above argument to obtain new Y -harmonic functions.

Proposition 4. Assume that β ∈ C, and β �= 0 satisfies 
(β) �= 0. Then

hβ
.= C(β, α2)[(β, α1), ·] − C(β, α1)[(β, α2), ·] is Y -harmonic. (28)

Proof. By assumption, (β, α1) and (β, α2) are both on H and, therefore, [(β, α1), ·] and
[(β, α2), ·] are harmonic functions of Z. In particular, they both satisfy (21). Then their linear
combination hβ also satisfies (21), since (21) is linear in V . It remains to show that hβ is also
a solution to (22). Note that β �= 0 implies α1, α2 �= 0, 1. Then (27) implies that

D2(hβ) = C(β, α2)D2([(β, α1), ·]) − C(β, α1)D2([β, α2, ·])
= C(β, α2)C(β, α1)[(β, 1), ·]|∂2 − C(β, α1)C(β, α2)[(β, 1), ·]|∂2

= 0

and Lemma 1 implies that hβ satisfies (22). �

The function y �→ Py(τ < ∞) takes value 1 on ∂B. For this reason, the conjugate pair on H
most relevant to the computation of Py(τ < ∞) consists of (ρ2, 1) and (ρ2, ρ1); we illustrate
this pair in Figure 2. Then hρ2 , the Y -harmonic function defined by this pair, is equal to

hρ2(y) = C(ρ2, ρ1)[(ρ2, 1), y] − C(ρ2, 1)[(ρ2, ρ1), y],

which, by definitions (19) and (26), is equal to

(μ2 − μ1)ρ
y(1)−y(2)
2 − (μ2 − λ)ρ

y(1)−y(2)
2 ρ

y(2)
1 .

Note that the first term in the definition (2) of W is equal to (1/(μ2 − μ1))hρ2 .
With Proposition 4, we define our basic class of harmonic functions of Y as

FY
.= {hβ, β �= 0, 
(β) �= 0}. (29)

Members of FY consist of linear combinations of log-linear functions; with a slight abuse
of language, we will also refer to such functions as log-linear.

Remark 1. For the purposes of computing Py(τ < ∞) for the tandem network case treated
here, a single member of HY will suffice, i.e. hρ2 ; see Proposition 7. But HY is a family of
simple-to-compute Y -harmonic functions and they can be used to approximate other expecta-
tions or even Py(τ < ∞) when the underlying network is not tandem; see Remark 3.
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2
2

(β, α1)(ρ1, ρ1) (β, α2)

Figure 3: A graph representation of the Y -harmonic functions constructed in Propositions 3 and 4.

3.3. Graph representation of log-linear harmonic functions of Y

In Figure 3 we present a graph representation of the harmonic functions developed in the
last subsection. Each node in this figure represents a member of FZ . The edges represent
the boundary conditions; in this case there is only one ((22) of ∂2) and the edge label ‘2’
refers to ∂2. A self-connected vertex represents a member of FZ that also satisfies the ∂2
boundary condition (22), i.e. y �→ [(ρ1, ρ1), y] = ρ

y(1)
1 from Proposition 3; the graph on the

left represents exactly this function. The ‘2’ labeled edge on the right represents the conjugacy
relation (18) between α1 and α2, which allows these functions to be linearly combined to satisfy
the harmonicity condition of Y on ∂2.

We call the graphs shown in Figure 3, and the system of characteristic equations they
represent, a harmonic system. One can also define harmonic systems for d-dimensional
constrained random walks (see [55, Section 5]); these systems and their solutions play a key
role in the generalization of the analysis of this section to higher dimensions.

3.4. ∂B-determined harmonic functions of Y

In Subsections 3.2.1 and 3.2.2 we constructed classes of Y -harmonic functions. For the
purpose of computing Py(τ < ∞), y ∈ B, we need ∂B-determined Y -harmonic functions.
In Proposition 5 we derive simple conditions that allow us to check whether a member of FY

is ∂B-determined. In this regard, the following fact are useful.

Lemma 2. Define
ζn

.= inf{k : Yk(1) = Yk(2) + n}.
For y ∈ Z

2+, 0 ≤ y(1) − y(2) ≤ n,

Py(ζn ∧ ζ0 = ∞) = 0.

Proof. The proof follows from the fact that when in C = {y ∈ Z
2+, y(2) ≤ y(1) ≤ y(2)+n},

the process Y hits ∂C = {y ∈ Z
2+ : y(1) − y(2) = n or (1) = y(2)} in at most n steps with

probability greater than λn. For a detailed version of this argument, we refer the reader to the
proof of [55, Proposition 2.2]. �
Proposition 5. Let α1, α2, and β be as in Proposition 4. If

|β| < 1, |α1|, |α2| ≤ 1 (30)

then hβ of (28) is ∂B-determined.

Proof. By Proposition 4, hβ is Y -harmonic; (30) and its definition (28) imply that hβ is also
bounded on Bo. Then Mk = hβ(Yτ∧ζn∧k) is a bounded martingale. This, Proposition 2, and
the optional sampling theorem imply that

hβ(y) = Ey[hβ(Yτ )1{τ<ζn}] + Ey[hβ(Yζn)1{ζn≤τ }], y ∈ Bo, (31)
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with Yζn(1) = n for τ > ζn. This and (30) imply that

lim
n→∞ Ey[hβ(Yζn)1{ζn≤τ }] ≤ lim

n→∞ βn = 0.

Thus, limn ζn = ∞ and letting n → ∞ in (31) yields

hβ(y) = Ey[hβ(Yτ )1{τ<∞}],
i.e. hβ is ∂B-determined. �

In addition, we have the following result.

Proposition 6. The Y -harmonic function [(ρ1, ρ1), ·] of Proposition 3 is ∂B-determined.

Proof. The proof is identical to that of Proposition 5 and follows from 0 ≤ [(ρ1, ρ1), y] ≤ 1
for y ∈ B and the Y -harmonicity of [(ρ1, ρ1), ·]. �

Proposition 5 rests on condition (30); we refer the reader to [55, Section 4], in particular to
Proposition 4.13 in which the conditions for (30) to hold in the context of general two-node
Jackson networks were derived. For the purpose of computing y �→ Py(τ < ∞), we need only
to consider the point (ρ1, ρ1) and the conjugate pair (ρ2, 1) and (ρ2, ρ1); it is trivial to check
the conditions in (30) for these points. This brings us to the main result of this section.

Proposition 7. Under the stability assumption λ < μ1, μ2, hρ2 is ∂B-determined and we have

Py(τ < ∞) = W(y) = 1

C(ρ2, ρ1)
hρ2(y) + C(ρ2, 1)

C(ρ2, ρ1)
[(ρ1, ρ1), y], y ∈ B.

Definitions (19) and (26) yield the following expanded formula for W :

W(y) = 1

C(ρ2, ρ1)
hρ2(y) + C(ρ2, 1)

C(ρ2, ρ1)
[(ρ1, ρ1), y]

=
(

ρ
y(1)−y(2)
2 + μ2 − λ

μ1 − μ2
ρ

y(1)−y(2)
2 ρ

y(2)
1

)
+ μ2 − λ

μ2 − μ1
ρ

y(1)
1 ,

which is the one given in (2).

Proof. The conjugate points on H for β = ρ2 are (ρ2, 1) and (ρ2, ρ1); the stability
assumptionλ < μ1, μ2 implies that both these points satisfy (30). It follows from Propositions 4
and 5 that hρ2 is a ∂B-determined Y -harmonic function; similarly, it follows from Propositions 3
and 6 that [(ρ1, ρ1), ·] is a ∂B-determined Y -harmonic function. It follows that their linear
combination W is also ∂B-determined and Y -harmonic, i.e.

W(y) = Ey[1{τ<∞}W(Yτ )].
However, W(y) = 1 on ∂B; therefore, this is equal to

Py(τ < ∞). �

Remark 2. The Balayage operator T (see [46, p. 25]) for the set ∂B is the operator mapping
a function f on ∂B to the Y -harmonic function g on B, defined as:

T : f → g, g(x) = Ex[f (Xτ )1{τ<∞}].
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Therefore, by definition, a Y -harmonic function h is ∂B-determined if and only if it is the image
of some function under the Balayage operatorT . Computing Py(τ < ∞) amounts to computing
the image of the constant function j on ∂B under the Balayage operator. Propositions 3–6
provide us with a collection of basis functions for which the Balayage operator T is very
simple to compute; these functions play the same role in the current problem as exponential
functions play in the solution of linear ordinary differential equations or the trigonometric
functions in the solution of the heat and the Laplace equations. We now write Proposition 5
more explicitly. Suppose that α1, α2, and β are as in Proposition 5; recall that

hβ(y) = βy(1)−y(2)(C(β, α2)α
y(2)
1 − C(β, α1)α

y(2)
2 ), y ∈ Z

2.

Then, from Proposition 5 we see that

Ey[hβ(Yτ )1{τ<∞}] = hβ(y), (32)

i.e. T (hβ |∂B) = hβ .

Remark 3. We are interested in the computation of Py(τ < ∞) = Ey[1τ<∞]. More gen-
erally we may be interested in computing g(y) = Ey[f (Yτ )1{τ<∞}] for some function f .
To approximate this expectation, one can proceed as follows. First, approximate f with a finite
superposition of the form

f ∗ =
K∑

i=1

wifi |∂B,

where wi ∈ C and fi ∈ FY, i.e. a Y -harmonic function of the form

fi = C(βi, α
∗
i )[(βi, αi), ·] − C(β,αi)[(βi, α

∗
i ), ·],

and |βi |, |αi |, |α∗
i | < 1; then, by (32),

Ey[f ∗(Yτ )1{τ<∞}] =
K∑

i=1

wifi(y)

would lead to an approximation of Ey[f (Yτ )1{τ<∞}] for y ∈ B. The error generated by this
approximation is bounded by maxy∈∂B |f ∗(y) − f (y)|.

4. Convergence–initial condition set for X

In the convergence argument of Section 2 we used an initial point for the Y process. The goal
of this section is to provide a convergence argument starting from an initial position specified
for the X process as X(0) = �nx� for a fixed x ∈ R

2+ with x(1) + x(2) < 1, as is performed
in LD analysis. We will show that the relative error

|Pxn(τn < τ0) − PT (xn)(τ < ∞)|
Pxn(τn < τ0)

decays exponentially in n; see Proposition 8 below.
For the current analysis, we will also use the limit process Y expressed in the original

coordinates of the X process, which is X̄
.= Tn(Y ). Process X̄ is the same process as X except

that it is constrained only at the boundary ∂2, i.e.

Xk+1 = Xk + π(Xk, Ik), X̄k+1 = X̄k + π1(X̄k, Ik),

where π1 is as in (13). We will assume that X and X̄ start from the same initial position
X0 = X̄0 and whenever we specify an initial position below it is for both processes.
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As before, τn = inf{k ≥ 0 : X1(k) + X2(k) = ∂An} and τ = inf{k ≥ 0 : Yk ∈ ∂B}; define
∂Ān

.= {x ∈ Z × Z+ : x(1) + x(2) = n}. By definition, X̄ hits ∂Ān exactly when Y hits ∂B;
therefore,

τ = τ̄n
.= inf{k ≥ 0 : X̄k ∈ ∂Ān} (33)

and PT (xn)(τ < ∞) = Pxn(τ̄n < ∞).

Proposition 8. For x ∈ R
2+, 0 < x(1) + x(2) < 1 (and x(1) > 0 if ρ1 > ρ2 and x(2) ≤

1 − log(ρ1)/ log(ρ2)), set xn
.= �nx�. Then

|Pxn(τn < τ0) − PT (xn)(τ < ∞)|
Pxn(τn < τ0)

= |Pxn(τn < τ0) − Pxn(τ̄n < ∞)|
Pxn(τn < τ0)

decays exponentially in n.

The proof will require several supporting results on σ1 = inf{k ≥ 0 : Xk ∈ ∂1},
σ1,2

.= inf{k : k ≥ σ1, Xk ∈ ∂2}, and σ̄1,2
.= inf{k : k ≥ σ1, X̄k(1) = −X̄k(2)}.

Proposition 9. It holds that

Xk(1) + Xk(2) = X̄k(1) + X̄k(2) for k ≤ σ1,2. (34)

Proof. We see that
Xk = X̄k for k ≤ σ1 (35)

implies (34) for k ≤ σ1. If σ1 = σ1,2 then we are done. Otherwise, Xσ1(2) = X̄σ1(2) > 0
and Xk(2) > 0 for σ1 < k < σ1,2; let σ1 = ν1 < ν2 < · · · < νK < σ1,2 be the times
when X hits ∂1 before hitting ∂2. The definitions of X̄ and X imply that these are the only times
when the increments of X and X̄ differ: Xνj +1 − Xνj

= 0 and X̄νj +1 − X̄(νj ) = (−1, 1) if
Iνj

= (−1, 1); otherwise both differences are equal to Iνj
. This and (35) imply that

Xk − X̄k = ςk · (−1, 1) for k ≤ σ1,2, (36)

where ςk
.= ∑K

j=11{νj ≤k}1{Iνj
=(−1,1)} and ‘·’ denotes scalar multiplication. Summing the

components of both sides of (36) yields (34). �

Define
�n

.= {σ1 < σ1,2 < τn < τ0}.
Then �n is one particular way for {τn < τ0} to occur. In the next proposition, we obtain an
upper bound on its probability in terms of

γ
.= −(log(ρ1) ∨ log(ρ2)).

Proposition 10. For any ε > 0, there is N > 0 such that if n > N ,

Pxn(�n) ≤ e−n(γ−ε),

where xn = �nx� and x ∈ R
2+, x(1) + x(2) < 1.
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Proof. The proof will use the following definitions. Let v0 = (0, 1), v1 = (−1, 1), v2 =
(0, −1), pX(v0) = λ, pX(v1) = μ1, pX(v2) = μ2, and

Ha(q)
.= − log

( ∑
i∈{0,1,2}−a

pX(vi)e
−〈vi ,q〉 +

∑
{i∈a}

pX(vi)

)
, a ⊂ {1, 2}, (37)

where 〈·, ·〉 denotes the standard inner product in R
2. For x ∈ R

2+, set

b(x)
.= {i : x(i) = 0}.

We will write H rather than H∅.
We now address the gradient operator on smooth functions on R

2 with ∇. The authors of
[18] and [51] used a smooth subsolution of

Hb(x)(∇V (x)) = 0 (38)

to find a lower bound on the decay rate of the second moment of IS estimators for the probability
Pxn(τn < τ0) (note that V is said to be a subsolution of (38) if Hb(x)(∇V (x)) ≥ 0). The
event �n consists of three stages: the process first hits ∂1, then ∂2, and then finally hits ∂An

without hitting 0. To handle this, we use a function (s, x) → V (s, x) with two variables; for
the x variable we will substitute the scaled position of the X process, and the discrete variable
s ∈ {0, 1, 2} is for keeping track of which of the above three stages the process is in; V is a
subsolution in the x variable and continuous in (s, x) (when (s, x) is thought of as a point on
the manifold M consisting of three copies of R

2+ (one for each stage); the zeroth glued to the
first along ∂1 and the first to the second along ∂2) and therefore one can think of V as three
subsolutions (one for each stage) glued together along the boundaries of the state space of X

where transitions between the stages occur. We will call a function (s, x) → V (s, x) with the
above properties a subsolution of (38) on the manifold M.

Define

Ṽ ε
i (x)

.= 〈ri , x〉 + γ − (3 − i)ε, Ṽ ε,j .=
j∧

i=0

Ṽ ε
i , (39)

where
r0

.= (0, 0), r1 = −γ (1, 0), r2
.= −γ (1, 1).

The subsolution for stage j is a smoothed version of Ṽ ε,j . As in [18] and [51], we will need to
vary ε with n in the convergence argument; for this reason, ε will appear as the third parameter
of the constructed subsolution. The details are as follows.

The subsolution for the zeroth stage is Ṽ 0,ε : V (0, x, ε)
.= γ − 3ε, ∇V (0, ·) = 0, and it

trivially satisfies (38) and is therefore a subsolution.
Define the smoothing kernel

ηδ(x)
.= 1

δ2M
η

(
x

δ

)
, η(x)

.= 1{|x|≤1}(|x|2 − 1), M
.=

∫
R2

η(x) dx

To construct the subsolution for the first and the second stages, we will mollify Ṽ j,ε,

j = 1, 2, with η, i.e.

V (j, x, ε)
.=

∫
R2

Ṽ j,ε(y)ηc2ε(x − y) dy,
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and c2 is chosen so that

V (1, x, ε) =
{
V (2, x, ε) for x ∈ ∂2,

V (0, x, ε) for x ∈ ∂1,

(40)

(41)

(this is possible since V (j, ε, x) → Ṽ j,ε as c2 → 0 and all the involved functions are affine;
see [51, p. 38] for details on how to compute c2 explicitly). The fact that V (j, ·, ε), j = 1, 2,
are subsolutions follows from the concavity of Ha and the choices of the gradients ri ; for details
we refer the reader to [51, Lemma 2.3.2]. A direct computation yields∣∣∣∣∂2V (j, ·, ε)

∂xi∂xj

∣∣∣∣ ≤ c3

ε
, j = 1, 2, (42)

for a constant c3 > 0 (again, see the proof of [51, Lemma 2.3.2] for more details of this
computation).

The construction above implies that

V (2, x, ε) < 0, x ∈ {x : x(1) + x(2) = 1}, (43)

completing the proof. �
Now on to the proof of Proposition 10.

Proof of Proposition 10. We see that V (0, ·, ε) maps to a constant and, thus,

〈∇W(x), vi〉 = W(x + vi) − W(x) if W = V (0, ·, ε). (44)

For W = V (j, ·, ε), j = 1, 2, Taylor’s formula and (42) yield∣∣∣∣
〈
∇W(x),

1

n
vi

〉
−

(
W

(
x + 1

n
vi

)
− W(x)

)∣∣∣∣ ≤ c3

nε
. (45)

We will allow ε to depend on n so that εn → 0 and nεn → ∞. Define Sk = 1{σ1<k} +1{σ1,2<k},
M0

.= 1, and

Mk+1
.= Mk exp

(
−n

(
V

(
Sk+1,

Xk+1

n
, εn

)
− V

(
Sk,

Xk

n
, εn

))
− 1{n>σ1}

c3

nεn

)
.

The fact that V (j, ·, εn), j = 0, 1, 2, are subsolutions of (38), together with (40), (41), (44), and
(45) imply that M is a supermartingale. Equations (44) and (45) allow us to replace the gradients
in (37) and (38) with finite differences, and (40) and (41) preserve the supermartingale property
of M as S passes from 0 to 1 and from 1 to 2. This and M ≥ 0 imply (see [19, Theorem 7.6]) that

Exn

[τ0,n∏
k=1

exp

(
−n

(
V

(
Sk+1,

Xk+1

n
, εn

)
− V

(
Sk,

Xk

n
, εn

))
− 1{n>σ1}

c3

nεn

)]
≤ 1,

where τ0,n
.= τn ∧τ0. Restricting the expectation on the left to 1�n and replacing 1{n>σ1} with 1

to make the expectation smaller, we have

Exn

[
1�n exp

(
− c3

nεn

τ0,n

)
exp

(
−n

τ0,n∑
k=1

V

(
Sk+1,

Xk+1

n
, εn

)
− V

(
Sk,

Xk

n
, εn

))]
≤ 1.
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Over �n, X first hits ∂1 and then ∂2 and finally ∂An. Furthermore, the sum inside the expectation
is telescoping across this whole trajectory; these imply that the last inequality reduces to

Exn

[
1�n exp

(
− c3

nεn

τ0,n

)
exp(−n(V (2, Xτ0,n , εn) − V (0, X0, εn))

]
≤ 1.

Then τ0,n = τn on �n and, therefore, on the same set Xτ0,n ∈ ∂n. This, V (0, ·, εn) = γ − 3εn,
(43), and the previous inequality yield

Exn

[
1�n exp

(
− c3

nεn

τ0,n

)]
≤ e−n(γ−3εn). (46)

Now suppose that the statement of Theorem 10 does not hold, i.e. there exist ε > 0 and a
sequence nk such that

Pxnk
(�nk

) > e−nk(γ−ε) for all k. (47)

Let us pass to this subsequence and drop the subscript k. Using [51, Theorem A.1.1] we see
that we can choose c4 > 0 so that P(τ0,n > nc4) ≤ e−n(γ+1) for large n. Then

Exn

[
1�n exp

(
− c3

nεn

τ0,n

)]
≥ Exn

[
1�n exp

(
− c3

nεn

τ0,n

)
1{τ0,n≤nc4}

]

≥ exp

(
−c4c3

nεn

n

)
Exn [1�nj{τ0,n≤nc4}],

P(E1 ∩ E2) ≥ P(E1) − P(Ec
2) for any two events E1 and E2; this and the previous line imply

that this is greater than or equal to

exp

(−c3c4

nεn

n

)
(Pxn(�n) − Pxn(τ0,n > nc4)) ≥ exp

(
−c3c4

nεn

n

)
(e−n(γ−ε) − e−(γ+1)n).

By assumption, nεn → ∞, which implies that c3c4/nεn → 0; this and the last inequality mean
that Exn [1�n exp(−(c3/(nεn))τ0,n)] cannot decay at an exponential rate faster than γ − ε, but
this contradicts (46) since εn → 0. Then, there cannot be ε > 0 and a sequence {nk} for which
(47) holds and this implies the statement of Proposition 10. �

Define r3
.= log(ρ2)(1, 1) and V (x)

.= (− log(ρ1) + 〈r1, x〉) ∧ (− log(ρ2) + 〈r3, x〉) for
x ∈ R

2.

Proposition 11. It holds that

lim
n→∞ −1

n
log Pxn(τn < τ0) = V (x) for x ∈ R

2+, 0 < x(1) + x(2) < 1, xn = �nx�.

The omitted proof is a one-step version of the argument used in the proof of Proposition 10
and uses a mollification of V as the subsolution.

Proposition 12. For any ε > 0, there is N > 0 such that if n > N ,

Pxn(σ1 < σ1,2 < τ̄n < ∞) ≤ e−n(γ−ε), (48)

where xn = �nx� and x ∈ R
2+, x(1) + x(2) < 1.
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Proof. Recall that τ̄n = τ (see (33)). Write

Pxn(σ1 < σ1,2 < τ̄n < ∞)

= Pxn(σ1 < σ1,2 < σ̄1,2 < τ̄n < ∞) + Pxn(σ1 < σ1,2 < τ̄n < σ̄1,2).

The definitions of X and X̄ imply that τ0 ≥ σ̄1,2. Then, if a sample path ω satisfies σ1(ω) <

σ1,2(ω) < τ̄n(ω) < σ̄1,2, it must also satisfy σ1(ω) < σ1,2(ω) < τn(ω) < τ0(ω). This and
Proposition 10 imply that there is an N such that

Pxn(σ1 < σ1,2 < τ̄n < σ̄1,2) ≤ e−n(γ−ε) for n > N.

On the other hand, Proposition 7 and the Markov property of X̄ imply that

Pxn(σ1 < σ1,2 < σ̄1,2 < τ̄n < ∞) ≤ c5e−n(γ−ε) for some constant c5 > 0.

These imply (48). �

Proof of Proposition 8. Decompose Pxn(τn < τ0) and Pxn(τ̄n < ∞) as

Pxn(τn < τ0) = Pxn(τn < σ1 < τ0) + Pxn(σ1 < τn ≤ σ1,2 ∧ τ0)

+ Pxn(σ1 < σ1,2 < τn < τ0), (49)

Pxn(τ̄n < ∞) = Pxn(τ̄n < σ1) + Pxn(σ1 < τ̄n < σ1,2) + Pxn(σ1 < σ1,2 < τ̄n < ∞). (50)

By definition, X and X̄ are identical until they hit ∂1; therefore, {τn < σ1} = {τ̄n < σ1} and

Pxn(τn < σ1) = Pxn(τ̄n < σ1). (51)

The processes X and X̄ begin to differ after they hit ∂1; but from Proposition 9 we see that
the sums of their components remain equal before time σ1,2. This implies τ̄n = τn on τn ≤ σ1,2
and, therefore,

Pxn(σ1 < τ̄n ≤ σ1,2) = Pxn(σ1 < τn ≤ σ1,2 ∧ τ0).

This, (51), and the decompositions (49) and (50) imply that

|Pxn(τn < τ0) − Pxn(τ̄n < ∞)| = |Pxn(σ1 < σ1,2 < τn < τ0) − Pxn(σ1 < σ1,2 < τ̄n < ∞)|.
By Propositions 10 and 12 for ε > 0 arbitrarily small, the right-hand side of this equality is
bounded above by e−n(γ−ε) when n is large. On the other hand, from Proposition 11 we see
that for ε0 > 0 arbitrarily small, Pxn(τn < τ0) ≥ e−n(γ1+ε0) for large n, where γ1

.= V (x) < γ .
Choose ε and ε0 to satisfy γ − γ1 > ε + ε0. These imply that, for c6 = (ε + ε0)+ γ1 − γ < 0,

|Pxn(τn < τ0) − Pxn(τ̄n < ∞)|
|Pxn(τn < τ0)| < ec6n

when n is large; our proof is complete. �

It is possible to generalize Proposition 8 in many directions. In particular, one expects it to
hold for any tandem walk of finite dimension with the same exit boundary; the proof is almost
identical but requires a generalization of Proposition 11, which, we believe, will involve the
same ideas given in its proof. We leave this task to a future work.
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5. Numerical example

From Proposition 8 we see that for x ∈ R
2+ and xn = �nx�, the relative error

|W(Tn(xn)) − Pxn(τn < τ0)|
Pxn(τn < τ0)

decays exponentially in n. We now examine numerically to see how well this approximation
works. Define

pk
n(x) = Px(τn < τ0 ≤ k).

By the Markov property of X, pk satisfies the following recursion:

pk+1
n (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if x ∈ ∂An,

0 if x = 0,

λpk
n(x + (1, 0)) + μ1p

k
n(x + (−1, 1)) + μ2p

k
n(x) if x ∈ ∂2,

λpk
n(x + (1, 0)) + μ1p

k
n(x) + μ2p

k
n(x + (0, −1)) if x ∈ ∂1,

λpk
n(x + (1, 0)) + μ1p

k
n(x + (−1, 1)) + μ2p

k
n(x + (0, −1)) otherwise.

By the monotone convergence theorem, limk→∞ pk
n(x) = pn(x). Furthermore, by the Perron–

Frobenius theorem, this convergence occurs exponentially fast. Therefore, pn
k provides an

excellent approximation of pn for large k. All the prior works [16], [18], [50], [51], [53], [54],
and [56] use this type of approximation to compute the quantity of interest ‘exactly’ to illustrate
the numerical performance of the algorithms under consideration and we will do the same. For
our numerical study, we set μ1 = 0.4, μ2 = 0.5, λ = 0.1, and n = 60. For n = 60, the above
iteration can be run quickly on a computer and k = 600 is more than enough for its convergence
(convergence can be observed easily by checking that pk

n no longer changes as k increases).
Recall that W(Tn(xn)) is a sum of functions decaying exponentially in n− x(1) and x(2). This
suggests that it is visually simpler to compare the functions W(Tn(xn)) and Px(τn < τ0) by
representing them in the log scale:

Vn
.= −1

n
log Px(τn < τ0) and Wn

.= −1

n
log W(Tn(xn)).

In the left panel of Figure 4 we depict the level curves of Wn of Vn; they all completely
overlap except for the first one along the x(2) axis. In the right panel of Figure 4, we present the
relative error (Wn − Vn)/Vn; we see that it appears to be 0 except for a narrow layer around 0
where it is bounded by 0.02.

For x = (1, 0), the exact value for the probability Px(τ60 < τ0) is 1.1285 × 10−35 and the
approximate value given by W(Tn(x)) is equal to 1.2037 × 10−35. Moving away from the
origin, these quantities quickly converge to each other. For example,

Px(τ60 < τ0) = 4.8364 × 10−35, W(Tn(x)) = 4.8148 × 10−35 for x = (2, 0),

and

Px(τ60 < τ0) = 7.8886 × 10−31, W(Tn(x)) = 7.8885 × 10−31 for x = (9, 0).
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Figure 4: (Left): level curves of Vn (thin shaded dark) and Wn (thick shaded light). (Right): the graph
of (Wn − Vn)/Wn.

6. Literature review

There is a vast literature related to the analysis presented in this paper. Below we review a
number of related works and point out the connections between them and our paper.

There is a clear correspondence between the structures which appear in the LD analysis
and the subsolution approach to IS estimation of pn of [15], [16] [18], [51], and [54], and
those involved in the methods developed in this paper. This connection is best expressed in the
following equation (in the context of two tandem walk just studied). For q = (q1, q2) ∈ R

2,
set β = eq1 and α = eq1−q2 ; then

H(q) = − log(p(β, α)),

where p is the characteristic polynomial defined in (16). A similar relation exists between H2
and p2. In the LD analysis, H and H2 appear as two of the Hamiltonians of the limit
deterministic continuous time control problem; the gradient of the limit value function lies
on their 0-level sets. Parallel to our construction in Subsection 3.2.1, the articles using the
subsolution approach construct subsolutions to a limit HJB equation using points on or inside
the 0-level curve of the hamiltonians H and H2 or their intersection; e.g. the gradient r1 defined
following (39) lies exactly on this intersection and corresponds to the point (ρ1, ρ1) lying on
H ∩ H2; see [18, Figure 9], the point r1 lying on the intersection of the 0-level sets of the
Hamiltonians H and H2 corresponds again to the point (ρ1, ρ1) lying on H ∩ H2 identified in
Subsection 3.2.1). These works use subsolutions to estimate variances of IS estimators (again
based on the same subsolution) for buffer overflow probabilities of the form Px(τn < τ0) and
concentrate on the initial point x = 0. Concentrating on the initial point x = 0 allows great
flexibility on the choice of the exit boundary ∂An.

McDonald [39] considered the buffer overflow of a chosen node in a given stable network.
The process W considered in [39] is (r + m)-dimensional: the first dimension represents the
node whose overflow event is to be studied and the dimensions 2, 3, . . . , r represent nodes
that become unstable when the first node overflows. For n > 0, let τn be the first time the
first component of W hits n, i.e. τn = inf{k ≥ 0 : W(k) ∈ Fn}, Fn = {x ∈ Z

r+m+ : x1 ≥ n},
and let τ0 denote the first time W hits the origin 0. Finally, let τ� denote the first time after
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time 0 that one of the nodes from 1 to r hits 0, i.e. τ� = inf{k : k > 0, W ∈ �}, where
� = {x : xj = 0 for some j ∈ {1, 2, 3, . . . , r}} is the constraining boundary of the state space
for the components 1 to r . McDonald [39] derived the following approximation result: let
π� denote the stationary measure conditioned on � and Eπ� denote expectation conditioned
on W(0) having initial distribution π�. Let τ0 be the first return time to 0, i.e. τ0 = inf{k >

0 : Wk = 0}. From [39, Lemma 1.8], under the assumptions made in the paper, we see that

lim
n→∞

|π(0)P0(τn < τ0) − π(
)Pπ
(τn < τ�)|
π(0)P0(τn < τ0)

= 0.

The analysis that leads to this result is based on the h-transform of W , where h is a harmonic
function of W away from the set 
 taking the form h(x) = eαx1a(x); [39] gives conditions
under which such an h function exists based on results from [43]. McDonald [39] developed
the following representation for π(
)Pπ
(τn < τ�):

π(
)Pπ
(τn < τ�) = e−αn
Eπ
 [h(W(1))�(W(1))],

�(x) = Ex[a−1(W(τn))e
−α(W(τn)−n)1{τn<τ
}], (52)

where W is the h-transform of the process W (if W is not a nearest-neighbor random walk on
Z

r+m+ , the formula for � needs to be slightly modified; see [39] for details). For the computation
of the expectation appearing in (52), McDonald [39] suggested simulation. In [39, Section 3],
the two-dimensional constrained random walk on Z

2+ was treated with increments (−1, 0),
(1, 0), (0, −1), (0, 1), (1, 1); for this process, the author constructed explicitly an h function
of the form h(x) = a

x1
1 a

x2
2 , where (a1, a2) ∈ R

2 is a point on a curve whose definition is
analogous to the definition of the characteristic surface H .

Miyazawa [41] employed the idea of removing constraints on one of the boundaries and
using points on curves associated with the resulting process to study the tail asymptotics of
the stationary distribution of a two-dimensional nearest-neighbor random walk L constrained
to remain in Z

2+. To study the asymptotic decay rate of ν(n, k) in n for a fixed k, the
author considered the random walk L(1), which has the same dynamics as L except that
it is not constrained on the vertical axis. Associated with this process, the author defined
two curves, whose definitions are parallel to the definition of H and H1 (see the definition
of D1 in [41, p. 554]) and used points on and inside these curves to define solutions to an
eigenvalue/eigenvector problem associated with the problem; see [41, Theorem 3.1]. For the
study of tail asymptotics along the vertical axis, the author used the same analysis but this time
removing the constraint on the horizontal axis. For further works along this line of research,
we refer the reader to [9], [32], and [42].

Ignatiouk-Robert [27] developed an explicit formula for the large deviation local rate function
L(x, v) of a general Jackson network, starting from representations of these rates as limits
derived in [3] and [13]. For this, the author employed ‘free processes’, these are versions of
the original process obtained by removing those constraints from the original process that are
not involved in a given direction v at a given point x ∈ R

d+. The proofs in [27] use fluid limits
for the free process under a change of measure (i.e. a twisted/h-transformed version of the
free process); the changes of measures used here correspond to using h-functions of the form
e〈θ,x〉, where θ is a point on a characteristic surface (analogous to H in this work or H in [18])
associated with the process being transformed; see [27, Section 6]. As an application of its
results, the author computed the limit limn→∞(1/n) log E0[τn] by noting from [45] that this
limit is equal to

lim
n→∞ −1

n
log P0(τn < τ0),
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which is the LD decay rate of the probability studied in this paper for general stable Jackson
networks; Ignatiouk-Robert [27] derived the explicit formula min1≤i≤d − log(ρi) for the above
LD rate using the explicit local rate functions developed in the same work and the explicit
formulas available for the stationary distribution of the underlying process.

The Martin boundary of an unstable process is a characterization of the directions through
which the process may diverge to ∞. The idea of using points on characteristic surfaces, and
the idea of removing constraints from the process to simplify analysis, appear also in works
devoted to identifying Martin boundaries of constrained or stopped processes. An example is
[28], in which the authors identified the Martin boundary of two-dimensional random walks in
Z

2+ and which are stopped as soon as they hit the boundary of Z
2+. The authors considered

1. the directions q ∈ R
2+, where both components of q are nonzero,

2. the directions q such that q(1) = 0, and

3. directions such that q(2) = 0.

For each of these cases, the authors worked with what they called local processes; the local
process for the first case is a completely unconstrained random walk, the local process for the
second case is a process keeping the horizontal axis (i.e. the vertical boundary is removed),
and the third case is the reverse of the second case. The authors used LD analysis of the local
processes, harmonic functions of the form

ha(x) =

⎧⎪⎨
⎪⎩

x1e〈a,x〉 − Ex[S1(τ )e〈a,x〉1{τ<∞}] if q(a) = (0, 1),

x2e〈a,x〉 − Ex[S2(τ )e〈a,x〉1{τ<∞}] if q(a) = (1, 0),

e〈a,x〉 − Ex[e〈a,x〉1{τ<∞}] otherwise,

where S is the underlying process, τ is the first hitting time to the boundary of Z
2+, a is a

given point on a surface associated with S (defined analogous to H ), and q(a) is the mean
direction of S under an exponential change of measure defined by a; see [28, p. 1108]. In
this connection, we also cite [33], in which the authors used geometry and complex analysis to
identify the Martin boundary of random walks on Z

2, Z × Z+, and Z
2+.

Let X be the constrained random walk in Z
2+ with increments (1, 0), (−1, 0), (0, 1), and

(0, −1) and let τn be as in (1). A classical problem in computer science going back to [31,
Section 2.2.2, Exercise 13] is the analysis of the expectation

E[max(X1(τn), X2(τn))], (53)

i.e. the expected size of the longest queue at the time of buffer overflow. This expectation
was computed in [31] for the cases of P(Ik = (1, 0)) = P(Ik = (0, 1)) = 1

2 and P(Ik =
(−1, 0)) = P(Ik = (0, −1)) = 0. Various versions of this problem have since been treated in
[20], [25], [36], [37], and [57]. Maier [37] treated a generalization of this problem where
the dynamics of the random walk depend on its position; the approach of [37] used LD
techniques from [22]. Yao [57] treated the approximation of (53) for the case when the
increments have a symmetric distribution as follows: P(Ik = (1, 0)) = P(Ik(0, 1)) = 1

2 (1 − p)

and P(Ik = (−1, 0)) = P(Ik(0, −1)) = 1
2p; furthermore, p < 1

2 was assumed, i.e. the process
was assumed to be unstable. Under these assumptions, the author developed an approximation
for the expectation in (53) as n → ∞. The main idea of Yao [57] is the following: under
the assumptions of the paper one can ignore both the constraining boundaries of the process.
To prove this, the author used LD bounds on i.i.d. Bernoulli sequences; see [57, Lemma 3].
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Then an explicit computation for the unconstrained process using elementary techniques yields
the desired approximation.

7. Conclusion

In this section we point out several implications of our results, work in progress, and possible
extensions.

7.1. The μ1 = μ2 case

Equation (2) for Py(τ < ∞) (derived in Proposition 7) requires that μ1 �= μ2. The μ1 = μ2
case can be handled by letting μ2 → μ1 in (2). Then

Py(τ < ∞) = ρy(1)−y(2) + μ − λ

μ
ρy(1)(y(1) − y(2)),

where ρ = λ/μ and μ1 = μ2 = μ. The μ1 = μ2 case leads to the linear term y(1) − y(2).

7.2. Constrained diffusions with drift and elliptic equations with Neumann boundary
conditions

Diffusion processes are weak limits of random walks. Thus, the results of the previous
sections can be used to compute/approximate Balayage and exit probabilities of constrained
unstable diffusions. We present an example demonstrating this possibility.

For a, b > 0, let X be the constrained diffusion on R × R+ with infinitesimal generator L

defined as

f → Lf, Lf = 〈∇f, ((2a + b), (a − b))〉 + 1

6
∇2f ·

(
2 1
1 2

)
,

where ∇2 denotes the Hessian operator, mapping f to its matrix of second-order partial
derivatives. On {x : x(2) = 0}, X is pushed up to remain in R × R+ (the precise definition
involves the Skorokhod map; see, e.g. [34]). Then a, b > 0 implies that, starting from
B = {x : x(1) > x(2)}, X has a positive probability of never hitting ∂B = {x : x(1) = x(2)}.
Let τ be the first time that X hits {x : x(1) = x(2)}. Proposition 7 for d = 2 suggests

Px(τ < ∞) = e−(a+2b)3(x(1)−x(2)) + a + 2b

a − b
e−(a+2b)3(x(1)−x(2))e−(2a+b)3x(2)

− a + 2b

a − b
e−3(2a+b)x(1), x ∈ B. (54)

One can check directly that the right-hand side of this display satisfies

LV = 0, 〈∇V, (0, 1)〉 = 0, x ∈ ∂2.

This and a verification argument similar to the proof of Proposition 5 imply (54).

7.3. General Jackson networks

7.3.1. Multiple approximations. We have seen with Proposition 8 that Pyn(τ < ∞) approxi-
mates Pxn(τn < τ0), xn = �nx�, very well (i.e. with exponentially decaying relative error)
for all x ∈ A

.= {x ∈ R
2+, 0 < x(1) + x(2) < 1} when n is large. When X is the

constrained random walk associated with a general two-dimensional Jackson network, this
does not hold in general and to obtain a good approximation across all A we will have to use
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the transformation T 2
n (x) = (x(1), (n − x(2))) as well as Tn. Then T 2

n moves the origin of the
coordinate system to the corner (0, n) of ∂An. Thus, for general two-dimensional X, we will
have to construct two limit processes Y 1 and Y 2; Y 1 is as above and Y 2 is the limit of Y 2,n .=
T 2

n (X). The limit probability is, as before, Py(τ
2 < ∞), where τ 2 is the first time Y 2 hits ∂B.

In d-dimensions, we will have d possible limit processes, one for each corner of ∂An providing
precise approximations for initial points which lie away from the boundaries missing in the
limit problem. For a numerical example, see the preprint of this paper [55, Section 8.2].
One work in progress, based on the approach of Section 4, gives details of these ideas in the
context of Jackson networks consisting of parallel queues. The same work also considers the
approximation of the expectation (53) using the techniques of this paper.

7.3.2. Approximation of Py(τ < ∞) in general. The second issue is the generalization of the
computation of the limit probability Py(τ < ∞). As we have seen in Proposition 7, in the case of
two tandem queues, it is possible to compute this probability exactly as the superposition of two
Y -harmonic functions: [(ρ1, ρ1), ·] and hρ2 . For general two-dimensional Jackson networks,
superposition of these two functions will yield only an approximation of Py(τ < ∞); to
construct better approximations one should proceed as indicated in Remark 3 and use a linear
combination of a finite number of functions in the class of Y -harmonic functions constructed
in Subsections 3.2.1 and 3.2.2 to approximate the constant function j on the boundary ∂B; the
error made in this approximation on ∂B will provide an upper bound for the error made in the
approximation of Py(τ < ∞) for any y ∈ B. The numerical example in [55, Section 8.2]
demonstrates this point.

7.3.3. ∂B-determined Y -harmonic functions. In the above section we have noted that, in gen-
eral, to construct improved approximations of Py(τ < ∞), we will need to use additional
Y -harmonic functions of the form

hβ = βy(1)−y(2)
(
C(β, α2)α

y(2)
1 − C(β, α1)α

y(2)
2

)
,

where (β, α1) and (β, α2) are conjugate and 
(β) �= 0. We know from Proposition 5 that hβ

is ∂B-determined if |α1|, |α2| ≤ 1, and |β| < 1. Suppose we fix α ∈ {z ∈ C, |z| = 1} and
compute β and α∗ so that (β, α) and (β, α∗) are conjugate (β and α∗ are computed by solving
the characteristic equation p = 1). In view of Proposition 5, and in view of the fact that hβ

is used in the approximation of a ∂B-determined Y -harmonic function, a natural question is
under what conditions on the parameters of the model do |α∗| ≤ 1 and |β| < 1 hold. This
problem was studied for the general two-dimensional Jackson network in [55, Section 4] (in
particular, see Propositions 4.12 and 4.13). These propositions require simplifying conditions
on the system parameters; see, e.g. [55, Condition (56), p. 18]. The derivation of more precise
conditions remains an open problem.

7.3.4. Harmonic systems. In Subsection 3.3 we pointed out that the classes of Y -harmonic
functions constructed in Subsections 3.2.1 and 3.2.2 have graph representations, as presented
in Figure 3; we refer to these graphs and the system of equations they represent as ‘harmonic
systems.’ It is possible to generalize these graphs to walks in d-dimensions, and corresponding
to each solution, to the system of equations represented by the graph one can define aY -harmonic
function; this was addressed in the preprint of this paper [55, Section 5]; see Definitions 5.1
and 5.2, Proposition 5.2 generalizing our Proposition 4, and Proposition 5.3 generalizing our
Proposition 5.
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{2, 3}

{1, 3}{3}

{1, 2, 3}

2 2

33

Figure 5: A harmonic system for d = 3.

7.3.5. d tandem queues. Remarkably, it turns out to be possible to define a class of harmonic
systems and explicitly solve them to generalize (2) for Py(τ < ∞) to d tandem queues. This
was addressed in [55, Section 6]. As an example, consider d = 3. To compute P(τ < ∞),
we use, in addition to the graphs in Figure 3, the graph presented in Figure 5. Using [55,
Proposition 6.3] implies that, for

μi �= μj , i, j ∈ {1, 2, 3}, (55)

the following function solves the harmonic system presented in Figure 5:

hρ3(y) = ρ
y(1)−(y(2)+y(3))
3

(
1 − c3ρ

y(3)
2 − c3c1ρ

y(2)
1 ρ

y(3)
1 + c3c2ρ

y(2)
1 ρ

y(3)
2

)
, (56)

where

c2 = μ2 − λ

μ2 − μ1
, c3 = μ3 − λ

μ3 − μ2
, c1 = μ3 − λ

μ3 − μ1
.

The Y process for the three tandem queues is a random walk on Z × Z
2+ with increments

(−1, 0, 0), (1, 1, 0), (0, −1, 1), and (0, 0, −1). The function h of (56) is a Y -harmonic function.
There are four terms in the sum (56) defining hρ3 , each of these terms corresponds to a node
of the graph in Figure 5. None of them is Y -harmonic individually. But the particular linear
combination in (56) is indeed Y -harmonic. Two additional Y -harmonic functions used in the
calculation of Py(τ < ∞) are

hρ2 = ρ
y(1)−(y(2)+y(3))
2

(
ρ

y(3)
2 − c2ρ

y(2)
1 ρ

y(3)
2

)
, hρ1 = ρ

y(1)−(y(2)+y(3))
1 ρ

y(2)
1 ρ

y(3)
1 ;

the harmonic systems for these functions are ‘edge-completions’of those presented in Figure 3;
see [55, Definition 5.4]. The exact formula for Py(τ < ∞) for y ∈ Z×Z

2+, y(1) ≥ y(2)+y(3)

is stated in [55, Proposition 6.5] as

Py(τ < ∞) = hρ3 + c3hρ2 + c1c3hρ1 .

To treat the case when (55) does not hold, it suffices to take limits in the last formula, which
leads to polynomial terms in y.

7.4. Extension to other processes and domains

In the foregoing sections, we approximated Px(τn < τ0) in three stages:

1. used an affine change of coordinates to move the origin to a point on the exit boundary
and took limits; as a result, some of the constraints in the prelimit process disappeared
and we obtained as a limit process an unstable constrained random walk, and as a limit
problem the probability of the return Py(τ < ∞) of the unstable process;

2. proved that, for a set of initial conditions, the resulting approximation had exponentially
decaying relative error,
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3. found a class of basis functions on the exit boundary on which the Balayage operator
of the limit process had a simple action; then tried to approximate the constant function
j (i.e. the value of Py(τ < ∞) on the exit boundary) on the exit boundary with linear
combinations of the functions in the basis class.

The last two stages obviously depend on the particular dynamics of the original process and
the geometry of the exit boundary. In ongoing research we consider two tandem queues with
Markov modulated dynamics; optimal IS simulation for this process was developed in [53].
For Markov modulated dynamics, one needs a more general class of Y -harmonic functions
than those constructed in Section 3 and the resulting equations are of higher degree and more
challenging to analyze but the main ideas of Section 3 do generalize. In the present work we
have focused on the exit boundary ∂An; another natural exit boundary is {y : y(i) ≤ �ain�}
for ai > 0, i = 1, 2. We expect our approach in this paper to generalize to this exit boundary
with the following important modification: for this boundary, there are three points on the exit
boundary from which one must conduct a limit analysis: the corners n(0, a2), n(0, a1), and
n(a1, a2). For the last point, the limit process is the completely unconstrained version of the
random walk. Providing the details of this and further extensions to other processes and exit
boundaries remain problems for future research.

7.5. Loss of stability in random perturbations of stable dynamical systems

The type of problem we have studied is of the following form: there is a process X with a
certain law of large numbers limit which takes X away from a boundary ∂An towards a stable
point or a region; τ0 is the first time the process enters this stable region. The probability of
interest is P(τn < τ0). This setup is closely related to the study of random perturbations of stable
dynamical systems whose LD analysis was treated in [22, Chapter 4]. In this framework, one
starts with a dynamical system ẋ = b(x) around a stable equilibrium point (taken to be 0 ∈ R

d ).
Stability implies that smooth trajectories of x move toward 0. Random perturbations xε of this
system can be used as models for systems subject to noise in real-life situations. Trajectories
of xε will no longer converge to 0 deterministically but may go arbitrarily away from it. Leaving
a certain open set D containing 0 is considered to be a loss of stability for the perturbed system;
then τD = inf{t > 0 : xε(t) ∈ Dc} is the time when the perturbed system becomes unstable.
Let τδ be the first time xε hits a δ neighborhood of 0. Probabilities of the form P(τD < τδ)

naturally arise in the analysis of τD . The parallels between this framework and the question
treated in the present work suggest that our approach may be useful in the analysis of the
loss of stability in random perturbations of stable dynamical systems. A study of this possible
connection can also be the subject of future research.
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